
THE PET'·

REVEALED

'--- A NICK HAMPSHIRE PUBLICATION ----'

THE PETTM

REVEALED

A NICK HAMPSHIRE PUBLICATION

First Edition October 1979
Second Edition January 1980

The programs presented in this book have been inc1uded
for their instructional value, they have been checked
out with care, however, they are not warrented for any
purpose. While evry precaution has been taken in the
preparation of this book, the publisher assumes no
responsibility for any errors or omissions. Neither is
any liability assumed for damages or other costs
resulting from the use of the information contained
herein. No patent liability is assumed for the
information contained herein nor do the publishers
assume any liability for infringement of patents or
other rights of third parties resulting from use of that
information. No licence is granted by the equipment
manufacturers under any patent or patent rights and
manufacturers reserve the right to change circuitry and
software at any time without notice. Readers are refered
to current manufacturers data for exact specifications.

COPYRIGHT 1980 COMPUTABITS LTD. World rights reserved.
No part of this publication may be copied, transmitted
or stored in a retrieval system or reproduced in any way
including but not limited tOi photocopy, photography,
magnetic or other recording, without prior written
permission from the publishers, with the exception of
material entered and executed on a computer system for
the readers own use.

Published by: Computabits Ltd, P.O.Box 13, Yeovil,
Somerset, England.

PET is a Trademark of Commodore Ltd

FORWARD

This book is a collection of discoveries about the PET,
how and why it works, and how to use these facts to
write better programs and perform more interesting
functions. This is the second edition covering both old
and new ROM machines, if in doubt as to which ROMs are
in your machine then PEEK(50003), in old ROMs this is 0,
in new ROMs 1. Although the majority of these facts have
never been oficially published by Commodore 1 would like
to thank Commodore U.K. for their assistance in
providing much of the information contained in "PET
Revealed". Especially Nick Green and Mark Clark of
Commodore who were helpfull in providing that
information and also in proof reading the manuscript. 1
would also like to thank Commodore for their permission
to publish the circuit diagrams. The discovery of page
zero lo.cations and ROM subroutines is principally the
work of Jim Butterfield while the Trace programs are the
work of Brett Butler, my thanks to them both. 1 would
also like to thank Mark Witkowski for providing some of
the other programs and also proof reading the
manuscript. It may interest you to know that this book
was typeset using a PET system running Commodore's word
processor interfaced to a daisywheel printer

Nick Hampshire.

CONTENTS

SECTION l.The PET System Hardware. pl

Basic elements - CPU - Memory - Input and Output - Video
circuit - System memory map.

SECTION 2.....The 6502 Microprocessor. pl?

An overall view - The accumulator and arithmetic unit
Processor status register and flags - Branching and
Jumps - Addressing modes - The Index register - The
Stack register - Interrupts - Data modify instructions
Machine code on the PET Hand assembllng programs.

SECTION 3.....The PET operatin~ System. p43

Routines
tokens
storage
Garbage

from PET Basic - Variable memory map - Basic
Program storage format - Overlays - Data

Numeric and string variables - Arrays
collection - Adding commands to Basic - Trace.

SECTION 4.....The User Port. p83

User port connections - Video output circuit - Parallel
user port - The 6522 VIA - User port memory map
Programming the user port - Handshaking on the 6522
SeriaI 1/0 - 1/0 port expansion - Communication between
processors - KIM to PET data handshaking - Summary of
6522 registers.

SECTION 5.....The IEEE port and the 6520. P 119

The 6520 and its
Modifying keyboard
IEEE port - IEEE
commands IEEE
handshaking The
plotting.

APPENDIX.

registers The PET keyboard
functions - Cassette unit - Merge
connections - IEEE signaIs - IEEE
to RS232 conversion IEEE bus
video display Double density

A. PET circuit diagrams.
B. Coding form.
C. 6502 instruction set.
D. Hex-decimal conversion tables.
E. Table of PET codes.

PET SYSTEM HARDWARE 1

Any computer system
four basic elements or
Central Processing Unit,
and, 4)Output.

The Basic Elements.

large or small, consists of just
building blocks. These are 1)
2) Storage or Memory, 3) Input

to display the
be on one of
or to output

The Central Processing Unit or CPU as it is commonly
known, can loosly be regarded by analogy to a human
being as the "brain" of the computer. It is inside the
CPU that instructions are processed and the arithmetic
do ne. The functioning of other parts of the computer are
also controlled by the CPU. The computer stores the
instructions which it has been given and the data on
which these instructions operate in memory. This memory
can be divided into two general categories, main memory
and auxiliary backup storage. AlI the instructions and
data required by the machine to perform its current task
are stored in main memory. Auxiliary memory provides a
permanent storage for sets of data or instructions which
may be required by the computer at a later date.
Auxiliary storage in the PET consists either of a
cassette deck or a floppy disk unit. In the cassette
deck the data and programs are stored on magnetic tape,
in the floppy disk drive on a magnetic disk. Using these
devices the contents of the auxiliary storage can be
brought back into main memory as the need arises.

The input allows one to put instructions or
information data into the computer's main memory.
This is most commonly done through a typewriter like
keyboard. However. inputs can come from other sources
besides a keyboard, it could come from the closing of a
switch,from a piece of test equipment or even from
another computer. The input is aiso used when
information and instructions are transfered from
auxiliary memory to main memory.

The output is used by the computer
results of its computation. This can
several devices,a video screen,a printer,

1

the contents of main memory into auxiliary memory. As
with input,the output can be to a single device such as
a light, to a piece of equipment which the computer is
controlling or to another computer.

These then are the basic elements of any computer
system and Fig 1 shows how they are connected together
and how they interact with the human user. We will now
consider in more detail how the se four basic elements
are implemented on the PET.

The CPU.

The principle component of the CPU circuitry in the
PET is the 6502 microprocessor. The internaI functioning
of this device will be looked at in more detail in
chapter 2. For the moment consider this 40 pin
integrated circuit as a "black box", since aIl we are
interested in are the inputs and outputs. These can be
divided into four distinct groups, there are eight data
lines, 16 address lines, 10 control lines and 3 power
supply lines, the remaining three IC pins are not
connected and have no function, a block diagram of the
6502 is shown in Fig 2. Each of these groups forms what
is known as a "bus" which can be defined as being a set
of paraI leI paths used to transfer binary information
between the devices in a system.

The "A D D RE SS BUS" is used to carry the address
gene ra ted by the microprocessor to the address inputs of
the memory and input/output 0/0) devices. The address
bus on the PET is unidirectional since the 6502 is the
only component for aIl the system, except the video
circui try, capable of generating addresses. Since there
are 16 address lines the processor can access, i.e. Read
or Write into up to a total of 2 16 or 65,536 words of
memory, 1/0 registers etc. If you look at the circuit
diagram for the CPU section of the PET you will notice
that the address lines AO to A15 are divided into two
groups. The bottom twelve lines AO to AlI go to a
unidirectional buffer the purpose of which is to
increase the power available on each address line. The
top four address lines however go to a demultiplexer,
this decodes the binary number present on these four
address lines, and gives an output on one of the sixteen
output lines corresponding to that number. The function
of this is to divide the memory area into sixteen blocks
each of 4096 bytes of memory, each of which can be
selected by means of one of the output lines from the
demultiplexer. Why the designers have done this will
become obvious when we look at the memory circuitry.

The "DA T A BUS" consists of eight bidirectional data
lines. During a "WRITE" operation these lines transfer
data from the processor to the memory location selected
by the address lines. During a "READ" operation data is

2

Blank

! 1 ! 1Sync Interrupt

Video Video ~ IEEE port

Display <:= RAM ROM RAM 1/0
K:>Circuit Circuits User port

<:> Cassette
decks

f '\ t At AT (t
L IL IL 1
~ r--

Data bus

f-- r--

Address bus

R/W
Interrupt

Fig 1.1 PET System Design. Clock
1--

Generator Microprocessor

Vs s
RDY
\2ll(out)
IRQ
~ç
NMI
SYNC
Vcc
AD
Al
A2
A3
A4
A5
A6
A7
A8
A9
AI0
A Il

1 40
2 39
3 38
4 37
5 36
6 35
7 34
8 33
9 32
10 31
1 1 30
12 29
13 28
14 27
15 26
16 25
17 24
18 23
19 22
20 21

RES
\2l2 (out)
S.O
~O (i n)
N.C
N.C
R/W
DO
Dl
D2
D3
D4
D5
D6
D7
A15
A14
A13
A12
Vss

Fig 1.2 6502 Pinout
3

transfered from memory to the processor along the same
lines. The data bus is thus used to carry aIl data or
instructions to and from the processor,memory, and
periferal 1/0 chips. As with the address lines the data
lines have insufficient power on leaving the
microprocessor or memory chips to drive the devices to
which they are sending data. A bidirectional buffer is
therefore used to raise the power levels on the data
bus.

To understand the operation of the control lines
which comprise the "CONTROL BUS" we must look at each
one individualy. On the PET only 5 or 6 of the control
lines are used (depending on the model), it will be
instructive if we look a't aIl ten since it throws light
on sorne of the limitations of the machine. Since the
data bus is bi-directional the processor must have sorne
method of signalling to memory or 1/0 as to which
direction data transfer will take place,i.e. whether
memory or 1/0 is to be "read" or "written" to. This
function is performed by the first of our control lines,
the R/W or "READ/WRITE" output from the processor. When
this line is high (i.e. when the measurable voltage
1evel is greater than 2.4 volts) aIl data transfers will
take place from memory to the processor. If the R/w line
is 10w, there is 1ess than 2.4 vol ts present, then the
processor will write data out to memory.

The processor must not only be able to determine the
direction of data transfer, but also the timing of that
transfer. It is no use the data arriving at the
processor if the processor is not expecting it. Timing
is done by the system clock and requires two control
lines.oO is the clock input to the microprocessor from
the clock generation circui try and q;2 the clock output
to memory etc. Known as a two-phase clock system it
consists of two non overlapping square waves, one wave
is on the ~O line (the 01 line is identical but not used
on the PET }the other wave is on the C/>2 line. <60 and 01
are known as the PHASE ONE clock pulses and rb2 is the
PHASE TWO clock pulse, on the PET both these lines have
a clock frequency of l MHz. AlI the address lines change
when there is a positive or high pulse on the phase one
line, and data is transfered when there is a positive
pulse on the phase two line.

The next group of three control lines are aIl inputs
to the processor and are used to force the processor to
perform a program starting at a predetermined location
in memory. The first of these is the RST or RESET line
which is used to initiate the processor when the machine
is first switched on. Obviously when a microprocessor is
first switched on the contents of aIl its internaI
registers are unknown. There is thus no way that the
processor knows which location in memory is the begining
of the program Ut is assumed that, like the PET
operating system and Basic, this program is stored ln

read only memory). This then is the function of the
reset line and its associated circuitry and software.

The reset circuitry on the PET consists of a 555
timer IC, wired in such a way that when power is first
switched on, the reset Une is held low for a length of
time sufficient to allow the PETs circuitry to come to a
fully powered up state. The Une then goes high, upon
which the processor delays for six clock cycles. It then
starts execution of a program whose starting address is
stored in memory locations 65,533 and 65,534, these two
addresses are known as the reset vector. In machines
using the old ROMs this vector is set to hexadecimal
FD38 and in new ROM machines to hex FCDl, this is the
begining address of the power on reset subroutines.

Whereas the reset line is used to initialise the
processor before it starts the execution of a program
the two Interrupt lines cause the processor to stop its
current program execution and start a new program at a
specified location. The two lines are entitled IRQ
(Interrupt Request) and NMI (Non Maskeble Interrupd.
The N MI Une is not implemented on the 8K PET but is
available to the user on the memory expansion port of
the 16 and 32K machines. The accessability of the NMI
Une to the user on the dynamic RAM machines is very
useful, it allows the user to easily interface circuitry
requiring an interrupt.

On the PET the IRQ Une is very important since the
whole system is designed around the use of interrupts.
The scanning of the keyboard, reading and writing to the
cassette and internaI clock update are all controlled by
interrupts. Whenever the interrupt line goes from a high
to a low state the processor will finish its current
instruction, saving the address of that instruction in
an area of memory reserved for such purposes. The
processor will then start execution of a program whose
starting address is stored in the top two bytes of
memory (65,535 and 65,536), this' is known as the
interrupt vector. The contents of the interrupt vector
in machines with the old ROMs is hexadecimal E66B, and
in machines with the new ROMs hex E61B. This is the
start of the interrupt servicing routine. A separate
interrupt vector is used by the NMI, located at 65,531
and 65,532, the contents being hex FEFC.

Interrupts are usually generated by an 1/0 device as
a means of signalling to the processor that there is an
input present on that device. Therefore in its simplest
form an interrupt servicing routine is a program which
reads the input register of the 1/0 device and stores
this value in a specific memory location. Having done
this we want the processor to continue the execution of
the original program, this is done by having the last
instruction in the interrupt servicing routine as a
return from interrupt instruction. The only difference
between the N MI and IRQ Unes is that a programmer can

5

disable the IRQ line whereas an input on the NMI line
will always interrupt the processor.

None of the remaining three control lines, RDY or
READY input, an output SYNC and S.O or Set Overflow are
used by the PET. When the RDY line is pulled low during
a phase one clock cycle it performs the function of
hal ting the processor which will not then execute any
instructions until the RDY line goes high. The RDY line,
like the NMI line, is available on the memory expansion
connector of the dynamic RAM machines, but not on the
old 8K machines. A pulse appears on the SYNC output
during the phase one of an OP-CODE fetch and stays high
for the remainder of the cycle. The SYNC output can be
used in conjunction with the RDY input to manually
single step the processor instruction by instructioion
through a program, a function unfortunately not
available on the PET. The s.o input is a means of
externally setting the overflow flag in the processor,
it is designed to be used by future 1/0 devices in the
6500 series family of ICs. The power requirements for
the 6502 are very si mple, the system bus requires just a
single 5 vol t power supply line and a ground line. In
fig 2. VCC is the 5 vol t line and VSS is the ground.

Memory

As we have seen the sixteen lines of the address bus
allow the processor to access up to 65,536 words or
bytes of memory, the basic 8K PET uses 23,576 of these
locations. We can divide the memory occupying this space
into three types, Random Access Memory or RAM, Read Only
Memory or ROM, and 1/0 registers. The users programs
and data are stored in RA M, this type of memory allows
the user to both read data from and write data to a
memory location, in the 8K PET there is 8K of RAM (l K is
1024 memory locations).

RAM however has disadvantages, when the power to the
machine is turned off the contents of RAM memory is
erased. If only RAM memory were used we would not have a
computer like the PET, which powers up straight into
BASIC when the power is turned on. This requires
programs to be permanently stored in the machines
memory. ROM performs this function, permanently storing
the operating system software, (this includes things
like the power-on reset program) and the BASIC
interpreter. As its name implies the processor can not
write data into ROM memory it can only read the contents
of these locations, ROM memory in the PET occupies 14K
or 14,336 bytes of memory.

The PET is designed around a system of computer
architecture known as "memory mapped 1/0", briefly, ail
input and output from the computer is treated as memory
locations. In the PET memory 2048 bytes are dedicated to
this purpose and are divided between four 1/0 devices,

6

four bytes each to the two PIAs sixteen bytes to the VIA
and the remaining 1024 bytes to the video circuitry, we
shall be examining these in detail later.

The designers of the PET have split the total memory
are a into sixteen blocks, each of 4K bytes. This is done
by feeding the four most significant address lines into
a de multiplexer, from which each of the sixteen output
lines can be used to select a unique 4K memory block.
There are several versions of the PET, the principle
difference between them, besides changes in the
software, is the use of different types of RA M chip. The
old 8K machines used4K bit static RAMs, these were one
of two types the 6550 and the 2114. Both these chips are
functionally indentical in most respects since they are
organised as 1K by 4 bits. The latest versions of the
static RAM 8K machines used the 6550.

A 4K RAM block in th old machines consists of eight
memory chips organised in pairs, where each pair
contains lK by 8 bits of memory. Since 1K (1024) is
equal to 2 10 any memory location within the 1K block can
be accessed by using the bottom ten lines of the sixteen
line address bus. Each memory chip has a set of inputs
known as "chip select inputs" there are four on the
6550, these can be used to selectively turn a particular
chip off or on and are thus functionally similar to the
add ress inputs. It is these chip select inputs which
are used to turn on a particular- 1K pair of memory
chips, the location of that 1K being determined by
address lines 10 and Il and one of the sixteen 4K block
select lines. Herein lies the reason for the division of
memory into 4K blocks, since there are only four chip
select lines on the 6550 the processor could only access
2 4 xlK or 16K of memory if we connected these inputs to
lines 10, Il, 12 and 13 of the address bus. Obvious1y
this is unsatisfactory, and can be remedied if the
memory is divided into 4K blocks. each of which is
selected by a single line going to one of the chip
select inputs on the chips in that block. For the 6550
to be turned on two of the chip select lines must be
connected to 5 vol ts and the other two to 0 volts or
ground. With careful WIrlng, this fact can be used to
rem ove any need for decoding of the two address lines
(lO and Il) thereby simplifying the circuit and reducing
the number of components.

The new 32K and 16K dynamic RA M machines use the
4116 memory chip and the dynamic 8K the 4108. These two
RAM chips are pin compatable, with the 4116 having 16K
bits of memory and the 4108 8K bits. This is useful
since it allows the same circuit board to be used for
all sizes of machine. Memory on the 16 and 32K machines
is organised as two banks each of 16K bytes, only one
bank being implimented in the 16K. The 4K block select
lines are not used in the dynamic machines and are
replaced by a bank select circuit controlled by address

7

circuit diagrams show the circuits
systems implemented as a 32K

lines 14 and 15. The
for the dynamic RAM
machine.

The operating system and Basic are stored in ROM, on
the old 8K machines in seven 16K bit chips of the 6540
type, in the new dynamic PET, in four chips of the 2332
type. The 6540 ROMs are organised as 2K byte memory
blocks thus any address can be accessed using the bottom
eleven lines of the address bus. The chip selectlines
on the 6540 are used to select the 4K block being
accessed and to determine which of the two chips in the
4K block is to be read. The inputs to the chip select
li nes of the 6540 being provided by address line Il and
block select lines 12,13,14, and 15.

In the dynamic RAM PET the 2332 ROMs used are
organised as 4K byte blocks with the chip select lines
on each ROM being connected to one of the block select
lines. Sockets are provided for seven ROMs, though only
four are required for the operating system and Basic. Of
the extra empty sockets, one in memory area BOOO to BFFF
hex is required for the Commodore program security ROM.
The other two empty sockets are available for user
written machine code software which can be programmed
onto a 2732 EPROM (this is pin compatable with the 2332
ROM).

The designers of the PET have given the user the
capability of expanding the amount of memory, either
RA M,ROM or 1/0, up to a maximum user memory area of 44K
bytes. On all models this extra memory circuitry can be
connected to the address, data and control buses of the
PET via the memory expansion connector on the side of
the machine. In the new dynamic PET, memory can also be
expanded by either inserting extra RAM chips into the
sockets provided or exchanging the 4108 chips for
4116,this will double memory capacity. As already
mentioned ROM memory can be expanded on these machines
by utilising the empty ROM sockets.

The number of bytes of user memory available is
displayed on the screen when the machine is switched on,
this is a fairly good way of detecting any m~mory

faults. If on an 8K machine the number of bytes free is
less than 7167 then there is a memory faul t in the byte
at location - number of bytes free + 1025. Sorne memory
faults are however not detected by the system
diagnostics, to find sorne of these a slightly more
sophisticated diagnostic program is required. One way of
doing this is to load each byte with 10101010 - or
decimal 85, then test if the byte contains this bit
pa t tern. If it does, then the same byte is loaded wi th
01010101 - or decimal 170 and again tested. Other values
used to load and test each byte are a and 255. This
procedure will detect most faults due to pattern
sensitivity or leaky bit locations.

The following Basic program will test the memory of

8

a standard 8K PET, and indicate the location and bit
pattern of the fault. It is written in Basic and
therefore prevents one from testing -the bottom 2K of
memory, rewritten in machine code this problem could be
overcome. The program also detects time dependent
errors by displaying the time taken to test each 1K
block. Though this program tests only an 8K machine it
could be modified for larger machines. The program
starts by requesting the start and end memory locations
of the test.

5 INPUTA,B
10 PRINT" [CLEAR]":TI$="OOOOOO"
20 FORI=ATOB
21 FORY=1T04
22 RE ADN
23 POKEI,N:X=PEEK(I)
24 IFX=NTHEN26
25 GOSUB200
26 NEXT
27 RESTORE
30 DATAO,85,170,255
110 PRINT"[HOME,DOWN 11]";I-1024,I,TI$
120 NEXT
130 PRINT"END OF TEST"
140 END
200 IFX=10RX=20RX=40RX=80RX=810RX=840RX=870RX=93THEN300
210 IFX=1620RX=1640RX=1710RX=1740RX=2470RX=2510RX=2530RX=254THEN300
220 IFX=160RX=320RX=640RX=1280RX=210RX=690RX=1170RX=213THEN350
230 IFX=420RX=1380RX=1860RX=2340RX=1270RX=1910RX=2230RX=239THEN350
300 A$="I":GOT0400
350 A$="J"
400 IFI<=2047THEN500
410 IFI<=3071THEN510
420 IFI<=4095THEN520
430 IFI<=5119THEN530
440 IFI<=6143THEN540
450 IFI<=7167THEN550
460 GOT0560
500 B$="2":GOT0600
510 B$="3":GOT0600
520 B$="4":GOT0600
530 B$="5":GOT0600
540 B$="6":GOT0600
550 B$="7":GOT0600
560 B$="8":GOT0600
600 PRINT"YOU HAVE A FAULT AT ADDRESS ";I;"IN ROW ";A$;B$;".",N,X
605 RETURN

9

Input and Output.

The input and output devices on the PET are the
k e y boa rd, the t w 0 cas set t e d e c k s (0 ne in t e rn a l 0 ne
externaI), the user port, the IEEE 488 interface and the
video display. These devices all have one thing in
common, whether they are input or output, they are al!
located within the addressable space and are thus
t re a te d b Y the opera ti ng syste m software as mem ory
locations. This use by the designers of memory mapped
110 means that we can look at the PET 1/0 in two ways,
first as a standard logic circuit. Second and more
interestingly from the PET users point of view we can
look at the PET 1/0 as a memory map, from which we can
see the exact function of every bit in every location
figure 4 is such a map.

The main 1/0 of the PET, excluding the video
circuitry, is performed by three LSI integrated
circuits, they are two 6520 Peripheral Interface
Adapters (PIA) and one 6522 Versatile Interface Adapter
tVIA). To the processor these chips look like RAM memory
loca ted in the uppe r half of memory block 15 and are
selected by address line Il and select line 15 connected
to two of the chip select inputs on each chip, (in the
case of the 6522 these lines are combined by an'AND'
gate whose output goes to the chip select). Each of the
three chips is exclusively accessed by connecting the
remaining chip select input to one of the address Unes,
thus PIA number 1 uses A4, PIA 2 uses A5 and VIA A6.

Within each 1/0 chip there are a set of register,
there are four in a PIA and sixteen in a VIA, these are
memory locations accessed by the processor. These
registers are addressed by the bottom two address Unes
in the case of a PIA and the bottom four for a VIA ,
data enters or leaves via the eight bit data bus. As
with RAM memory the data direction on the data bus is
controlled by the R/W line and its timing by the 02
clock line. UnUke RA M the 1/0 chips have a control Une
output, this is the IRQ line which signaIs to the
processor that an input is present on one of the chips.

The peripheral 1/0 of aIl these ICs are identical
the difference between them lying in the use of the
internaI registers and the effect they have on the
outputs, these will be looked at in chapters 4 and 5.
The output from each chip consists of two eight bit
bidirectional 1/0 ports and four control lines, two to
each port. Each line in the eight bit port can be
programmed by the user to be either an input or an
output, the eight lines could be aIl inputs, aIl
outputs, or a mixture of both. Of the four control lines
on each chip, two function as interrupt inputs and the
other two can be ei ther interrupt inputs 'or peripheral
control outputs.

la

The keyboard is wired as a ten row eight column
ma trix, when a key is depressed one of the row Unes is
connected to one of the column lines. The eight column
Unes which are normally at a high logic load are
connected to a peripheral 1/0 port on 6520 (1) and are
configured by the operating system software as inputs.
If there was a low voltage on aIl the row Unes, then an
input, where an input is a low logic load from a column
Une to the processor, could come from anyone of ten
keys on that column Une. This is overcome by haying one
row Une "off" at a time, and scanning this line across
aIl ten lines. Only when the row Une on which the
depressed key lies is "off" will there be an output on
one of the column Unes. The ten row Unes are obtained
from the demultiplexed output of four Unes on the
second 1/0 port on 6520 (1). Though the keyboard is
organised as an eight by ten matrix only 73 of the
possible 80 keys are used on the PET. The control,
scanning and decoding of the keyboard are aIl done by a
set of subroutines within the operating system software
which tests the keyboard about sixt y times a second for
an input. These subroutines are called by an interrupt,
generated by the clock circuitry and input to the
processor via the CBI pin on 6520 (1). It is this
interrupt software which, besides scanning the keyboard
also updates the PETs real time dock and controls the
blinking of the cursor. Chapter 3 will deal with this
and other operating system software.

The IEEE 488 port uses the second of the 6520 PIA
chips to provide the majority of the required 1/0 Unes.
One of the eight bit 1/0 ports on the 6520 is designated
DY the operating system software as input and the other
as output, a bi-directional data buffer is used to
connect each input Une ta its equivalent output line.
This creates a true eight line bi-directional data bus
and conforms generaly ta the IEEE 488 standards. A
similar data buffer is used ta provide the four
bi-directional control Unes used by the port, the eight
input and output lines supplying this buffer are made up
of the three control lines of the 6520 and five Unes
from one of the 1/0 ports on the 6522. The remaining
three control lines of the IEEE port are not
bi-directional in nature and are provided by one of the
control inputs on 6520 (2), by an output of the current
state of the reset Une and by a single line from the
second output port. of 6520 (1). Two of the control Une
inputs ta the IEEE port function as processor
interrupts, these can be used by devices connected ta
this port ta signal ta the PET that the y are ready to
input or accept data. By generating an interrupt the
processor can be forced ta jump to the relavent
subroutines, either user written, or within the
operating system which control the functioning of the
IEEE 488 port.

11

....
N

Fig 1.3 SYSTEM 1/0 MEMORY MAP

PIA 1 (6520)

Diagnostic IEEE Cassette Sense KEYBOARD ROW SELECT PA
Sense EOI in 112 111

Tape 111 Screen blank output (old 8K only) DDRA Cassette 111
Input flag IEEE .EOI out CA2 Access Read control CAl.

KEYBOARD ROW INPUT

Retrace Cassette 111 motor output DDRB Retrace interrupt
1 flag CB2 Access Control CBl

E8ll 1 :-1"'- '~.- 1 1 ~~'--'~_:::''''_-::I"'--' _.- -"~-~':J' 1 :;--_... 1 ~ --:------ ," - ~.. 1 59409

E8l0 1 _.~,.., ..__ ••~ 1 ._-- 1 -~~---.~ -_..~~ KEYBOARD ROW SELECT PA 1 59408

E8l2 1 " " ... ".,..,. ,..,." .." ... ,,..,..,... 1 59410

E8l3 l 'J" __ 1 1 ,...D.., 1 1\ 1 "" __ + __ 1 rOI 1 59411

PIA 2 (6520)

E820

E82l

E822

E823

, 1 1

IEEE INPUT

1

ATN IEEE NDAC DDRA IEEE ATN in
1 flag. out CA2 Access Control CAl

•

IEEE OUTPUT

+-
SRQ IEEE DAV DDRB IEEE SRQ in

1 flag out CB2 Access Control CBl

59424

59425

59426

59427

DAV NRFD Retrace Cassette Cassette ATN NF RD NDAC
in in ln 112 motor output out out in PB

DATA DIRECTION REGISTER B (FOR E840)

DATA DIRECTION REGISTER A (FOR E84F)

TIMER 1 LOW

WRITE HIGH

TIMER 1 LOW

LATCH HIGH

TIMER 2 LOW

HIGH

SHIFT REGISTER

Tl control One shot T2 control
Shift register control

PB PA Latch
PB7 out Free run PB6 sense contra

CB2 (PUP) control in/out CBl in CA2 (graphics/lower case) CAl in
Cass 112 in/out polar ity

IRQ Tl T2 CBl cassette 112 SR CAl CA2
Status InterruDt InterruDt InterrliDt Interrunt Intprruot Intpr-plnt
Enable Tl int T2 int CBl int CB2 int SR int CAl int CA2 int

clear /set enable enable enable enable enable enable enable

PARALLEL USER PORT 1/0 (port A)

E840

E841

E842

E843

E844

E845

E846

E847

E848

E849

E84A

E84B

E84C

E84D

E84E

E84F

>-
\.>.l

7 6 5 4

VIA (6522)

3 2 1 o

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469

59470

59471

The user port serves two functions, firstly as a
user programmable eight line 1/0 port with two
associated control lines. Secondly as a source of the
relavent lines required by the service engineers
diagnostic equipment. The programmable 1/0 and control
li nes are provided by one half of the 6522 VIA chip. Of
the control lines, one is an interrupt input, and the
o ther can be either an interrupt or an output line. When
the processor is interrupted by one of these lines it
hal ts, and jumps to a machine code interrupt handling
subroutine which has been written by the user. The
starting address in the old 8K PET is contained in
memory locations 537 and 538 decimal. In the new dynamic
PET the locations used are 144 and 145 decimal. Of the
diagnostic lines the most interesting to the user are
three video output lines which with a bit of simple
circuitry allow the screen to be displayed on an
external video monitor.

The circuitry which interfaces with the two cassette
decks, one internaI one external, is identical for each
cassette deck. Just four lines are used, three outputs,
and one input. The outputs which come from the 1/0 port
lines of the 6522 and 6520 (1) are cassette write, this
is common to both decks, motor control and cassette
switch. The input from each deck is the cassette read
line and these go to the remaining interrupt inputs one
on the 6522 and the other on 6520 (1). Thus during a
read operation every time a pulse is input from tape via
the cassette electronics the processor is interrupted,
and the tape read subroutines caUed. These convert the
seriaI stream of pulses into eight bit words which are
then stored in the correct memory location.

The Video Circuitry.

The video display also uses a memory mapped
technique, 1K of memory is used from 8000-83E7 hex
02,768-33,768 decimal) where each byte contains the
coded representation of a character in a particular
position on the screen. There are 25 lines each of 40
characters on the PETs dis play a thousand characters in
aIl, thus a 1000 memory locations are required by the
video circuitry. The processor can write any character
to any location on the screen simply by placing the
correct byte of data into the correct memory location.
This can be simply demonstrated using the POKE command
in Basic, POKE 33268,42 will print an asterisk in the
middle of the screen.

A unique function of this block of memory is that it
is not only accessed by the processor but also by the
video circuitry. There are two seperate ten line address
buses, one from the processor, and the other from a
video address generator crcuit. Normally the memory
locations are accessed about sixt y times a second. There

14

are two seperate ten line address buses, one from the
processor, and the other from a video address generator
circuit. Normally the memory locations are accessed
about sixt y times a second. There are two address bus
inputs and two data buses, one going to the processor
and the other to the address inputs of a special ROM
chip known as a character generator. Each character is
stored in the video RAM as a coded byte of data, the
code used is ASCII (American Standard Code for
Information Interchange), each letter or number, and in
the case of the PET, graphics character, has a unique
eight bit code.

The character generator has eleven address lines the
upper eight of which are connected to the video RAM data
bus, the bottom three to a binary counter, the input to
which cornes from the video timing circuit. The eight
output lines from the character generator are connected
to a paraI leI in/seriaI out shift register. This
converts each byte of data into a stream of pulses, and
combined with some timing pulses, pro vides the inputs to
the PET TV monitor. Each character is stored in the
character generator as eight bytes of data, this is the
reason for the bottom three address lines being
connected to a binary counter, and can be thought of as
an eight by eight matrix. Each bit in the matrix
corresponds to a point on the screen, a pixel, the PET
screen is 320 pixels wide and 200 deep. A bit can be
either 'on' giving a bright dot on the screen or 'off'
leaving a dark space. If you look carefully at the
screen you will see that each character is built up from
dots organised as eight rows and eight column.

AlI this requires very accurate and complex timing,
the majority of the video circuit is devoted to this
purpose. This circuit which is crystal controlled for
great accuracy also provides the 00 clock line to the
processor and the keyboard interrupt. As there are two
address, and two data busses, going into and out of the
video RAM, sorne method must be used to avoid conflicts
between the processor and the video circuitry. On the
address bus a data selector chip is used, this acts like
a change over switch and is controlled by a single input
line, which is in fact memory block select. If this line
is in a 'high' sta te then the video RA M address lines
are connected to the processor address lines, if it is
in a low state, then they are connected to the video
address generator. A tri state buffer is placed on the
data bus between the video RAM and the processor, this
acts like a valve opening and connecting the two busses
wh e n the processor is accessi ng the video RA M. The
opening and closing of this valve is controlled by the
Read/Write line and memory block select line number
eight. The random flashes seen when the computer is
PEE King to the video RA M is because in a static RA M
machine the data bus is still connected to the character

15

generator while the processor is accessing memory.

The PET as a system.

The ai m of this chapter has been to give an outline
of the PET s circui try, and how the different sections of
that circuitry form a complete system. To anyone other
th an a service engineer an intimate knowledge of the
PETs circuitry is interesting but unnecessary.

The reason being that from the users point of view
the entire circuitry can be looked at in terms of a
memory map. The design of the whole machine relies upon
the operating system software, we have seen this in the
extensive use of interrupts and the fact that 1/0 uses
memory locations. This means that an ingenious user
could change the design of the machine sirriply by
rewriting the operating system software. Armed with such
a memory map a PET user can, even trom a Basic program,
control the machines 1/0 in an infinite variey of ways,
opening up a whole new range of applications.

16

THE 6502 MICROPROCESSOR 2

When a program is run on the PET aIl the
instructions are performed by one component, the
microprocessor. This particular device, there are a
range of different microprocessors, is manufactured by
MOS Technology and known as the 6502. It is an eight bit
microprocessor, eight bits meaning that during each
instruction or operation cycle, eight bits of data are
operated upon or transferred simultaneously. In Chapter
1, the microprocessor was considered as being just a
"black box" with inputs and outputs. However, to use the
PET to its maximum potential, a knowledge of the
internaI functioning of the microprocessor is vital,
particularly if the user is writing programs in machine
code.

An Overal1 View

A block diagram of the internaI structure (or system
architecture as it is called) is shown in figure 2.1.
This may appear rather complex, but it can be divided
into two sections. One called the control section, the
other the register section. The control section lies on
the right side of the drawing, the register section on
the left. AlI the processing is carried out within the
register section of the chip, instructions obtained from
program memory are implemented by a series of data
transfers within this section. Each of the 56 different
instructions which the 6502 recognises involves a unique
set of data transfers. It is the control section which
recognises the instruction, and initiates the correct
sequence of data transfers. The instructions enter the
processor via the data bus and are latched into the
instruction register to be decoded by the control logic.
Since most instructions require more than one data
transfer within the register section, a source of timing
signaIs is required to ensure the correct sequence, this
is done by the timing control unit.

Each data transfer which takes place within the
register section, is the resul t of the decoding of the

17

y

~OIN

OUT

20UT

/w
BE

o
1

2
3
A

S

6

7

..- l l l.--- ,....
x ~ INTERRUPT

INDEX
REGISTER t- LOGIC

i...
rn
:II
Z
J>-

Pr- y
J>- INDEX '---0
0 REGISTER l- n AD:II
rn

J>- III
III

ID
r-

~~ r::::STACK
POINT

REGISTER 1-- h
0- r-

0
~ Z

INSTRUCTION-<

h
rn
:II DECODE

I-~
r-

ALli

i ~ g...
L-- ... l J>-rn

:II
Z IDJ>- e

r--- r- III

t-- >-- f-- TIMINGJ>-
o ACCUMULATOR

~
f+-0 CONTROL:II 1--rn

III
III r--

ID

~ 1-e
pelIII

~
% 1

~
i5 PCH ~J>- I....- %

ID f-.- STATUS ClOCK 1-% REGISTER GENERATOR

h INPUT f--
DATA

~
91

LATCH fi

Il R

~ DDATA BUS INSTRUCTION
BUFFER t: 1- REGISTER

1--L....-- '- '-

1
'- i

D
D

D

D

D

D

D

D

A2

AB

A3

AA

A5

Al

A6

AO

A7

AIO

Ail

A9

AIA

A13

AIS

A12

Fig 2.1 6502 Block Diagram

18

instruction register and the timing control unit by the
control logic, whose outputs enable the relevant
registers. When program ming at a machine level a primary
concern is the control and manipulation of data within
the processors reg~sters. To understand the function of
the microprocessors instruction set, one must understand
the function of its registers.

The Accumulator and the Arithmetic Unit

Figure 2.1. shows that the registers communicate
with each other via an internaI eight line data bus,
connected to the computer system data bus by the data
bus buffer. One of the simplest types of data transfer
is between memory, and an internaI register, such as the
accumulator.

The accumulator has no exact function, a kind of
general purpose register, it is here that data on which
operations are being performed is stored. If you want to
move a byte of data from one part of memory to another
it has to be temporarily stored in the accumulator.
Similarly the accumulator is used to store the
intermediate and final results of a logic or
arithmetical operation.

Data tranfers between the accumulator and memory,
which, since the PET is a memory mapped system also
includes 1/0, are very important and account for about
4-0% of aIl the instruction used in a machine code
program. To move a byte of data from one memory location
to another then two instructions are required:

LDA,MI Load accumulator with contents of first
memory location
STA,M2 Store contents of accumulator in second
memory location

Memory locations MI and M2 are accessed by one of a
var iety of addressing modes, these will be looked at
later in the chapter. Having loaded a byte of data into
the accumulator the processor can be instructed to
perform arithmetic or logical operations upon it.
Although the se are the kind of functions expected of a
computer, only about three percent of aIl instructions
in a program fall within this category. Since the 6502
is an eight bit machine aIl the arithmetic and logical
operations are between two eight bit numbers, the
numbers used are limited to a range of between 0 and
255, a limitation which has to be overcome by
programming techniques.

The problem of being unable to store a number
greater than 255 in the accumulator or memory occures
when adding two numbers whose sum is greater than 255.
This is overcome by giving the accumulator a nineth bit,
called the carry. The carry bit, or flag as it is known,

19

is one bit in the processor status register, and is set
when the contents of the accumulator exceeds 255. AIl
this applies to the performance of binary arithmetic by
the processor, the 6502 is fairly unique in that it can
also do decimal arithmetic. In this mode each byte
contains two binary coded deci mal numbers and can have a
range from a to 99. As in the binary mode when the
addi tion of two numbers gives a resul t greater than 99,
the carry flag is set to indicate the facto The
processor is placed in the decimal mode by a "set
decimal mode" instruction, SED, which turns on another
bit within the processor status register.

There are two basic arithmetic instructions, ADC
which is add memory to accumulator with carry, and SB-C
which is subtract memory from accumulator with borrow.
Both instructions can be either binary or decimal in
nature and can use a variety of addressing modes to
indicate the memory location.

The ADC instruction adds the value of the data in
the memory location, plus the carry from the previous
operation, to the value in the accumulator, storing the
result in the accumulator. If the result exceeds 255 in
the binary mode, or 99 in the decimal mode, then the
carry flag is set,if the result is zero then the zero
flag is set. An example, if we want to add the two
numbers, 25 and 189, and store the result in memory
location la (decimal) we could use the following
sequence of instructions:

CLC
LDA 25
AOC 189

STA la

18
A9 19
69 BD

8D OA 00

(this clears the carry flag)
(Load accumulator with 25)
(Add 189 to accumulator and
carry)

(Store result in location la)

The instructions in the left column are in mnemonic
code, fol1owed by a decimal number or memory location.
The same sequence of instructions appears on the right,
written in a numerical form, in this case using
hexadecimal notation, showing how instructions and data
wou1d be stored in memory. Addition of two numbers with
values greater than 255 needs a process known as
multiple precision addition, cal1ing for the use of the
carry flag. Adding two sixteen bit numbers, requires two
additions. The carry is first cleared and the two lowest
order bytes, (a sixteen bit number would be stored in
two bytes of memory) added together. The result of this
addition is stored in a memory location as the low order
_y te of the result. Now the two high order bytes are
added, plus any carry generated by the first addition,
the sum stored as the high order byte of the result.
Using this method numbers of any size can be added

20

together, whether the processor is in binary or decimal
mode.

Addition can be performed on signed numbers,
positive numbers added to negative numbers, or two
negative numbers added. The sign is stored as bit seven
of the highest order byte, a zero for positive and a one
for negative. Addition takes place as in ordinary
arithmetic, the only exception being that the carry flag
for the highest order byte is replaced by the overflow
flag. This performs the same function but records an
overflow or carry from bit seve n, rather than bit eight.
Negative numbers are stored not as ordinary binary
numbers but as two's compliment, which is best described
as the inverse of that number minus one. AlI the ones
become zeros and vice versa for aIl bits, except bit
one, th us binary five is normally 00000101 in twos
compliment form it becomes: 11111011.

The SBC instruction subtracts the value of data in a
I/Iemory location, and borrow, from the value in the
accumulator, storing the result in the accumulator.
Two's compliment arithmetic is used throughout. The
borrow flag is the same as the carry flag used in
addition, whereas before an addition the carry flag is
al ways cleared, before a subtraction it is al ways set.
The result of subtraction affects the carry or borrow
flag, it is set if the result is greater than or equal
to zero. Simllarly for subtraction of signed numbers the
overflow flag is set if the result exceeds +127 or -127
for single precision seven bit arithmetic. The SBC
instruction can be used with either binary or decimal
numbers with both multiple precision and signed
arithmetic. To subtract two decimal numbers, say, 18
from 27 use the following sequence of instructions, the
deci mal mode is used to lliustrate its function:

SED F8 (set dec ima 1 J1X)de instruction)
SEC 38 (set borrow flag)
LDA 27 A9 27 (load accumulator with 27)
SBC 18 E9 18 (subtact 18 from accumulator

and borrow)
STA 10 8D OA 00 (store result in location 10)

The instructions on the left are in mnemonic code, on
the right in hexadecimal, note that in the decimal mode
the hexadecimal and decimal numbers are the same.

The 6502 instruction set does not include
instructions to perform multiplication or division.
Users requiring them must write subroutines to perform
these functions, or use the subroutines within PET
basic. Mul tiplication is a process of repeated addition:

3 x 5 is the same as 5 + 5 + 5 , for large numbers this
could be a lengthy process, and programming tricks are

21

required to minimise this. Division is a process of
repeated subtractions: 15 / 5 can be performed as the
following sequence, 15 - 5 = la, la - 5 = 5, 5 - 5 = a ,
since three subtractions were required,the answer is 3.

As with multiplication, programming techniques are
needed to reduce the time taken to divide large numbers.

Besides arithmetic operations the ALU or
Arithmetic/Logic Unit can perform logical operations
between data in memory, and the accumulator. consisting
of three instructions AND, OR and EOR. The AND
instruction performs a bit by bit logical AND operation
between a memory location and the accumulator,storing
the result in the accumulator. This operation can be
used to reset or mask a single bit or group of bits in a
memory location. In the deci mal mode each byte holds two
,digits, the AND instruction can be used to extract one
digit. Where there is a zero in the operand, there is a
zero in the result. To mask out the most significant
decimal digit stored in the bottom four bits, the
accumulator is ANDed with 00001111 or hexdecimal OF.

LDA 25 A9 25 (load the accumulator
wi th decimal 25)

AND OF (hex) 29 Fa (AND the accumulator
wi th 00001111 binary)

STA la 8D OA 00 (store the result in
location 10)

On running this program location la will contain 05, the
2 being masked out and replaced by a O.

A n OR instruction performs a binary OR on a bit by
bi t basis between the contents of the accumulator and a
memory location, the result is stored in the
accumulator. The main use of this instruction is to set
a bit or group of bits in a memory location, a logical 1
in the operand field produces a 1 in the corresponding
bit of the result. The EOR or Exclusive OR instruction
is identical to the OR, except that a logical 1 appears
in the resul t only if there is a 1 in the operand field,
and a a in the accumulator for the corresponding bit.
The main use of the EOR instruction is to produce the
two compliment of a byte.

The Processor Status Register and the use of Flags.

The processor status register occupies a very
important posItiOn in the system architecture of the
6502. It is an eight bit programmable register, unlike
the other registers, its function lies between the
control and register section of the processor. It is the
only register which actually affects the control logic.
Seven of the eight bits are used, and each bit, or flag,

22

has a specifie function. Since they are very important
it is worthwhile looking at these flags in greater
detail.

Flags fall into three catagories, those controllable
only by the programmer, those controllable by both
program mer and processor, and lastly those controlled
solely by the processor. Only one flag falls into the
first catagory, the Decimal mode or D flag, occupying
bit three of the status register. This flag controls
whether the processor performs binary or decimal
ar i th m et ic. It can be set by a S ED i nst ru ct ion, after
which all arithmetic is performed in the decimal mode,
until the D flag is cleared by a CLD or clear decimal
mode instruction.

Three flags fall into the second category: Carry,
Overflow and Interrupt disable. The Carry or C flag is
located in bit ° of the status register, it is modified
either by the results of certain arithmetic operations
or by the program mer. The carry is also used as a nineth
bit during arithmetic operations or by the shift and
rotate instructions. The instruction used to set the
carry flag is SEC, it can be cleared by CLC. The
overflow or V flag occupies bit six of the status
register, and is used du ring signed binary arithmetic to
indicate that the result was of greater value th an could
be contained within the seven bits of the signed byte.
The V flag has the same meaning as the carry flag, but
also indicates that a sign correction routine must be
used if this bit is "on", since the overflow will have
erased the sign in bi t seven. The programmer can only
clear the V flag, using the CLV instruction. The
interrupt disable, I flag, controls the operation of the
microprocessor interrupt request input and is located in
bi t two of the status register. Interrupts as seen in
Chapter 1 play a very important part in the PET's
design, and each time there is an -interrupt the I flag
is set by the processor. This stops the processor being
interrupted by more pulses on the IRQ Une, until the
interrupt handling program has been completed with a
return from interrupt instruction clearing the 1 flag.
The I flag can also be set by the programmer with an SEI
instruction if for some reason he wants to prevent the
processor being interrupted, as during a precision timed
10 0 psu b r 0 u tin e . A t the end 0 f suc h a pro g r a m th e
interrupt Une can be returned to its normal function by
clearing the 1 flag with a CLI instruction.

The last three flags: Zero, Negative and Break, are
controlled soleIy by the processor. The Zero and
Negative flags are either set or reset by nearly every
processor operation. The Zero or Z flag is set by the
processor whenever the resul t of an operation is 0, as
when two numbers of the same value are subtracted from
each other. The Negative or N flag is set equal by the
processor to bit seven of the result of an operation.

23

is during signed binary
set then the result is a

or B flag is set by the
service sequence. The Z
flag bit seven and the B

One of its primary uses
arithmetic, if the N flag is
negative number. The break
processor during an interrupt
flag occupies bit one, the N
flag bit four of the status register.

The status register contains seven status bits or
flags, each having its own meaning to the programmer at
a particular point in the programe. Although the carry
and overflow flags are used in arithmetic operations the
major use of flags is in combination with the
conditional branch instructions. This gives the
programmer the capability of incorporating decision
making instructions within a program. To test a flag,
and, depending on the state of that flag, take one of
two courses of action. A conditional branch is
functionally the same as the IF ... THEN GOTO ...
statement in Basic, there are a range of these
instructions performing different functions and testing
different flags. Anyone writing a machine code pragram
must keep track of the expected state of ail flags at
every instant throughout the program. Failure to do this
is one of the corn monest causes of a program not working
or producing the wrong result. An example would be
failure to clear the carry flag before an addition, on
odd occasions it would have been set by a previous
instruction, and thus give rise to erroneous results.

Branches, Jumps and the Program Counter

To understand the use of branch and jump
instructions the concept of program sequencing must be
understood, and its control by another of the processor
registers, the program counter. Figure 2.1. shows the
program counter, or PC, as two eight bit registers. Like
the other registers they communicate with the data bus,
but the outputs are also connected to the sixteen
address lines of the processor. One of the PC registers
is connected to the bottom eight address lines and is
called PCL, the other which is called PCH is connected
to the eight high address lines. Although two eight bit
registers, they function like a single sixteen bit
register. It is the program counter which controls the
addresing of memory by being a program or data address
pointer, as such it contains the address of the next
memory location to be accessed.

At the beginning of a program the PC must contain
the address of the first instruction. This is one of the
functions of the operating system reset software, it is
also performed by the SYS and USR commands when entering
a machine code program from Basic. The instruction
fetched from memory is stored in the instruction
register, to be decoded by the control logic. This
process takes one clock cycle, during which time the

24

program counter is incremented by one to point to the
next memory location. The processor usually requires
more than one byte to interpret an instruction, this
first byte con tains the basic operation and is known as
the OP CODE. The following one or two bytes, known as
the OPERAND, contain either a byte of data or the
address of the data on which the operation will occur.
An instruction may require up to three sequential memory
locations, the program counter first points to the OP
CODE which is fetched from memory and storeç1 in the
instruction register. The PC is incremented and points
to the next memory location, the contents of which are
fetched and stored in the ALU, in a three byte
instruction this will be the low order address of the
data. The program counter is again incremented and the
high order address fetched from the third memory
location. The processor then latches the two bytes of
the address onto the address bus via the ALU, fetches
the data, and performs the operation. Having completed
the operation, which usually takes about four clock
cycles, the processor increments the program counter to
point to the next instruction and the process is
repeated. In this manner the program counter will
continue to advance until it reaches the maximum memory
location, fetching instructions and addresses.

A sequential program would lack a feature
fundamental to computing, the ability to test the result
of an operation, and implement various options based on
the results of the test. Firstly flags can be used to
test the resul t of an operation, secondly the contents
of the program counter must be changed to point to the
start of a new program. The simplest way of changing the
contents of the program counter is with the JMP or Jump
to new location instruction. This as its name implies
does not perform any tests on the results of a previous
operation. It simply loads a new sixteen bit address
into the program counter thereby forcing the processor
to start operating at the new address.

There are eight different conditional branch
instructions, they can be divided into four groups, each
testing the state of one of the status register flags.
The four flags tested by the conditional branch
instructions are: Carry, Zero, Negative and Overflow,
one instruction tests if the flag is set, and the other
if it is clear. The two instructions for the Carry flag
are BCC or Branch on Carry Clear and BCS or Branch on
Carry Set. The Operand contains the address to which the
program jumps if the condition being tested is true. The
addressing mode used is unique to conditional branch
instructions, it is called relative addressing.

In relative addressing the new address is stored as
just one byte, which is added to the current contents of
the program counter. To enable the program to branch
both forwards and backwards the relative address can be

25

either a positive or a negative number. The fact that
relative branch addresses are stored as a signed single
byte limits the maximum size of the branch to either 128
bytes forwards or backwards, this may seem a limitation
but in practice it is not.
The eight conditional branch instructions are:

BMI - Branch on Reult Minus
Testing the N flag

BPL - Branch on Result Plus
BCC - Branch on Carry Clear

Testing the C flag
BCS - Branch on Carry Set
BEQ - Branch on Result Zero

Testing the Z flag
BNE - Branch on Result Not Zero
BVS - Branch on Overflow Set

Testing the V flag
BVC - Branch on Overflow Clear

Most operations involve the setting of one or more
flags, but a small group of test instructions are
specifically designed to set flags for testing by a
branch instruction. The most commonly used is the
Compare Memory and Accumulator or CMP instruction. It
allows the program mer to compare a value in memory to
one in the accumulator without altering the value in the
accumulator. If the two values are equal the Z flag is
set, otherwise it is reset. The N flag is set equal to
bit 7 and the carry flag is set when the value in memory
is less than or equal to that in the accumulator. The
BIT instruction tests single bits in memory with the
corresponding bits in the accumulator.

Addressing Modes

At this stage it is a good idea to look at the
various addressing modes used by the processor, so far
we have met only absolute and relative addressing. There
are th i rteend i f fer en t ad d r e s sin g m 0 des and m 0 st
instructions can be performed in more than one mode. The
LDA instruction can use one of eight different modes of
addressing. The simplest mode is implied addressing
which is used exclusively by single byte instructions
operating on the internaI processor registers. In an
instruction like CLC (Clear Carry) no data is accessed
therefore no address is required. It is implied that a
register, in this case the Status Register is to be
operated upon. Immediate addressing is used whenever the
programmer wants to perform an operation using a
constant. To put a value of, say 25, in the accumulator
we would use the LDA instruction in the Immediate mode.
This form of addressing was used in the examples of the
operation of arithmetic and logical instructions, data

26

being stored in the byte immediatly following the
OpeODE.

Neither the Immediate or Implied addressing modes
use a memory address where data is stored, and are of
little use in operations with variables. To address any
location in memory would require a full sixteen bit or
two byte address stored in the ope rand part of the
instruction. This address points to a memory location
where the variable upon which the operation being
performed is currently located, or is to be stored. This
for m of add ress i ng is kno wn as A bsolute addres·sing. A
shortened form of absolute addressing can be used wh en
the memory location being accessed lies on page zero of
me m ory. This is the only case where the concept of
paging has any importance in the 6502, page zero is just
the bottom 256 memory locations. This is called Zero
Page Addressing, and uses a single byte address to point
to the location of data within page zero. It is a two
byte instruction therefore much faster than absolute
addressing, it is thus good practice to store aIl
variables in page zero. The remaining non-indexed
addressing mode is Relative addressing already met with
in conditional branch instructions.

The Index Registers and Indexed Addressing

50 far, none of the instructions looked at have
accessed more than one byte of data,since the ope rand
field contains a fixed address. This poses problems if

ccessing a sequential block of data such as a table or
an input buffer. One method would be to use a string of
load instructions in the form, load data from address 1
- perform operation - load data from address 2 - perform
operation and so on. This is obviously highly wasteful
of memory space, it would be more efficient if this
program was written as a Joop. To do so would require
tha t the address stored as the operand field of the load
instruction is incremented each time the program goes
round the loop. In this way the operand address will
al ways be pointing to the next byte of data to be
accessed. This method is useful, but, execution time is
considerably greater than in the straight line
pro gram ming technique, also it is often undesirable to
use a self modifying program.

A more sophisticated approach is the use of a
counter, the contents of which are automatically added
to the address in the ope rand field of the instruction.
Su ch a counter is called an Index register. There are
two index registers in the 6502, both are eight bit
registers, labelled X and Y. They are used by
instructions in one of the indexed addressing modes. The
simplest is absolute indexed addressing, in this mode
the contents of one index register is added to the
address in the operand field of the instruction, giving

27

a new address from which data is to be accessed. The
fact that the Index registers are only eight bit
regis ters limits the maximum size of data block accessed
using indexed addressing to 256 bytes. In practice the
majority of tables are shorter and it is not a
significant limitation.

The index registers are controlled and manipulated
by a range of special instructions. A number can be
loaded to, or stored from the index register and a
memory location, by the LDX, LDY and STX, STY
instructions. Similarly the contents of the index
registers can be compared with a value in memory to test
if a conditional branch should take place by using the
CP X and CPY instructions. The contents of an index
register is changed to point to the next address by
incrementing or decrementing it by one. To count up, the
instruction - used is INX or INY, to count down, DEX or
DE Y. The remaining index register instructions allow the
transfer of the contents of the accumulator into one of
the index registers and vice versa. T AX and TAY transfer
the accumulator contents into X and Y registers
respectively and TXA, TY A transfer the index register
contents to the accumulator.

In some programs it may be necessary to have a
computed address rather than a base address with an
offset, as in absolute indexed addressing. This is do ne
using indirect addressing, instructions in this mode
have just a single eight bit address field which points
to the effective address as two bytes in page zero. The
data address is thus not stored directly in the operand
field of the instruction but, indirectly in page zero,
all the indirect acesses are indexed except for the JMP
instruction. Two modes of indirect addressing are
possible, indexed Indirect and Indirect Indexed
Addressing.

In Indexed Indirect addressing index register X is
added to the operand zero page address. This points to
locations where the sixteen bit data address is stored.
One of the major uses of this addressing mode is in
retrieving data from a table or list of addresses, as in
pollingljO devices or performing string operations. In
Indirect Indexed addressing the sixteen bit address
pointer in page zero is first accessed then offset by
the contents of index register Y to give the true data
address. The location of the pointer is fixed, whereas
in the indexed indirect mode it is variable being offset
by the contents of index register X. Indirect indexed
addressing combines the advantage of an address that can
point anywhere in memory with the offset capability of
the index register. It is a particularly powerful method
of accessing the nth element of a table, providing the
start address is stored in page zero.

28

The Stack Register and its Use.

The stack register is the last of the processor
registers, and is mainly concerned with the handling of
interrupts and subroutines. It is an eight bit register,
its function is identical to that of the program counter
since it is an address generator. It is used to point to
an address in page 1 of memory,(Iocations 256 to 511),
known as the stack. The stack is a set of memory
locations starting at 511 and filled downwards from that
location with a maximum size of 255 bytes. It is
organised as a LIFO or last in first out structure,
which means that the last byte of data stored on the
stack is the first byte to be accessed. Every time data
is pushed onto the stack the stack pointer is
decremented by one, and each time data is pulled off the
stack, the stack pointer is incremented by one. The
addressing of the stack is independent of the program
and based purely upon chronological events. The stack is
used as a temporary data store, the most common data
being re-entrant ad dresses generated by subroutines and
interrupts. Every time a subroutine is called in a
machine code program the current contents of the program
counter is saved. On returning from the subroutine the
program can be re-entered at the correct location.
Similarly every time the processor is interrupted the
current address in the program counter is saved before
the processor performs the interrupt servicing routine.
A subroutine may call other subroutines, requiring the
storage of several re-entrant ad dresses in the stack.
The last re-entrant address stored is the first address
reloaded into the program counter at the end of the
subroutine, hence the LIFO structure of the stack. The
calling of subroutines by other subroutines is termed
"subroutine nesting" and is a common occurrence in
machine code programs. The size of the stack in the 6502
limits the user to 127 levels of nesting, usually far
more than is needed.

A subroutine is called by a JSR or Jump to
Subroutine instruction. This pushes the current contents
of the program counter onto the stack. A location stored
as the ope rand field is then loaded into the pr?gram
counter. This causes the processor to jump to a new
section of the program and start execution from the
location in the program counter.

The return from a subroutine to the main program is
accomplished by the RTS or Return from Subroutine
instruction. This loads the return address from the
stack into the program counter. It also increments the
program counter to point to the instruction following
the JSR. The stack pointer is also incremented to point
to the next subroutine address if any.

The stack can be used by the programmer as a
temporary storage location for data passed to a

29

subroutine. The program mer needs a set of instructions
to allow him to put data onto the stack and read it
back. The current contents of the accumulator can be
transferred to the next location on the stack by the PHA
or Push Accumulator onto Stack instruction. Data can be
read from the current location pointed to by the stack
pointer, into the accumulator, by the PLA or Pull
Accumulator from Stack instruction. Both instructions
automatically cause the stack pointer to be incremented
or decremented by one. An example of data storage in the
stack is saving the contents of the processor status
register when a subroutine is called. The contents of
the status register can be pushed onto the stack by the
PHP Push Processor Status on Stack instruction. Then
transferred from the stack back to the status register
by the PLP Pull Processor Status from Stack
instruction.

It has been assumed in the first part of the
chapter that the stack pointer points to a fixed
location, automatically incremented or decremented by
the processor. But to use the stack pointer the
program mer has to be able to change its contents. The
stack pointer is loaded by transferring the contents of
the X index register to the stack pointer with a TXS
Transfer Index X to Stack Pointer instruction. This
instruction is used at the beginning of a program to
initialise the stack pointer, it is performed
automatically on the PET as part of the power up reset
routine. Re-initialising the stack on the PET could
cause problems, frequently resulting in a crash and
should thus be avoided. The current contents of the
stack pointer can be read by loading it into the X index
register with a TSX - Transfer Stack Pointer to Index X
instruction.

Interrupts

The processing of interrupts is fundamental to the
operation of the PET system. As seen in chapter 1 aIl
1/0 is interrupt driven, a knowledge of interrupts is
thus required by anyone using the user port or the other
1/0. There are three input lines which can cause the
processor to haIt on completion of the current
instruction. Store the program counter on the stack and
branch to an interrupt servicing routine at an address
pointed to by the contents of one of the interrupt
vectors. These three lines are Reset, Interrupt Request
and Non-Maskable Interrupt (NMI is only implemented on
the new dynamic PET). The reset line is only used when
the machine is powered up, therfore not of much interest
since it is not under user control. It is the two
interrupt request lines which are of major interest, for
not only is the IRQ the source of all system interrupts,
but both lines can also be controlled by the programmer.

30

The only way a program mer can change the sequence of
operations is to load a new address into the program
counter. If this were true then an external event could
not effect the program sequence, unless the program was
written to periodically check for an input. Most inputs
are asynchronous, meaning that for an input to occur at
the same time as the program is checking for inputs is
extremely unlikely. If an input pulse occurred just
after an input check, then not until the next check
would that pulse be input to the computer. During the
interval between checks data at the input may have
changed resulting in the 10ss of information. To
overcome such a data 10ss the processor could be
programmed to wait for the data, but this would mean the
processor spending most of its time doing nothing.

Interrupts are used to solve this problem, by having
a special line signal the processor whenever an input
occurs. This considerably simplifies programming, making
it unnecessary to repeatedly use an input testing
subroutine or have the computer wait for an input. The
two interrupt lines used to signal to the processor that
an input is present are the IRQ line and the NMI line.
By pulling an interrupt line low for at least 20
microseconds an input device can signal that it wishes
to send data to the processor. This forces the processor
to finish its current instruction, store the program
counter and status register on the' stack and jump to a
memory location pointed to by the interrupt vector.
There are two interrupt vectors that for the IRQ line is
located at 65,535 and 65,536, for the NMI line at 65,531
and 65,532. The processor could be interrupted again
before it was able to retrieve data from the first
input. To prevent this the programmer can disable the
1RQ li ne and p revent further interrupts by setting the 1
flag in the processor status register. This is done by
the f i r s tin s t r u c t ion i n the i n ,t e r r u p t han d 1i n g
subroutine, SEI-Set Interrupt Disable. A CLI Clear
Interrupt Disable instruction cIe ars the 1 flag and
allows the processor to be interrupted as normal. Having
obtained data from the input the interrupt software can
process it for use by the main program or respond with
an output from an 1/0 port. Control is returned to the
main program by the RTI-Return from Interrupt
instruction. This pulls the contents of the processor
status register and program counter off the stack
restoring the processor to its pre-interrupt state.

The PET has six sources of interrupt, two from each
of the three peripheral 1/0 chips, any one of them can
interrupt the processor. Since ail interrupt lines are
tied together giving a single IRQ input to the
processor, a means of finding out which device produced
the interrupt is needed. This can be do ne by hardware,
but on the PET is done by software, using an interrupt
polling routine. This simply means that the interrupt

31

software tests each of the 1/0 devices in turn to find
out which device generated the interrupL The 1/0
devices are tested in fixed order of priority, the
highest priority device being tested first and the
lowest last. The purpose being that if two d'.evices
genera te interrupts at the same time then the prqcessor
looks at the highest priority, the most important,
device first. The scan interrupt in the PET has highest
priority, except when using the cassettes when the read
in terrupt is highest. Each 1/0 chip has two interrupt
inputs and one output connected to the IRQ line. An
interrupt from an external device sets either bit 6 or
bit 7 of the peripheral 1/0 chip status register. It
also generates the interrupt to the processor. To test
which device generated the interrupt the computer simply
·reads the contents of each of the 1/0 status registers
testing for bit 7 being set. Having determined which
device caused the interrupt the appropriate program can
be performed.

An interrupt sequence can also be generated by the
program mer without an input being present in the IRQ
line, by use of the BRK Break commando This
instruction performs a software interrupt and causes
program control to be transferred to the address stored
in the interrupt vector. The main use of this
instruction is in debugging a program, however since it
calls one of the interrupt routines its use on the PET
is not recommended. For PET users a similar function is
provided in the machine code monitor with none of the
attendant problems of the BRK instruction.

Data Modify Instructions

A small group of instructions remain which have not
been looked at, they are not associated with any
particular processor register and are classified as
read/modify/write instructions. They aIl read data from
a memory location or accumulator, modify it in a
particular way and store the modified data back into
memory or the accumulator. These instructions perform
four different data modifications, shift, rotate,
increment and decrement. A shift instruction is one
which takes the contents of the accumula tor or a memory
location and shifts aIl bits one bit to the left or
right. An example is the LSR-Logical Right instruction,
here the data in the accumulator or memory is moved one
bit to the right, bit a is placed in the carry flag and
bit seven set to zero. Similarly the ASL-Arithmetic
Shift Left instruction moves the data one bit to the
left, bit seven is stored in the carry flag and bit a
set to zero. Repeated shifts in the same direction will
eventualy resul t in the entire byte being set to zero.
Herein lies the difference between a shift and a rotate
instruction. In a rotate instruction the contents of the

32

carry flag is stored in the bit emptied by the shift,
thus no data is lost in a rotate instruction. The
ROL-Rotate Left instruction shifts the contents of the
accumulator or addressed memory left 1 bit with the
carry stored in bit 0 and bit 7 stored in the carry
flag. With ROR-Rotate Right instruction the data is
shifted right 1 bit with bit 0 shifted into the carry
and the carry shifted into bi t 7. The shift and rotate
instructions have a unique form of addressing, in
addi tion to the normal forms and known as accumulator
mode addressing. It indicates that the instructio'n is to
operate on the accumulator rather than on a memory
location.

Besides shift and rotate the contents of a memory
location can be incremented or decremented.
INC-Increment Memory by One adds one to the contents of
the addressed memory location. DEC-Decrement Memory by
One subtracts one in twos compliment form from the
contents of the addressed memory location. The main use
of Increment and decrement is with counters such as
table pointers.

Machine code on the PET

A great advantage of the PET over other small micro
computer systems is that it can be programed in both
Basic and machine code. This gives the programmer the
powerful option of using machine code subroutines in a
Basic program. The PET normally runs in the Basic mode
and there are five ways of accessing the machine code
environment. The tirst two use commands in Basic, these
are, USR and SYS. Both commands access a machine code
subroutine whose address is specified in the command or
in a specific page zero location. The next three methods
involve adding machine code subroutines into the
operating system. The first being to add a program into
the interrupt servicing routines, these are called sixtY
times a second by the scan interrupt signal. This method
allows for example, the scanning of 1/0 ports for an
input, or selectively disabling certain keys on the
keyboard. Any situation where a program must be run
concurrently with the main program could use this
method. The second methods involves inserting extra code
into the CHARGOT subroutine which gets each line of
Basic from memory prior to its execution by the
interpreter. By intercepting each line of Basic before
it is executed ne';' Basic instructions can be added. The
instruction being performed by a user written machine
code subroutine. Both the method of inserting code into
the interrupt routine and the addition of extra code
into the CHARGOT subroutine will be dealt with in full
1ater on. Lastly, on new ROM machines the NMI line can
be used to force the computer to jump to a NMI interrupt
handling routine. One use of this is to provide the

33

machine with a reset button, by connecting a switch
between the NMI line and ground a manual interrupt can
be genera ted. T 0 use the reset, the N MIRA M vector
(locations 148 and 149) must contain the start address
of the monitor. If a program crashes, pressing the reset
switch will cause it to jump into the monitor program.

The main reason for using machine code subroutines
is that Basic is too slow for many purposes, especially
when using the 1/0 ports. A machine code routine is more
than 100 ti mes faster than the same program written in
Basic. Another reason for using machine code is that one
may want to change the operating system or use sorne of
the operating system subroutines. Thirdly, a reason used
by sorne commercial softw·are producers is that machine
code programs can be protected from illegal copying.

The best place to put small machine code programs is
in the second cassette buffer, assuming that is that the
second cassette is not being used. This 192 byte memory
b10ck extends from location 826 to 1018. If the program
is longer than 192 bytes or the second cassette buffer
is being used then the progam is best located at the top
of memory. This area is used by Basic to store character
strings and to avoid these overwriting the machine code
program the top of memory pointers must be changed. The
top of memory pointers are set during power up
diagnostics to the highest usable RAM location. By
lowering the value of these pointers a block of memory
can be reserved exclusivly for use by a machine code
program. The operating system will regard the new top of
memory pointers as containing the highest memory
location usable by Basic. In the old 8K machines these
pointers were stored in locations 134 and 135, and in
the new machines in 52 and 53. The pointer is stored as
the low order byte in 52 (134) and the high order byte
in 53 (135). As an example the following commands will
lower the top of memory on a 32K machine by 256 bytes:

POKE 52,255:POKE 53,126

Of . the two Basic co m mands used to caU a machine
code subroutine, SYS and USR, by far the most powerful
and flexible is SYS. With the SYS command one simply
specifies the subroutine starting location, thus if it
starts at location 826 it can be called with SYS(826).
Variables can be transferred between a Basic program and
a machine code pro gram by using PEEK and POKE. These
read or write single or multiple byte values into memory
locations allocated for the purpose and acessed by both
programs. Transferring variables in this manner is
easier than using the single floating point variable
provided for the USR function. It also allows the
transfer of more than one variable which USR does not.
The only requirement with a SYS subroutine is that the
last instruction in the subroutine is aRTS return

34

from subroutine since this automatically returns control
to the Basic program. Another virtue of SYS is that it
is far easier to have more thanone machine code
subroutine in a Basic program.

The easiest way of entering a machine code program
is to incorporate it into the Basic program using a
si mple loader, to POKE the values byte by byte into the
correct locations, you will find several examples
elsewhere in this book. Another way is to use the
machine code monitor,this is ROM based in the new
machines, users of old machines will require a tape
version. The monitor allows machine code program to be
directly written into memory using hexadecimal code.
Also it allows programs to be saved and loaded onto tape
in machine code format. Both methods are ideal when
writing and entering short less th an 100 bytes
machine code programs, however for longer programs an
assembler is essentiaI. An assembler the Commodore
disk based 6502 assembler is highly recommended - allows
a program to be written using the mnemonics with lables
for variables and jump locations. These are converted by
the assembler to binary values which when loaded into
memory constitutes the program. Another useful aid to
have besides the assembler and monitor is a
d isassem ble r. This conve rts the machi ne code program
back into mnemonics, a function which helps with program
faul t diagnosis.

Sorne techniques for hand assembling and writing machine
code programs.

The prospect of writing a machine code program even
a small one may seem fairly daunting but providing one
uses an orderly and disciplined approach to the problem
it need not be hard. A machine code program differs from
a Basic program in the approach taken to its writing.
Whereas a rough Basic program can be written then
polished up by inserting extra lines and changing
existing lines. A machine code program must be written
as the final version since any changes will require
rewriting the whole program. This is because machine
code unlike Basic code is dependent on the exact
position of instructions in memory. Adding a couple of
instructions into the middle of a program will
necessitate the changing of aIl jump, branch and data
addresses. This plus a far greater attention to details
like current flag status, means that the program must be
very carefully planned before it is written. Unless this
is done, writing a machine code program will require far
greater effort than is necessary and the product far
more prone to error.

Stage one in planning a program is to define what
the program is required to do, breaking the problem down
into a series of steps. To demonstrate this consider the

35

Start

CHAR-O

LOC'O

Store CHAR in LOC +32768

Increment LOC

1ne rement CHAR

Display

Load ace with 255

S lare ace in CHAR

Load IndexXReg with 255

Load ace with CHAR

Store ace in 32768,X

36

No

1 n ilia 1

Stop

Version

Fig 2.2 Flow Diagrams of

No

Decrement CHAR

De c remen t Index X

Stop

Final Version

Display

the table contains aIl variables
writing the program exactly the
In memory must be left to contain

following example, to display aIl the ASCII characters
on the screen:

Set LOC to 32768 - set CHAR to zero - store character
code CHAR on screen at location LOC - Increment CHAR
if CHAR is greater than 255 then aIl characters have
been displayed and pro gram ends, if not then go back and
display next CHAR.

From this description we have defined that two variables
CHAR and LOC are required, also the program structure
requires a loop with a conditional test. For a short
program like this a written description is not really
required since one can easlly remember what one wants
the program to do. For longer programs it is an
essential part of the process. From the written
description one can construct a flow diagram such as the
example in Figure 2. The flow diagram can be regarded as
a pictorial version of the written description and as a
resul t si mpler to follow.

For long programs the flow diagram and written
description can get very involved and confusing. It is
good practice to spli t such a program into a series of
sel f con tai ned blocks or subroutine modules. Each module
is then treated as a complete program, making program
writing and debugging easier. The flow diagram shows the
logical pathways through a program and most logical
errors can usually be detected at this stage, saving a
considerable amount of programming time.

Having drawn a flow diagram the next stage is the
construction of a table of variables and locations of
system subroutines called. In the example no system
subroutines are used but two variables are required:

LOC pointer to location in screen memory where
character is to be stored.
CHAR Value for ASCII character' to be displayed on
screen.

It is important that
required, since when
right amount of space
them.

Having defined the logical flow of the program, the
variables used and any system subroutines caIled, a
start can be made on writing the program code. Probably
the best way is first to draw an expanded vers.ions of
the flow diagram. Breaking down each logical step into a
series of substeps corresponding to a machine code
instruction. In Figure 2 notice that the variable LOC is
now stored as the contents of the X index register.
Indexed addressing being the easiest way of putting data
into successive memory locations. Aiso the index
register (i.e. LOC) is loaded with 255 and decremented,

37

CODING FORM

PflOGRAM _-'J)"""-'C/S"'-P:....:J.."-'A'-'-Y-'--_~~ _

DATE ----'o3""0'--J/--"by/--J':fu'l'--_ PAGE_I_

--
ADDRESS AD FLAGS

MSS LSB OPCODE LABEl MNEMONIC MODE OPERAND Z N C 1 D V CYCLE COMMENT

0.3 4 0 - CI/AR. - VAt<IA6L.E t:oR ASCII CHA2AcrER.

1 ACj J)/S?LAY J..DA #: :l?5 5TAI<T- SET" t.{P /...ot>? CCUNI

2 FF -- AND CJ1IlI</lCTER vA'-4E

3 8]) SrA Ms CHAI(. JN IIIAL l'SE CI1A(

4 40
-------5 03 ~

-
6 A2 t..Di- # 255 SET INDE~ Rée; 1STé;:: Jo 255

----'--

7 FF ...--------

8 ATJ Né'lC"rCI1AIl. .LDA A6S CI/AR. 4éi Cf/AI<---- ----

9 fo ~
--- ~--- -----------------------------------

A 03 ~-
B 'ID STA AfP-,~ $~ x $ToR.E A, 3::27t."O + IN])EX

c 00 ~ INTl> V'1)tO HEHoR'/

D '60 ~

E Cf 1)fC ABS CHAR. PUI rJEXT AScII

F 40 --- CHARACTéK Il.1 CHAI(

--r 50 03
-------1 CA "DE)(/MP "1- POINT ID /'JE.'l-T SCRéEN

2 "])0 BNE (1.& Né>trC;f,M. LoCtJTl{)II/ - LAS7 CHlleA:Tét<-:

3 F4

4 (,0 EN]) RIs INP ENv tl{ l(éTllf<AJ Hetrl '311BKt:x.i7/1\/é.

5
- --

6
---f-----

7

8

Fig 2.3 Example of Hand Coded Program

38

rather than a and incremented as in the original flow
diagram, since it is easier to test for zero than for
255.

For the actual hand assembly and coding of a program
i t is advisable to use a coding form such as that shown
in Appendix B. It helps to considerably reduce the
number of errors occuring at this stage. On the first
page of the coding form a list of aIl variables, 1/0
locations and system subroutine entry points used should
be written. Each variable being assigned the number of
bytes of memory which it will require. Most will be
single byte but some will be two or three byte precision
and in the case of character variables or data buffers
memory required could be large. When storing a multiple
byte numerical variable it is good practice to store the
bytes in fixed order, with the least signifiant byte in
the first location and the most signifiant byte in the
last location. It is easier this way to keep track of
which part of a variable is being dealt with. Aiso index
registers can be used to access successive bytes of a
variable in the same order that they are processed.

Program variables can be stored in any part of RAM
memory not ocupied by either programs or system
variables. For maximum speed and reduced program size
variables should be stored in page zero of memory, the
bottom 255 bytes. On the PET page zero is currently
occupied by system variables. This area can be utilised
by using two subroutines, one at the beginning of the
program and the other at the end. The first disables the
system by setting the interrupt flag with an SEI
instruction. Then relocates the entire contents of page
zero to the top of RA M memory. Leaving page zero free
for use by the rest of the program. The last subroutine
p e r for m s t he r e ver sep roc e s s , r e pla c i n g the system
variables into page zero prior to re-enabling the system
with a CLI instruction. Having decided where variables
are to be stored the y should be allocated memory
locations and the address column on the coding form
filled in accordingly.

Using the second expanded flow diagram one can start
writing the code ante the coding form using the
instruction mnemnics. The first step is to enter the
starting loca.tion of the program into the address
column, then enter the first instruction into the
mnemonic column. The addressing mode of the instruction
should be entered into the relevant column. This is
i mpo rtant since one must be able to calcula te how man y
bytes are required by that instruction, to determine on
which line (i.e. at which address) the next instruction
should be entered. The label column will contain an
entry only if that address is the start of a subroutine
or the destination of a jump or branch instruction. On
the flow diagram the position of labels is indicated
where an operation has more than one entry or exit

39

point. The label used can be any name but preferably one
descriptive of the function of the subroutine or loop.
In the example the beginning of the program is given the
la be l DISPLA y and the entry point of the loop is called
NEXTCHAR. Entries in the operand column will only be
required for instructions referencing other locations in
the program and will consist of symbolic labels and
var iable names. As program code is entered on the coding
form the comment column should also be completed. Either
with simple references to the flow diagram or a more
complete description. At a later date the function and
logical flow of the program can thus be easily followed
without relying on memory.

Once witten, the program should be checked for
logical errors, before being assembled. It will involve
less work if errors are detected prior to assembly. The
process of hand assembling is done in two stages, the
first consists of using the instruction set list to
obtain the opcode value for each mnemonic with the
specified addressing mode. This hexadecimal value is
entered into the opcode column of the coding form on the
same line as the mnemonic. If the addressing mode is
other than "implied" or "acumulator" then the following
one or two bytes will be used to store an address or a
value specified in the operand column. If the addressing
mode is immediate, then the operand column contains a
hexadecimal value which is transferred to the opcode
column on the line following that of the instruction
code.

The number system used must always be noted, the
conventions are that a number prefixed with a % is in
binary f0rmat, with a $ in hexadecimal format and if no
prefix is given then in decimal format. Convention also
dictates that an instruction in the immediate mode is
identified by a /1 sign in the address mode column, all
other address modes are just an abbreviation of the
name. For aIl other modes the symbol contained in the
operand column will correspond to either a lable or
variable. If a variable, then the address of the
variable can be obtained from the variable table on the
first page of the coding form. If the instruction is a
jump or branch then the addressing mode used will
transfer program control to another section of the
program, the ope rand column will thus contain a label.
Since a lable needs the calculation of a jump address it
is left until the second part of the assembly procedure.
It should be noted that the 6502 requires that all
addresses are stored in the form "least significant
byte" first, then "most significant byte" thus address
0340 hexadecimal is stored as 40 03.

At the end of the first stage of the assembly
process, the opcode column on the coding forms should
contain a list of hexadecimal values, one for each
location in memory. The exceptions being jump and branch

40

adresses which are calculated in the second stage. Jump
addresses pose no problem since they are stored in
either indirect or more commonly absolute mode. Their
entries in the opcode column can be obtained from the
address of the relavent label. The conditional branch
instructions aIl use relative addressing, where the
branch, either forward or backward, is calculated from
the location of the branch instruction rather than a
fixed location in memory. It is the offset from the
current location, which can be up to 127 byt~s away,
e i the r f orward or backward, which must be calcula ted by
the program mer. Great care should be taken with this,
any error will cause program control to be transferred
to the wrong place, with resultant errors or program
crash. To calculate the value for a forward branch one
counts the number of bytes from the location of the
branch instruction, to the location of the label in the
branch operand column, and subtract 2 from this value.
If the branch is backwards then the offset is calculated
by counting the number of bytes from the branch
instruction to the label, then adding 1 and subtracting
from 255. The result when converted into hexadecimal can
be stored in the opcode column after the branch
instruction.

Once all jump addresses have been calculated and a
complete list of opcode values obtained the program can
be entered into the computer. Before this is do ne it is
advisable to recheck the program, especially the opcode
listing for errors (make sure that you can distinguish
between 8 and B or A and 4). The opcode listing is best
entered into the PET using the machine code monitor
this is the main reason why the opcode was produced
using hexadeci mal notation. Once entered, the program
should be saved before it is run since it is very rarely
that a machine code program runs perfectly first time.
The contents of memory should then be checked against
the opcode listing for any program entry errors, if any
are found they should be corrected and the program
resaved. One can then try running it. If there is a
program error it will probably crash the machine, if 50

reload thp p ogram and the monitor and carefully recheck
the logic flow, the coding and the contents of memory.
In my experience the three most common causes of fatal
program errors are entry errors, coding errors, and
wrongly calculated jump and branch addresses.

The best way of detecting errors is to
systematically work through the program inserting a
break instruction at points where program failure may
have occurred. This will cause the program to return to
the monitor, allowing the contents of variable locations
to be checked and gradually isolating the fault to a
small section of code. Another way of isolating errors
is to run the program from different locations, though
this does require a careful choice of entry points.

41

is not hard it
method and
of practice.

PET users to
machine code

Having detected and removed any fatal errors one may
find that the program still does not run properly and
produces strange results. Non fatal errors are most
com monly caused by either a mistake in the basic logic
flow, ignoring the current flag status, using the wrong
variable, and quite commonly using the wrong branch
instruction.

Successful machine code programming
requires just a strict adherance to a
constant attention to detail plus plenty
The methods outlined above should enable
expand their machines capabilities by using
subroutines.

'+2

THE PET OPERATING SYSTEM 3

Of the 64 K addressable memory space on the PET, 14K
is occupied by read only memory-ROM. This contains the
operating system and Basic software, it ex tends from
address 49152 to 65536 with a gap between 59392 and
61439, locations used by the 1/0 chips. One can divide
this 141< ROM memory area into two parts, one occupied by
Basic and the other by the operating system. The area
occupied by Basic starts at 49152 and ends at 57623 (in
the new ROMs) a total of 8471 bytes. The operating
system starts at 57624 and ends at 65536 less the 2048
bytes used by the 1/0, a total of 5864 bytes. The
purpose of the operating system software is to control
system functioning and includes aIl 1/0 operations, such
as keyboard scanning, display generation, cassette and
lE EE input/output, as wel1 as ~ power on reset system
initialisation and diagnostics. The Basic routines are
solely associated with processing the commands in a
Basic program stored in the RAM memory area. They
consist of a set of subroutines each capable of
executing a specifie Basic commando

It is a combination of aIl the programs stored in
this 14K of ROM which allows the user to simply switch
on the machine and immediately write or run a program.
The structure of the PET's ROM based software is of
interest to the user for two reasons. Firstlv because it
helps to show how the system works. Secondly because
manv of the subroutines can be used in machine code
programs. A knowledge of the location of these
subroutines is essential if they are to be used.
Unfortunately as most users are aware one is unable to
look at anv one of the ROM areas using the PEEl< commando
Th is is not really à problem since it is easy to examine
these areas of memory using the machine code monitor. In
this way one can graduaÙy build up a tahle of the
subroutine entry points and deduce the function of the
various subroutines. A process aided by relocating
sections of the code and dissassembling. The following
list has been built up of the major subroutines and
their entry points:

43

~
~

000
001-002

System variables memory map(RAM) - old ROM machines

$4c constant (6502 JMP instruction)
USR function address 10, hi

Terminal 1/0 maintenance

003
004
005
006
007
008
009
010-089
090
091
092
093
094
095
096
097
098
099
100
101
102-103
104-111
112-113
114-115
116-121

Active 1/0 channel #
Nulls to print for CRLF (unused).
Column Basic is printing next
Terminal width (unused).
Limit for scanning source colmns (unused)
Line number before storage buffer. (integer address from Basic)
$2C constant (special comma for INPUT process).
BASIC INPUT buffer (80 bytes).
General counter for BASIC. (search char ':' or endline)
$00 used as delimeter (scan between quotes flag).
General counter for BASIC. input buffer pointer.
Flag to remember dimensioned variables. 1st char of name .
Flag for variable type: O=numeric; 1=string.
Flag for integer type: 80=integer; OO=floating point.
Flag to crunch reserved words (protects "& remark).
Flag which allows subscripts in syntaxe
Flags INPUT or READ: O=Input; 64=Get; 152=Read.
Flag sign of TAN.
Flag to suppress OUTPUT (+normal;-suppressed).
Index to next available descriptor.
Pointer to last string temporary 10; hi.
Table of double byte descriptors which point to variables.
Indirect index #1 10; hi.
Indirect index #2 10; hi.
Pseudo register for function operands.

Data storage maintenance

122-123
124-125
126-127
128-129

Pointer to start of BASIC text area 10; hi type
Pointer to start of variables 10; hi byte.
Pointer to array table 10; hi byte.
Pointer to end of variables 10; hi byte.

130-131
132-133
134-135
136-137

138-139
140-141
142-143
144-145

Pointer to start of strings 10; hi byte.
Pointer to top of string space 10; hi byte.
Highest RAM adr lo;hi byte.
Current line being executed. A zero in 136 means statment
executed in a direct commando
Line # for continue command 10; hi.
Pointer to next STMNT to execute 10; hi.
Data line # for errors 10; hi.
Data statment pointer 10; hi.(145-memory address of data line)

Expression evaluation

146-147
148-149
150-151
152-153
154-155
156
157-158
159-160
161
162
163
164-165
166-171
172-173
174-175
176-181
182
183
184-189
190
191
192-193

Source of INPUT 10; hi.
Current variable name.
Pointer to variable in memory 10; hi.
Pointer to variable referred to in current FOR-NEXT
Pointer to current operator in table 10; hi.
Special mask for current operator.
Pointer for functiondefinition 10; hi.
Pointer to a string descriptor 10; hi.
Length of a string of ab ove string.
Constant used by garbage collect routine. (30r7 for grbg clct)
$4c constant (6502 JMP inst).
Vector for function dispatch 10; hi.
Floating accumulator # 3 c

Block transfer'pointer # 1 lo;hi.
Block transfer pointer # 2 10; hi.
Floating accumulator # 1(FAC#1)(USR function evaluated here).
Duplicate copy of sign of mantissa of FAC # 1.
Counter for # of bits to shaft to normalize FAC # 1.
Floating accumulator # 2.(FAC#2)
Overflow byte for floating argument.
Duplicate copy of sign of mantissa.
Pointer to ASCII rep of FAC in conversion routine 10; hi.

-+=
\.JI

RAM subroutines

194-199
200
201-202

CHARGOT RAM code. Gets next character from BASIC text.
CHARGOT RAM code regets current characters.
Pointer to source text 10; hi.

203-223 Next r~ndom number in storage

OS page zero storage
-l=:"
0' 224-225

226
227-228
229-233
234
235
236
237
238
239
240
241-242
243-244
245
246
247-248
249-250
251-254
255

Page

Pointer to start of line cursor loc 10; hi.
Column positionof cursor.(O-79).
General purpose start address indirect 10; hi.
General purpose end address direct 10; hi.
Flag for Quote mode on/off.
timer 1 interrupt sttus: O=disabled
EOT character received
character error received
current file name length.
Current logical file number.
Current primary address.
Current secondary address.(241 device no; 242 max line length)
Pointer to start of current tape buffer 10; hi.
Current screen line #.
Data temporary for 1/0.
Pointer to start loc for O.S. lo-hi.(tape start adress/pointer)
Pointer to current file name 10; hi.
Tape variable storage.
Overflow byte BASIC uses when doing FAC to ACllI conversions.

62 bytes on bottom are used for error correction in tape reads. Also, buffer for
ASCII when Basic is expanding the FAC into a printable number. The rest of page
1 is used for storage of BASIC GOSUB and FOR NEXT context and hardware stack for
the machine.

Page 2

512-514
515
516
517-518
519-520

521

24-hour clock in 1/60 secs
Matrix co-ordinates of last key down (row/col; 255=no key)
Shift key status: O=no shift; 1=shift
Correction factor for clock, LSB, MSB
Interrupt driver flag for cassette # 1,switches; # 2 switches
(519 for cassette#1 on; 520 for cassette#2 on)
Keyswitch PIA duplicate of 59910

-l::-
-....J

522
523
524
525
526
527-536
537-538
539-540
541
542
543
544-545
546
547
548
549
550
551
552
553-577
578-587
588-597
598-609
608
610
611
612
613
615-615
616
617-619
620
621
622
623
624
625-626
627
628
629

timing constant buffer
Flag # means verify not load into memory.
1/0 status byte.
Index into keystroke buffer.
Flag to indicate reverse-field on.
Interrupt driven key stroke buffer.
IRQ RAM VSCTOR 10; hi.
BRK instruction RAM VECTOR 10; hi.
(IEEE mode)
(end of line for input pointer; # characters on screen line)
?
(cursor log row/col, used in input routines)
(PBD image for tape 1/0)
Keyboard input code.
Blink cursor flag.
Count down to flip cursor. Cursor blink duration.
Screen value of input character when cursor moves on.
Flag for cursor on/off.
(EOT bit received,tape write)
Table of LSB of start address of video display lines (25).
Table of logical addresses.
Table of primary addresses.
Table of secondary addresses.
Input from screen/keyboard flag. O=keyboard; 1=screen.
Index into LA,FA,SA, tables
Default input gevice #.
Default output device #.
Computation of parity on cassette write.
?
Tape buffer item counter.
?
SeriaI bit count.
Count of redundant tape blocks.
?
(cycle counter,flip for every bit coming from tape)
Count down synchronization or cassette write.
Index next character in/out tape buffer # 1; # 2.
Countdown synchronization on cassette header.
Flag to indicate bit/byte error.
Flag to indicate tape routine reading shorts.

+:"
co

630-631
632
633
634-825
836-1017
1018-1023

COOO-C091
C092-C18F
C190-C2AB
C2AC-C2D9
C2AD-C31C
C31D-C329
C32A-C356
C357-C388
C389-C391
C394-C3A9
C3AC-c42E
C430-C460
C462-C476
C479-C48C
C48D-C521
C522-C550
C551-C599
C59A-C5A7
C5A8-C647
C649-C68F
c692-C6B4
C6B5-C6EF
C6F2-C70A
C70D-C71B
C71C-C742
C745-C75E
C75F-C76D
C770-C772

Index to addresses to correct on tape read pass 1; pass.
Flag for cassette read-tells current function-countdown,read,etc
Count of seconds of shorts to write before data.
Buffer for cassette # 1 (192 bytes)
Buffer for cassette # 2 (192 bytes)
Unused.

Subroutine locations in old ROM machines

keyword action addresses
table of reserved words
error messages
peeks at the stack for active FOR loop
'open up' a space in Basic for insertion of a new line
tests for stack-too-deep and aborts if found.
check available memory space
sends a canned error message from C190 area, then drops into:
signals 'ready' (C38B entry for basic warm start).
gets a line of input, analyses it, executes it
handl~s a new line of Basic from keyboard; deletes old line etc.
corrects the chaining between Basic lines after insert/delete
receives a line from the keyboard into the Basic buffer
gets each character from keyboard
looks up the keywords in an input line and changes to "tokens"
searches for the location of a Basic line from number in 8,9
implements NEW command - clears everything
sets the Basic pointer to start-of-program
performs LIST command
executes a FOR statement
continues to build FOR vectors
reads and executes the next Basic statement, find next line, etc.
executes the Basic Command as a subroutine
performs RESTORE
handles STOP, END, and BREAK procedures
performs CONT
set pause after carriage return (never called)
performs CLR

.j::
\l)

C775-C77D
C780-C79A
C79D-C7C9
C7CA-C7FD
C7FE-C81E
C820-C840
C843-C862
C863-C89A
C89D-C91B
C91C-C97E
C97F-C982
C985-C996
C999-CA24
CA27-CA41
CA44-CA76
CA77-CA9E
CA9F-CAC5
CAC6-CADF
CAEO-CB14
CB17-CB21
CB24-CC 11
CC12-CC35
CC36-CC8F
CC92-CCB5
CCB8-CD38
CD3A-CD9C
CD9C-CDB9
CDBC-CDCO
CDC1-CDE7
CDE8-CDF6
CDF7-CE04
CE05-CEOC
CEOB-CEOD
CEOE-CE10
CE11-CE1B
CE1C-CE20
CE21-CE27
CE28-CE39
CE3B-CE96
CE97-CED5

performs RUN
performs GOSUB
performs GOTO
performs RETURN
scans for start of next Basic line
performs IF
performs ON
gets a fixed point number and stores in 8,9
performs LET
check numeric digit/move string pointer
performs PRINTII
performs CMD
performs PRINT
print string from address in Y,A
print a character
handles bad input data
performs GET
performs INPUT#
performs INPUT
prompts and receives the input
performs READ
canned messages: EXTRA IGNORED;REDO FROM START
performs NEXT
checks Basic format,data type, flags TYPE MISMATCH
inputs and evaluates any expression (numeric or string)
pushes a partialy evaluated argument to the stack
evaluates a numeric variable, pi, or identifies other symbols
value of pi in floating binary
checks for special characters at start of expression
performs NOT function
performs various functions
evaluates expression within parentheses()
checks for right parentheses)
checks for left parentheses (
checks for comma
prints SYNTAX ERROR and exits
sets up function for future evaluation
set up a variable name search
check for special variables,TI,TI$,and ST
identifies and sets up function references

\JI
o

CED6-CF05
CF06-CF6D
CF6E-CF7A
CF7B-DOOE
DOOF-D078
D079-D087
D088-D098
D099-D09C
D09D-DOB8
DOB9-D263
D264-D277
D278-D284
D285-D28A
D28B-D294
D295-D348
D349-D36A
D36B-D3D1
D3D2-D403
D404-D5C3
D5C4-D5D7
D5D8-D653
D654-D662
D663-D672
D673-D684
D685-D6C3
D6C4-D6cF
D6E6-D701
D702-D71D
D71E-D890
D891-D8BE
D8BF-D8FC
D8FD-D95D
D95E-D988
D989-D9B3
D9B4-D9EO
D9E1-DA73
DA74-DA98
DA99-DACD
DACE-DADD
DADE-DAEC

performs the OR and AND function
performs comparisons
sets up DIM execution
searches for a Basic variable
creates a new Basic variable
logs Basic variable location
array pointer subroutine
is 32768 in floating binary
floating point to fixed point conversion for singal values
locates and/or crea tes arrays
performs FRE function
converts fixed point to floating
performs POS function
checks direct/indirect command, gives 'ILLEGAL DIRECT'
executes DEF statements and evaluates FN(X)
performs STR$ function
scans and sets up string elements
builds string vectors
does 'garbage collection' -discards unwanted strings
performs CHR$ function
performs LEFT$, RIGHT$, MID$, functions
performs LEN, gets string length
performs ASC function
gets a single byte value from Basic
evaluates VAL function
gets two arguments (16 bit and 8 bit) from Basic
performs PEEK and POKE
executes WAIT statement
performs addition and subtraction
contains floating-point constants
performs LOG function
performs multiplication
loads secondary acumulator from memory ($B8 to $BD)
test and adjust primary/secondary accumulators
routines to multiply or divide by 10
performs division
loads primary accumulator from memory ($bO-$B5)
transfers primary accumulator to memory
transfers secondary accumulator to primary
transfers primary accumulator to secondary

\.n.....

DAED-DAFC
DAFD-DB29
DB2A-DB2C
DB2D-DB6c
DB6D-DB9D
DB9E-DBC4
DBC5-DC4F
DC50-DC84
DC94-DCAE
DCAF-DDE2
DDE3-DE23
DE24-DE2D
DE2E-DE66
DE67-DE71
DEAO-DEF2
DEF3-DF3C
DF45-DF9D
DF9E-DFA4
DFA5-DFED
DFEE-E019
E048-E077
EOB5-EOCC
EOD2-E172
E19B-E1BB
E1BC-E1EO
E1E1-E27C
E27D-E3C3
E3C4-E3E9
E3EA-E52F
E530-E5DA
E5DB-E66A
E66B-E67D
E67E-E683
E685-E73E
E73F-E7AB
E7AC-E7B9
E7DE-E7EB
FOB6-F1CB
F1CC-F22F
F230-F27C

rounds the primary accumulator
extracts primary sign; performs SGN function
performs ABS
compares primary accumulator to memory
Convert Floating point to fixed, unsigned
perform INT function
convert ASCII string to floating point
get new ASCII digit
print Basic Line number
convert floating point to ASCII string (at 0100 up)
conversion constants - decimal or clock
evaluation SQR function
evaluation of power function
negate (monadic -)
perform EXP function
perform function series evaluation
perform RND calculation
evaluate COS function
evaluate SIN function
evaluate TAN function
evaluate ATN function
Basic scan program, transferred to 00C2-00D9
completion of power-on-reset; memory test, etc.
partial test for TI and TI$
input/read/get director
initialize 1/0 registers, clear screen, reset subroutines
receive input f om keyboard/screen
set up new screen line
output character to screen
check or and perform screen scrolling
start new screen line
interrupt entry
interrupt return
hardware interrupt routine: cursor flash, tape monitor, keyboard
convert keyboard matrix to ASCII
write-on-screen subroutine
print canned monitor message
IEEE-488 channel open, test, close
get input character from keyboard, screen cassette, IEEE
output character to screen, cassette, IEEE

\J1
N

F27D-F2A3
F2A4-F2AA
F2AB-F2B7
F2BS-F2C7
F2CS-F329
F32A-F33E
F33F-F345
F346-F3FE
F3FF-F421
F422-F432
F433-F461
F462-F494
F495-F4BA
F4BB-F4D3
F4D4-F529
F52A-F5AD
F5AE-F5E2
F5E3-F5EC
F5ED-F64C
F64D-F666
F667-F67C
F67D-F694
F695-F69D
F69E-F71B
F71C-F735
F736-F7SA
F7SB-F7DB
F7DC-FS2C
FS2D-FS3A
FS3B-FS5D
FS5E-E870
F871-F87E
F87F-FSB8
FSB9-F8D1
FSD2-F912
F913-F91D
F91E-F92D
F92E-F95E
F95F-FBFB
FBDC-FBE4

restore normal 1/0, clear IEEE channels
abort (not close!) aIl files
locate logical file table entry
transfer file table entries to Deviee, Command
perform file CLOSE
test stop key
test if direct/indirect command for suppressing file advice
perform file LOAD
print "SEARCHING .. "
print "LOADING .. " or "VERIFYING"
get parameters for LOAD and SAVE
perform IEEE sequences for LOAD, SAVE, and OPEN
search for specifie tape header
perform VERIFY
get parameters for OPEN and CLOSE
perform OPEN
search for any tape header
clear tape buffer
write tape header
get start and end addresses from tape header
set buffer start address
set tape buffer start and end pointers
perform SYS command
perform SAVE
find unused secondary address
update clock
set input device
set output device
bump tape buffer counter
wait for cassette PLAY switch
test cassette switch line
wait for cassette RECORD and PLAY switches
read tape initiation routine
write tape initiation routine
complete tape read or write
wait for 1/0 completion
test stop key and abort if necessary
subroutine to set tape read timing
interrupt routine for tape read
save memory pointer

'vi
1.".)

FBE5-FBEB set ST error flag
FBEC-FBFF subroutine to count 8 seriaI bits per byte
FCOO-FC1B subroutine to write a bit to tape
FC1C-FCFA interrupt 1 for tap write - entry at FC21
FCFB-FD15 terminate 1/0 and restore normal vectors
FD16-FD37 subroutine to set interrupt vector
FD38-FD47 power-on reset entry; test for diagnostic
FD48-FD7B diagnostic routine
FD7C-FD8F checksum routine
FD90-FD9A pointer advance subroutine
FD9B-FFB1 diagnostic routines
JUMP TABLE:
FFCO OPEN
FFC3 CLOSE
FFC6 set input device
FFC9set output device
FFCC restore normal 1/0 devices
FFCF input character (from screen)
FFD2 output character
FFD5 LOAD
FFD8 SAVE
FFDB VERIFY
FFDE SYS
FFE1 test stop key
FFE4 get character from keyboard buffer
FFE7 abort aIl 1/0 channels
FFEA update clock
FFED-FFFA turn off cassette motors
FFFA-FFFB NMI vector (mangled)
FFFC-FFFD reset vector
FFFE-FFFF interrupt vector

System variables memory map (RAM) - New ROM machines.

V1
-l=:"

0000-0002
0003
0004
0005
0006
0007
0008
0009
OOOA
OOOB
OOOC
OOOD
OOOE
0011-0012
0013
0014-0015
0016-001E
001F-0020
0021-0022
0023-0027
0028-0029
002A-002B
002C-002D
002E-002F
0030-0031
0032-0033
0034-0035
0036-0037
0038-0039
003A-003B
003c-003D
003E-003F
0040-0041
0042-0043
0044-0045
0046-0047
0048-0049

0-2
3
4
5
6
7
8
9

10
11
12
13
14
17-18
19
20-21
22-30
31-32
33-34
35-39
40-41
42-43
44-45
46-47
48-49
50-51
52-53
54-55
56-57
58-59
60-61
62-63
64-65
66-67
68-69
70-71
72-73

USR Jump instruction lo-hi
General counter for Basic. Search character':' or endline
Scan-between-quotes flag. 00 as delimeter
Basic input buffer pointer; # subscripts
Default DIM flag. First character of array name
Variable flag, type: FF=string, OO=numeric
Integer flag, type: 80=integer, OO=floating point
DATA scan flag; LIST quote flag; memory flag
Subscript flag; FNx flag
Flags for input or read, O==input: 64=get: 152=read
ATN sign flag: comparison evaluation flag
input flag; suppress output if negative
current 110 device for prompt-suppress
Basic integer address (for SYS, GOTO etc)
Temporary string descriptor stack pointer
Last temporary string vector
Stack of descriptors for temporary strings
Pointer for number transfer
Misc.number pointer
product staging area for multiplication
Pointer: Start-of-Basic memory
Pointer: End-of-Basic, Start-of-Variables
Pointer:End-of-Variables,Start-of-Arrays
Pointer: End-of-Arrays
Pointer: Bottom-of-Strings (moving down)
Utility string pointer
Pointer: Limit of Basic Memory
Current Basic line number
Previous Basic line number
Pointer to Basic statement (for CONT)
Line number, current DATA line
Pointer to current DATA item
Input vector
Current variable name
Current variable address
Variable pointer for FOR/Next
y sa~~ register-new operator save; current operator pointer

\J1
\J1

004A
004B-004C
004D-004E
004F
0050
0051-0053
0054-0058
0059-005D
005E-0063
0064
0065
0066-006B
006C
006D
006E-006F
0070-0087
0088-008c
008D-008F
0090-0091
0092-0093
0094-0095
0096
0097
0098
0099-009A
009B
009C
009D
009E
009F
OOAO
00A1
00A3-00A4
00A5
00A6
00A7
00A8
00A9
OOAA
OOAB

74
75-76
77-78
79
80
81-83
84-88
89-93
94-99
100
101
102-107
108
109
110-111
112-135
136-140
141-143
144-145
146-147
148-149
150
151
152
153-154
155
156
157
158
159
160
161
163-164
165
166
167
168
169
170
171

Special mask for current operator; comparison symbol
Mise numeric work area; function definition pointer,lo-hi
Work area; pointer to string description
Length of above string
constant used by garbage collect routine, 3 or 7
Jump vector for functions
Mise numeric storage are a
Mise numeric storage area
Accumulator#1: E,M,M,M,M,S
Series evaluation constant pointer
Accumulator hi-order propogation word
Accumulator#2
Sign comparison, primary vs. secondary
Low-order rounding byte for Acc#1
Cassette buffer length/Series Pointer
Subrtn: Get Basic Char; 77,78=pointer
RND storage and work area
Jiffy clock for TI and TI$
IRQ RAM vector,lo-hi; hardware interrupt vector
Break interrupt vector
NMI RAM interrupt vector,lo-hi
Status word ST
Which key depressed: 255=no key
Shift key: 1 if depressed.
Clock correction factor;lsb-msb; 1/30 sec Increment
Keyswitch PIA duplicate of 59410 : STOP and RVS flags
Timing constant buffer
Load=O, Verify=1
characters in keyboard buffer
Screen reverse flag
IEEE-488 output flag: FF=character waiting
End-of-line-for-input pointer
Cursor log (row,column)
IEEE-488 output character buffer
Key image
O=flashing cursor, else no cursor
Countdown for cursor timing
Character under cursor
Cursor blink flag
EOT bit received

\.n
()'\

OOAC
OOAD
OOAE
OOAF
OOBO
00B1
00B2
00B4
00B5
00B7
00B9
OOBA
OOBB
OOBC
OOBD
OOBE
OOBF
OOCO
00C1
00C2
00c3
00C4-00C5
00C6
00C7-00C8
00C9-00CA
OOCB-OOCC
OOCD
OOCE
OOCF
OODO
00D1
00D2
00D3
00D4
00D5
00D6-00D7
00D8
00D9
OODA-OODB
OODC

172
173
174
175
176
177
178
180
181
183
185
186
187
188
189
190
191
192
193
194
195
196-197
198
199-200
201-202
203-204
205
206
207
208
209
210
211
212
213
214-215
216
217
218-219
220

Input from screen/input from keyboard
X'save flag
How many open files; pointer into file table
Input device, normally 0
Output CMD device, normally default of 3
Tape character parity
Byte reveived flag
Tape buffer character
Pointer in filename transfer
SeriaI bit count
Cycle counter
Countdown for tape write; sync on tape header
Tape buffer#1 count
Tape buffer#2 count
Write leader count; Read pass1/pass2
Write new byte; Read error flag
Write start bit; Read bit seq error
Pass 1 error log pointer
Pass 2 error correction pointer
Current function; O-Scan; 1-15=Count; $40=Load; $80=End
Read checksum; Write leader length
Pointer to screen line
Column position of cursor on above line (0-79)
Utility pointer: tape buffer,scrolling
Tape end address/end of current program
Tape timing constants
Flag for quote mode O=direct cursor, else programmed cursor
Timer 1 enabled for tape read; OO=disabled
EOT signal received from tape
Read character error
characters in file name
Current logical file number
Current secondary addrs, or R/W command
Current device number
Line length (40 or 80) for screen
Start of tape buffer, address
Line where cursor lives
Last key input; buffer checksum; bit buffer
Pointer to current file name
Number of keyboard INSERTs outstanding

256-511 Processor stack area

1024-32767
32768-36863
36864-49151
49152-57592
57593-59391
59408-59411
59424-59427
59456-59471
61440-65535

634-825
826-1017

1018-1019

\J1
""'-J

OODD
OODE
OODF
00EO-00F8
00F9
OOFA
OOFB-OOFC
0100-010A
0100-013E

0100-01FF

0200-0250
0200-0201
0202
0203
0204
0205
0206
0207-0208
0251-025A
025B-0264
0265-026E
026F-0278

027A-0339
033A-03F9
03FA-03FB

0400-7FFF
8000-8FFF
9000-BFFF
COOO-EOF8
EOF9-E7FF
E810-E813
E820-E823
E840-E84F
FOOO-FFFF

221
222
223
224-248
249
250
251-252
256-266
256-318

512-592
512-513
514
5'15
516
517
518
519-520
593-602
603-612
613-622
623-632

Write shift word/Receive input character
#blocks remaining to write/read
SeriaI word buffer
Screen line table: hi order address & line wrap
Interrupt driver flag for cassette#1 status switch
Interrupt driver flag for cassette#2 status switch
Tape start address
Binary to ASII conversion area
Tape read error log for correction

Basic input buffer
Program counter
is processor status
is accumulator
X index
y index
stack pointer
user modifiable IRQ
Logical file number table
Device number table
Secondary address, or R/W cmd, table
Keyboard input buffer

Tape#1 buffer
Tape#2 buffer
Vector for Machine Language Monitor

Available RAM including expansion
Vide6 RAM~

Available ROM expansion area
Microsoft Basic interpreter
Keyboard, screen, interrupt programs
PIA 1 - Keyboard lia
PIA 2 - IEEE-488 lia
VIA - lia and timers
Reset, tape, diagnostics, monitor

\J1
00

COOO-Co45
C046-C073
C074-C091
C092-C192
C193-C2A9
C2AA-C2D7
C2D8-C31A
C31B-C327
C328-C354
C355-C388
C389-C3AA
C3AB-c441
C442-c46E
C46F-C494
C495-C52B
C52C-C55A
C55B-C576
C577-C5A6
C5A7-C5B4
C5B5-c657
c658-c6FF
C700-C72F
C730-C73E
C73F-C76A
C76B-C784
C785-C78F
C790-C7AC
C7AD-C7D9
C7DA-C7F2
C7F3-c80D
C80E-CS10
C811-CS2F
CS30-CS42
cS43-CS52
CS53-CS72
CS73-CSAC
CSAD-C927

Subroutine locations in new ROM machines

Action addresses for primary keywords
Action addresses for functions
Hierarchy and action addresses for operators
Table of Basic keywords
Basic messages, mostly error messages
Search stack for FOR or GOSUB activity
Open up space in memory
Test: stack too deep?
Check available memory
Send canned error message, then:
Print Ready.
Handle new Basic line from keyboard
Rebuild chaining of Basic lines in memory
Receive line from keyboard
Change keywords to Basic tokens
Search Basic for a given Basic line number
Perform NEW, then:
Perform CLR
Reset Basic execution to start-of-program
Perform LIST
Perform FOR
Execute Basic statment
Perform Restore
Perform STOP and END
Perform CONT
Perform RUN
Perform GOSUB
Perform GOTO
Perform RETURN, and perhaps:
Perform DATA, i.e., skip rest of statment
Scan for next Basic statment
Scan for next Basic line
Perform IF, and perhaps:
Perform REM, i.e., skip rest of line
Perform ON
Get fixed-point number from Basic
Perform LET

\J1
'-0

C928-C936
C937-C98A
C98B-C990
C991-C9A4
C9A5-CA1B
CA1C-CA38
CA39-CA4E
CA4F-CA7C
CA7D-CAA6
CAA7-CACO
CAC1-CAF9
CAFA-CB06
CB07-CBFB
CBFC-CC1F
CC20-CC78
CC79-CC9E
CC9F-CDEB
CDEC-CDF1
CDF2-CDF4
CDF5-CDF7
CDF8-CE02
CE03-CE07
CE08-CEOE
CEOF-CE88
CE89-CEC7
CEC8-CECA
CECB-CEF7
CEF8-CF5F
CF60-CF6c
CF6D-CFF6
CFF7-DOOO
D001-D077
D078-D088
D089-D08c
Do8D-DOAB
DOAC-D227
D228-D258
D259
D26D-D279
D27A-D27F

Add ASCII digit to accumulator #1
Continue to perform LET
Perform PRINT#
Perform CMD
Perform Print
Print string from memory
Print single format character (space, cursor-right,?)
Handle bad input data
Perform GET
Perform INPUT#
Perform INPUT
Prompt and receive input
Perform READ; common routines used by INPUT and GET
Messages: EXTRA IGNORED, REDO FROM START
Perform NEXT
Check data type, print TYPE MISMATCH
Input & evaluate any expression (numeric or string)
Evaluate expression within parentheses ()
Check right parenthesis)
Check left parenthesis (
Check for comma
Pr int· SYNTAX ERROR and ex i t
Set up function for future evaluation
Search for variable name
Identify and set up function references
Perform OR
Perform AND
Perform comparisons,string or numeric
Perform DIM
Search for variable location in memory
Check if ASCII character is alphabetic
Create new Basic variable
Array pointer subroutine
32768 in floating binary
Evaluate expression for positive integer
Find or create array
Compute array subscript size
Perform FRE
Convert fixed point to floating point
Perform POS

'"o

D280-D28c
D28D-D2BA
D2BB-D2CD
D2CE-D33E
D33F-D34E
D34F-D360
D361-D3CD
D3CE-D3FF
D400-D496
D497-D4DF
D4EO-D516
D517-D553
D554-D57C
D57D-D5B4
D5B5-D5C5
D506-D5D9
D5DA-D605
D606-D610
D611-D63A
D63B-D655
D656-D65B
D65C-D664
D665-D674
D675-D686
D687-D605
D6c6-D6D1
D6D2-D6E7
D6E8-D706
D707-D70F
D710-D72B
D72C-D732
D733-D744
D745-D76D
D76E-D852
D853-D889
D88A-D88E
D88F-D8C7
D8c8-D8F5
D8F6-D936
D937-D964

Check if direct command, print ILLEGAL DIRECT
Perform DEF
Check FNx syntax
evaluate FNx
Perform STR$
Calculate string vector
Scan and set up string
Subroutine to build string vector
Garbage collection subroutine
Check for most eligible string collection
Collect a string
Perform string concatenation
Build string into memory
Discard unwanted string
Clean the descriptor stack
Perform CHR$
Perform LEFT$
Perform RIGHT$
Perform MID$
Pull string function parameters from stack
Perform LEN
Move from string-mode to numeric-mode
Perform ASC
Input byte parameter
Perform VAL
Get two parameters for POKE or WAIT
Convert floating point to fixed point
Perform PEEK
Perform POKE
Perform WAIT
Add 0.5 to accumulator#1
Perform subtraction
Microsoft joke
Perform addition
Complement accumulator#1
Print OVERFLOW and exit
Multiply-a-byte subroutine
Function constants: 1, SOR(.5),SOR(2), -00.5. etc.
Perform LOG
Perform multiplication

~
1-

D965-D997
D998-D9C2
D9C3-D9DF
D9EO-D9ED
D9EE-DA04
DA05-DA09
DAOA-DA12
DA13-DA1D
DA1E-DAAD
DAAE-DAD2
DAD3-DB07
DB08-DB17
DB18-DB26

DB27-DB36
DB37-DB44
DB45-DB63
DB64-DB66
DB67-DBA6
DBA7-DBD7
DBD8-DBFE
DBFF-DC89
DC8A-DCBE
DCBF-DCCD
DCCE-DCD8
DCD9-DCE8
DCE9-DE1C
DE1D-DE5D
DE5E-DE67
DE68-DEAO
DEA1-DEAB
DEAC-DED9
DEDA-DF2C
DF2D-DF76
DF77-DF7E
DF7F-DFD7
DFD8-DFDE
DFDF-E027
E028-E053
E054-E08B
E08C-EOBB

Multiply-a-bit subroutine
Load accumulator #2 from memory
Test and adjust accumulators #1 and #2
Handle overflow and underflow
Multiply by 10
10 in floating binary
Divide by 10
Perform divide-into
Perform divide-by
Load accumulator #1 from memory
Store accumulator #1 into memory
Copy accumulator #2 into accumulator #1
Copy accumulator #1 into accumulator #2

Round off accumulator #1
Compute SGN value of accumulator #1
Perform SGN
Perform ABS
Compare accumulator #1 to memory
Convert floating-point to-fixed-point
Perform INT
Convert string to floating-point
Get new ASCII digit
String conversion constants: 99999999,999999999, 1E+9
Print IN, followed by:
Print Basic line number
Convert number or TI$ to ASCII
Constants for numeric conversion
Perform SQR
Perform power function
Perform negation
Constants for string evaluation
Perform EXP
Function series evaluation subroutines
Manipulation constants for RND
Perform RND
Perform COS
Perform SIN
Perform TAN
Constants for trig evaluation: pi/2, 2#pi, .25, etc.
Perform ATN

I;J'\
N

EOBC-EOF8
EOF9-E110
E111-E115
E116-E1B6
E1B7-E1DD
E1DE-E228
E229-E256
E257-E284
E285-E2F3
E2F4-E33E
E33F-E34B
E34C-E38A
E38B-E395
E396-E3B3
E3B4-E3D7
E3D8-E518
E519-E53E
E53F-E5B9
E5BA-E61A
E61B-E62D
E62E-E6E9
E6EA-E6F7
E6F8-E769
E76A-E796
E797-E7A6
E7A7-E7F6
E7F7-E7FF
FOOO-FOB5
FOB6-FOED
FOEE-F127
F128-F135
F136-F155
F156-F163
F164-F16E
F165-F17E
F 17F-F18B
F18C-F1DO
F1D1-F1EO
F1E1-F231
F232-F26D

Constants for ATN series evaluation
Subroutin~ to be moved to zero page ($70 to$87)
Initial RND seed
Initialize Basic system
Messages: BYTES FREE, ### COMMODORE BASIC ###
Initialize 1/0 register, and:
Clear screen, and:
Home cursor
Inputfrom screen or keyboard; wait for input completion
Input from screen
Test for quotation mark and reverse quote-flag
Set up sereen print parameters
Prevent 80-character line from getting any longer
Extend 40-character line to 80 characters
Back into the previous line (via DEL or CURSOR LEFT key)
Handle ASII character for screen output
Go to next line on screen
Scroll the screen
Open a line on the screen (via INSERT key)
Main interrupt entry point
Hardware interrupt: service clock,keyboard,cassettes
Print character on screen
Table: decoder for keyboard matrix
MLM subroutine: output hex digits
MLM subroutine: swap TMPO and TMP2
MLM sibroutine: input hex digits
MLM subroutine: print ?
Monitor messages, mostly for Input/Output
Set up IEEE for Talk, Listen etc
Send character to IEEE-488 bus
Output character immediate mode to IEEE-488 bus
Send errors: WRITE TIMEOUT, DEVICE NOT PRESENT, etc
Send canned 1/0 message
Send immediate mode Listen command, then secondary address
Output character deferred mode to IEEE-488
Drop IEEE channel: send Unlisten or Untalk
Input character from IEEE-488 bus
GET a character
INPUT from any device
OUTPUT a character to any device

Cf'\
VJ

F26E-F283
F284-F28c
F28D-F2A8
F2A9-F300
F301-F30E
F30F-F314
F315-F31C
F31D-F321
F322-F3C1
F3C2-F409
F40A-F43D
F43E-F45F
F460-F465
F466-F493
F494-F4B6
F4B7-F4CD
F4CE-F50D
F50E-F515
F516-F520
F521-F5A5
F5A6-F5D9
F5DA-F63B
F63C-F655
F656-F66B
F66C-F683
F684-F68c
F68D-F69D
F69E-F728
F729-F76C
F76D-F76F
F770-F7BB
F7BC-F805
F806-F811
F812-F834
F835-F846
F847-F854
F855-F885
F886-F8E5
F8E6-F8EF
F8FO-F8FF

Abort all files, and;
Restore normal 1/0 devices
Find file table entry; set parameters from file table
Perform CLOSE
Test STOP key
Action STOP key
Send message if direct mode
Test if direct mode
Perform program loading
Perform La AD
Subroutines: Print SEARCHING ... ; Print LOADING or VERIFYING
Get Load or Save parameters
Get a byte parame ter
Send program name to IEEE-488 bus
Find a specifie tape header
Perform VERIFY
Get parameters for OPEN, CLOSE
Abort calling subroutines if end-of-line (default parameters)
Confirm comma, else send SYNTAX ERROR
Perform OPEN
Find any tape header
Write tape header
Get start and end program addresses from tape header
Set cassette buffer address according ta device number
Set tape start and end addresses from buffer address
Perform CMD
Set tape start and end addresses from Basic pointers
Perform SAVE
Update TI and TI$, and copy STOP key to work area
TI constant: limit of clock (24 hours)
Set input device
Set output device
Advance tape buffer pointer (for INPUT#, GET#, and PRINT#)
Wait: PRESS PLAY ON TAPE#
Test if cassette button(s) pressed
Wait: PRESS PLAY & RECORD ON TAPE#
Initiate tape read
Initiate tape write
Test for 1/0 interrupt completion
Test stop key

(j\
+:-

F900-F930
F931-FA56
FA57-FB75
FB76-FB7E
FB7F-FB83
FB84-FB92
FB93-FBAE
FBAF-FC40
Fc41-FC7A
FC7B-FC95
FC96-FCA5
FCA6-FCB3
FCB4-FCC5
FCc6-FCDO
FCD1-FCFD
FCFE-FDOO
FD01-FD10
FD11-FFBO
FFB1-FFBF

Set expected timing for next input bit from tape
Interrupt entry: Read tape bits
Store received tape characters
Set tape read/write address back to starting point
Flag 1/0 error into ST
Reset 8-counter and flags for a new byte
Write a transition to cassette tape
Write interrupt 2: write data to tape
Write interrupt 1: Write tape shorts (leader)
Terminate tape: restore normal interrupt vector
Set interrupt vector from table
Turn off cassette motors
Perform running checksum calculation
Check: read/write pointer at limit?
Power on reset entry point
NMI interrupt entry point
Table of interrupt vectors
Machine Language Monitor (MLM) - see Commodore documentation
Commodore copyright statement

*****JUMP TABLE*****
FFCO OPEN
FFC3 CLOSE
FFC6 Set input device
FFC9 Set output device
FFCC Restore default 1/0 devices
FFCF Input character
FFD2 Output character
FFD5 LOAD
FFD8 SAVE
FFDB VERIFY
FFDE SYS
FFE1 Test STOP key
FFE4 Get character
FFE7 Abort all 1/0 activity
FFEA Clock update
FFFO-FFF9 Unused
FFFA-FFFF Hardware vectors: NMI, Reset, Interrupt

Wh en the PET is switched on a reset is generated by
the system hardware causing the processor to jump to a
subroutine whose location is pointed to be the contents
of the reset vector. The subroutine called is part of
the operating system and performs the functions of
testing memory, determining how much space is available
and initialising variables in the bottom 634 bytes of
memory.

Memory is tested by the simple method of writing a
value into a memory 'location and reading it back again.
If the value read back is different the operating" system
decides it has found the top memory. This feature is
useful since it automatically isolates any memory fault
giving dropped or transposed bits. It is not able to
detect many of the more obscure memory faults or faults
in the bottom IK of memory. The highest usable RAM
address is then stored in locations 52 and 53 (in old
ROM machines 134 and 135). By changing the contents of
these locations the user can lower the top of memory to
leave space for machine code programs or data stored
using POKE. It is the highest RAM address, less the
amount of memory used for variables and cassette
buffers, a total of 1024 bytes, which is displayed on
the screen on system power up. The pointer to the start
of user memory is stored in locations 40 and 41 (in old
ROM machines 122 and 123). The setting of pointers to
the top and bottom of memory is part of system
initialisation and is required prior to the system
running a Basic program.

AlI variables required by Basic and the operating
system are stored in the lowest 643 bytes of memory. The
most commonly used variables, buffers, counters etc, are
stored in page zero of memory, the bottom 256 bytes. The
reason page zero is used for corn mon variables rather
than any other area of memory is that the
microprocessors zero page addressing capability is much
faster and more efficient in memory usage than
addressing to other parts of memory. The location and
function of most variables has been determined and is
shown in the previous table. A knowledge of these
locations is very useful to the PET user since by
changing their contents one can change the system's
operation. The majority of POKE commands contained in
this book are located in this area of memory.

The section of memory not used by system variables
is available to the user, on a 32K PET this is from
location 1024 to 32768 a total of 31744 bytes. This
memory space is however not completely available for
program storage being also required for the storage of
string and numeric variables. It is no use writing a
program 7K long and trying to run it on an 8K PET, this
will just result in the operating system giving an out
of memory error. The Basic program is stored from
location 1025 upwards and the strings and variables are

65

stored from top of memory downwards. When a program line
is entered on the keyboard it is first written into the
keyboard buffer. The operating system then transfers it
byte by byte as it is entered cnte the screen. The line
however is not entered into memory until a carriage
return is pressed. This causes the operating system to
transfer the program line just entered from the screen
into memory, where it can be executed with a run
corn mand. Each line is stored in a specifie format using
a compressed version of the Basic text. This reduces the
memory requirements of a program and allows longer
programs to be run. The compression of Basic text
involves conversion of the Basic commands into single
byte tokens. The command PRINT instead of being stored
as five ASCII characters is stored in a single byte as
the decimal value 153. When a program is listed the text
compression process is reversed, as far as the user is
concerned the program is stored in the same form as it
was written.

A useful result of text compression is a shorthand
way of writing Basic commands, either in a program or
direct command mode. This relies on the fact that the
routine which converts commands to tokens looks only at
the first two or three characters of a command word.
Other characters in the command word are there for the
users convenience only. Normally if we entered only the
first couple of characters of a command the computer
wou Id respond with a syntax error message. This can be
done though by using a simple method of fooling the
error detection routines. The method used is this, to
enter any Basic reserved word type the first letter of
the word then depress the shift key and type the second
letter. By using just the first two letters there could
be confusion between corn mands which share the first two
letters. For example STOP and STEP, in these cases the
first two letters should he typed followed by the third
with the shift key depressed. The following is a list of
Basic commands and their abbreviated form with the
numerical value of the command token in both decimal and
hexadecimal.

Comnand

----, END • Co Y1 t .
_.....,j'FOR --- --

L-';C lc '. =::~=:-' -__r--JI::XT
DATA
1NPUT" Il
INPUT"·
DIM
READ

66

Abbreviation

En
Fo
Ne
Da
In
INp
Di
Re

Dec ima 1
token

128
129
130
131
132
133
134
135

Hexadecimal
token

80
81
82
83
84
85
86
87

LET Le 136 88
GOTO Go 137 89
RUN Ru 138 8A
IF 1 f 139 8B
RESTORE REs 140 8C
GOSUB GOs 141 8D
RETURN REt 142 8E
REM REM 143 8F
STOP St 144 90
ON On 145 91
WAIT Wa 146 "92
LOAD Lo 147 93
SAVE Sa 148 94
VERIFY Ve 149 95
DEF De 150 96
POKE Po 151 97
PRINTII Pr 152 98
PRIN] ? 153 99
CONT. Co 154 9A
LIST. Li 155 9B
CLR. Cl 156 9C
CMO On 157 9D
SYS Sy 158 9E

--f 0PEN ./J 7 Op 159 9F
~QSEPI CLo 160 AO

GET Ge 161 Al
NEW NEw 162 A2
TAB Ta 163 A3
TO To 164 A4
FN Fn 165 A5
SPC Sp 166 A6
THEN Th 167 A7
NOT No 168 A8
STEP STe 169 A9
+ 170 M

171 AB
* 172 AC
/ 173 AD
AND An 175 AF
OR Or 176 BO
= 178 B2
SGN Sg 180 B4
INT INt 181 B5
ABS Ab 182 B6
USR Us 183 B7
FRE Fr 184 B8
POS POs 185 B9
SQR Sq 186 BA
RND Rn 187 BB
LOG LOg 188 BC
EXP Ex 189 BD
COS COs 190 BE
SIN Si 191 BF
TAN TAn 192 CO

67

ATN At 193 Cl
PEEK Pe 194 C2
LEN Le 195 C3
STR$ STr 196 C4
VAL Va 197 C5
ASC As 198 C6
CHR$ Ch 199 C7
LEFT$ LEf 200 C8
RIGHT$ Ri 201 C9
MID$ Mi 202 CA

The token value given to a Basic command is a
pointer into a table of reserved command words located
between 49298 and 49551. By subtracting 127 from the
token value the number of the word in that table can be
obtained. It should be noted that the technique of using
token to represent words can give the program mer a very
powerful method of generating print statements without
consuming a large amount of memory. This can prove
especially useful in games programs, such as Adventure,
which require a lot of text generation. By constructing
a table of, say, 200 corn mon words each time one of these
words appears in a print statement it is represented by
a number which points to its location in the table.
Obviously sorne sort of output subroutine is required to
conve rt the token back i nto a word but the saving in
memory space can be considerable.

Having converted the Basic command into a single
byte token thereby compressing the Basic text, the line
is stored together with the line number and a link
address at a location just above that of the last line
entered, or if it is the first line at location 1025
upwards. Assumeing that it is the first line of the
program which is being entered, then it will be entered
into the following locations in the following format:

1024 - contents a
1025 - link address low

}
points to starting
location of next line

1026 - link address high
1027 - line number low
1028 - line number high
1029 - start of compressed Basic text.

Number of bytes occupied variable.
End of line flagged by a zero byte.

68

A Basic program is stored as a series of blocks each
of variable length and representing one line in the
program. Each block having a fixed format and aIl blocks
being connected via a linked li st structure. Each line
in a program is stored in memory in the correct position
dictated -by the magnitude of its line number, thus it
will be the line with the lowest number which is stored
at the bottom of memory - location 1025 up. The Une
nu m be r is ste re d in byte 3 and 4 of a block in binary
format, this means that the largest line number that can
be used in a program is 65535, any number above that
will give a syntax error. When a program is run the
current line number being executed is stored in
locations 54 and 55 (in old ROMs 136 and 137). A direct
mode of operation for the processor is indicated when
the contents of these two bytes is zero. The double byte
link address points to the starting byte of the next
line. As each line is executed this address is stored in
loca tions 119 and 120 (in old ROMs 201 and 202), where
i t is accessed when the opera ting system fetches the
next line. The link address of the last line of a
program points not to another link address as in a
normal program line, but to two bytes the contents of
which are zero.

The storage of a program within memory is best
illustrated by the following diagram:

1024

8 Text

Text

69

A knowledge of how a program is stored in memory is
useful enabling us to perform several operations which
the system does not otherwise allow, for example: line
renumbering and overlays. Line numbers can be changed
simply by changing the contents of bytes three and four
of each block (line). The beginning of each line is
located using the link address obtained from the
previous line. The following is a simple renumbering
program, it requires the top and bottom line numbers to
be renumbered, the new starting line number and line
number increment.

60000 INPUT"START AT LINE ";S
60005 INPUT"END AT LINE ";E
60010 INPUT"NEW LINE START";L
60015 INPUT"LINE INCREMENT";I
60020 A=1025:B=256
60030 Q=PEEK(A+2)+B*PEEK(A+3)
60033 IFQ SGOT060030
60037 IFQ EGOT060000
60040 POKEA+2,L-INT(L/B)*B
60045 POKEA+3,INT(L/B)
60050 L=L+I:A=PEEK(A)+B*PEEK(A+1)
60055 IFA=OGOT060000:GOT060030

To use this program first load into the PET then
list on the screen, (this is a simple way of merging the
renumber program cnte the end of the program to be
renumbered). The program to be renumbered is then loaded
and the renumber program merged with it by placing the
cursor over each line on the screen and pressing return.
Having done this the renumber program can be run with
the command RUN 60000. It should be noted however that
this renumber program is very simple and will not
re nu m be r any of the jump addresses stored in the Basic
texte To do this the program must examine the tokens
used in the Basic text area, looking for GOTO or GOSUB
co m mands and renumber their jump addresses. Anyone
intending to add this function to the above program
should note that whereas the line number is stored in a
binary format the jump line is stored in ASCII and is
thus of var iable length.

Another function which can be performed by
manipulating the way a program is stored is creating
program overlays. This means calling a program segment
from tape or disk and running this program whilst
retaining the corn mon subroutines and data used by the
previous program segment. By using overlays the
programmer can create programs which are mu ch larger
th an the maximum core size of the machine, without
having to manually dump out and reload the data. On the
PE T, a program can be loaded using the LOAD corn mand
within a previous program. If the new program is

70

shorter, then part of the previous program not replaced
by the new program is still retained in memory. But the
remaining part of the old program is not accessible
normaly by the new program. One can, providing the new
program is shorter th an the old, use the data generated
by the old program in the new program, none of the data
areas being affected by loading a new program.

To create an overlay; a) ensure that common
subroutines are stored at the end of the old program; b)
ensure that the new overlay program is shorter than the
old program and does not eraseany of the subroutines or
data. Lastly a link ac!<iress must be created between the
end of the new program and the start of the subroutines,
to replace the end of program marker put there by the
operating system. The reason for common subroutines
being stored at the end of the old program is that a new
program is always loaded into memory starting at address
1024. Thus it is always the lowest line numbers which
are replaced. Also the subroutines should have line
numbers much higher th an any line numbers used in the
overlay program. This is because the operating system
requires that lines are stored in strict sequence of
line number. When new lines are entered, the operating
system moves aIl lines with higher line numbers up in
memory, recalculating the link addresses and inserting
the new Une in the correct position.

Assu m ing the above criteria have been met, then to
link two programs together the location of the two link
address bytes of the la st line in the overlay program
must be known. Also the starting address of the
subroutines in the original program must be determined.
The following program can be used to find these
locations and their contents, it can be merged onto the
end of a program using the same method used in the
renumber program.

60000 INPUT "LINE TO BE EXAMINED";L
60010 A=1025:B=256
60020 Q=PEEK(A+2)+B*PEEK(A+3)
60030 IFQ=LTHENGOT060060
60040 A=PEEK(A)+B*PEEK(A+1)
60050 GOT060020
60060 PRINTAiPEEK(A),A+1iPEEK(A+1)
60070 PRINT:GOT060000

By running this program we can look at a particular line
number and determine the location and contents of its
link address. The program gives the line number, the
starting location in memory of that line, plus the
contents of the two link address bytes. Using this
routine with the original program the start address of
the subroutines can be found. The link byte location of
the last line of the overlay can also be found using

71

this program. To connect the two program segments, the
start address of the subroutine segment is loaded into
the link bytes of the overlay, using POKE commands as
follows, X is the start address and A the link byte
location:

POKE A,X INT (X/256)*256: POKE A+I, INT (X/256)

The two programs will now run as one, providing no lines
are entered or deleted, this will require the ad dresses
to be recalculated. The technique of altering the link
addresses can be used to produce some other interesting
ideas, such as making sections of a program unlisted and
unrunnable to anyone who does not have the key, where
the key consists of a lihk address which must be
inserted into the correct location. Thus for example a
com mercial software vendor can add an undetectable line
of code to a program containing a unique number used to
indentify that program and prevent illegal copying.

Data storage.

type are stored
text area at an
locations 42 and

whatever data
Basic_ program
the contents of

The entire area of memory not used for program
storage is available for storage of data. Firstly, it is
worth looking at the simplest form of data storage
using data statements. A data statement is stored as
part of a program in the Basic text area of memory. The
data is accessed by the program using the READ commando
Data stored in data statements though can only be added
to by adding program lines. Another limitation is that
data can only be accessed from data statements in a
seriaI mode. This means that to find one particular item
the whole table of data must be read. The pointer to the
current data statment is stored in locations 62 and 63
(in old ROMs 144 and 145). Manipulation of the contents
of these locations could provide the user with a means
of overcoming the seriaI search limitation.

Data not stored within the program as data
statements, is stored by the program in the area of
memory above the Basic text area, as variables.
Variables can be divided into two groups, simple
variables of the kind used in the following statement;
LET X=47 where X is a simple variable. Secondly array
variables which are defined by a DIM statement and
contain more than one value. The number of values being
determined by the number of elements in the DIM
statement. For both groups of variables there are three
types of data, these are: real or floating point
numbers integer numbers - and character or string
variables, where words are being stored rather than
numbers.

Simple variables of
i m med iatel y above the
address pointed to by

72

43 On old ROMs 124 and 125). The amount of memory used
to store these variables depends on the number of
variables used by a program. Each variable occupies
seven bytes of memory and the next free location in the
simple variable storage area is pointed to by the
contents of locations 44 and 45 (in old ROMs 126 and
127).

The array variables are stored above the simple
variables and thus start from the location pointed to by
44 and 45. The amount of memory used to store ~he array
variables depends on the number of array variables the
number of elements in each and the data type of each
variable. The top of the storage area used for array
variables, which is also the beginning of the unused
storage area of memory, is pointed to by locations 46
and 47 On old ROMs 128 and 129). Since array variables
are stored directly above simple variables, whenever a
new simple variable is encountered in a program the
operating system shifts the entire array variable
storage area up seven bytes in memory, thereby opening
up a space to accomodate the new variable. This dynamic
re-allocation of data storage space is one of the
reasons why a machine code subroutine can not be stored
in unusued memory space, unless placed above the address
stored in the top of memory pointers in locations 52 and
53 (in old ROMs 134 and 135). The re-allocation of
memory space slows down a program since every time a new
variable is encountered processing stops while the data
is moved. Wh en processing speed is important, such as in
real time applications, this rather inconsistent
variation in speed can be a problem. It is overcome by
ini tialising aIl the variables - using dum my constants
if necessary at the beginning of the program.

Single value variables are divided into three
distinct data types, each being stored in a different
format. The only thing aIl three have in common is that
each variable stored requires seven bytes of memory.
Both integer and floating point numbers stored as single
value variables have both the name and the value stored
within the seven bytes allocated to each variable. An
integer variable is distinguished from a floating point
variable by adding 128 to the ASCII value of the
variable name. The formats used are:

INTEGER VARIABLES

1

first second high low
character in var iable order byte of binary

0 0 0name (the ASCII representation of
value + 128) integer value

73

FLOATING POINT VARIABLE
1 .

first second binary binary mantissa in packed
character in variable exponent BCO giving eight digit

name + 129 precision. First bit of first
byte is sign bit.

From this, one can see that there is no saving in memory
usage by using single value integer variables instead of
floating po int variables. When the data being stored
consists of a string of alphanumeric characters then the
variable is stored using· the character format. In this
format the data is not stored within the seven bytes
allocated for variable storage. What is stored is a
pointer to an address in memory where this string of
characters is stored. Character strings are in fact
stored in an area right at the top of memory and
extending downwards towards the area occupied by the
array variables. By using this method string variables
need not be of a fixed length thereby considerably
reducing the amount of memory needed to store them. The
format used for a string variable is:

STRING VARIABLES

first second number low high
character in var iable of order byte of
name, 128 added to characters address where 0 0

ASCII value of second string is stored
character. only.

a

Since the number of characters in the string is stored
as a single byte it is not possible to have a character
string longer th an 255 characters. This should be
considered when adding two string variables together
where both are fairly long. Though the area at the top
of memory is allocated for the storage of strings, not
aIl string variables are stored there. Thus aIl strings
defined within the program are retrieved, when required
fro m the program text area. This is done by having the
variable address pointers point to the 10catioQ in Basic
text rather than the top of memory. What is stored at
the top of memory are calculated string variables. The
area of memory occupied by these strings can be
determined by looking at the contents of locations 48

74

and 49 (in old ROMs 130 and 131) this is the start
address of the string area, and 50 and 51 On old ROMs
132 and 133)which is the end address.

The three data types encountered as simple single
value variables can also be stored as multiple value or
array variables. Whereas simple variables of whatever
data type ail occupy the same amount of memory for each
va ria b le , the m em ory r e qui rem e n t for an arr a y i s
different for each type of data. An array is stored as;
an array header plus a set of elements each rough1y
corresponding to a simple variable. The array· header
contains the array name, the number of dimensions in the
array, the number of elements in each dimension together
with a pointer to the start of the next array. Array
header are the same for ail data types. As with simple
variables the array data type is coded into the array
name. In a floating point array both characters are the
normal ASCII code, in an integer 128 is added to the
ASCII value of both characters, and in a character array
128 is added to the ASCII value of the second character
only. The general format of an array is:

Array Element Element Element ?header /la 111 112
$ Element
) (/IN
?

eV! !
II'H)l'lvJ,)"L i

Here N is used to id~signate! the last element in an array
and corresponds te the value used in the DIM statement
a t the beginning of the program when the array was
initialised. The array header for whatever data type has
the format:

1

first second low high number high low expans-
characters in pointer to first of number of ion
array name, byte of next dimens- elements in the bytes

plus data type array ions in last specified
coding if any array dimension of

the array

1 2 3 5 6 7 8 9

In a one dimensional array the array header occupies
seven bytes,' but if two dimensions are specified then an
extra two bytes are required to specify the number of
elements in that dimension, making the header nine bytes
long. Similarly if there are three dimensions it would
be eleven bytes long. In a two dimensional array set up
by DIM D(A,B) the number of elements in B is stored in

75

bytes 6 and 7 of the header, the number of elements in A
is stored in bytes 8 and 9. The format for each element
in an array is identical since ail elements are of the
same data type, though the format is different for each
data type:

FLOATING POINT ARRAY ELEMENT

binary
exponent

plus 129

,

binary mantissa, first byte bit 7
is used to indicate the sign.

.

INTEGER ARRAY ELEMENT

high low
order byte of binary
integer value

.
CHARACTER ARRAY ELEMENT

number
of

characters
in string

low high
byte of address
where str ing is
stored

negative integer whether in an array or a simple
is stored as a twos complement number, thus no
is used and negative integers can not exceed

NOTE: a
variable
sig n bit
32768.

An annoying limitation of array variables in old ROM
machines is the maximum of 255 elements in an array
(this has been overcome in the new ROM machines). One
fairly simple way of overcoming this problem is to
construct ones own arrays using the PEEK and POKE
commands, then the only restriction is the amount of
free memory available in the system. Since data is to be
stored without using the Basic arrays or variables an
area of memory must be set aside exclusively for the
storage of the new arrays. The way to do this is to
lower the top of memory pointers until it is just above
the maximum area required for program storage, strings
and variables. This can be calculated by using the FRE
command to determine the program size and adding to it

76

the amount of memory required to store variables and
strings. The space required for storage of simple
variables is obtained by counting the number of
variables and multiplying by seven. If array variables
are used then the memory requirements depend on the data
type and number of dimensions, but can be calculated as
the header, plus the number of elements, times the
number of bytes in each element. The amount of memory
required for string storage is obtained by counting the
max i mu m nu m be r of characte rs which will be stored as
strings,(only calculated or input strings need be
counted). Having obtained a figure for the maximum
amount of memory required to run the program this can be
subtracted from the total user memory area to give the
amount of free memory.

To use this free memory area, one must first
calculate the number of bytes required to store each
variable in the proposed array. Great care must be taken
with this if the maximum amount of data is to be stored
in a given area of memory. The method used to store the
data will also affect the speed with which data can be
accessed from the array. If linear search techniques are
used this could slow down a program considerably. If the
array consists of a table of character strings then one
of two methods could be used. The choice depends on
whether access speed is more important than amount of
data stored per K byte.

The first method is to store character strings of
any length, with a maximum size of say 255 bytes, the
first byte of each string indicating the length of that
string. Searching through a file stored using this
method requires a slow linear search, since the contents
of the first byte of each string is used to point to the
start of the next string. The second method is to
allocate a fixed amount of memory space to each string,
the number of characters depending on what is being
stored, however aIl elements in the array must have the
same space allocated to them. The search procedure here
is very easy since if we want the contents of element 14
it is located at an address which can be calculated by
adding the array starting address to 14 times the number
of bytes in each element. The only problem with this
method is that character strings shorter th an the
maximum will leave unused spaces in memory and if longer
then it is impossible to store the extra charaters.

Elements in a numerical array can be stored as
either binary numbers or as ASCII values the method used
depending on the maximum size of the numbers stored.
Whichever method is used it is preferable to have aIl
elements in the array the same size. If numbers are
stored as binary then a three byte element can be used
to store numbers in the range +65535 to -65535 the first
byte being used to store the signe To find element
number N in an array one simply calculates its starting

77

posi tion by adding the array starting address to N times
the number of bytes in each element. Using this method
one can create a thousand element array for numeric
variables in the range +-65536 in 3K of memory or if ail
values are positive then it could be stored in just 2K.

Programs involving extensive string manipulation can
suffer from seemingly inexplicable and often lengthly
pauses in their operation. This is caused by an
operating system function known as garbage collection.
Every time a character string is input or calculated it
is stored a t the bottom of the character string storage
area. If A$ is input at the beginning of the program,
and then at the end another AS string is input, the
second input is not stored on top of the first but at
the end of the string storage space, leaving the first
string still stored in memory. Obviously if the program
involves a fair amount of string manipulation the entire
free memory space will become full of string storage, a
large proportion of which will be "garbage" i.e. strings
no longer required. To avoid running out of memory the
system must perform at this point a "garbage collection"
routine. Garbage collection reclaims aIl the unused
memory and -compacts the string storage at the top of
memory. This subroutine which is located at D400 to
D496(D404 to D5C3 in old ROMs) is lengthy and time
consuming especially in large programs and the main
reason why such programs execute at a much slower rate
th an small programs. One can force garbage collection to
take place by performing the command FRE (0), which
calculates the amount of free memory space, this is
use fuI if you don't want a real time program interrupted
by the garbage collection process.

When the command RUN is typed on the screen followed
by a carriage return, the operating system interprets
this as a direct commando It then searches through the
1i s t 0 f r e s e r v e d w 0 r d s t 0 fin d the a d d r es S 0 f th e
subroutine to perform the commando The RUN subroutine is
located at address C785 (C775 in old ROMs)its first
function is to set ail the pointers to the start of the
program, abort aIl active 1/0 channels and restore aB
subroutine and data pointers. Having do ne this, the
first line of the Basic program is fetched using a
subroutine located in page zero of memory. The corn mand
is executed, and the next line fetched, with the line
fetch subroutine checking for spaces and more than one
corn mand on a line.

The line fetch subroutine in page zero is of great
interest, since it opens up the possibility of adding
additional commands to Basic. For this reason it is
worth looking at the subroutine closely, it is loaded
into memory from locations 112 to 117 (in old ROMs 194
to 199) during system initialisation. The reason why
this subroutine is relocated from ROM to RAM is that it
requires a variable load address. This points to the

78

current byte of Basic program text being accessed. The
variable load address or pointer to source text is
stored in locations 119 and 120 (in old ROMs 201 and
202). The first function of the subroutine is to
increment this pointer to point to the next location,
which is then read and stored in the processors
accumulator. The remainder of the subroutine checks to
see if the character obtained is either a colon,
indicating the end of a statement, or a space, if a
space then the next character is obtained. The
subroutine is as follows, new ROM version:

0070 CHAR E6 77 INC Z $77 :increment character
pointer low byte

DO 02 BNE $02 :test if low byte=255
if true then

E6 78 INC Z $78 :increment character
pointer high byte

GET AD ** ** LDA **** :get character from
address in 119-120

C9 3A CMP IMM $3A :is character a colon
BO OA BCS END :if so then End
C9 20 CMP IMM $20 :is character a space
FO EF BEQ CHAR :if so goto CHAR
38 SEC
E9 30 SBC $30
38 SEC
E9 DO SBC $DO

END 60 RTS :return to main program

<the asterisks are used to show that the contents of
bytes 201 and 202 are variable).

By inserting extra code into this subroutine,(this
is do ne by replacing the first six' bytes with a couple
of jumps to user written code) each Basic command can be
intercepted before it is performed. The tirst subroutine
would be the main block of new code, performing whatever
function one wants to add to the PET commands. The
second subroutine consists of the six bytes replaced by
the two J5R instructions. Thus if the new program starts
a t location 7AOO hex than the following six bytes would
be inserted into the CHARGOT area:

GET AD ** ** LDA ****

0070 CHARGOT 20 00 1A
20 00 1F

JSR
JSR

1AOO
1FOO

:main subroutine
:update pointer
subroutine

1FOO POINTER E6 77 INC Z $77 :increment 119

79

END

DO 02
E6 78
60

BNE $02
INC Z $78
RTS

:if low byte =255 then
:increment 120
:return to main program

An easy way of detecting new com mands is to precede
them by a particular character, ego an asterisk. Then
use a small subroutine to detect if the first character
in a command is an asterisk. If so, then the command is
executed by the new software rather then the existing
interpreter. A vector plotting command could be added,
to plot line vectors on the screen using double density
graphies (see the program for this in the section on the
video display). A com mand like *PLOT X l, YI ,X2, Y2 could
be used where X and Y are co-ordinate values for the end
points of the line. The range of com mands is very large,
including functions like the example just given, also
co m mands governi ng the operatio~ of peripherals such as
A/O converters, or disk units. The ability to intercept
each com mand before it is executed need not be applied
to adding extra commands to Basic. It can also be used
to monitor the execution of a program, allowing one to
construct a powerful diagnostic aid known as a trace
program, which slows down the running of a Basic program
and displays each line on the screen as it is executed.
The following programs perform this function, since they
are fairly lengthy machine code programs 1 will not give
the full source text, only the loader written in Basic.

The first commands set the top of memory pointers so
tha t trace will not be erased by any Basic variables or
strings since it resides above the top of memory
pointer. The trace program should be loaded first before
entering or loading the program which is to be tested
using trace. Once trace and the program to be examined
are loaded, then trace can be activated. In the first
program which is for old ROM machines trace is enabled
by the command--- SYS (7876), this inserts the new code
into the CHARGOT subroutine as explained above. The
second program is a version of trace for new ROM
machines. In this version to allow machines of different
sizes to run trace the SYS locations are calculated by
the Basic loader and should be noted prior to running.
Having activated trace the program to be examined can by
run by typing RUN in the normal manner, the program will
then be executed. Each line being executed is displayed
in two lines of reverse field background at the top of
the display at the rate of about one line every second.
The rate of program execution can be speeded up in the
old ROM version by pressing the shift key, the new ROM
version requires a speed flag to be reset using POKE.
Program execution can be stopped in the normal manner by
pressing the stop key.

It should be noted that when trace has been
initialised it affects the operation of the cassettes

80

and the 1/0 thereby rendering it impossible to either
load or save a program. To overcome this problem a
dis able subroutine has been built lnto trace. This
subroutine returns the CHARGOT subroutine area to its
normal state and can be called in the old ROM version by
a --- SYS(786l).

1 REM TRACE FOR OLD ROM MACHINES
10 FORQ=7853T08191
20 READA
30 POKEQ,A
40 NEXTQ
50 END
100 DATA 162, 5, 189, 181,224, 149, 194,202, 16,248, 169
110 DATA 239, 133, 210, 96, 169, 172, 133, 134, 169, 30
120 DATA 133, 135, 169, 255, 133, 124, 160, 0, 162, 3
130 DATA 134,125,162,3,32,239,30,208,249,202
140 DATA 208, 248, 32, 239, 30, 32, 239, 30, 162, 5
150 DATA 189,249,31, 149, 194,202, 16,248, 169,242
160 DATA 133, 210, 76, 106, 197, 230, 124, 208, 2, 230
170 DATA 125, 177, 124, 96, 230, 201, 208, 2, 230, 202
180 DATA 96, 32, 197, 0, 8, 72, 133, 79, 138, 72
190 DATA 152,72, 166, 137, 165, 136, 197,77,208,4
200 DATA 228,78,240, 107, 133,77, 133,82, 134,78
210 DATA 134,83, 173,4,2,208,14,169,3,133
220 DATA 74, 202, 208, 253, 136, 208, 250, 198, 74, 16
230 DATA 246, 32, 201, 31, 169, 160, 160, 80, 153, 255
240 DATA 127, 136, 208, 250, 132, 76, 132, 84, 132, 85
250 DATA 132, 86, 120, 248, 160, 15, 6, 82, 38, 83
260 DATA 162, 253, 181,87, 117,87, 149,87,232,48
270 DATA 247, 136, 16,238,216,88, 162,2, 169,48
280 DATA 133,89, 134,88, 181,84,72,74,74,74
290 DATA 74, 32, 211, 31, 104, 41, 15, 32, 211, 31
300 DATA 166, 88, 202, 16, 233, 32, 217, 31, 32, 217
310 DATA 31, 165, 75, 197, 201, 240, 55, 165, 79, 208
320 DATA 4, 133, 77, 240, 47, 16, 42, 201, 255, 208
330 DATA 8, 169,94, 32, 225, 31, 24, 144,33,41
340 DATA 127, 170, 160,0, 185, 145, 192,48,3,200
350 DATA 208, 248, 200, 202, 16, 244, 185, 145, 192, 48
360 DATA 6,32,223,31,200,208,245,41, 127,32
370 DATA 223,31, 165,201, 133,75, 104, 168, 104, 170
380 DATA 104, 40, 96, 168, 173, 64, 232, 41, 32, 208
390 DATA 249, 152, 96, 9, 48, 197, 89, 208, 4, 169
400 DATA 32, 208, 2,. 198, 89, 41, 63, 9, 128, 132
410 DATA 81, 32, 201, 31, 164, 76, 153, 0, 128, 192
420 DATA 79,208,2, 160,7,200, 132,76, 164,81
430 DATA 96, 76, 255, 30, 32, 248, 30, 36, 239, 255

READY.

81

SYS(";S1+17")"
SYS(";S1+56")"
SYS(";S1+2")"
POKE";S1+125-D",X"

1 REM TRACE FOR NEW ROM MACHINES
10 E=52
15 D=2
100 DATA-342,162,5,189,249,224,149,112,202,16,248
110 DATA169,239,133,128,96,173,-342,133,52,173,-341
120 DATA133,53,169,255,133,42,160,0,162,3,134,43
130 DATA162,3,32,-271,208,249,202,208,248,32,-271
140 DATA32,-271,76,121,197,162,5,189,-6,149,112,202
150 DATA16,248,169,242,133,128,96,230,42,208,2,230
160 DATA43,177,42,96,230,119,208,2,230,120,96,32
170 DATA115,0,8,72,133,195,138,72,152,72,166,55,165
180 DATA54,197,253,208,4,228,254,240,106,133,253
190 DATA133,35,134,254,134,36,165,152,208,14,169
200 DATA3,133,107,202,208,253,136,208,250,198,107
210 DATA208,246,32,-54,169,160,160,80,153,255,127
220 DATA136,208,250,132,182,132,37,132,38,132,39
230 DATA120,248,160,15,6,35,38,36,162,253,181,40
240 DATA117,40,149,40,232,48,247,136,16,238,216
250 DATA88,162,2,169,48,133,103,134,102,181,37,72
260 DATA74,74,74,74,32,-44,104,41,15,3<,-44,166
270 DATA102,202,16,233,32,-38,32,-38,165,184,197
280 DATA119,240,55,165,195,208,4,133,253,240,47
290 DATA16,42,201,255,208,8,169,105,32,-30,24,114
300 DATA33,41,127,170,160,0,185,145,192,48,3,200
310 DATA208,248,200,202,16,244,185,145,192,48,6
320 DATA32,-32,200,208,245,41,127,32,-32,165,119
330 DATA133,184,104,168,104,170,104,40,96,168,173
340 DATA64,232,41,32,208,249,152,96,9,48,197,103
350 DATA208,4,169,32,208,2,198,103,41,63,9,128
360 DATA132,106,32,-54,164,182,153,0,128,192,195
370 DATA208,2,160,7,200,132,182,164,106,96,76
380 DATA-255,32,-262
400 S2=PEEK(E)+PEEK(E+1)*256:S1=S2+D-344
410 FORJ=S1TOS2-1
420 READX:IFX>OORX=OTHENGOT0450
430 Y=X+S2:X=INT(Y/256):Z=Y-X*256
440 POKEJ,Z:J=J+1
450 POKEJ,X
460 NEXTJ
500 PRINT"INITIALISE WITH
510 PRINT"ENABLE WITH
520 PRINT"DISABLE WITH
530 PRINT"CHANGE SPEED WITH
600 END

READY.

82

THE USER PORT 4

An understanding of the functioning and programming
of the user port and the 6522 VIA is vital for anyone
wishing to use the PET to control or communicate with an
external device. The user port is the central edge
connector coming from the main PET logic board at the
rear of the machine. It has 24 edge connections 12 on
the top and 12 on the bottom, with a .156 inch spacing
between the centre of each contact. We can divide the 24
contacts into two distinct groups, the 12 top contacts
and 12 bottom contacts. The top 12 connections are
primarily intended for use when servicing the PET, the
bottom 12 lines make up the parallel user port. A brief
description of each contact is shown in Figure 4.1, the
top connections are labeled 1 - 12 and the bottom A - N.

Connections 1 - 12 and their uses.

The top connections are of little use to the average
user and in general should be treated with caution.
However, on the old 8K static RAM machines they were
desig ned as part 0 f the inte rnal di agnost ic s. For this
pu rpose a special connecto r is used to jumper sorne of
the top contacts to the bottom contacts. With this
connector in place the PET when powered up instead of
jumping to the BASIC routines jumps to the diagnostic
routines contained in the PETs ROM. The diagnostic
routine checks the RAM, parity of the ROM, keyboard
scanning, TV display (making sure all bits turn on and
off a t ail locations on the screen), Read/Write of both
cassette ports, user and IEEE port. If all functions of
the PET main logic board are working correctly on
completion of the· test the red LED on the board will
turn on. In fact two diagnostic connectors are required
to do this, one on the user port, the other on the
keyboard connector in place of the keyboard cable. If
you wish to run the diagnostics you will have to make up
your own connectors with the following connections wired
together:

83

1

2

3

4

5

6

7

9

la

Ground

T.V.video

IEEE-SRQ

IEEE-EOI

Diagnostic
Sense

Tape 112
READ

Tape Write

Tape 111
READ

T.V.
Vertical

T.V.
Horizontal

Digital ground

Video output used for external display
used in diagnostic routine for verifying
the video circuit to the display board.

Direct connection to the SRQ signal on
the IEEE-488 port. It is used in verifying
operation of the SRQ in the diagnostic
routine.

Direct connection to the EOI signal on the
IEEE-488 port. It is used in verifying
operation of the EOI in the dignostic
routine.

When this pin is held low during power up
the PET software jumps to the diagnostic
routine, rather than the BASIC routine

Used with the diagnostic routine to
ver ify cassette tape 112 read function.

Used with the diagnostic routine to
verify operation of the WRITE function of
both cassette ports.

Used with the diagnostic routine to
ver ify cassette tape 111 function.

T.V. vertical sync signal verified in
diagnostic. May be used for external
T.V. display.

T.V. horizontal signal vertified in
diagnostic may be used for T.V. display.

11,12 GND Digital ground

A

B

C
D
E
F
H
J
K
L

M

N

GND

CAl

PAO
PAl
PA2
PA3
PA4
PA5
PA6
PA7

CB2

GND

Digital ground

Standard edge sensitive input of 6522VIA.

Input/output lines to peripherals,
and can be programed independently
of each other for input or output.

Special 1/0 pin of VIA.

Digital ground

84 Fig 4.1 User Port Connections

User port connector
10-L

Keyboard connector
6-14, 7-15, 8-16,

2-B, 3-C, 4-0, 5-11, 6-7-8, 9-K,

1-9-17, 2-10-18, 3-11, 4-12, 5-13,
connector key in position 19.

When power is applied to the PET the screen will
initially be cleared and the red LED will be off. The
diagnostic will begin by testing the screen while doing
this a small white square will sweep across aIl the
locations on the screen. On the cursor reaching the
bottom right of the screen the display will be fiIled
with a full character test pattern. This should be
checked visuaIly to make sure aIl the characters are
present and no bits are flickering on the screen. The
red LED should be lit indicating that the main logic
board has passed the diagnostic test. If a fault is
present it can be tracked down with a set of diagnostic
programs loaded into the PET from tape, of course no
diagnostic routines will work if the processor is not
functioning or there is no power. AlI new machines
require diagnostic programs to be loaded from either
tape or disk.

Although primarily intended for use by the
diagnostics the top connections of the user port can be
used for other purposes. One of the most useful, with
particular applications in schools, is the ability to
use three of these lines to drive an external large
screen TV monitor. These three lines provide the user
with the vertical sync signal on output 9, the
horizontal drive on 10 and the video output on line 2.
To drive a standard TV monitor (not a domestic TV set)
these signaIs must be combined to give a single
composite video output which can be connected directly
to the monitor input. The circuit to do this is shown in
Figure 4.2, it will require a 5 volt power supply which
can come from a battery or from pin 2 on the 2nd.
cassette connector. You may encounter problems with the
horizontal hold but this can usually be cured by
adjusting the value of RI. Other problems may occur as a
resul t of using very cheap monitors or converted TV
sets. If you intend building this circuit then the
actual layout of components is not critical and it is
most easily constructed on a piece of Veroboard.

The only other lines of interest on the top surface
of the user port connector, are lines 6, 7 and 8, these
are aIl associated with the operation of the two
cassettes. Line 6 is the read input from cassette 112 and
line 8 is the read input from cassette Ill, line 7 is the
corn mon write output to both cassette decks(dynamic
machines only). These lines are of interest to the user
for several reasons, line 7 could be used as an extra
1/0 line. The most interesting application lies in using
thes,e lines to aIlow two or more PETs to communicate

85

HORIZONTAL

10 0 - - - - - -. II----..-~r----- 4011

VIDEO OUTPUT CIRCUIT

VIDEO

2 I-----------

7

12

4066

/1

VERTICAL

9O--------------~L-

OUTPUT WAVE FORM

100,4

COMPOSITE VIDEO

OUTPUT

VIDEO
~

DOTS____

2v

HORIZONTAL SYNC

?LSES~

~

VERTICAL

INTERVAL

-SV

Ov

86
Fig 4.2 Video output circuit

with each other. This would allow one master PET to
control a number of slave machines a situation which
would find great use in education. "corn municate" meaning
that data and programs can be transferred from one
machine to another. This is done by connecting the write
ou tput of one machine to the read input of another, and
vice versa to give bi-directional communication. At the
time of writing several people are experimenting with
this ide a, though the results look promising no working
system has yet been constructed.

The paraI leI user port, connection A N.

The bottom 12 connections comprise the user port
proper, and are of interest to everyone wishing to use
the PET to control external devices. As seen from Figure
4.1 these 12 lines consist of two ground iines, two
handshaking lines and eight input/output lines. Since
the 1/0 lines are under full program control they can be
configured as any combination of inputs or outputs. This
means that the user port should not be considered as an
eight line data bus like the IEEE, but rather as a set
of eight independent 1/0 lines. Examples of the kind of
devices which could be connected to the user port are:
lamps switches and other on/off sensing devices
motors anolog to digital or digital to analog
converters. Sorne of these device-s could be controlled
with programs written in Basic, but the majority would
require the control program to be written in machine
code since Basic is not fast enough for most
applications. To write programs either in Basic or
machine code for controlling devices through the user
port the programmer must have a thorough understanding
of the functioning of the 1/0 chip from which the user
port lines originate.

The 6522 Versatile Interface Adapter

The lines on the bottom side of the user port
originate from a 6522 VIA or Versatile Interface Adapter
chip, located in system memory between addresses 59456
and 59471. A block diagram of the 6522 is shown in
Figure 4.3, it is a very complex chip with sixteen
different addressable registers. Each bit within these
registers has a specifie function, either as an input,
an output or to control the operation of the 6522. A
memory map of the addressable registers is shown in
Figure 4.4, the registers are of six basic types; 1/0,
data direction, peripheral control, shift register,
timers and timer control registers.

The diagram in Figure 4.3 can be divided into two,
on the left are the connections to the processor, the
processor interface. On the right the outputs of the
6522, or the peripheral interface. The main components

87

00
00

PORT A

B2

A2

PORT B

B1

A1

IRa

PORT B

REGISTERS

TlMER 2

,
INTERRUPT

CONTROL

FLAGS INPUT
LATCH

DATA
ENA BLE

~
OUTPUT BUFFERS

:>

< BUS

PA

BUFFERS
DATA DIR

PORT A

REGISTERS

PERIPHERAL

AUXILIARY
C

PORT A

L...-..... C

FUNCTION
,....J

PORT B
CONTROL

HANDSHAKE

CONTROL
1

LATCH
1

HIGH 1 LOW

··
COUNTER HIGH :

C

LOW SHIFT REG

CHIP · l'
C

ACCESS
TlMER 1

CONTROL
INPUT
LATCH

1LATCH LOW L::: OUTPUT BUFFERS

!

~

PB

·)1 COUNTER HIGH 1 LOW
DATA DIR

1

1RS

RS 0

RS

RS

CS 2

CS!

CLK

R/W

DATA

BUS

Fig 4.3 6522 Block Diagram

of the processor interface are the eight bi-directional
data lines. These are connected directly to the
processor data bus and are used to transfer data between
the VIA and the processor. As with any memory, the
processor treats the 6522 as a sixteen byte block of
memory, the direction of data transfer is controlled by
the R/W line, the exact timing of a transfer being
controlled by the 02 clock line. The individual
registers are addressed by the register select lines
connected to the bottom address lines AO - A3. The exact
location of the 6522 within memory space is determined
by decoding sorne of the address lines and connecting
these to the chip select inputs. The registers of the
6522 will only be accessed if chip select CSI is high
and CS2 low. CS 1 is connected via an AND gate to address
li nes Il and 6, and CS2 to memory block select line E.
As with aIl the 1/0 chips the 6522 can generate a
processor interrupt by pulling the IRQ line low. This
occurs whenever an internaI interrupt flag is set as a
result of an input on one of the peripheral control
lines.

The peripheral interface consists of two eight line
1/0 ports, port A and port B, together with their
associated control lines. The eight lines of port A can
be individually programmed to act as either inputs or
outputs under control of the data direction register.
Input data is latched onto an internaI register under
con t roI of the CAl line and the polarity of any outputs
is controlled by the contents of the output register.
The two port A control lines CA 1 and CA2 act either as
interrupt inputs or handshake outputs. In the interrupt
mode each line controls an internaI interrupt flag, CAl
also controls the latching of input data on port A.

The eight 1/0 lines of port A plus control line CA 1
go to the user port. Control line CA2 is connected to
the character generator and controls the lower
case /graphics mode. Port B is identical to port A except
that the pola rit y of an output on line PB7 can be
controlled by the interval timers and the second
internaI counter can be programmed to count pulses input
on line PB6. The peripheral B control lines CB 1 and CB2
perform the same functions as CAl and CA2 but in
addition can act as a seriaI port under control of the
shift register. The lines of port B perform a wide range
of system and 1/0 functions thus:

PBO - NDAC input from IEEE port
PBl - NRFD output to IEEE port
PB2 - ATN output to IEEE port
PB3 - cassette write output
PB4 - cassette 112 motor control
PB5 - Video on control
PB6 - NRFD input from IEEE port
PB7 - DAV input from IEEE port

89

Control
CB2 is

line
the

C Blis the read input for cassette 2 while
second control line on the user port.

Using the Parallel 1/0 ports•.

Three registers are directly associated with each of
the eight line peripheral 1/0 ports, they are the data
direction register, input register and output register.
The data direction registers DORA, DDRB, are used to
specify whether a particular line acts as an input or
output. Each bit in the DDR corresponds to a line in the
1/0 port, if the contents of that bit is a 0 then the
corresponding line is an input, if the contents is a 1
then it will be an output. If DORA was loaded with
00001111 by a POK E 59459,15 then lines PAO - PA3 on the
user port would be configured as outputs and PA4 - PA7
as inputs. Each line on the port is connected to a
corresponding bit in both the output and input
registers, each being enabled or disabled by the output
of the data direction register. If an 1/0 1ine is
program med as an output by the contents of the DDR then
the voltage on that 1ine is controlled by the
corresponding bit in the output register, 0 causes the
line to go high, a 1 low. Any data written into output
register bits corresponding to lines programmed as
inputs will have no effect on those lines. As an example
four lines PAO - PA3 of the user port are configured as
outputs with POKE 59459,15 then:-

or

or

POKE 59471,255

POKE 59471,0

POKE 59471,3

PAO-3 go high, PA4-7 are unaffected

PAO-3 go low, PA4-7 are unaffected

PAO-l are high, PA2-3 are low,
PA4-7 are unaffected

ln this manner any one or more Unes on either of
the peripheral ports can be configured as an output by a
progràm. Also under program control the voltage on
output lines can be set either high or 10w. This allows
the program mer colossal flexibility in the use of 1/0,
in one instant a line can be configured as an output in
the next the same line can be an input.

If a line is configured as an input by the data
direction register then the corresponding bit in the
input register will reflect the voltage level on that
line. Reading the input port will transfer the contents
of the input register onto the processor data bus. Since
data is being input to the VIA asynchronously an input
may be changing as the processor is reading it, the
resulting input being erroneous. Synchronisation is
est ab 1i s h e d b Y us in g han d sha k i ng 1in es. C A,l a c t s no t
only as an interrupt mput but at the same time latches

90

DAV NRFD Retrace Cassette Cassette ATN NFRD NDAC
in in in 112 motor output out out in PB

DATA DIRECTION REGISTER B (FOR E840)

DATA DIRECTION REGISTER A (FOR E84F)

TIMER 1 LOW

WRITE HIGH

TIMER 1 LOW

LATCH HIGH

TIMER 2 LOW

HIGH

SHIFT REGISTER

Tl control One shot T2 control
Shift register control

PB PA Latch
PB7 out Free run PB6 sense contro

CB2 (PUP) control in/out CBl in CA2 (graphics/lower case) CAl in
Cass ln in/out polarity

IRQ Tl T2 CB1 cassette 112 SR CAl CA2
Status Interruot Interruot Interrllot Interrunt Intprruht Intprrlll')t
Enable Tl int T2 int CB1 int CB2 int SR int CAl int CA2 int

clear /set enab1e enable enable enable enable enable enable

PARALLEL USE R PORT 1/0 (port A)

E840

E841

E842

E843

E844

E845

E846

E847

E848

E849

E84A

E84B

E84C

E84D

E84E

E84F

\,!).... 7 6 5 4

VIA (6522)

3 2 1 o

59456

59457

59458

59459

59460

59461

59462

59463

59464

59465

59466

59467

59468

59469

59470

59471

any input data into the input register. The peripheral
ports can be in either a latched or unlatched mode,
depending on the state of the latch enable flags in the
auxiliary control register. In the latched mode, the
enable flag is O. Data present on the peripheral port
input lines will be latched into the input register when
the CA 1 0 r CB 1 interrupt f1ag is set by an active
transition from high to low on the CA 1 or CB 1 line. As
long as the CA 1 or CB 1 interrupt flag is set, data on
the per iphera1 input lines can change without· affecting
data in the latched input register. Data can also be
latched into the register by setting the CA 1 or CB l
interrupt flag from a program, similarly program
instructions can be used to clear the interrupt flag.

When using a handshaking line to control the
latching of data into the input register from an
external device, it is important to make sure that data
on the input lines has stabilised prior to an active
transition on the hankshake line. The input of data on
ports A and B is identical except that whereas in port B
the state of the output lines is always reflected into
the corresponding bit of the input register, in port A
this may not always be the case.

Inputting data from the user port is considerably
more complex than outputting, since it can be do ne in
two ways. Firstly by reading the input port, secondly by
an interrupt service routine. The method employed
depends primarily on the frequency that the input will
be read by the program, also whether the programmer can
allow the processor to wait for an input. If aIl the
program requires is the current state of one or more
input lines ·where the exact timing of that input is not
important, then simply reading the input will suffice.
If however a series of inputs occurring at a particu1ar
time are to be recorded, then the computer must stop and
repeated1y test for an input. When one occurs it is
sto red in the rel a ven t loca t ion, .the processor then
returns to look for another input. Two methods can be
employed to do this, if processor time is not important
then orie simply repeatedly scans the input. On each scan
the contents of bit 1 of the interrupt flag register is
tested to see if any data has been latched into the
input register by a transition on CA 1. If it has then
the input register is read, otherwise the processor
repeats the test loop waiting until an input occurs.
Such a program could be written in either Basic or
machine code the choice depending on the frequency of
the inputs. In Basic the maximum frequency is about
40Hz, in machine code 50KHz. It is often not practical
to make the processor wai t for an input, to overcome
this the input scanning routine can be made part of the
interrupt sequence occuring 60 times a second in the
PET. Such a machine code program incorporated in the
interrupt software will se arch for an input every

92

independent of any program or use to
is being put (with the exception of
programs or data, and communication

sixtyth of a second
which the machine
Load i ng and Sa ving
on the IEEE port).

The simplest form of input is to read the contents
of the inpu t register whenever the contents are required
by the program. It may be necessary at a particular
point in a program to know if a switch connected to one
of the input lines is 'on' or 'off'. Where 'on' means
that the line is at a high logic level (+5 volts) and
'off' is a low level (0 volts). Since the state of the
switch changes infrequently there is no need to latch
the data on the input line into the input register with
the aid of handshaking line CA 1. A program to test the
sta te of a switch connected to line 7 of the input port
could be like this:

100 POKE 59459,127
105 REM SET DDRA: PA7 IS AN INPUT, REST OUTPUTS
110 A=999
120 K=PEEK(59471): REM READ INPUT REGISTER
130 C=128 AND K:REM MASK OFF BITS 0 TO 6
140 IF A=C THEN 160
145 REM TEST FOR STABILITY OF INPUT DATA BY LOOKING
146 REM AT THE INPUT TWICE AND CHECKING FOR A CHANGE
150 A=C:GOT0120
160 IFC=128 THEN PRINT "SWITCH ON":GOT0180
165 REM PRINT RESULT
170 PRINT"SWITCH OFF"
180 END

Note that because the values of bits 0 to 6 of the input
register are unknown these must be masked off by ANDing
the input with binary 10000000 - decimal 128. If the
result of this logical operation is 128 then bit 7 of
the input register is set and thereIore the switch is
on, if not then by default the switch is off. The reason
the input is read twice is to make sure that the state
of the input was not changing at the same instant it was
being read. Rather than just reading the current state
of an input the programmer may want the computer to wait
until a specifie input occured like a switch being
turned on. This could be done in several ways ail of
which involve the processor repeatedly reading the input
register and testing for the required input. Since the
processor is waiting for an input there is no need to
la tch the inpu t into the input register with a pulse on
the CA 1 line, unless the input is of very short duration
and likely to be missed. If as in the last example a
switch is connected to line 7 of the user port which is
defined by the data direction register as an input then
either one of the following two lines in Basic will
cause the computer to wait for an input.

93

110 IF (PEEK (59471) AND 128) THEN 110
or

100 WAIT 59471,128

In the first example the switch is normally open and the
voltage on the input line floats to a high level. This
line of program causes the processor to haIt until the
switch is closed and the input line connected to ground.
In the second program line the reverse is true, the
switch is normally closed and the input connected to
ground. This line causes the processo.r to wait until the
switch is opened. Both lines of program will scan the
input port looking for the correct input on one or more
lines about a hundred times a second. If the data
expected by the program on the input lines is present
for less th an one fiftieth of a second the inputs must
either be latched or the scanning program written in
machi ne code. The WAIT statement should be used with
care since the processor will wait until the contents of
a specified memory location contains a particular value.
One cannot break out of the Wait statement by pressing
the Stop key on the keyboard, any mistakes in coding or
failure to input the right value will cause the machine
to crash.

The methods of inputting data looked at so far would
be used with sensor devices connected to the computer.
In these applications it is the state of the line, i.e.
either logic high or logic low at a particular time
which is of interest, rather than the changing of the
state of that line with respect to time. Sampling the
input data at regular intervals can be done by using a
timed program loop to repeatedly read the input register
and store each input in a table. As an example: an eight
bit ana log to digital converter connected to the user
port. A record of the voltage is to be kept sampled once
every second with a maximum of 100 samples. Each sample
is stored in a dimensioned array, the timing of each
sampling is controlled by using the jiffy clock
(variable TI) on the PET. .

10 DIMA(100)
100 FORQ=1T0100
110 T=TI
120 IFTI<T+60THEN120
130 K=PEEK(59471)
140 A(Q)=K
150 NEXTQ

A large number of data inputs from external devices
fall into this catagory of sampling at regular time
intervals. Intervals in Basic being as small as 1/30
second and in machine code 1/25000 of a second. In some
cases instead of sampling the input register at regular

94

intervals one wants to read and store every data input.
This requires that data on the input lines is latched
into the input registers by a pulse on the CA 1 line.
Every time data is latched in by a pulse on this line,
the computer reads and stores that data. As an example,
an ASCII encoded keyboard is connected to the user port,
a key could be pressed at any time, but since the timing
and input character is unknown it is impossible to use a
programmed wait. It is also unlikely that the data will
be present on the input lines for very long and the
duration could be variable. If the duration is short a
scanning program may miss the data, if the duration is
long then the same data will be recorded more than once.
The methods looked at so far are obviously unsuitable
for this purpose. Each data input is accompanied by a
pulse on the CA 1 line to latch the data into the input
register. Every time there is an active transition on
this line bit 1 in the interrupt flag register is set,
one can test for an input by testing if that flag is
set. The interrupt flag register is located at address
59469 decimal and the setting of this flag can be
detected by one of the following two lines of program
causing the processor to wait for the flag to be set;

100 IF PEEK(59469) AND 2 THEN 110 : GOTOI00
or

100 WAIT 59469,2

The CA 1 flag is set by an active transition on the CA 1
line, this can be either a negative or positive
transition depending on the contents of bit 0 of the
peripheral control register. If set to 0 then a negative
transition sets the flag,· a negative transition is one
where the voltage on the CA 1 line falls from +5 volts to
ground. A positive transition will set the flag if bit 0
of the PC R is set to 1. Which ~ransition is chosen
depends on the external circuitry and can by set be one
of the following two program lines:

100 POKE 59468,PEEK(59468) AND 254
sets bit 0 of PCR to 0 for negative transition.

100 POKE 59468,PEEK(59468) OR 1
sets bit 0 of PCR to 1 for positive transition.

When the correct transition occurs on the CAl line, bit
1 of the interrupt flag register is set, and will remain
set until Data register A with handshake control is read
or written to. This register located at address 59457 is
used instead of the input register at 59471 whenever
inputs are latched in under control of line CA 1. Whether
a transition on CA 1 causes data on the input lines to be
latched or not depends on whether bit 0 of the Auxiliary
control register is set. If the contents of bit 0 of the

95

ACR is a zero then a transition on CAl will not cause
data on the input lines to be 1atched into the input
register. If the contents of bit a of the ACR is 1 then
data will be 1atched thus;

100 POKE 59467,PEEK(59467) AND 254
inputs not latched

100 POKE 59467,PEEK(59467) OR 1
inputs latched by a CAl transition

When using CA 1 as a handshaking line, bit zero of both
the peripheral control register and the auxiliary
control register must be set to the right level before
any inputs take place. The following program is an

. example of how data could be input from an external
keyboard to form a string AS.

10 POKE 59467,PEEK(59467)OR1:REM LATCH INPUT
20 POKE 59468,PEEK(59468)AND254
25 REM NEGATIVE TRANSITION ON CA1
30 POKE 59459,0:REM SET PAO-7 AS INPUTS
100 WAIT 59469,2:REM WAIT FOR SETTING OF CA1 FLAG
110 K=PEEK(59457):REM READ INPUT, RESET CA1 FLAG
120 K$=CHR$(K)
130 A$=A$+K$:REM ADD INPUT TO STRING A$
140 IFK=13 THEN 200:REM END IF CARRIAGE RETURN
150 GOT0100
200 END

5ince da ta is unlikely to come from the keyboard faster
than two or three characters per second this Basic
program would be adequate. The program could even handle
data from a slow speed paper tape readedthe output from
this device is identical to that from a keyboard)
connected to the user port. If the paper tape reader's
speed is gradually increased, data will start to be lost
at a point where the input frequency exceeds the minimum
execution time of the input program loop. If data is to
be input to the PET at high frequency - greater than
about la bytes per second - then the input program must
be written in machine code. Using a machine code
subroutine to perform the data input function in a Basic
program poses several problems. Unless data is processed
by the subroutine, the input must be in descrete blocks
of, say 255 bytes, with a delav between each block
sufficient to allow the Basic pr-ogram to process the
last block of data. Each data block must be stored in an
are a unused by Basic from which it can be accessed by
the Basic program with a series of PEEK commands.
Another requirement is that the computer must not be
interrupted during data transfer otherwise data will be
lost. This is very important on the PET since the

96

machine is interrupted sixtY times a second as part of
the keyboard scanning routine. The interrupt can be
disabled by having the first instruction of the machine
code subroutine an interrupt disable instruction.
Similarly the last instruction must restore the
machine's capability of being interrupted. The following
is a machine code version of the previous Basic program.
It is designed to be located in the area used by
cassette 112 input buffer, data input by the program is
stored in the top 256 bytes of RAM.

033A 78
AD 4B E8
09 01
8D 4B E8
AD 4C E8
29 FE
8D 4c E8
A9 00
8D 43 E8
A2 00
AD 4D E8
29 02
FO FA
AD 41 E8
9D 00 1F
E8
DO F1
60

SETUP

TESTCA1

READ

SEI
LDA E84B
ORA 01
STA E84B
LDA E84c
AND FE
STA E84C
LDA 0
STA E843
LDX 00
LDA E84D
AND 02
BEQ TESTCA1
LDA E841
STA 1FOO,X
INX
CLI
RTS

This subroutine can be called by the main program with a
SYS 826 command (assuming that the subroutine is located
at decimal 826 upwards). Care must be taken that the
area in which data is stored is not also required by
Basic, this can be prevented by resetting the highest
RAM address pointer. Thus to set aside the top 256
bytes of memory the following two commands must be
executed at the beginning of the Basic program: POKE
52,255 and POKE 53,126. The Basic program can then
access this data and store it as a 255 element array
with the following line:

100 FOR X=1 TO 255:A(X)=PEEK(7936+X):NEXT X

One point to watch when using a subroutine which
disables the scan interrupt is that it also stops the
jiffy dock. This cou Id cause problems if you are using
the dock for any time control purpose. The only cure is
to determine the time taken to run the machine code
subroutine and add this to the contents of the jiffy
dock register in locations 153 and 154 On old ROMs 517

97

and 518). Machine code subroutines for data inputs are
also useful when precision timing is required,
accuracies in the order of ten microseconds can be
achieved. This is the kind of precision timing required
in the measurement of pulse widths or transient event. A
useful application requiring this kind of input is
measuring the position of a potentionmeter wiper arm,
the potentiometer being part of a position sensing
feedback or a joystick input device. Although this may
seem like an ana log to digital conversion problem there
is a far easier solution involving the use of a 555
timer IC. A pulse input to the 555 is output after a
delay, the length of which is proportional to the values
of an R/C network. By varying the resistance value one
can vary the delay time.

+5v

fd

ohmlK ohm r 1: ;..... 20K

4 8
.J 3 7

555 6
O.lm==2 5 1---

1

PAl

PAO

GND

The output or trigger pulse cornes from PAO on the user
port, the input pulse goes to PAL The following program
measures the delay time which is proportional to the
current position of the potentiometer arm.

03EO' COUNT
033A 78

A9 01
8D 43 E8
8D 4F E8
A9 00
8D EO 03
8D 4F E8
A9 01
8D 4F E8
EE EO 03
AD 4F E8
29 02
FO 07
58
60

START

TEST

:delay time
SEI
LDA 01
STA E843
STA E84F
LAD 00
STA COUNT
STA E84F
LDA 01
STA E84F
INC COUNT
LDA E84F
AND 02
BEQ TEST
CLI
RTS

98

The program can be run with a SYS(826) and the delay
value obtained with a PEEK 992, note however that the
machine will crash if no input is obtained on PAL

It is frequently undesirable to haIt the processor
while waiting for an input especially in real time
control applications. This can be overcome by using the
system interrupts. The best method is to add an extra
subroutine into the keyboard scanning interrupt routine,
the input port will then be automatically scanned sixty
times a second. This is especially useful in
applications involving the counting of slow but
unpredictable events such as those occurring in many
b i 0 10 g Y and psychology exper i men ts. For exa mple the
computer is being used to control the environment of an
animal cage and we want to measure the activity of the
ani mal. This is done by counting the number of times it
breaks a light beam crossing the cage. The animal may
spend long periods of time asleep and thus not cause any
interruptions of the light beam. It is not therefore
practical to have the processor wait for an input, since
while waiting it is unable to perform its normal
function of controlling the cage environment. The
problem is overcome by scanning the current state of the
photodetector as part of the keyboard scanning routine
initiated sixt Y times a second by the scan interrupt. In
this example the photodiode is connected to line PAO on
the user port via a Schmitt trigger circuit acting as a
level detector, so that line PAO goes to a high state
only when the light beam is interrupted. The following
program counts the number of times the beam is
interrupted:

03FO CaUNT :total number of beam

03F1 CaUNT+1 :interrupts.

03F8 LAST :last input state

033A- A9 00 START LDA a
8D 43 E8 ,STA E843
AD 4F E8 LDA E84F
29 01 AND 01
Fa 16 BEQ EXIT
CD F8 03 CMP LAST
Fa 16 BEQ END
8D F8 03 STA LAST
18 CLC
6D Fa 03 ADC caUNT
8D Fa 03 STA caUNT
A9 00 LDA a
6D F1 03 ADC caUNT+1
8D F1 03 STA caUNT+1

99

Ag 00
8D F8 03
4c 2E E6

EXIT

END

LDA 0
STA LAST
JMP E62E

When loaded into memory this program is started by
putting the beginning address into the IRQ RAM vector.
If the subroutine is located at hex 033A and upwards the
following two Basic commands would be used to start the
routine:

in new ROMs - POKE 144,58:POKE 145,3

in old ROMs - POKE 537,58:POKE 538,3

The subroutine will now be automatically executed every
sixtieth of a second without being called from Basic
program. The results are accessible at any time by
PEEKing the contents of COUNT and COUNT+1. When using a
program which is part of the interrupt scan routine care
must be taken to avoid using the interrupt disable
corn mand in another subroutine or disabling the scan
interrupt input PIA l, both these will stop the program.

In sorne applications it is desirable to use the CAl
input to generate an interrupt rather than use any of
the methods looked at so far. Using an external
interrupt onto the IRQ line is one of the most difficult
ways of inputting data into the PET and should in my
exper ience be used only when absolutely necessary. The
reason for this caution is that it is very easy to crash
the system with an external interrupt. Also to use the
IRQ line it is best if all normal system interrupts are
disabled, this means that the keyboard, system clock
(TI), tape decks and IEEE port will not function.

Normally the CA l line does not act as an interrupt
but just latches data from the input lines into the
input register. For CAl to function as an interrupt the
correct flag in the interrupt enable register must be
set. This flag is bit 1 of location 59470 and can be set
with a POKE 59470,131, note- bits in this register can
only be set if bit 7 is also set. Since the interrupt is
generated by the setting of the CA 1 flag, the active
transition of this line must also be selected by writing
a a or 1 into bit 0 of the peripheral control register.
Having performed these two operations any input on the
CA 1 line will generate a system interrupt. The PET will
stop and jump to an interrupt servicing routine whose
address is pointed to in locations 144 and 145 (in old
ROM s 537 and 538),however w i thout a user genera ted
routine the PET will crash. The interrupt routine can be
located in any area of protected memory, ego the second
cassette buffer. The only requirement is that the last
instruction is a ju mp to the system interrupt subroutine

100

at hex E61B (in old ROMs E67E). Every time there is an
interrupt the user written interrupt handling routine
will be performed, this is the source of most problems
encountered in using an external interrupt, the reason
being that interrupts are generated by more than one
device within the PET. The operating system thus has to
be able to determine which device generated the
interrupt, and the user port is not a recognised system
interrupt. A user port interrupt will ohen cause the
machine to crash, also user interrupt handling routines
must be able to determine the source of the interrupt.
If this is not done then the 60Hz keyboard scan
interrupt will have the same effect as a user port
interrupt. One way round this problem is to connect the
interrupt line to one of the input lines on the port and
on each interrupt test if that line has changed state.
Alternatively other sources of interrupts can be
disabled, the keyboard scan interrupt is disabled with a
POKE 59411,58 stopping the keyboard being used and
hal ting the real ti me clock. The scan interrupt can be
restored to its normal function only by executing the
following command within a program:

100 POKE.59411,61

On dynamic RA M machines there is no need to use the IRQ
line since the NMI interrupt is· available. The NMI
interrupt has a higher priority than the IRQ, meaning
that an interrupt on the NMI line is executed in
preference to one on the IRQ even though they may occur
si multaneously. The NMI line can be accessed on the
memory expansion connector, a processor interrupt will
result from a positive going pulse on this line. The
processor will jump to an interrupt subroutine who se
address is stored in the NMI RAM vector, locations 148
and 149. Unless the subroutine disables the interrupts
they will occur normally and win only affect the
execution of the NMI interrupt subroutine by causing a
delay every sixtyth of a second. Use of the NMI
interrupt is highly recommended in any application
involving asynchronous inputs via the user port.

Handshaking on the 6522.

Handshaking is a term used to describe methods of
ensuring the synchronisation of input and output pulses
between the computer and an external device. There are
two handshaking lines on the user port. The CAl line
functions as an input only, acting either as an
interrupt to the PET system or 1atching data currently
on the input lines into the input register. The CA 1 line
is a sui table handshaking line when data is coming from
an external source into the PET. When the PET is the
originator of data then it must also have an output

101

handshaking line, for this purpose one can use the CB2
line. The CB2 line can function in either an input or
output mode, the mode being determined by the contents
of bit 7 of the peripheral control register. If bit 7 is
a ze ro then CB2 acts as an input, if a one then as an
output. There are four different input modes and four
different output modes, these are determined by the
contents of bits 5 and 6 of the peRo The CB2 line can
also act in a free running or seriaI output mode under
control of the 6522 internaI shift register.

Only the manual output modes and the free running /
seriaI modes are of practical use on the PET. The
remaining two modes are concerned with the setting of
the CB2 line by writing to, or reading the B output
register. They are of little use since we want to
-handshake outputs on port A, the user port. The simplest
method of outputting on the CB2 line is to toggle it off
and on under manual or program control. Before doing
this the shift register must be disabled by setting bits
2, 3 and 4 of the Auxiliary control register to zero.
This can be done from Basic with :

POKE 59467, PEEK (59467) AND 227

If bit 5 of the PCR is set to zero then the CB2 line is
low and if set to one then CB2 is high, bits 6 and 7 of
the PCR are set to one in both modes. To set CB2 high
from Basic the following command can be used:

POKE 59468, PEEK(59468) AND 31 OR 224

CB2 can be set low with

POKE 59468, PEEK(59468) AND 31 OR 192

To handshake a byte of data from the eight user port
lines to an external device the data must be loaded into
the output register. Then the CB2 line must change
state, from say low to high, signalling to the external
device that data is present. If the other device is
another PET then CB2 could be connected to the CAl line
of the second PET. A transition on the CB2 line would
la tch the data on the parallel lines into the second
PETs input register. This principle applies to any
external device using a 6522 or PIA type chip.
The following Basic program will do this and since the
output is parallel fairly high data transmission rates
can be achieved even with a basic program.

100 POKE59459,255 :REM SET DDR 0-7 AS OUTPUTS
110 POKE59467,PEEK(59467)AND227 :REM DISABLE SHIFT REG
120 POKE59468,PEEK(59468)AND310R192 :REM SET CB2 LOW
130 POKE 59471,X :REM WRITE VARIABLE X TO ORA
140 POKE 59468,PEEK(59468)AND310R224 :REM SET CB2 HIGH

102

No

S ta r t

Set PCR bit 5 to 1

Disable Shilt reg

by clearing ACR bits 2,3,4

Load Shi!t reg

with hex FO

Load T2 with Delay

Clear ACR bit 3 - set

bits 2,4,- start shJft

G et new data

St 0 p

No

Fig4.5 Flow diagram of

Music program

103

The 6522 has an internaI parallel input seriaI
output shift register. Data is loaded into the shift
register in the same way that it would be loaded into
any other eight bit register. The data is then shifted
out onto the CB2 line under control of either timer 2,
the system clock or an external clock. Of the four
seriaI output modes the free running mode is the
simplest, and the only mode easily controlled from
Basic. In this mode the shift register acts in a
cydical manner with the output from bit eight being fed
back 0 bit zero. The rate at which data is shifted
out onto the CB2 line is determined by the contents of
timer Î. This timer is a presettable counter, counting
the number of dock pulses. On each clock pulse the
counter is decremented, if the contents is zero a pulse
is output to the shift register thereby shifting the
contents one bit to the right. At the same time the
timer is reset to its initial value and the process
repeated. In this way a repeated pattern of eight bits
can be <:hifted out onto the CB2 line at a particular
frequency and totally independent of processor control.
The output will continue until either the timer or shift
register are changed, or disabled. By loading the shift
register with 00001111 and the timer with 255 a square
wavp can be output on CB2 with a frequency of 490Hz. The
highest frequenèy is obtained by setting the shift
register to 01010101 and the timer to l giving a square
wave nutput of 500KHz. This free running output on the
CB2 line is a useful source of dock pulses for an
external device, ensuring full synchronisation with the
PET timing. On the more entertaining level this mode can
be used to create a simple music generator, by varying
the output frequency on CB2. The following is a machine
code program to do this:

1900
1901

1910

191C

1925

1929

;SYSTEM LOCATIONS
ACR = $E84B
SR = $E84A
T1M2 = $E848

;VARIABLES
YTEMP :temporary Y register
TEMPO :delay count for tempo

A9 10 SETUP LDA 4110
8D 4B E8 STA ACR
A9 FO LDA 4IFO
8D 4A E8 STA sr
AO 00 LDY /fO
B9 00 E8 GETNOTE LDA NOTE,Y
8D 48 E8 STA TIM2
FO 20 BEQ END
c8 INY
B9 00 1A GETDUR LDA DUR,Y
C8 INY
AA DUR TAX
8C 00 19 STY YTEMP

104

192D A9 03 LOOP LDA #03 :adjust for tempo
8D 01 19 STA TEMPO

1932 AO FB LOOP1 LDY #FB
1934 88 LOOP2 DEY

DO FD BNE LOOP2
CE 01 19 DEC TEMPO
DO F6 BNE LOOP1
CA DEX
DO EE BNE LOOP

193F AC 00 19 RESTORE LDY YTEMP
DO D8 BNE GETNOTE

1944 A9 00 END LDA 110
8D 4B E8 STA ACR
8D 4A E8 STA SR
8D 48 E8 STA TIM2
60 RTS

1AOO ;START OF SCORE TABLE
NOTE1,DUR1,NOTE2,DUR2,NOTE3 •. ETC

The circuit used to generate the sound is very simple
consisting of a single transistor amplifier and a small
8 ohm speaker.

+5v

CB2

.111...------1

Any PNP transistor

8 ohm speaker

The shift register has been designed to allow the
CB2 line to act as a synchronous seriaI communications
port. This is the. function of the remaining three shift
register output modes.

The first mode is similar to the free running mode,
data being shifted out under control of timer 2. Instead
of recirculating indefinately only eight shift pulses
are generated, then the shift register is automatically
disabled. A t the same time that the shift register is
disabled the shift register interrupt flag is set. The
CB2 line then goes to astate determined by the contents

105

of bit 5 of the PCR. In any practical application this
output mode must be controlled from a machine code
program. The flow diagram for such a program is shown in
Figure 5. This outputs data in a seriaI format, if the
timing and formatting is correct this could be used by
an external device such as a terminal. An interesting
feature of this mode is that the shift pulses generated
by timer 2 are output on line CBl, the cassette read
line. It can be accessed by the user from the top
connections of the user port or from the second cassette
port (note that this is the reason why the cassette will
not function in any of the CB2 output modes). This is a
useful feature since it allows seriaI data output on the
CB2 line to be synchronised with the system clock
thereby opening up a whole range of possible low cost
1/0 configurations. The remaining two shift register
output modes on the CB2 line are very similar except
that the shift timing is derived from different sources.
One cornes from the 1MHz system dock, the other from an
external clock connected to the CBI line. All four shift
register output modes are controlled by the contents of
bits 2, 3 and 4 of the Auxiliary control
register-ACR-which can be loaded by ANDing the contents
with decimal 227 and then ORing it with the required ACR
value. In the free running mode, which is the only mode
tha t can be realistically controlled from Basic, the ACR
can be set with the command:

POKE 59467,PEEK(59467) AND 227 OR 16

If the other ACR
will suffice the
modes:

ACR bits
4 3 2

functions are
following is

Mode

not used POKE 59467,16
a su m mary of the four

OR value decimal

1 a a Free running under control of T2 16
1 a 1 Shift out 8 bits; shift rate controlled 20

by T2 shift pulses genera ted on CB 1 20
l 1 a Shift out at system dock rate 24
1 l 1 Shift out under control of an external

dock input on CBl 28
The CB2 line can also act as an input, there are four
input modes under control of PCR bits 5, 6 and 7. With
the shift register disabled it is however only practical
to use two of these modes on the PET. One mode detects a
negative transition on the CB2 line, the other a
positive transition. An input sets bit 3 of the
Interrupt flag register. An input on the CB2 line could
be used as a system interrupt by setting bit 3 of the
Interrupt enable register. This will however encounter
the same problems as an interrupt on the CA 1 line and is
thus probably best avoided. As in the output mode the

106

shift register can be disabled by setting bits 2, 3 and
4 of the Auxiliary control register to zero. This can be
done with the Basic command:

POKE 59467, PEEK(59467) AND 227

To detect an input with a negative transition one must
first set bits 5, 6 and 7 of the PCR to ze·ro with the
command:

POKE 59468, PEEK(59468) AND 31

To detect a positive transition bit 6 of the PCR is set
to one and bits 5 and 7 set to zero with the command:

POKE 59468, PEEK(59468) AND 31 OR 64

The result of either of these two transitions can be
detected by testing if bit 3 of the Interrupt flag
register is set with one of the following commands:

100 IF PEEK (59469) AND 8 THEN 110
110

or 100 WAIT 59469,8

Having detected a transition the interrupt flag must be
reset before another transition can be detected. The
reset is done by reading the port B 1/0 register (note
care should be taken not to write to this register) this
can be done with the command:

Q = PEEK (59456)

The CB2 line can also be used as a seriaI input
using the shift register to convert the stream of pulses
into eight bit blocks of data. There are three modes of
seriaI input each using a different source of shift
pulses. As with seriaI output these sources are: timer
2, the t system c1ock, and an external c10ck input on CBl.
Except for the last mode the shift pulses are output on
the CB l line. In the timer 2 mode the shifting rate is
controlled by the contents of T2. The time between
transitions .on the output c10ck on CBl is a function of
the contents of T2 and the l MHz system c1ock. In the
system clock input mode data is shifted onto the shift
register a t half tbe system clock rate or 500KHz. The
shifting operation in both modes is initiated by either
reading or writing the shift register in location 59466.
The data is shifted into the shift register on the
trailing edge of each shift pulse. The first bit of the
input data being shifted into bit zero is the most
significant bit. Also data transitions should occur
before the leading edge of the shift pulse. After eight
shift pulses the shift register interrupt flag, bit 2 of

107

the interrupt flag register, will be set and the output
clock pulses on CB1 will stop. To shift data in under
control of an external dock CB1 becomes an input and
data is shifted in during the first system clock cycle
foliowing the leading edge of the CB1 shift pulse. As
with the other serial modes data is shifted into bit 0
of the shift register first. Unlike the other modes the
shift register is not disabled, though the interrupt
flag is set, after 8 shift pulses. The interrupt flag
can be reset by reading the shift register. When using
an external dock data transfer rates should thus be
kept fairly low. Ali shift register input modes are best
controlled by a machine code program unless data rates
are very slow. These modes are controlled by bits 2, 3
and 4 of the Auxiliary control register and can be
summarised as follows:

ACR bits
432

001

o l 0

o l

Mode

Shift in under control of timer 2, shift pulses
output on CBl.
Shift in at system clock rate, shift pulses output
on CBl.
Shift in under control of external input on CB 1.

The seriaI 1/0 capability of the CB2 and CB1 lines
can be used as the basis for a range of interesting and
use fuI 1/0 configurations both between PETs and between
PET and peripheral devices. One application is to use
these lines for data and program communication between
two machines. To do this the corresponding CB1 and CB2
lines are connected and also one of the user port lines,
say, PAO on each machine. The CB2 Une is used as a
bidirectional data communications line while the CBl
line is the dock line used to synchronise data transfer
betwen the two computers. The line between the two PAOs
is the "busy" line and is used to signal to the
transmitting machine that the receiving machine is ready
for data. input.

CB2 DATA CB2

PET 1 CB1 CLOCK CB1 PET 2
USER PORT USER PORT

PAO BUSY PAO

108

The software required to control such a communications
system is not complex and could if one were prepared to
accept a very slow and inefficient system be written in
Basic. This software relies on two rules, one for the
transmitter and one for the receiver. The rule for the
transmitter is that data output is under control of
timer 2 and does not begin transmitting data until the
busy line goes "low". The rule for the receiver is that
da ta is shifted into the receiving machine under the
control of an extenal dock. This is derived from the
CBl shi ft pulse output on the transmitting machine,
thereby ensuring that the data is fully synchronised.
The "busy" line should be kept "high" until th receiving
machine is ready to accept an input. This fairly simple
method of communicating between two machines could
probably be expanded to allow the construction of small
networks of PETs by using a separate "busy" line for
each computer. The software for either two machines
co m munications or network communications is best written
in machine code and could be called as a subroutine from
a Basic progam when required. Or it could be
incorporated into the scan interrupt routine for
auto matie operation. More ambitiously instructions could
be added to Basic by calling the machine code subroutine
from a section of code added to the CHARGET subroutine
in page zero of memory.

The seriaI 1/0 capability of the CB2 line and its
accompanying dock pulses on CB 1 can be used to greatly
expand the number of 1/0 lines available on the user
port with only the minimum of extra circuitry. This
technique is especially use fuI in applications requiring
a great many single line inputs and outputs. For example
input switches and status lamps, where data inputs or
outputs are unlikely to change very frequently. The
method relies on inputting or outputting all data in a
seriaI form via the CB2 line. rhis data is then
converted to or from parallel form by an eight bit shift
register, data being shifted in or out under control of
dock pulses from CB 1. The shift enable input is derived
from one of the user port lines, allowing up to eight
blocks of shift registers where each block has either an
input or an output function. With one shift register per
block this gives a maximum of 64 1/0 lines. A suitable
integrated circuit for outputs would be a 74164 and for
inputs a 74166. The number of input or output lines can
be increased by chaining two or more shift registers
together under control of a single enable line. The
seriaI input of one register being connected to the
seriaI output or last parallel output line of the next
register.
With this technique the software required to input and
output data is very simple and easily written in Basic.
The following is a Basic program to output a variable X
and the circuit used by the program:

109

AB CDE FG H

P

2 3 4 5 10 11 12 14

74166 clr 9

CB2 1

Parallel in seriai out
cl .nhi 6 1

clock 511 1

7 15

CB1
ET

PAO

PA 1
8 2

clock b

74164
91

Seriai 10 parallel
clr

out

3 4 5 6 10 11 12 13

5

5

AB C DE F G H

10 REM program to output variable X
100 POKE 59459,2 REM set DDR for PA1 as an output
110 POKE 59471,2 : REM output chip enable on PA1
120 POKE 59464,64 : REM set timer 2, value optional
130 POKE 59467,PEEK(59467)AND 227 OR 20 : REM set ACR for

SR output under T2
140 POKE 59466,x : REM write variable into shift register

10 REM program to input variable X
100 POKE 59459, 1 : REM set DDR for
110 POKE 59471,1 : REM output chip
120 POKE 59467,PEEK(59467)AND227 OR

110

130 WAIT 59469,4
140 X=PEEK(59466)

REM wait
REM read

PAO as an output
enable on PAO
4 : REM set ACR for

input under T2
for SR interrupt flag set
contents of SR

Obviously one need not
lines, any line will do,
lines 100 and 110 must
sets the data direction
output enable lines and
beginning of the program.

use these particular user port
in the two examples program

be altered accordingly. Line 100
register for aIl the input and
need only be done once at the

PET KIM Data Handshaking Via The User Port.

The following application is an example of how the
user port can be used to interface the PET to another
computer, in this case a Kim 1. The application involves
transferring blocks of 128 bytes of data from the Kim to
the PET once every ten seconds, with the transfer
lasting about 100 milliseconds. The eight lines of the
User port are connected, together with the two
handshaking lines CAl and CB2, to ten of the Kim 1/0
port lines. A further 1/0 port line on the Kim is used
to genera te an interrupt request signal and is connected
to the IRQ line on the PET memory expansion connector.

CAl PB2

PAO-7 Data lines PAO-7
KIM-l

User Port K '\

CB2 PBl
PET Data request > Programmable

{
1/0 lines

Expansion TR() PBO
Connector

The interrupt is used to ensure that the PET
services the Kim request to transfer data as rapid1y as
possible, thereby ensuring the minimum amount of time
spent by either processor waiting for the other. The
flow diagram of the handshaking routines of both
processors is shown in Figure 4.6. To ensure that the
routine is executed as a result of an interrupt
generated by the Kim, and not by the PET system
interrupts, the internaI vector pointers must first be
reset. This is done by a small subroutine INTDIS
which is called at the beginning of any Basic control
program by a SYS(839), the vectors can be reset by
another subroutine INTEN called by SYS(826).

The subroutine INTDIS also performs the function of
resetting the top of memory pointers to leave a 128 byte
block of unused memory space at the top of memory for
data storage. The program is fairly short and can be

111

KIM PET

Configure PIA Oelec 1 IRa

No

Place $ FO on

dala lines

Pull IRQ low

Pull IRQ high

Send new data

Set

high on PB2

--+

Send 'Data requesf

CB2

sel CAl low

Siore data in

memory

Sel Finished fla9

Relurn

No

No

112
Fig 4.6 Kim - PET Data Handsha king

033A 78
A9 85
8D 19 02
A9 E6
8D 1A 02
60

0347 78
A9 5C
8D 19 02
A9 03
8D 1A 02
A9 7F
85 86
A9 1F
85 87
58
60

035C AD 41 E8
C9 FD
DO 29
AO 00
A9 E1
OD 4c E8
8D 4C E8
A9 02
2D 4D E8
FO F9
A9 DF
2D 4C E8
8D 4C E8
AD 41 E8
99 80 1F
c8
CO 80
DO DE
A9 FF
8D 8F 03
4c 85 E6

038F

INTEN SEI :re-enable system interrupt
LDA $85 :low order byte of vector
STA $0219
LDA $E6 :high order byte'of vector
STA $021A
RTS
SEI :disable system interrupt
LDA $5C :low order byte of vector
STA $0219
LDA $03 :high order byte of vector
STA $021A
LDA $7F :low order top of memory
STA,z $86 :pointer location 134
LDA $1F :high order top of memory
STA Z $87 :pointer location 135
CLI
RTS

DATAIN LDA $E841 :data handshake routine
CMP $FD :start read data lines
BNE END :if not $ FD goto END
LDY $0 :set index to zero

DATA1 LDA $E1 :if FD on data lines set
ORA $E84C :CB2-data request-high
STA $E84c

DATA2 LDA $02 :wait for data valid on CA1
AND $E84D
BEQ DATA 1 : if not goto DATA 1
LDA $DF
AND $E84C :pull CB2 low and remove
STA $E84C :data request
LDA $E841 : input data and store in top
STA,Y $1F80:of memory using index pointer
INY :increment index
CPY $80 :is index = 128 if not then
BNE DATA1 :goto DATA1
LDA $FF :set flag to 255 and store
STA $038F :in location 911

END JMP $E685 :jump back to Basic
END FLAG POINTER

113

Sum mary of the Registers in the 6522.

Parallel port PB
59456 Hex E840

7 6 5 4 3 2 1 o
DAV NRFD RETRACE Cass 112 Cassette ATN NRFD NDAC

in in in Motor Output out out oin

This register contains the contents of the input and
output lines of port B of the 6522. It can be read but
should not be written to with the exception of bit four
which turns the motor of cassette 2 off and on. Reading
this register causes the CB2 interrupt flag to be reset.

with handshake controlParallel port PA
59457 Hex E841

7 6 5 4 3 2 1 o

User Definable 1/0 Unes

This is one of two registers which contain the contents
of the input and output lines of port A. The two
reg i ste r s are ide n ticale xcep t th a t t h i s reg iste r ha s
control over the handshake lines. When data is input
usi ng the CA 1 li ne to la tch data into the 1/0 register,
the fact that data has been input is signalled by the
setting of the CA 1 interrupt flag. This flag is cleared
by reading address 59457.

Data direction register for port B
59458 Hex E842

This register should not be used on the PET.

Data direction register for port A.
59459 Hex E843

This register controls each of the eight Unes on port A
and determines whether they are acting as inputs or as
outputs. A one in any of the eight bits of this register
sets the corresponding line into the output mode and a
zero puts it into the input mode.

Timer 1.
lower order byte 59460
higher order byte 59461

114

Hex E844
Hex E845

This sixteen bit register is one of two internai timers
on the 6522. However this is of no, (or limited) use on
the PET since it generates timed interrupts and/or
output on line 7 of port B which is the DA V input line.

Timer 1 latch.
lower order byte
higher order byte

59462
59463

Hex E846
Hex E847

This sixteen bit lach is used to store data which will
later be loaded into the counter of timer l, since this
timer is not used on the PET the latch is of li ttle use.

Timer 2.
lower order byte
higher order byte

59464
59465

Hex E848
Hex E849

This is the second of the two internai timers on the
6522 and as with timer 1 the majority of its functions
are not usable on the PET. The lower order eight bits of
timer 2 can be used to generate shift pulses for the
in te r nais h i ft reg i ste r th us a II 0 win g variable spee d
seriai 1/0 on the CB2 line. The timer can be loaded by
POKEing a value between 1 and 255 into location 59464.

Shift register
59466 Hex E84A

The internai eight bi t shift regTSter is a very useful
feature of the 6522 since it allows seriai data transfer
into and out of the CB2 line. This is controlled by
either timer 2, the system clock or an external dock.
The mode of operation of the shift register is
controlled by the contents of bits 2, 3 and 4 of the
Auxiliary control register. In sorne modes the completion
of the shift operation is signalled by the setting of
the shift register interrupt flag in bit 2 of the IFR.
The shift register may be loaded by POKEing the data
into location 59466.

Auxiliary control register
59467 Hex E84B

7 6 5 4 3 2 1 o
Timer 1 control Timer 2 Shift Register mode Port B Port A

control control latch latch
enable enable

The function of the auxiliary control register is to

115

control the mode of operation of the other 6522
registers. However, on the PET it is only practial ta
control two of these registers, the shift register and
the port A latch enable. Bit 0 is the port A latch
enable which when set ta 1 allows data ta be latched
into the input register by a pulse on the CA 1 line. When
set ta zero the input register will directly reflect the
data on the input lines. A similar function is performed
by bit 1 ta control the latching of data in ta port B,
but the contents of this bit should not be altered. Bits
2, 3 and 4 control the operation mode of the shift
register. There are eight modes of operation and they
are best summarised as follows:

ACR bits 4 3 2 Shift register mode SR interrupt flag

0 0 0 Shift register disabled
0 0 1 Shift in under control of T2
0 1 0 Shift in under syste m dock
0 1 1 Shift in under control of

external dock pulse
1 0 0 Free running output at rate

determined by T2
1 0 1 Shift out under control of T2
1 1 0 Shift out under system dock
1 1 1 Shift out under control of

external dock pulse

set after 8 shifts
set after 8 shifts
set after 8 shifts

set after 8 shifts
set after 8 shifts

set after 8 shifts

Bits 5,6 and 7 control the functioning of the two
timers neither of which can be used on the PET. The
auxiliary control register can be loaded from Basic by
u sing the following corn mand for ma t --- POK E 59467,
PEEK(59467) AND ••• OR •.. where the dots are variables,
the value of which depends on the bits being changed.
Thus if changing the shift register ta free running mode
it would be AND 227 OR 16.

Peripheral control register
59468 Hex E84C

765 4 3 2 1 o
CB2 control CBl CA2 control CAl

control (graphies / lower case) control

The peripheral control register contraIs the functioning
of the four handshaking lines on the 6522. Ali four
lines can be controlled by the user on the PET. Bit zero
selects which active transition of the CA 1 line sets the
CA 1 interrupt flag. A one in this bit sets the flag on a
positive transition Oow ta high) and a zero sets the
flag on a negative transition (high ta low). Bit 4 of
the PCR performs the same function for the CBl line,
this is the read line for cassette 2 but can be used as

116

an I!a line if this cassette is not used. CA2 is
connected to the character generator and controls
whether the display is in the graphies or lower case
mode, the display mode can be changed by toggling this
line. Though the CA2 line can funtion as both an input
and an output, on the PET it can only function in the
manual output mode. The display can be put in the lower
case mode with a POKE 59468,14 and in the graphies mode
with a POKE 59468,12. This is the normal method used
where the contents of aIl the other bits in the PCR are
zero if however the CAl, CBl or CB2 controls are set
then they must be masked out with an AND 225, thus to
put the display in lower case becomes POKE 59468,
PEEK(59468) AND 225 OR 14. The CB2 line is totally under
user control and can act as either an input or an
output. There are eight modes of operation, four of them
can be used on the PET, they can be su m mar ised as
follows:

PCR bits CB2 operation mode

7 6 5

a a a Input mode sets CB2 interrupt flag on negative transition
flag, reset by reading port B register.

a 1 a Input mode, sets CB2 interrupt flag on positive transition
flag , reset by reading port B register.

1 1 a Manual output mode, CB2 is- held low.
1 1 1 Manual output mode, CB2 is held high.

Interrupt flag register
59469 Hex E84D

765 4 321 a
IRQ status 1 Tl 1 T2 r CBl 1 CB2 1 SR 1 CAli CA2

interrupt flags

The four handshaking lines, the shift register and the
two timers are aIl able to generate a system interrupt
by setting a bit in interrupt flag register. Providing
the corresponding bi t in the interrupt enable register
is set this will cause an interrupt to be generated.
Reading the interrupt flag register will then indicate
which register or handshake line initiated the
interrupt. The setting of a particular flag will also
show wh en an operation has been completed or a
particular event has occurred. As a PET user the most
useful flags are the CB2, SR, and CA l, the use of these
flags has been dealt with in the review of the relavent
registers. Note that bit 7 of this register is not an
interrupt flag but shows the current status of the IRQ
output to the processor it is only set by a system
interrupt it can only be cleared by clearing all the
flags in the register.

117

Interrupt enable register
59470 Hex E84E

When a bit in this register is set and the corresponding
bit in the interrupt flag register is also set, then and
only then will a system interrupt be generated. In the
PE T this register should not be used since enabling any
of the interrupts will invariably cause a system crash.

Parallel port PA
59471 Hex E84F

765 4 3 2 l o

1
User Definable 1/0 Unes

This is the second of the two registers containing the
contents of the input and output lines of port A. This
register has no control over the handshaking lines. The
d rection of the data transfer in this port is
controlled as in the other port A register by the
contents of Data direction register A. Data may be
directly read or written into this register using PEEK
or POKE commands.

118

THE IEEE PORT AND 65205 5

A total of three peripheral 1/0 chips are used on
the PET, the 6522 which we looked at in Chapter 4 and
two 6520 PIAs. The primary function of one PIA being to
control the keyboad, the other the IEEE 488 port. The
6520 is a simpler version of the 6522, like that chip it
has two eight bit bi-directional 1/0 ports with
handshaking lines. It has six internaI registers (three
for each 1/0 port) though only four can be directly
addressed by the processor at any one time. The internaI
architecture of this chip is shown in Figure 5.1. The
registers are two peripheral registers, two data
dire ctio n re gis te r sand two con t roI regi ste rs. Registers
are selected by address line 0 and l, together with bit
2 in the control register thus:

Address lines CRA bit 2 CRB bit 2 Register selected
Al AO

o 0 1 X Peripheral register A
o 0 0 X Data direction register A
o 1 X X Control register A
1 0 X 1 Per ipheral register B
1 0 X 0 Data direction register B
1 1 X X Control register B

Each 1/0 line on the 6520 can be independently
programmed as either input or output by setting the
corresponding bit in the data direction register to zero
for an input and one for output. The data direction
register is first enabled by writing a zero into bit 2
of the control register for the port. Having set the
data direction register this bit must be reset to a one
before the 1/0 port can be read or written to. It is not
advisable to alter the data direction of the 1/0 lines
on either 6520 in the PET.

The two control registers are the most important
registers of the 6520 allowing the processor to control
the operation of the four peripheral control Unes CAl,
CA2, CBl and CB2, as weIl as controlling the generation
of interrupts and enabling the data direction register.
The two control registers, one for each port are

119

IRa A

00

Dl

02

03

04

05

06

D7

CSO

CS 1

CS 2

RSO

RS 1

Rjw

ENABLE

RESET

IRa B

INTERRUPT i--•
~~STATUS A f--r CONTROL

REGISTER A

-- DATA- L DIRECTION

REGISTER A-- ..-- DATA BUS

- BUFFERS---- -
BUFFERS

P A -~
OUTPUT

REGISTER A

--
BUS INPUT -
REGISTER -

--.+

~
OUTPUT -

BUFFERS --REGISTER B

P B

------.
-----.

- CHIP

---to
ACCESS

CONTROL

-----. -
r- DATA- DIRECTION

- REGISTER B

1 ~CONTROL

~TERRUPTREGISTER B

STATUS B -

CAl

CA2

0

2

3
PORT A

4

5

6

7

0

2

3
PORT B

4

5

6

7

CBI

CB2

120 Fig 5.1 6520 Block Diagram

identical and have the following format:

7 6 5 4 3 2 1 o
IRQ 1 IRQ 2 CA2 or CB2 DORA or B CAl or CBl
A or B A or B control access control

Bit 2 is used to select whether the processor addresses
the peripheral 1/0 register or the Data direction
register, both registers being located at th~ same
processor address. The interrupt flags in bits 6 and 7
are set by an active transition on the interrupt or
peripheral control lines (when programmed as inputs).
These flags can not be set by the processor and can be
reset only by reading the relavent 1/0 register.

The CA land CBl lines act as interrupt inputs only,
an active transition on one of these lines will set bit
7 of the relevent control register to logic 1. The
transition is controlled by bit 1 of the control
register, if bit 1 is set to a logic 0 th en the
interrupt flag is set on a negative transition, if bit 1
is set to 1 then a positive transition will set the
flag. The setting of the interrupt flag will cause a
system interrupt to be genera,ted on the IRQ line only if
bit zero of the control register is set to a logic 1.
The IRQ output can be disabled by setting this bit to
logic O. Note that great care should be taken when using
system interrupt on the PET, polling techniques being
always used in preference.

The CA2 and CB2 lines can act as either totally
independent interrupt inputs or as peripheral control
outputs, the mode of operation being determined by bit 5
of the portls control register. If bit 5 is set to 0
then CA2 and CB2 are in the input mode, set to 1 they
are in the output mode. In the input mode an active
transition on one of these lines will set the interrupt
flag in bit 6 of the control register. The active
transition is selected by bit 4 of the control register,
a zero will set the flag on a negative transition, a one
will set it on a positive transition. An input on either
CA2 or CB2 will result in a system interrupt being
generated on the IRQ line unless the interrupts are
disabled by setting bit 3 of the control register to
zero. If either interrupt flags are set when the
relevent bit of control register (either bit 0 or 3) has
disabled the interrupt, then enabling the interrupt will
immediately cause the IRQ lines to go low and generate
an interrupt.

In the output mode CA2 and CB2 are slightly
different in their function and must therefore be looked
at separately. The CA2 line operates in the output mode
when bit 5 of the control register is set to 1. There
are three output modes for this line, they are

121

>-
N
N Fig 5.2 SYSTEM 1/0 MEMOR Y MAP

PIA 1 (6520)
,

Dia~nostic IEEE Cassette Sense KEYBOARD ROW SELECT PA
Sense EOI in 112 111 ,

1

Tape 111 Screen blank output (oid 8K only) DDRA Cassette /Il
Input flag IEEE .EOI out CA2 Access Read control CAl

1

•

KEYBOARD ROW INPUT

Retrace Cassette Ifl motor output DDRB Retrace interrupt
1 flag CB2 Access Control CBI

E811 1 :-r-- ':.& 1 1 --'-~':_:::""_-":_'r--" _.- -'-_-~':J' 1 :----.. 1 _ ----~ ..~ ."" & _.. 1 59409

E810 1 -._,., .._~ ••~ 1 ---- 1 ----~ ..~ --"-- KEYBOARD ROW SELECT PA 1 59408

E812 1 " ... ~A ""....~.w, n."""..... 1 59410

E8l3 l '4'1__ 1 1 rn") 1 1\ 1 r __ h_1 rn 1 1 59411

PIA 2 (6520)

E820

E82l

E822

E823

1 1 1 1

IEEE INPUT
1 .
1 1

ATN IEEE NDAC DDRA IEEE ATN in
1 flag out CA2 Access Control CAl

1 , ·•
IEEE OUTPUT. .

SRQ IEEE DAV DDRB IEEE SRQ in
1 flag out CB2 Access Control CB1

·

59424

59425

59426

59427

determined by the contents of bits 3 and 4 of the
control register. By setting bit 4 to l, CA2 can be
manually toggeled by clearing or setting bit 3. Putting
a zero into bit 3 will set CA2 low, a one in bit 3 will
set CA2 high. The second output mode is a pulse output
mode in which the CA2 line goes low for one dock cycle
after a read peripheral register A operation. This mode
can be initiated by setting bit 4 of the control
register to a and bit 3 to 1. The pulse mode can be used
to indicate to a peripheral device that data has been
read or used to clock a shift register or Counter
thereby allowing sequential data input on the 1/0 lines.
ln the third and last mode the CA2 line is set high by
an active transition on the CAl input setting the CAl
interrupt flag. It can be set low again by the processor
reading the peripheral A 1/0 register. This handshaking
mode allows the CA2 line to signal to the peripheral
device that it is ready to accept new data. The
handshake on read mode can be initiated by setting both
bits 3 and 4 of the control register to zero. The output
modes of the CB2 line differ in thatthe pulse output
mode occurs when the processor writes data to the
peripheral 1/0 register B, similarly in the handshaking
mode the CB2 line goes low when the processor writes to
peripheral 1/0 register B.

The operation of the 6520 is reletivly simple
compared to the 6522, it has many useful features such
as its control of the handshaking lines. Of the two 6520
PIA chips in the PET, the first controls the keyboard
and the majority of the lines to cassette 1 as weIl as
the diagnostic input and the retrace interrupt. The
second 6520 is devoted entirely to the IEEE 488 1/0
port. The location of these two PIA chips and the
function of each bit is shown in Figure 5.2.

The Keyboard.

The keyboard on the PET has 73 keys, 64 print
character keys plus 9 function keys(like cursor control
and reverse). The keyboard is scanned 60 times a second
by the processor via a 6520 PIA to check for a key
depression. AlI eight lines on the B port of 6520 number
1 are configured as inputs while lines 0 to 3 of port A
are configured as outputs and connected to a four line
to ten line decoder. The keyboard is organised in 2 x 5
blocks which are repeated eight times across the
keyboard as in Figure 5.3. thus an input line is
connected to aIl the keys in each 2 x 5 block. Key
number one in aIl eight blocks are connected together as
are the eight number two keys and so on for aIl ten keys
in each block (note that seven keys are not
implemented). The keyboard can be visualised as an eight
by ten matrix with eight row lines being connected to
the eight inputs on port B and the ten column lines

123

PBO PB1 PB2 P03 PB4 PBS PEl6 PB?

PAO ,--,

~@~@~~~~@~~ @@~~ NUme~iClP
'0
0 overprmt

PA1 ~ ~

@)~~~~~~~~~B ~@~@
Is content

'0.. of PAO·PAJ1\I
PAZ >---1 .8

@0~0~0@0@0 @0@0 when key>-
~

is scanned.
PA3 >---1

~~~(!J~( 9 )@~@~ @@~~

PIA Data register addresses PA =59408 PB =59410

Fig 5.3 PET keyboard layout showing column and row connections.

.::l
N
-<



connected to the ten line decoder output from bits a to
3 of port A.

By pressing a key, contact is made between one of
the row lines and one of the column lines. If the column
line is at a logic 1 then the row line on which the
depressed key lies will also be at a logic 1, setting
one of the input lines of port B high. If all the column
lines were high then a high on one of the row inputs
could come from one or all of ten keys being pressed. By
having only one column line high at a time an input cari
come from the de pression of only one specific key. The
ten column lines are thus scanned by sequentially
turning each line on and testing for an input on port B
input lines. If an input is found the current column
number is recorded together with the input line number
for decoding by the operating system. In practice the
PET scans a single line at logic zero across the ten
column lines which are normally at logic one. The
keyboard scanning and decoding subroutine is part of the
retrace interrupt initiated once every sixtieth of a
second by an interrupt on the CB1 pin of PIA 1. The
keyboard can th us be disabled by setting bit zero of thé
port B control register to a which disables the CB1
interrupt. This is very useful since it allows one to
protect a program from unauthorised data entry or from
being aborted by accidently pressing the stop key. The
keyboad can be disabled by the foflowing command from a
Basic program: 100 POKE 59411, 60 keyboard function can
be enabled again with the command: 100 POKE 59411, 61.
The scanning process can best be shown by disabling the
retrace interrupt and using a Basic program to perform
the same function as the keyboard scanning subroutine in
the operating system. The following program while not
performing exactly the same function prints out the
column and input port B value every time a key
depression is sensed:

10 POKE 59411,60 : REM DISABLE KEYBOARD INTERRUPT
20 FOR Q=1 TO 500: REM DO 50 TIMES
30 FOR S=OT09 : REM SCAN COLUMNS 0 TO 9
40 POKE 59408,s
50 I=PEEK(59410) : REM LOOK FOR INPUT ON PORT B
60 IF I< 255 THEN PRINT"INPUT",S,I:S=9:GOT0110
70·NEXTS
110 NEXTQ
120 POKE 59411,61

READY.

This program has a major fault, pressing the key for
a long time will generate multiple inputs. In a Basic
program this is not really a problem since having found

125



an input, control would normally jump out of the input
loop and Basic is too slow for the key still to be
pressed on the next scan. However, the operating system
scans the keyboard once every sixtyth of a second and it
is unlikely that a key depression would be shorter than
about la keyboard scans. Also when a key is pressed
there is bound to be sorne key bounce which wh en the
keyboard is being scanned could frequently lead to
multiple closures being input to the processor. The
operating system software is so written that no keyboard
scans are accepted until the last key pressed is
released. Unless a later scanned key is pressed, this
key is then interpreted as being the next key closed
even if the first key is still being pressed. To
demonstrate: press the Q key then while still pressing Q
. press the A key. Although the Q key is already pressed
an A will be printed on the screen, if the A key is
released then another Q will be printed. Protection from
noise generated by contact bounce is implemented by the
operating system checking that the same key is pressed
for more than one scan. At the end of each scan the 6520
is left with column 9 on, this column contains the
Stop/Run key which can be tested before doing a full
keyboard scan. This is useful since with the keyboard
disabled or when operating in machine code the column 9
keys can be used as inpu ts without having to scan the
keyboard. To do this one simply reads 1/0 port B of PIA
1 thus: 1 = PEEK (59410) and if 1 = 239 then the Stop
key has been pressed and if 1 = 251 then the Space key
etc. The subroutine which tests for a depression of the
Stop key is located at Hex F8FO (in old ROMs F32A). The
Stop key can be disabled without affecting the rest of
the keyboard, this is useful since it allows the
program mer to prevent a program being aborted by the
user accidently pressing the stop key, whilst still
retaining full use of the keyboard. This is done by
changing the jump address of the interrupt. The keyboard
is scanned by an interrupt service routine the address
of which is pointed to by the contents of locations 144
and 145 (old ROMS 537 and 538). The first function of
this routine is to test for a depression of the stop
key. We can thus disable the stop key by changing the
interrupt jump address to point to a location after the
stop key detection subroutine call using: POKE 144, ~ ~~
the stop key can be enabled by a POKE 144, ~l.t"

The only other keys· not decoded to give an ASCII
character are the two shift keys. The keyboard scanning
routine on detecting that either of these keys has been
pressed sets a flag in location 152(01d ROMs 516). If
the decoding subroutine which converts the keyboard
matrix co-ordinates into ASCII characters detects that
this flag is set, then the program will set bit seven of
the associated character thereby converting it to upper
case or graphies. It should be noted that two versions

126



o f the ASClIc 0 d e are u s'e d in the PET, 0 n e b y the
operating system and Basic and the other by the video
display. It is bit six which is set to give upper case
or graphies in the video ASCII code. This knowledge
a 110 ws one to recti fy the sligh t ly annoy ing f ea ture of
the old 8K PET (which has been rectified on the 16 and
32K machines) of having to shift to print lower case,
this is do ne by reversing the contents of bit seven of
every character input, thus :

5 POKE59468,14
10 GETA$:IFA$=""GOT010
20 A=ASC(A$)
30 IFA>128THENB=A-128:GOT050
40 B=A+128
50 A$=CHR$(B)
60 PRINTA$;
70 GOT010

READY.

or: To reverse the upper and lower case of aIl the
characters on the screen th en one can PEEK the screen
contents and reverse bit six, thus:

10 FORI=OT0999
20 IFPEEK(32768+I)AND64=64THENGOSUB100
30 GOSUB200
35 NEXTI
40 END
100 POKE32768+I,PEEK(32768+I)AND63
110 RETURN
200 POKE32768+I,PEEK(32768+I)OR64
210 RETURN

READY.

The reverse field display key. has an associated
ASCII character for the reverse "on" mode and another
for the revers e "0 f f" m 0 dethe r e isaIs 0 arevers e
field flag in location 159(old ROMs 526). When the RVS
key is pressed it is decoded as an ASCII characer with a
value of decimal 18, the operating system on recognising
this character will set the flag in location 159. This
flag is set to indicate to the operating system that aIl
subsequent characters displayed must be reverse field. A
character is displayed as a reverse field character if
bit seven of the screen ASCII code is set. The reverse
field flag in 159 is reset by either a shifted RVS
character or by a carriage return. The reverse field
"off" character has an ASCII code value of 146. To
summarise the display can be put into reverse field by
putting an RVS character into the print string or by a
CHR$(l8); which performs the same funtion. It can also
be done by a POKE .r255' AlI three modes are reset by
a carriage return, t reverse the whole screen or a

/5'9 127



particular section of the screen then one would have to
use the following method:

10 FOR 1 = 32768 TO 33769
20 POKE l, PEEK ( 1 ) OR 128
30 NEXT 1

The function of aIl remaining keys is obvious and
they are aIl, including the screen edit keys, decoded to
give their own ASCII code. The edit keys are used by the
screen edit subroutines of the operating system,
allowing the cursor to be moved around the screen under
manual or program control. They also allow insertion and
deletion of characters or clearing the screen. When used
within a string the edit characters are displayed as
cryptic graphie characters which can cause a problem
when getting a printed listing of a program on a non
graphies printer. The ASCII codes can be used to replace
the graphies characters producing the same effect, to
move the cursor down use: PRINT CHR$ ( 17 ) ; the other
ASCII codes are as follows:

Cursor up 145
Cursor 1eft 157
Insert character 148
Cursor home 19
Carriage return 13

Cursor down 17
Cursor right 29
De1ete character 20
Screen clear 147

The opera ting system ha v i ng performed the keyboard
input and character decoding puts the encoded character
into a ten character keyboard buffer ready for use by
the main program. This buffer is loaded every time a key
depression is sensed by the scan subroutine and is
un10aded as soon as the characters can be transferred to
the screen or to the relevent Basic buffer. The keyboard
buffer is organised as a first in first out queue with
the address of the 1ast entry being pointed to by the
contents of location 158 (old ROMs 525), the buffer is
in locations 623 to 632(old ROMs 527 to 536). If the
first character in location 623 is taken out aIl the
other characters are moved down one place in the queue,
the location pointer in 525 being decremented by one.
The keyboard queue can cause prob1ems when running a
program since any key pressed before an Input or Get
command, will be in the keyboard buffer, giving rise to
erroneous inputs. This problem can be overcome by
setting the keyboard buffer location pointer to zero
just before an Input or Get command this will clear the
keyboard buffer of any contents and can be done by a
POKE 158,0.

The keyboard buffer can be utilised to create a
useful family of programs - programs which actually
write their own program lines. This may sound
contradictory but there are a great many uses for this

128



kind of program, perhaps the most use fuI of these is the
auto matie writing of Data statements containing values
input or calcula ted by the program itself. The following
program will convert a machine code program into Basic
data statements.

60000 INPUT" [CLEAR]START#,STEP";S,T
60010 INPUT"START ADDRESS DECIMAL";B
60020 F=B:L=F+10
60030 INPUT"END ADDRESS DECIMAL";E
60050 PRINT" CDOWN 4 "
60060 POKE831,INT(E/256)
60070 POKE832,E-INT(E/256)*256
60100 POKE828,T:GOT060500
60200 S=PEEK(826)*256+PEEK(827)
60300 T=PEEK(828)
60310 L=PEEK(829)*256+PEEK(830)
60330 E=PEEK(831)*256+PEEK(832)
60340 IFL)=EGOT062000
60350 F=L+1:L=L+10
60400 PRINT"~UPl "
60500 PRINTS;

-60600 PRINT"DATA";
60700 FORP=FTOL:PRINTPEEK(P);" ~LEFTJ ,";:NEXTP
60800 PRINT" [CLEFT) "
60900 PRINT"GOT060200 ~UP 4] ";
61000 POKE158,2:POKE623,13:POKE624,13
61100 S=S-+T
61200 POKE826,INT(S/256)
61300 POKE827,S-INT(S/256)*256
61400 POKE829,INT(L/256)
61500 POKE830,L-INT(L/256)*256:END
62000 STOP

Another use would be in the insertion of algebraic
functions into say a graph plotting program, allowing a
function in a particular li ne to be changed either
manually or automatically from data without having to
use a lot of Gosub and Goto statements. The method is
very simple relying on the fact that a line is entered
into a program from the screen only after a carriage
return is pressed. A program line put on the screen with
a print statment can be entered into the main program by
clearing the keyb-oard queue and placing a carriage
return into location 623 of the buffer thus

100 PRINT" clear,cdown 3 lines "AS" chome " : POKE
525,1 :POKE 527, 13:END

Where AS is the line to be entered into the program or
an operation in the immediate mode like GOTO 50 {this

129



wou Id cause the program to jump to Une 50). It should
be noted that entering a new line in this manner will
destroy ail the data and the contents of the subroutine
return stack. These values must be stored before this
program is executed to be retrieved after execution.
This is done in the following example which is an auto
line numbering program allowing one to write a program
without having to enter the line number for each new
line.

60000 INPUT" [CLEAmSTARTI,STEP";S,T
60050 PRINT" [CDOWN 4] "
60100 POKE828,T:GOT060500
60200 S=PEEK(826)*256+PEEK(827)
60300 T=PEEK(828)
60400 PRINT"(CUP] "
60500 PRINTS;
60700 GETD$:IFD$=""THEN60700
60800 PRINTD$;:IFASC(D$)()13THEN60700
60900 PRINT"GOT060200[CUP 3)";
61000 POKE158,2:POKE623,13:POKE624,13
61100 S=S+T
61200 POKE826,INT(S/256)
61300 POKE827,S-INT(S/256)*256:END

The END command in line 61130 initiates the entry of the
new program line, the line number and line increment are
stored by poking their values into locations in the
second cassette buffer. Line 61091 is an immediate
command executed after the program line entry, to return
the line numbering program back to 61030 ready for
another line entry. If this is incorporated as part of a
program then the display on the screen can be disabled
(in old static RAM PETs only) by the command POKE
59409,53.

The function of the screen editor subroutine is to
transfer the contents of the keyboard buffer to the
sc reen a t a posi tion on the screen indica ted by the
flashing cursor. The editor routines are normally active
when no Basic program is running and also during a Basic
Input command, in both modes the screen data is entered
into the program by a carriage return. Before data is
entered into the program it can be edited using the
screen edit commands in conjunction with the cursor
control commando Ali line editing is done between the
keyboard and the screen memory thereby greatly reducing
the complexity of the operating system and the Basic
interpreter. The screen editor is not used by the GET
command, hence the absence of a cursor during a GET
operation. A cursor can however be added to this· command
in old ROM machines by activating the cursor blink flag

130



prior to the GET statement with a POKE 548,0. The cursor
can also be utilised to prevent the abortion of a
program by accidently pressing the return key du ring an
INPUT commando This can be done by formating the Input
statement in the following manner:

100 INPUT " cright 3 spaces * cleft 3 spaces "jAS

This line produces a blinking cursor over an asterisk
which disables the stop and return keys, if one of these
keys is pressed the command returns with an error
message - Redo from start - and a new input prompt. A
Keyboard function not implemented on the PET but which
the user may like to add is a repeat key, which allows
printing of a row of identical characters without having
to repeatedly press the same key. Since there are no
unused keys on the keyboard one can not have a special
key as a repeat key. Instead, holding a key down for a
long enough period must be used to generate repeated key
presses. To do this one must over-ride the operating
system which prevents multiple key closures being
registered by inserting extra code into the keyboard
scanning interrupt routine.

The program is written in machine code and located
in the second cassette buffer. The program consists of
two parts, an initialisation routine to enable the
repeat key, called by a SYS(832). The second part of the
program performs the repeat key function, this tests for
a key depression, if found the program delays before
repeated characters are generated. Another character is
generated by fooling the operating system that the key
is not pressed, this is done by writing 255 into
location 151 which is the register of the matrix
co-ordinates of the last key pressed, a 255 in this
location means that no key is pressed. Having generated
another character, the program de1ays before the next
repeated character, both delay timings can be varied by
changing the relevent values. Once this program has been
entered and run it will stay in the machine until the
machine is switches off or the program is erased by
w rit ing into the second cassette buffer 0 t should be
noted that repeat will affect the operation of both
cas set tes, 1RQ vectors should be re-ini tialised before
using cassettes). The following three programs are
first: a machine code listing of repeat for new ROM
machines, followed by a Basic loader version of the same
program and lastly a Basic loader of repeat for old ROM
machines.

REPDEL = $02
DELAY = $01
KEY = $00
IRQSUB = $E62E

131



IRQV = $90
LSTKEY = $97
BLINK = $A8

;REPEAT KEY ENABLE

0340 78 REPON SEI
A9 4F LDA # REPEAT
85 90 STA IRQV
A9 03 LDA # REPEAT +1
85 91 STA IRQV+1
A9 01 LDA #1
85 02 STA REPDEL
58 CLI
60 RTS

;REPEAT KEY FUNCTION

034F A5 97 REPEAT LDA LASTKEY
C5 00 CMP KEY
Fa 09 BEQ REP1
85 00 STA KEY
A9 10 LDA #$10
85 01 STA DELAY
4C 2E E6 REPEND JMP IRQSUB
C9 FF REP1 CMP f/$FF
Fa F9 BEQ REPEND
A5 01 LDA DELAY
Fa 04 BEQ REP2
c6 01 DEC DELAY
DO F1 B'NE REPEND
c6 02 REP2 DEC REPDEL
DO ED BNE REPEND
A9 04 LDA #$04
85 02 STA REPDEL
A9 00 LDA //$00
85 97 STA LSTKEY
A9 02 LDA #$02
85 A8 STA BLINK
DO DF BNE REPEND

5 REM REPEAT FOR NEW ROM MACHINES
10 FORQ=832T0891
20 READA
30 POKEQ,A
40 NEXTQ
50 STOP
100 DATA120,169,79,133,144,169,3,133,145,169
110 DATA1,133,2,88,96,165,151,197,0,240,9
120 DATA133,0,169,16,133,1,76,46,230,201,255
130 DATA240,249,165,1,240,4,198,1,208,241
140 DATA198,2,208,237,169,4,133,2,169,0,133
150 DATA151,169,2,133,168,208,223

132



10 DATA120,56,169,233,237,26,2,141
15 DATA26,2,88,96,173,35,2,201,255
20 DATA208,12,169,0,141,119,3,169
25 DATA90,141,120,3,208,25,238,119
30 DATA3,173,120,3,205,119,3,176,14
35 DATA169,6,141 120,3,162,255,142
40 DATA3,2,232,142,119,3,76,133,230
45 FORI=889T0947
50 READJ
55 POKEI,J
60 NEXTI
AIl devices which the PET communicates with are

assigned numbers (except the user port), the keyboard is
device o. This can be used to produce sorne interesting
and useful techniques involving fooling the operating
system into thinking that program entry is via the
keyboard when in fact it is from another device. These
techniques can be used to merge programs together - this
method will be looked at in the section on cassette
usuage - and inputting programs from another computer
connected to the PET via say the IEEE port. This is done
by changing the default input device number in location
175 ( old ROMs 611). Normally set to 0, the keyboard
device number, this location if changed to 1 will fool
the system into accepting data from cassette 111 but
treating it as if it came from the keyboard. It is
however not as simple as poking al into location 175
since the operating system automatically resets this
location. Instead one must repeated1y force this input
into the PET using the methods already mentioned for
automatic line entry. The device number entered into
location 175 need not be confined to 1 or 0, it could be
2 if we wanted to input from cassette 112, or 5 to input
fro m a dey ice specif ied as device 5 on the IEEE port
etc.

The Cassette Units.

The standard 8 K PET has a single internaI cassette
unit with the facility of adding another unit via an
edge connector at the rear of the machine. New dynamic
RA M machines with large keyboards have no internaI
cassette deck but edge connectors are provided for two
external units. The two cassette decks are controlled by
1/0 lines from the 6522 VIA and the 6520 PIA Ill. Each
deck is connected to the PET by six lines - Write, Read,
Motor, Sense and two power lines, ground and +5 volts 
of these lines only the Write line and the power lines
are common between the two cassette units. The
connections can be summarised as fol10ws:

Read
Write
Motor
Sense

Cassette 111
CAl of 6520 III
PP~3 of 6522
CB2 of 6520 111
PA4 of 6520.f1l

Cassette 112
Read CB 1 of 6522
Write PB3 of 6522
Motor PB4 of 6522
Sense PA5 of 6520 fil

133



The casette motor power supply lines are connected to
the interface chips via a three transistor driver used
to boost the power and voltage allowing the motor to be
driven directly. The output to the motor is an
unregulated +9 volts at a power rating of up to 1000ma,
(if the second cassette deck is not used this output
cou Id be used to power a small external circuit on say
the user port). The motor on cassette III can thus be
turned on and off by toggling the CB2 line on 6520 111 
POKE 59411,53 should turn the motor on and POKE 59411,61
turn it off, however this will not work unless the scan
interrupt is disabled since this automa tically turns the
motor off.
The sense line input is connected to a switch on the
cassette deck which senses when either the Play, Rewind
or Fast Forward buttons have been pressed. The switch is
only required to sense the pushing of the Play button
during a read or write to tape routine this is done by a
subroutine at F835 (old ROMs F85E). If either the
rewind or fast forward button is pressed accidently
instead of the play button the system will be unable to
tell the difference and will act as if the play button
was pressed. For a similar reason during a record
routine the recôrd button must be pressed before the
play button since recording will start as soon as the
sense switch is closed by pressing the play button.

The functioning of the read and write lines is
controlled entirely by the operating system, the only
hardware required being signal amplification and pulse
shaping circuitry. These circuits are contained on a
small PC ~oard within the cassette deck their function
being to give correct voltage and current to the record
head and amplify the input from the read head to give a
5 volt square wave output able to produce an interrupt
on the CA 1 or CB 1 lines.

In normal usage the two cassette decks are assigned
110 device numbers, the internaI cassette is device
number l, the external cassette device number 2. The
device number together with the logical file number and
the secondary address is used when saving or retrieving
da ta files from one or other of the two cassette decks.
The logical file number can be any number from 1 to 255
and is used to allow multiple files to be kept on the
same device, it is of little use with casette tape and
primarily intended for use with floppy disk units. It is
usual to have the logical file number the same as the
device number, the logical file number of the current
file is stored in location 210(01d ROMs 239). The
secondary address is important since it determines the
operational mode of the cassette, the current secondary
address is stored in location 212 and 213 (old ROMs 241
and 242) the normal default value being zero." If the
secondary address is zero then the tape is opened for a
"read" operation, if set to 1 then it is opened for a

134



"write" operation and if· 2 then it is opened for a
"write" with an end of tape header being forced when the
f He is closed.

The operating system on the PET is configured to
allow two different types of file to be stored on
cassette: program files and data files. These names are
however rather misleading since a program can be stored
as a data file and data can be stored as a program file.
The difference between these two file types is not in
their application but in the way the contents of the
machine's memory is recorded. Instead of program and
data files we must look upon them as Binary and ASCII
files. A binary file is usually used to store programs
since a binary file is created by the operating system
to store the contents of memory between a starting
location and an end location. Called a binary file
because the basic statements stored on this file are not
stored in the same manner as they are listed on the
display or were entered on the keyboard, they are
instead stored in the partially encoded form which is
used to store the commands within memory. Because the·
program is stored in a partially encoded form a binary
file 1S a quicker and more efficient way of storing
programs, and essential if saving and loading machine
code programs and data. The starting address from which
a binary file will be saved is stored in locations 251
and 252 (old ROMs 247 and 248), hormally these will be
set to 0 and 4 thereby pointing to the start of the
Basic text area at 1024. They can be altered to point to
any location in memory. The end address of the area of
memory to be saved is stored in locations 201 and 202
(old ROMs 229 and 230) normally wh en saving a Basic
program these are set to the la st address of the last
statement. Like the beginning, the end address can be
altered to any desired address. To change either of
these addresses one can not use the. normal save routine
since this automatically initialises these locations.
Instead one must write a small machine code
initialisation routine incorporating the desired
operating system subroutines (see No copy program). By
default a Save command will write a binary file and a
Load command will read a binary file.

An ASCII file is normally used to store data (but
can be used to store programs see Merge procedure) the
format being the same as that displayed on the screen or
entered on the keyboard. ASCII files are created or read
almost exclusively by instructions from within a Basic
program. A binary file is created or read exclusively by
direct instructions, though the Load and Save
instructions can be used within a program. An ASCII file
must first be opened with an Open statement which
specifies the logical file, device number, secondary
address and file name. This is then interpreted by the
operating system allowing the user to read or write the

135



file to the specified device. Data is written to an
ASCII file on a particular dey ice w ith a co m mand to
Print to the specified logical file number, and data is
read by a Read from logical file commando Whereas a
binary file is loaded with the contents of successive
memory locations, an ASCII file is loaded with a string
of variables. Storing these individually would require
the tape to be turned on and off repeatedly storing a
few bytes of data at a time. The PET overcomes this by
having a 192 byte tape buffer for each cassette deck
into which aIl data to be written to, or read from tape
is loaded, only when this buffer is full is the tape
motor turned on. Data is stored on tape in blocks of 192
bytes and since the motor is turned on and off between
blocks a two second interval must be left between blocks
to allow the motor to accelerate and decelerate. The
beginning of the 192 character buffer for cassette III
starts at address 634 and for cassette 112 at location
826. The pointer to the start of these buffers is
located at address 214 and 215(old ROMs 243 and 244).
The number of characters in a buffer is stored in
locations 187 for buffer III and 188 for buffer 112 (old
ROMs 625 and 626), these locations can be used by the
program mer to control the amount of space left in a data
file. If having opened a file on cassette III the command
POKE 625,191 is executed then the contents of the tape
buffer even if empty is loaded onto the tape. If records
are kept in multiples of 191 bytes we can very easily
keep nul or partially filled records allowing future
data expansion.

Whether the file being stored is binary or ASCII the
recording method used is the same involving an encoding
method unique to Commodore and designed to ensure
maxi mu m reliability of recording and playback. Each byte
of data or program is encoded by the operating system
using pulses of three distinct audio frequencies, these
are: long pulses with a frequency of 1488Hz, medium
pulses at 1953Hz and short pulses at 2840Hz. AlI these
pulses are square waves with a mark space ratio of 1:1,
one cycle of a medium frequency is 256 microseconds in
the high state and 256 microseconds in the low state.
The operating system takes about 9 milliseconds to
record a byte of data consisting of the eight data bits,
a word marker bit and an odd parity bit. The databits
are either ones or zeros and are encoded by a sequenée
of medium and short pulses: a "1" is one cycle of a
medium length. pulse followed by one cycle of a short
length pulse and "0" is one cycle of a short length
pulse followed by one cycle of a medium length pulse.
Each bit consists of two square wave pulse cycles, one
short and one medium with a total duration of 864
microseconds as in the following diagram:

136



J
256 J..ls

256 ).1S

176 J..ls

l "1"
176 J..ls......_-_......

J
176 HS

1 176 J..ls

256 JJS

'------'--__1 "0"
_ . 256 J..ls J

The odd parity bit is required for error checking
and is similarly encoded, its state being determined by
the contents of eight data bits. The word marker is used
to separate each byte of data and a1so to signal to the
operating system the beginning of each byte. The word
marker is encoded as one cycle of a long pulse followed
by one cycle of a medium pulse thus

J
336 Jls

336 )Js [
256 J..ls

Since a byte of data is recorded in just 8.96
millisecon<is a 191 byte b10ck of data in an ASCII file
should be recorded in just over 1.7 seconds, however on
timing such a recording we find it takes 5.7 seconds.
There are two causes for this discrepency in timing,
firstly to reduce the possibility of audio dropouts the
data is recorded twice, secondly a two second
interrecord gap is left between each record of 192
bytes. The extensive use of error checking techniques is
one reason why the tape system on the PET is so much
better than that available on most other popu1ar
computers. There are two levels of error checking, the
first divides the data into blocks of eight bytes and
then computes a ninth byte which is a checksum digit,
this is obtained by adding the eight bytes together and
taking the least significant byte of the result. If when
the tape is read one bit in the eight bytes is dropped
and a zero becomes a one and the same procedure is
applied to calcula te the check digit, the result will be
different to that stored in byte nine, the check digit
of that block compùted when the tape was recorded. The
second level of error checking invo1ves recording each
block of data twice and if an error was detected by the
check digit performing a verification process between
the two blocks.

The use of pulse sequences rather than two
frequencies as in a standard FSK recording has a great

137



advantage since it allows the operating system to easily
compensate for variations in recording speed. Normally a
hardware phase locked loop circuit would be used to lock
the system onto the correct frequencies coming from the
tape head, the PET however uses software to perform this
process. A ten second leader is written on the tape
before recording of the data or program corn mences. This
leader has two functions, first it allows the tape motor
to reach the correct speed and secondly the sequence of
short pulses written on the leader is used to
synchronise the read routine timing to the timing on the
tape. The operating system can thus produce a correction
factor which allows a very wide variation in tape speed
w ithout affecting reading. The system timing used to
perform both reading and writing is very accurate, based
as it is on the crystal controlled system clock via the
internaI timer Illon the 6522 chip. Interrecord gaps are
only used in ASCII files and their function is to allow
the tape motor time to decelerate after being turned off
and acce1erate to the correct speed when turned on prior
to a block read or write. Each interrecord gap is
approximately two seconds long and is recorded as a
sequence of short pulses in the same manner as the ten
second leader. There is also a gap between blocks, when
the first block of 192 byte~ is recorded it is followed
by a block end marker which consists of one single long
pulse followed by 50+ cycles of short pulses then the
second recording of the 192 block starts, this is
identical to the first block.

The first record written on the tape after the ten
second leader in both ASCII and binary files is a 192
character file header block. The file header contains
the name of the file, the starting memory location, and
the end location. In an ASCII file these addresses are
the beginning and end of the tape buffer, in a binary
file they point to the area of memory in which the
program is to be stored.

The file name can be up to 128 bytes long, the
length of the file name is stored in location 209(old
ROMs . 238), and when read is compared with the requested
file name in the Load or Open commando If the nam.e is
the same then the operating system will read the file,
if different then it will search for the next ten second
interfile gap and another header block. The file name is
stored during a read or write operation in a block
memory, the starting address of which is stored
locations 218 and 219 (old ROMs 249 and 250), on
completion of the operation these are reset to point to
a location in the operating system. The starting
location is normally set to the beginning of the user
memory area, address 1024, however it can be changed to
point to any location, a method employed when recording
programs in machine code using the monitor,and also in
the Nocopy program shown later in this chapter. The

138



starting address is pointed to by the contents of
loca tions 251 and 252 (old ROMs 247 and 248). The end
address being stored in locations 201 and 202 (old ROMs
229 and 230) normally this is the highest byte of memory
occupied by the program, however it can be altered to
point to any address providing it is greater than the
start address.

Normally any program running on the PET whether in
Basic or machine code can be saved on tape, this fact
has deterred many programmers from writing quality
commercial software for the machine since it is gO easy
to make a copy. However machine code programs can be
made uncopyable by using a special save routine, the
program when recorded changes the file header contents
in such a way that prevents any further copies of the
tape being made. The program works by setting the start
address to a location just below the user memory area,
instead of 1024 locations 251 and 252 now contain 1021
so that the program starts at this address. If we try
running a program from this location we will simply get
an out of memory error since the operating system now
look s upon loca tic n 1024 as be ing the hig hest memory
location. To overcome this a jump instruction -Hex 4C
is put at address 1024. When the program is run it works
perfectly normally, however, when an attempt is made to
save the program the machine will respond with an out of
memory error. The start location can be lower than 1021,
this allows the second cassette buffer to be used as
weIl as the main memory. The following program will
create a binary tape of the entire memory contents from
loca tion 826 to 8192 and gives it the file name "SAVE",
the locations and file name can be changed by the user
by changing the relevant locations.

033A A9 4e LDA 4e
8D FD 03 STA 03FD :store jump instruction

in 1021
A9 01 LDA 01
85 D4 STA Z D4 :current secondary address

in 212
A9 67 LDA 67
85 DA STA Z DA :LSB of ile name location

in 218
A9 03 LDA 03
85 DB :;:iTA Z DB :MSB of file name location

in 219
A9 02 LDA 02
85 D1 STA Z D1 :file name length in

location 209
A9 3A LDA 3A
85 FB STA Z FB :LSB of start address

in location 251
A9 03 LDA 03
85 Fe STA Z Fe :MSB of start address

in location 252

139



A9 00 LDA 00
85 C9 STA Z C9 :LSB of end address in

location 201
A9 20 LDA 20
85 CA STA Z CA :MSB of end address in

location 202
A2 00 LDX 00
20 9E F6 JSR F69E :jump into "Save" subroutine
4C 8B C3 JMP C38B :jump to "Ready" subroutine
53 BYT :S - first character of

file name
41 BYT :A
56 BYT :V
45 BYT :E

Since this program is of use only with machine code
programs the Nocopy program 1s best entered and saved
using the machine code monitor. To demonstrate its
function, use the monitor to enter the program and then
save the monitor and the Nocopy program with a SYS(826)
from the Basic mode. Switch the PET off and reload using
the new tape, you will find it impossible to make a copy
of this new tape in the conventional manner, further
copies can only be made by the Nocopy program.

Whenever a Basic program is loaded into the PET it
will always start at location 1024 meaning that we can
not merge programs together since if we load another
program it will simply overlay the first program. The
secret of merging two programs is, having loaded a
program new lines can be entered from the keyboard and
existing lines amended. By changing a few locations we
can fool the operating system into accepting data from
the cassétte as if it were the keyboard. This requires
that the subroutines or program which we want to merge
into our main program are stored as ASCII tapes rather
then the normal binary tape. The reason being that the
contents of the tape must be the same sequence of
chara·cters entered on the keyboard and not the
compressed form stored on a binary tape. A program can
be easil y saved as an ASCII tape by using the following
sequence of commands:

OPEN 1,1,1 : CMD 1 : LIST

This lists the program to cassette 111 rather than the
screen or a printer, when the program has been recorded
the PET can be returned to normal operation by the
command:

PRINT 111 : CLOSE 1

Using this process one can build up a library of useful

140



and/or common subroutines,however, one must be careful
to number the lines according to some method whereby
subroutines are divided into groups each with its own
unique block of line numbers. The reason being that
using this merge routine subroutine line numbers which
are the same as line numbers in the main program will
erase the main program lines. Aiso if the line number of
the subroutine and the main pro gram overlap even though
none of them have the same number the subroutine lines
will be inserted between those of the main program.
Another point to watch is the use of variable names in a
subroutine, these should conform to a standard where a
particular variable name is always used exclusively to
perform a particular function in al1 subroutines and
programs. This helps to avoid the confusion which can
result from using the same variable for two purposes.

The process of merging a subroutine stored as an
ASCII file into a main program stored in the PETs memory
is quite simple but must be done exactly as fol1ows
otherwise the process will not work. The first. step is
to insert the subroutine program tape, rewind and type :

OPEN 1

The Pet will respond with a prompt to press the PLAY
button on the cassette, do this and th en wait for the
tape to stop. In my experience there are times when the
tape deck motor does not stop after ten or fifteen
seconds as it should , in this case press the Stop key,
rewind, and repeat the above process. By opening the
file in this manner the operating system reads the tape
header and initialises the system to read data from the
tape. Then it stops the tape in the inter record gap
pr ior to the first 192 byte record. For the processor to
read this record and interpret it as program lines
entered on the keyboard, requLres a Jittle trick
incorporating the methods used for automatic line entry.
Before a record can be read the default input device
number in location 175 (old ROMs 611) must be changed
from 0, this is the keyboard, to 1 which is the device
number for cassette Ill. This can not be done by a POKE
175,1 the system will crash by responding with READY
then SYNTAX ERROR then PRESS PLAY ON TAPE 3. One must
catch the system between the ready response and the
syntax error and enter another POKE 175,1 thereby
maintaining the stability of the system with a device
number of 1. This is possible by forcing a carriage
return into the keyboard buffer and moving the cursor
back to the "home" position, when the processor responds
by printing READY the cursor is placed on the beginning
of the line containing the POKE 175,1 command which it
then executes again. To do this the screen is cleared,
the cursor moved down four lines and the following line
entered:

141



POKE 175,I:POKE 158,1: POKE 623,13:?" home cursor "

The reason for moving the cursor down four lines is to
provide space for the READY response to be printed.
Instead of pressing return after entering this line
press "cursor home", then move the cursor down six lines
and enter the same line again. Make sure the play button
on the cassette is still down th en press return, the
tape should move and the subroutine entered. This line
is entered twice so that when the line which has just
been processed is four lines down from the top it will
automatically execute another line which is six lines
down from the top of the screen and vice versa. For this
reason two identical lines must be put on the screen one
on line four the other on line six. When the merge is
completed the message ?SYNTAX or ?OUT OF DATA will be
pr inted on line five and the tape should stop if not
then press the R UN /STOP key. Normal operation of the PET
can be resumed by closing the file with the command:

CLOSE 1

On listing the program you should
subroutine has been inserted into the
in the main program.

The IEEE Port.

find that the
correct posi tion

The IEEE-488 port is the principle 1/0 port on the
PET, designed to allow the PET to be connected to a wide
range of peripheral devices ranging from printers and
the PET floppy disk to scientific instruments. The
IEEE-488 bus or as it is sometimes known the HP-lB bus
was developed by Hewlett Packard in the early 1970s to
simplify the integration of instruments, calculators and
computers into systems. It has since been adopted as an
international standard bus, the standards being laid
down by the American Institute of Electrical and
Electronic Engineers and given the standard number 488.
This means that it should be possible to connect any
IEEE 488 device to any other IEEE 488 device. This has
prompted many manufacturers throughout the world to
pro duce equipment with IEEE 488 interfaces. This fact
coupled with a belief that the IEEE 488 bus will become
the only standard way of interfacing computers and
peripherals prompted Commodore to use this bus on the
PET in preference to say an RS232 1/0 port. The use of
an IEEE 488 port on the PET has met a mixed reception
(sorne clai ming Commodore's decision to use it, a stroke
of genius, others claiming it a disaster). However, it
is not hard to construct an IEEE 488 to RS232 interface
and in this way the PET user can have the best of both
worlds.

The sixteen active lines of the IEEE port are

142



principally derived from 6520 112. Only four lines are
connected directly to the interface chips or the
processor control bus, the remainder being connected to
the system via three quad line bi-directional buffer
les. The bi-directional buffers are used to combine two
lines, one input and one output, from the peripheral 1/0
chips to produce the bidirectional lines required by the
IEEE bus. From the processors view the IEEE port
consists of eight data input lines and eight data output
lines plus four handshake outputs and four handshake
inputs, the remaining four control lines are
unidirectional. The bi-directional buffer chips are
tri-state devices, in the non active state the
bi-directional lines on the IEEE port are at a high
Impedance state. This means that they have a voltage
level intermediate between the high state and a low
state allowing any device to hold the bus in a "true" or
logical "1" state. The standard IEEE connector is not
used on the PET, instead as with other 1/0 port
connectors it is a 12 position 24 contact edge connector
with a .156 inch space between the contact centres. If
the IEEE port is to be used with instrumentation then
the user must add a standard connector which is a 24
contact type 57 Microribbon connector the connections
for which are shown in the following diagram.

o

Signal ground 24 12 Shield 10 earth g'ound

r
23 11 AlN

la 22 10 SRO

Twisled pa., with - 9 21 9 IFC

( grouned near 8 20 8 NOAC

t.,minaUon ) 7 19 7 NRFD

" 18 6 OAV

REN 17 5 EOI

08 16 4 0"

07 15 3 03

0" 14 2 02

OS 13 1 Dl

IEEE Connector

0

The maximum length of cable used to connect devices
together on the IEEE bus should not exceed more than 5
metres and the length of the cable between the PET and
the last device on the bus should not exceed 15 metres.
Agrea t v irtue of the IEEE port 1s that one can use it
to connect more than one device to the computer hence

143



the reason why it is ohen referred to as the IEEE bus.
Each device is identified on the bus by its device
number, the PET allows the user to connect up to 15
different devices cnte the IEEE bus. An example of the
way such devices are connecteçl cnte the PET IEEE bus is
shown in the following diagram. Each device is connected
in parallel to the 16 lines of the bus these sixteen
lines being the sole communication link between the
devices and the PET controller.

HHHH (\
Deviee 4

Talk and listen

...-.-

Deviee 5

Listen ORly
~ IFe

...-.- >-- ATH

f-- SRC }..__... -
REN

EOI PET

00 ·07 Data bus
Oevice 15

OAV }
Talk only NA FO Handshak. bus

1 NOAC

The devices connected onto the IEEE bus must be capable
of performing at least one of the following functions:

LI5TENER - A device which is defined as a listener must
be capable of receiving data from other devices
connected to the bus. The best example of a device which
acts solely as a listener is a printer.

T ALKER - A device capable of transmitting data to other
devices on the IEEE bus. An example of this is a digital
voltmeter, others would be a counter or a paper tape
reader.

CONTROLLER - A device which manages the communications
over the IEEE bus such as addressing devices and sending
commands. The PET is the only device which can act as a
controller, the controller of course can also act as
either a talker or listener.

Although up to 15 devices can be put cnte the IEEE

144



at a time can act as a talker, al!
simultaineously act as listeners
input to more than one devicè at a

bus only one device
other devices can
allowing data to be
time.

The sixteen signal lines of the IEEE bus can be
divid~d into three groups, these are: the data
transmission bus, the transfer bus and the management
bus; the remaining eight lines on the 24 line connector
are grounds. The data bus consists of eight
bi-directional lines for transmission of data signaIs in
a bit parallel mode, the signaIs are active low and the
most significant bit is on line Dl08. The data is
transmitted one byte at a time as a seven bit ASCII code
with the eighth bit available for a parity check, the
data transmission rate is controlled by the slowest
device on the bus at a particular time. Although the
maximum data transfer rate on the IEEE bus is about lM
bytes per second the PET is limited by the processor
speed, practical li mits are about 5000 bytes per second,
in Basic this is reduced to 100 bytes per second. The
data bus is also used to transmit peripheral addresses,
these are device addresses used to enable a device to be
accessed on the bus. Aiso control information, both are
distinguished from data by having the ATN line low
during transfer. The transfer bus consists of three
lines used to control the transfer of data over the data
bus, as with the data lines these signaIs are active
low. Th.e function of the transfer bus lines can be
sum mar ised as follows:

DAV Data Valid

When this line is low it signaIs that there is valid
data on the data bus.

NRFD Not ready for data

This line is kept low for as long as one or more devices
on the IEEE bus defined as listeners are not ready to
accept data. As soon as al! devices are ready NRFD goes
high

NDAC Data not accepted

This line is held low by a listening
reading data, as soon as the data has
listener sets NDAC high th us signalling
that the data has been accepted.

device while
been read the
to the talker

Since data is transferred on the IEEE bus in an

145



PET Bus IEEE PET Description
contact label contact
label number

1 DATA D101 1 Data INPUT/OUTPUT LINE fi 1
2 D102 2 Data INPUT/OUTPUT LINE //2
3 D103 3 Data NPUT/OUTPUT LINE //3
4 D104 4 Data INPUT/OUTPUT LINE //4

5 MANAGER E01 5 End of identify

6 TRANSFER DAV 6 Data valid
7 NRFD 7 Not eady for data
8 NDAC 8 Data not accepted

9 MANAGER C l terface
Same as PET reset

10 SRQ 10 Service request
11 ATN 11 Attention
12 SHIELD 12 Chassis ground and IEEE

cable shield
A DATA D105 13 Data INPUT/OUTPUT LINE //5
B D106 14 Data INPUT/OUTPUT LINE fl6
C D107 15 Data INPUT/OUTPUT LINE f/7
D D108 16 Data INPUT/OUTPUT LINE //8

E MANAGER REN 17 Remote enable (REN) always
ground in the PET

F GROUNDS GND6 18 DAV ground
H GND7 19 NFRD ground
J GND8 20 NDAC ground
K GND9 21 IFC ground
L GND10 22 SRQ ground
M GND11 23 ATN ground
N LOGIC

GND 24 Data ground (D101.8)

Fig 5.4 IEEE Port Connections

146



asynchronous mode the function of the three lines of the
transfer bus is to handshake data transfers between a
talker and a listener. The timing of the handshaking
sequence is very important and is bèst illustrated by
showing the actual waveforms of the three transfer bus
lines and the data bus lines over two cycles of a
handshaking sequence where two bytes of data are
transferred from one talker to one or more listeners.

Data lines

DAV

_r L

L

NRFD

NDAC

111111

Perio. when a" Iisteners

ready for data

Period wt'len ail Iisteners

accept data

Period wh." data

guaranteed valid

With the' PET there are sorne constraints on the timing of
the handshaking sequence which must be observed if 1055
of data is to be avoided, these are:
1) when the PET is a listener the DA V line must go low
within 64 milliseconds after it has set NFRD high.
2) when the PET is a talker then NADC must go high
within 64 milliseconds after it has set NRFD high.
The five lines which comprise the management bus are to
give device commands and to control the current state of
the data bus the functions of these lins can be
summarised as follows:

ATN Attention

This line is set low by the control 1er when it is
sending commands and peripheral addresses on the data
bus. As soon as ATN goes high the previously assigned
d ev i ce scan tr ansfe r da ta bet ween them se 1ves and the
controller.

EOI End of Identify

This line
of data is
listener

is set
being

that

low by the
transfered

it is the

talker while the last byte
and th us indicates to the

end of the message.

147



IFC Interface Clear

The IFC Une on the PET is connected to the systems
reset, thus when the PET is switched on this line goes
low for about 100 milliseconds. By setting the IFC line
low aIl devices connected to the IEEE bus are
initialised to an idle state.

SRQ Service Request

Sorne devices connected to the IEEE bus have the ability
to request service from the controlIer and it does this
by setting the SRQ Une low. This line however is not
implemented by Basic on the PET but it is connected to
the CB 1 input on 6520 112 and can be used by writing a
machine code subroutine to test the state of this line
as part of the 60Hz keyboard scan interrupt. If more
than one device can set the SRQ Une low then the
controller must polI the devices to find which one
requested service, the controller does this by
transmitting the seriaI polI mode command which is hex
18. Each device is then po lIed by setting AT N,
addressing the device as a talker and then removing ATN,
if it was that device which set SRQ then it will respond
by setting data line 7 low. The seriaI poIl mode is
disabled by the controller transmitting command hex 19.

REN Remote Enable

This li ne is held low by the PET and is not under user
control

The PET· as the only active controller allowed on the
bus manages aIl communications between devices, doing
this by sending commands to these devices via the data
lines. Commands are distinguished from data by the state
of the' ATN line, when this is low the data bus is in the
corn mand mode and the controller the only active device,
aIl other devices are waiting for instructions. These
commands are performed automatically by the operating
system of the PET when the IEEE bus is being used under
Basic. A knowledge of the commands is required if the
bus is to be controlled under machine code.

The simplest group of commands are address and
unaddress, there are four of these commands: talker
address, listener address, unlisten address and untalk
address. The talker address is transmitted as a seven
bit code and enables a specifie device to talk, since
only one device at a time can act as a talker this
command automatically unaddresses and disables the
previous talker. The talker address is functionally the

148



same as the device number used in Basic but whereas a
device number can be any number from 4 to 30, the talker
address is any one of a group of 31 seven bit byte ASCII
characters which are defined as talk addresses by bit
six = 0 and bit seven = 1. Each device has its own
unique talk address which can be set by the user and
will be used by the controller software to select that
dey ice. The listener address is also transmitted as a
seven bit code used to enable a specific device to act
as a listener. A listener address is the same as the
device number used in Basic and can be any one of a
group of 31 seven bit byte ASCII characters defined as
listener addresses by having bit six = 1 and bit seven =
O. Note that in Basic the difference between a talker
and a listener is determined by the contents of the
secondary address which the operating system translates
into the values of bit six and seven. When a device can
act as both talker and listener then they are assigned
addresses which are identical except for the contents of
bits six and seven. A device selected as a listener by
the ASCII character' "&" has a talker address selected by
the character "F". Both talker and listener addresses
can be changed by the user, this is normally done by
adjusting a set of switches or jumpers within the
instrument.

A device selected by a listen or talk address can be
deselected by an unaddress commando The unlisten command
which is hexadecimal 3F clears the bus of all listeners.
The untalk command which is hexadecimal 5F disables the
current talker 50 that no talker remains on the bus,
this effect can also be achieved by selecting an unused
address.

A device need not be addressed to respond to a set
of commands known as universal commands, and aIl devices
on the bus will respond to one of these commands from
the control 1er irrespective of whether they are
addressed or note There are five universal commands and
their functions are summarised as follows:

DCL Device Clear Hex 14

This corn mand returns all devices on the IEEE bus capable
of responding to a predetermined state irrespective of
whether they are addressed or note

SPE SeriaI PoIl Enable Hex 18

This enables the seriaI poll mode on the bus, it is only
used wh en the SRQ line is implemented on the PET, this
mode enables the controller to find which device
generated the service request.

149



SPD SeriaI Poll Disable Hex 19

The seriaI poll mode set by the SPE corn mand is disabled
by this commando

LLO Local LOckout Hex Il

The local
responding

reset
device

but ton
can be

on the
disabled

front panel of a
by this commando

PPU Parallel Poll Unconfigured Hex 15

This provides aIl devices on the IEEE bus capable of
responding to this command with the ability to uniquely
identify itself if it requires service and the
controller is requesting a response. This command
differs from service request since it requires the
controIler to periodically conduct a paraIlel pollo This
command is not implemented on the PET by Basic.

The remammg set of IEEE corn mands are aIl addressed
commands and affect only those devices which have
previously been defined as listeners. The virtue of
addressed commands is that they allow the controller to
initiate an action in either a single instrument or a
simultaneous action in a group of instruments. There are
five addressed commands and their functions can be
sum mar ised as follows:

SDC Selective Deviee Clear Hex 04

This
bus

corn mand returns aIl addressed devices on the IEEE
capable of responding to a predetermined state.

GTL Go to Local Hex 01

Returns the addressed devices to local control.

GET

Initiates a
group of

PPC

Group Execute Trigger

simultaineous pre-programmed
addressed devices.

Parallei Poll Configure

Hex 08

action by

Hex 05

a

This performs a similar function to the parallel poIl
unconfigured corn mand, it permits a single DIO line to be

150



assigned to each instrument (maximum
is thus eight) for the purpose of
parallel poil.

number of devices
responding to the

TeT Take Control Hex 09

This command alows the active controller of the IEEE bus
to transfer control to another device. This can not be
implemented on the PET since the operating system only
allows the PET to act as the active control 1er.

Other commands specifie to a particular device can
be given on the IEEE bus, these are the secondary
address commands used in the OPEN statement to instruct
an inteligent peripheral to function in one of a number
of different modes. The form and nature of a secondary
address command whether given from Basic or machine code
depends entirely on the device. Each device has its own
conventions which can only be obtained by consulting the
manual for the device. A secondary address can have a
value between 0 and 31 in Basic. Note that when the
Basic secondary address is transmitted it is as the OR
of hex FO since bits 4,5,6 and 7 must be set.

The OPEN command in Basic is used to select a device
on the IEEE bus which has a device. number between 4 and
30. If the device number is less than 4 the operating
system will instead address either the keyboard,
cassettes or screen. The operating system is also
initialised so that the device will communicate with a
particular logical file having a number between 1 and
255. The use of a secondary address and a file name is
optional, however, a secondary address is only sent if a
file name is used, the. operating system then sends a
listen command to the specified device followed by the
secondary address. If there is no response by the device
to the A TN corn mand the operating system will respond
with a "DE VICE NOT PRESENT" error and set bit 7 of the
status byte. Having initialised the system and a
specified device for data transfer on the IEEE bus and
perhaps set the addressed device to a particular
function by using the secondary address, data can be
transfered using either the INPUT Il, PRINTII or GET Il
commands. When one of these commands is encountered in a
program the operating system will go through the
IEEE-488 input initiation routine. The INPUTII and GET Il
com mands specify a particular logical file number, the
input initiation routine sends a talk command to the
device specified in the OPEN command for that logical
file, setting the addressed device as a talker and the
PET as a listener. The PET then waits for the DAV line
to be set low indicating that the talker has placed a
single byte of valid data on the bus. An input on the

151



Talk Addresses

Bits ASCII

b8 b7 d6 b5 b4 bi b2 b1 Character
X 1 0 0 0 0 0 0 @

X 1 0 0 0 0 0 1 A
X 1 0 0 0 0 1 0 B
X 1 0 0 0 0 1 1 C
X 1 0 0 0 1 0 0 D
X 1 0 0 0 1 0 1 E
X 1 0 0 0 1 1 0 F
X 1 0 0 0 1 1 1 G
X· 1 0 0 1 0 0 0 H
X 1 0 0 1 0 0 1 l
X 1 0 0 1 0 1 0 J
X 1 0 0 1 0 1 1 K
X 1 0 0 1 1 0 0 L
X 1 0 0 1 1 0 1 M
X 1 0 0 1 1 1 0 N
X 1 0 0 1 1 1 1 0
X 1 0 1 0 0 0 0 p
X 1 0 1 0 0 0 1 Q
X 1 0 1 0 0 1 0 R
X 1 0 1 0 0 1 1 S
X 1 0 1 0 1 0 0 T
X 1 0 1 0 1 0 1 U
X 1 0 1 0 1 1 . 0 V
X 1 0 1 0 1 1 1 W
X 1 0 1 1 0 0 0 X
X 1 0 1 1 0 0 1 Y
X 1 0 1 1 0 1 0 Z
X 1 0 1 1 0 1 1
X 1 0 1 1 1 0 0
X 1 0 1 1 1 0 1
X 1 0 1 1 1 1 0

Table of IEEE Deviee Talk Addresses

152



Listen Addresses

Bits ASCII

b8 b7 b6 bS b4 bi b2 b1 Character
X 0 1 0 0 0 0 0 SP
X 0 1 0 0 0 0 1 !
X 0 1 0 0 0 1 0 "
X 0 1 0 0 0 1 1 /1
X 0 1 0 0 1 0 0 S
X 0 1 0 0 1 0 1 %
X 0 1 0 0 1 1 0 &
X 0 1 0 0 1 1 1

,
X 0 1 0 1 0 0 0 (
X 0 1 0 1 0 0 1 )
X 0 1 0 1 0 1 0 *
X 0 1 0 1 0 1 1 +
X 0 1 0 1 1 0 0
X 0 1 0 1 1 0 1 -
X 0 1 0 1 1 1 0 .
X 0 1 0 1 1 1 1 /
X 0 1 1 0 0 0 0 0
X 0 1 1 0 0 0 1 1
X 0 1 1 0 0 1 0 2
X 0 1 1 0 0 1 1 3
X 0 1 1 0 1 0 0 4
X 0 1 1 0 1 0 1 5
X 0 1 1 0 1 1 0 6
X 0 1 1 0 1 1 1 7
X 0 1 1 1 0 0 0 8
X 0 1 1 1 0 0 1 9
X 0 1 1 1 0 1 0 :
X 0 1 1 1 0 1 1 ;
X 0 1 1 1 1 0 0
X 0 1 1 1 1 0 1 =
X 0 1 1 1 1 1 0

X = don't care

Table of IEEE Deviee Listen Addresses

153



DA V Une must be received within 64 milliseconds if that
byte of data is to be placed in the Basic input buffer.
If not received within that period then the IEEE input
sequence will be terminated and the error handling
routine will set the status byte in Basic variable ST to
2, indicating a talker time out. The status byte is
stored in location 150 <old ROMs 524) and the setting of
bit 1 by a time out error can be used to prevent the
program returning to command mode after the error. This
is done by following the INP UT Il or GE T Il corn mand
immediately with a test of the status byte and if bit 1
is set then control returns to the INPUT or GET command,
thus:

100 INPUT Il 5,5,2,"A"
110 IF ST =0 THEN 120: GOTO 100
120••.•

If the Basic command was INPUT Il then having fetched
one character and placed it in the input buffer, the
IEEE input routine is called again and another character
input. This process is continued until the input routine
senses a low level on the EOI Une which indieates the
end of information transfer. Note: not all devices
generate an EOI signal. On sensing an EOI pulse the
operating system will set bit six of the status byte and
will force carriage return into the buffer until the
current command is terminated. The INPUT Il command is
li m i ted by the length of the input buffer which prevents
the transfer of more than 80 characters at a time unless
a carriage return separates each 80 character block. Any
attempt to write more than 80 characters into the buffer
whieh is located between locations 512 and 591 <old ROMs
10-89) will result in system malfunction. If the IEEE
device sends more than 80 characters without a carriage
return between blocks, then the GET command must be
used, since this command only calls the IEEE input
routine once and thus only inputs one character each
time the command is executed. By repeatedly performing
the GET Il command strings of data can be built up whieh
avoid the buffer size limitations but are unfortunately
rather slow. At the end of an input command whether it
was INPUT Il or GET Il an IEEE termination routine is
called which returns the default input device number in
location 175 (old ROMs 611) to 0 thereby restoring the
functioning of the keyboard. An untalk command is then
set to the IEEE bus freeing it for the next commando

Having opened a logical file to a specifie device
the PET can output data to that device with a PRINT Il
command which calls an IEEE output subroutine. This sets
the device specified for the logical file in the PRINT Il
corn mand into a listener mode. The operating system th en
changes the default output device number in 176 from 3
which is the video display to the device which has just

154



been addressed as a listener on the IEEE bus. Basic can
now transfer the data one character at a time to the
IEEE output routine which waits for the NRFD line to go
low indicating that aIl the listening devices on the bus
are ready to accept data. A single byte of data is then
put cnte the bus and a DA V pulse generated to indicate
tha t valid data is now on the bus. The IEEE output
routine then waits for the NDAC line to go high showing
that the data has been received by the listener, however
if the NDAC pulse is not received within 64 milliseconds
of the N RF D line going low then an error is generated
and bit a of the status byte is set indicating a
listener time out. To stop the system returning to
command mode immediately follow the PRINT command with a
test for setting of bit a of the status byte. When aIl
characters have been transferred by Basic the operating
system transfers control to an IEEE end routine which
sends an EOI pulse along with the last character stored
in the output buffer in location 217 (old ROMs 246).
Having done this an unlisten command is sent to the bus
thereby freeing it for a subsequent operation and the
default 1/0 device is reset to 3 thereby re-enabling
output on the screen.

Having finished aIl inputs or outputs between a
logical file in the PET and one or more devices on the
IEEE bus, the file for each device must be closed. This
is done by the CLOSE command, CLOSE 5 will close the
device associated with logical file 5 by the OPEN
commando On receipt of a CLOSE statement the operating
system will send a listen command to the specified
device followed by a secondary address command which is
the 0 R of hex EO and the secondary address, signalling
to the device that it should stop i ts current function
and return to an initialised state.

It should be noted however that the operating system
in old ROM PETs will not allow the LOAD and SAVE
corn mands to be used w i th an IE EE dey ice unless the
program is transferred in an ASCII format. To SAVE a
program ante an IEEE device with these machines one must
list the program to that device. To get this ASCII
program back again and perform the equivalent of a LOAD
requires a technique identical to that used to merge two
programs together, except that the default device number
in location 175 should be set to the device number of
the IEEE device rather than 1 which is the cassette
device number. The, LOAD and SAVE commands are available
on aIl new ROM machines.

The corn monest use of the IEEE bus is not to service
instrumentation but simply to connect a printer to the
PET. Unfortunately for this purpose the IEEE is not
ideal since the majority of cheap printers use either an
RS232 or a 20ma loop seriaI interface. The only way to
overcome this is to construct an interface circuit which
converts the paraI leI IEEE output to a seriaI output.

155



The circuit to do this is simple and can be constructed
with very li ttle expense. The circui t shown in Figure
5.6 performs three functions. Firstly it converts the
PET ASCII code into stndard ASCII and generates the
required control signaIs for the IEEE. Secondly a UART
is used to convert the parallel data into seriaI data
rate timing being provided by the 555 timer, this can be
adjusted to the correct baud rate by the 50K
potentiometer. Thirdly the seriaI output is converted to
the correct levels in this case to those required for an
RS232 1 interface, to give a 20ma loop interface then the
following circuit is connected to pin 25 of the UART in
place of the 75150 IC.

+ V

100.12

7404

UART 25 ..---1 2N3638

1 20MA

0.001.!'f TRANSMIT
100A

~3

The interface circuit requires a separate power
supply capable of providing the following voltages: +12
, +5 , -12 and ground or 0 volts, the current
consu mption of any of these voltages is low and a mains
adaptor for a calculator could be used to provide the
larger voltages, with the lower voltages derived from
them. This circuit is only designed as an unidirectional
interface, it is very much harder to construct a
bi-directional interface owing to the strict timing
requirements of the IEEE bus. Both upper and lower case
characters are printed and the interface can be used to
both list programs and print data, the command sequence
to list a program is : OPEN 4,4 : CMD 4 : LIST and to
print data : OPEN 4,4,4 : PRINT /1 4, A or AS.

An application finding increasing use amongst
scientists and engineers is to use the PET as a data
logger by connecting one or more instruments to the IEEE
bus and using the PET to sam pIe, store and process data
from these instruments. The problem encountered by most
people wh en using the PET for this kind of application
is the limitation on sampling speed imposed by Basic. In
most applications this is crucial since the majority of
physical events are fai r ly rapid lasting no more than a
few seconds and the fewer the measurements over that
period the more likely we are to lose vital information.
For these reasons it is preferable to use machine code
subroutines to transfer data from the measuring

156



Dl ---------------]126)0 391 ...... Pari Iy selecl

02 )0 127 381 ..... Word length 1

03 ~ 128 371 .~ Word length 2

04

05

"lo 1.29

)0 130

361 .........

351 ........

Status bit

Paril y inhi bi 1

07 )0 132

6010

Out

·'If--o Return

RS232

+12v

IEEE ta RS 232

-12v

Fig 5.6

-12 v

il~·

2

3

lOK

+5v

25~3 75150 121 0

40
~ 121

, 122

P 1 123

P 131
06 > .---..

08

ATN> ~

NOAC

OAV> ~ r-' Interface

Set baud rate

NRFO

lKSOK

2

71 ,1 ..+hW. ~. o+5v3

555

4

18 6t ,~ 11 2°ïn,
. -=-

+5v

Ii·

.-
\JI......



instruments to the PET since these will allow data
transfer rates in excess of 5000 bytes per second. At
these transfer rates the problem is not sampling rates
but data storage, since even with a 32K PET one can only
store a few seconds of data at 5000 bytes per second,
this can only be overcome by making a compromise between
sampling rate and sampling period. Another way of
reducing the quantity of data stored is to preprocess it
as the data is entered and store only the required
information or to sample short blocks of data and store
each block on tape or disk.

The following programs are a set of machine code
subroutines to handle data transfer between an IEEE
instrument and the PET and they can be used as the basis
for a wide variety of different data logging application
programs.In these examples the programs are located from
6144 upwards with the top of the Basic memory area
having been set at 6144 giving 5K for Basic programs and
the top 2K for the machine code subroutines and data
storage. The subroutines are configured to read data
from just one device and store the data in memory from
address 6401 upwards. The same routines can be used to
obtain data from more th an one device by changing the
device numbers and alternating access between devices.
The program controls a given number of data transfers
between an IEEE device and the PET, each transfer
consisting of one or more bytes - in this example eight
bytes - the number of bytes can be changed by POKEing
the required number into location 6200. Each data
transfer is preceded by a GE T - Group Execute Trigger 
command on the IEEE bus and the IEEE device must be
correctly addressed as a "talker" or a "listener" at all
times by sending the correct MT A ( My Talk Address ) or
MLA ( My Listen Address ) prior to the appropriate
transfer.

Prior to loading the program the top of memory
pointers must be lowered to prevent Basic overwriting
the IEEE program and data, this is do ne at the beginning
of the Basic program using the commands POKE 134,255 and
POKE 135,23. The number of data transfers can be
controlled by the contents of location 6400 which should
be POK Ed with the required value. The data obtained by
this program is stored in locations 6401 upwards and can
be retrieved by PEEKing from the Basic control program.
The subroutines are limited to transferring only 256
bytes of data since the index registers are used for
counting. The IEEE bus handshaking program can be called
with the Basic command SYS(6144).

158

IEEE
1800
1802
1804
1807
180A

bus handshaking routine
A2 00 LDX # 00
Ag FB LDA # FB
2D 40 E8 AND E840
8D 40 E8 STA E840
Ag 28 LDA # 28

- main program
prepare index register
set ATN low

MLA (28 for this device)



180c 85 01 STA 01
180E 20 80 18 JSR 1880 handshake into bus
1811 A9 08 LDA fi 08 GET
1813 85 01 STA 01
1815 20 80 18 JSR 1880 handshake
1818 A9 48 LDA fi 48 MTA
181A 85 01 STA 01
181C 20 80 18 JSR 1880 handshake
181F A9 FD LDA fi FD set NRFD low
1821 2D 40 E8 AND E840
1824 8D 40 E8 STA E840
1827 A9 F7 LDA fi F7 and NDAC low also
1829 2D 21 E8 AND E821
182C 8D 21 E8 STA E821
182F A9 04 LDA fi 04 set ATN high
1831 aD 40 E8 aRA E840
1834 8D 40 E8 STA E840
1837 AO 08 LDY fi 08 ready to count 8 bytes
1839 20 Ba 18 JSR 18BO handshake data from bus
183C A5 02 LDA 02 result to A
183E 9D 01 19 STA 1901,X store in 1901+X
1841 E8 INX
1842 88 DEY
1843 DO F4 BNE 1839 jump if Y not zero
1845 A9 FB LDA fi FB set ATN low
1847 2D 40 E8 AND E840
184A 8D 40 E8 STA E840
184D A9 02 LDA fi 02 set NRFD high
184F aD 40 E8 aRA E840
1852 8D 40 E8 STA E840
1855 A9 08 LDA fi 08 set NDAC high
1857 aD 21 E8 aRA E821
185A 8D 21 E8 STA E821
185D A9 5F LDA fi 5F UNT
185F 85 01 STA 01
1861 20 80 18 JSR 1880 handshake to bus
1864 A9 04 LDA fi 04 set ATN high
1866 aD 40 E8 aRA E840
1869 8D 40 E8 STA E840
186c CE 00 19 DEC 1900 decrease counter
186F DO 91 BNE 1802 jump if not zero
1871 60 RTS return to BASIC program
subroutine to handle handshake into bus
1880 AD 40 E8 LDA E840 NRFD?
1883 29 40 AND fi 40
1885 Fa F9 BEQ 1880 jump back if not ready
1887 A5 01 LDA 01 ready: get data byte
1889 49 FF EOR fi FF complement it
188B 8D 22 E8 STA E822 send to bus
188E A9 F7 LDA fi F7 set DAV low
1890 2D 23 E8 AND E823
1893 8D.23 E8 STA E823
1896 AD 40 E8 LDA E840 NDAC?
1899 29 01 AND fi 01

159



189B Fa F9 BEQ 1896 jump back if not accepted
189D A9 08 LDA fi 08 accepted; set DAV high
189F aD 23 E8 aRA E824
18A2 8D23 E8 STA E823
18A5 A9 FF LDA fi FF 255 into bus
18A7 8D 22 E8 STA E822
18AA 60 RTS return to main

subroutine to handle handshake from bus
18BO A9 02 LDA fi 02 set NRFD high
18B2 aD 40 E8 aRA E840
1885 8D 40 E8 STA E840
18B8 AD 40 E8 LDA E840 DAV?
18BB 29 80 AND fi 80
18BD DO F9 BNE 18B8 jump back if not valid
18BF AD 20 E8 LDA E820 get data byte from bus
18c2 49 FF EOR fi FF complement

18c4 85 02 STA 02 store in $0002
18C6 A9 FD LDA fi FD set NRFD low
18C8 2D 40 E8 AND E840
18CB 8D 40 E8 STA E840
18CE A9 08 LDA fi 08 set NDAC high
18DO aD 21 E8 aRA E821
18D3 8D 21 E8 STA E821
18D6 AD 40 E8 LDA E840 DAV high ?

18D9 29 80 AND fi 80
18DB Fa F9 BEQ 18D6 jump back if not
18DD A9 F7 LDA fi F7 set NDAC low
18DF 2D 21 E8 AND E821
18E2 8D 21 E8 STA E821
18E5 A9 FF LDA fi FF 255 into bus
18E7 8D 22 E8 STA E822
18EA 60 RTS return to main

The Video Display

One of the virtues of the PET video display is the
flexibility imparted to it by being a memory mapped
design with the majority of the control being performed
by software. This allows the user to manipula te the
display in ways which would be impossible with a
conventional terminal, as an example: most users will
have used the POKE command in locations between 32768
and 32767 to move characters around the display.

To understand how the display can be used to produce
certain effects, we must look at how the display is
generated. There are two processes involved in
generating the display, the first performed almost
completely by hardware is the character generation and
screen refresh which also involves the timing of the
horizontal and vertical scan outputs to the video

160



monitor. The second process is done completely by
software and involves taking a character from the
keyboard buffer or from Basic output buffer and placing
that character in a specific location in the display
memory area. Though the character and raster generation
is mostly performed by hardware, the user can besides
writing characters into the screen memory directly
control two (only one in dynamic PETs) of its functions
via a couple of lines connected to the 1/0 ports. The
first is familiar to aIl users and is the conversion of
the graphics mode into the lower case mode by "toggling
the CA2 line on the 6522 thus POKE 59468,14 will set the
display in lower case mode and POKE 59468,12 will set it
in graphics mode. The second function, only available in
static RAM machines is provided by the CA2 line on 6520
III it blanks the screen du ring character entry and
retrace. This prevents the broken characters which
appea r on the screen during PEEK and POKE operations,
due to interferrence between the character generator
addressing and the processor addressing. The screen
blanking function can be used in machine code programs
to give a nice clean display free of interference, in
Basic programs it can be used to suppress the display
until a who le screen full of information is present. The
corn mands in Basic to produce screen blanking are POKE
59409,52 and to restore the display POKE 59409,60. There
is a third very important connection between the
charactér generation, display hardware and the
processor, it is the 60Hz retrace input and is connected
to both the CBl interrupt input on 6520 III and 1/0 line
5 on port B of the 6522. The function of this line is to
generate a system interrupt which calls the routines for
scanning the keyboard, updating the display and the
clock TI. Called the retrace input because it is
produced each time the raster scan reaches the bottom of
the screen prior to the scan flyback, it is during
flyback period that the screen is blanked and the
d ispla y upda ted. The re tr ace in ter rupt can be disabled
alla wing th e pro gram mer to dis able th e keyboard al so
code can be inserted into the interrupt routines, these
procedures have been deal t with in other sections of
this book. The retrace input can also be used to perform
the same function as the blank command in a machine code
program, namely to suppress screen interference while
writing to screen memory. This can be done by waiting
for the retrace input to the 6522 with the interrupts
disabled. A simple subroutine to do this would be as
follows:

AD E8 40 RETRACE LDA E840 :pu port B in accumulator
49 20 EOR /1$20 :mask off line 5
29 20 AND /1$20 :is line 5 set
FO F7 BEQ RETRACE :if not return to RETRACE
60 RTS :return to calling program

161



Data is displayed on the screen by the operating
system either as a resul t of an entry on the keyboard or
the execution of a print statement in a Basic program.
Data can also come from other sources like input
p<ro mpts, error messages or from a machine code program
or POKE command writing directly to the display memory.
Wh en a key is pressed the operating system translates
the matrix co-ordinates into an ASCII character which is
stored in a "first in first out" queue located in the 10
byte keyboard buffer located at 623 to 632. The
operating system then periodically empties this buffer
byte by byte into the display memory at a location
pointed to by the current position of the cursor. The
ASCII code is also converted at this time to the
slightly different version used by the character
generator obtained by dropping bit 6. The position of
the cursor is stored as two values. The first is the
cursor column position which is stored in location 198.
The second is the pointer to the start of the line of
the cursor location this is stored as a two byte number
in location 196 and 197, the value stored being the
number of characters from the beginning of the screen.
The blinking cursor is controlled as part of the retrace
interrupt subroutine and is activated when the PET is
either in the command mode or the input mode, its
activation being control1ed by the contents of location
17 O. When the cursor is active the contents of 170 is 0
and when inactive l, by executing a POKE 170,0 prior to
a GE T corn mand we can use this locationto give us a
blinking cursor for the GET input a feature normally
absent.

The display itself is only 40 characters wide, a
limitation which is dictated by the size of the screen
and the display circuitry bandwidth. Since many
applications require a line length longer than 40
characters, the PET operating system allows lines up to
80 characters to be displayed by folding the display
back onto the next line. To allow lines of up to 80
characters and yet avoid leaving empty lines where the
previous line has less than 40 characters the operating
system uses a table of pointers to the beginning of each
line. Each line has a pointer which indicates whether it
is the beginning of a new line or the continuation of
the previous line. These pointers are stored in a table
in memory locations 224 - 248 there being one entry for
each of the 25 lines on the screen. The contents of
these pointers is the least signficant byte of the start
address on the screen with the status of bit 7
indicating whether it is a new or continuation line.
Thus whenever the cursor is moved up or down the
operating system will examine the status of the Une on
which the cursor currently lies and initialise the PET
to the proper line number so that when a carriage return
is pressed the cursor will jump down the appropriate

162



number of lines.
The fact that the PET has only a 40 character by 25

line display can be rather limiting when trying to
display a graph with a reasonableresolution between
plotted points. A technique can be used which doubles
the density of the display to give an 80 by 50 dot
picture. This is done using the quarter character
graphies in place of the normal full character graphies.
One of a range of full sized graphies characters are
used in each character space to simulate a 2 x 2 matrix,
the full sized character used depends on the contents of
that matrix. A program to plot a display using quarter
characters must be able to plot by its x and y
co-ordinates and also selectively erase characters and
replace them with new characters when the plot within a
single character matrix is changed. Such a program
written in Basic would take a considerable time to
construct a display and it is much quicker and easier to
write it in machine code, which is then called from a
Basic program as and when needed. The following program
which is stored in the second cassette buffer performs
such a function the first listing is an assembled
version of the machine code program, the second is the
same program with a Basic loader and a subroutine to
draw lines on the screen.

The program which will work on both old and new ROM
machines can be called with the command SYS(826) from
Basic with the X co-ordinate stored using POKE 48,X and
the Y co-ordinate using POKE 49,Y. The Basic machine
code loader used in this program lies between lines 200
and 400 and is a very useful means of ente ring machine
code into the PET using the standard hexadecimal values.
The data required by the screen drawing subroutine are
the X and Y co-ordinates of the starting and ending
points of the line with the 0,0 co-ordinates being in
the bottom right corner, and the 49,79 co-ordinate in
the top left.

:PROGRAM TO PLOT POINTS ON
:PET IN DOUBLE DENSITY FORMAT
:X-COORD IN LOCATION 48 (30)
:Y-COORD IN LOCATION 49 (31 &32)
:0 IN LOCATION 51 (33) TO ADD
:1 IN LOCATION 51 (33) DELETE
:ERROR FLAG IN LOCATION 998 (3E6)
:1 OR 2 PLOT OUT OF RANGE
:4 NON-PLOTTABLE CHARACTER ALREADY
:AT THESE COORDINATES ON SCREEN

REFRESH
XCOORD
YCOORD
AORD
BINOFF

= E840
= 30
= 31
= 33
= 34

0000 * = 033A

163



164

033A A9 00 START LDA $0
033c 8D E6 03 STA ERROR
033F 85 34 STA BINOFF

:TEST IF YCOORD 49
0341 A5 31 LDA YCOORD
0343 C9 32 CMP $50
0345 90 03 BCC YOK
0347 EE E6 03 INC ERROR

:TEST IF XCOORD 79
034A A5 30 YOK LDA XCOORD
034c C9 50 CMP $80
034E 90 03 BCC XOK
0350 EE E6 INC ERROR

: RE TU RN IG OUT-OF-RANGE ERROR
0353 2C E6 03 XOK BIT ERROR
0356 FO 01 BEQ SORIG
0358 60 RTS

:INVERT SCREEN FROM TOP TO BOT TOM
: (Y-COORDINATE)

0359 A9 31 SORIG LDA $49
035B 38 SEC
0035C E5 31 SBC YCOORD
035E 85 31 STA YCOORD

:SAVE BOT TOM BIT OF X COORD IN
:BINOFF

0363 46 30 LSR XCOORD
0362 26 34 ROL BINOFF

:SAVE BOTTOM BIT OF Y COORD IN
:BINOFF

0364 46 31 LSR YCOORD
0366 26 34 ROL BINOFF

:MULTIPLY YCOORD BY 40 AND
:ADD SCREEN BASE ADDRESS

0368 06 31 ASL YCOORD
036A 06 31 ASL YCOORD
036c 06 31 ASL YCOORD
036E A5 31 LDA YCOORD :SAVE IN A-REG
0373 06 31 ASL YCOORD
0372 26 32 ROL YCOORD+1
0374 . 06 31 ASL YCOORD
0376 26 32 ROL YCOORD+1
0378 18 CLC
0379 65 31 ADC YCOORD
037B 85 31 STA YCOORD
037D A5 32 LDA YCOORD+1
037F 69 CO ADC $ CO :START OF SCREEN
0381 85 32 STA YCOORD+1

:EXPAND BINOFF
0383 A6 34 LDX BINOFF
0385 A9 01 LDA $1
0387 85 34 STA BINOFF
0389 EO 00 EXP CPX $0
038B FO 05 BEQ ENDEXP
038D 06 34 ASL BINOFF



038F CA DEX
0393 90 F7 BCC EXP

:GET CHAR INTO A-REG
0392 A4 30 ENDEXP LDY XCOORD
0394 B1 31 LDA (YCOORD),Y

:CHECK CHAR IS VALID GRAPHIC
0396 A2 00 LDX $0
0398 DD CE 03 MOREC CMP TABLE.X
039B FO OB BEQ FOUND
039D E8 INX
039E EO 10 CPX $16
03AO 90 F6 BCC MOREC
03AO 90 F6 BCC MOREC

:CHAR IS NOT IN TABLE
03A2 A9 .04 LDA $4
03A4 8D E6 03 STA ERROR
03A7 60 RTS

:CHAR IS IN TABLE
:SO ERASE OR ADD

03A8 A5 33 FOUND LDA AORD
03AA DO 07 BNE ERASPT

:ADD POINT TO SCREEN
03AC 8A ADDPT TXA
03AD 05 34 ORA BINOFF
03AF 18 CLC
03BO AA TAX
03B1 90 OA BC-C WAIT

:ERASE POINT FROM SCREEN
03B} A5 34 ERASPT LDA BINOFF
03B5 49 FF EOR $ FF
03B7 85 34 STA BINOFF
03B9 8A TXA
03BA 25 34 AND BINOFF
03BC AA TAX

:WAIT FOR SCREEN REFRESH
03BD AD 40 E8 WAIT LDA REFRESH
03CO 49 20 EOR '$ 20
03C2 29 20 AND $ 20
03C4 FO F7 BEQ WAIT

:WRITE NEW CHAPHIC CHAR TO SCREEN
03C6 BD CE 03 LDA TABLE.X
03C9 A4 30 LDY XCOORD
03CB 91 31 STA (YCOORD).Y

:RETURN SUCCESSFULLY
03CD 60 RTS

:TABLE OF GRAPHICS CHARACTERS
03CE 20 TABLE . BYTE 20. 7E. 7B. 61
03CF 7E
03DO 7B
03D1 61
03D2 7C .BYTE 7C. E2. FF. EC.
03D3 E2
03D4 FF
03D5 EC

165



03D6
03D7

03D8
03D9
03DA
03DB
03DC
03DD
03DE
03E6
03E7

6c
7F
62
FC
E1
FB
FE
AO

.BYTE 6c. 7F. 62. FC

.BYTE E1. FB. FE. AO

*=*+8
ERROR *=*+1

"

10 DATA826
20 DATA A9,00,8D,E6,03,85,34
30 DATA A5,31,C9,32,90,03,EE,E6,03
40 DATA A5,30,C9,50,90,03,EE,E6,03
50 DATA 2C,E6,03,FO,01,60
60 DATA A9,31,38,E5,31,85,31
70 DATA 46,30,26,34
80 DATA 46,31,26,34
90 DATA 06,31,06,31,06,31 ,A5,31 ,06,31 ,26,32,06,31 ,26,32, 18,65
91 DATA 31,85,31,A5,32,69,80,85,32
100 DATA A6,34,A9,01,85,34,EO,00,FO,05,06,34,CA,90,F7
110 DATA A4,30,B1,31,A2,00,DD,CE,03,FO,OB,E8,EO,10,90,F6
120 DATA A9,04,8D,E6,03,60
130 DATA A5,33,DO,07,8A,05,34,18,AA,90,OA
140 DATA A5,34,49,FF,85,34,8A,25,34,AA
150 DATA AD,40,E8,49,20,29,20,FO,F7
160 DATA BD,CE,03,A4,30,91,31,60
170 DATA 20,7E,7B,61,7C,E2,FF,EC,6C,7F,62,FC,E1,FB,FE,AO
180 DATA*
200 READ L
210 READ A$
220 C=LEN(A$)
230 IF A$="*" THEN 400
240 IF C<1 OR C>2 THEN330
250 A=ASC(A$)-48
260 B=ASC(RIGHT$(A$,1))-48
270 N=B+7*(B>9)-(C=2)*(16*(A+7*(A>9)))
280 IF N<O OR N)255 THEN 320
290 POKE L,N
300 L=L+1
310 GOT0210
320 PRINT"BYTE"L"= "A$" ???"
400 PRINT" ";
1000 PRINT"";
1005 INPUTX1,Y1,X2,Y2
1010 GOSUB2000
1015 PRINT"
1020 GOT01000

166



2000 REM SUBROUTINE TO DRAW LINE
2010 REM BETWEEN TWO POINTS ON SCREEN
2020 REM CHECK COORDINATES IN BOUNDS
2030 IF(X1)=OANDX1<=79)AND(X2)=OANDX2(=79)THEN 2060
2040 ER$="X OUT OF RANGE"
2050 RETURN
2060 IF(Y1)=OANDY1(=49)AND(Y2)=OANDY2(=49)THEN 2090
2070 ER$="Y OUT OF RANGE"
2080 RETURN
2090 ER$=""
2100 XD=X2-X1
2110 YD=Y2-Y1
2120 REM NEAREST DIAGONAL
2130 AO=1:A1=1
2140 IFYD(OTHENAO=-1
2150 IFXD<OTHENA1=-1
2160 REM NEAREST HORIZ/VERT
2170 XE=ABS(XD):YE=ABS(YD):D1=XE-YE
2180 IFD1)=OTHEN2220
2190 SO=-1:S1=0:LG=YE:SH=XE
2200 IFYD)=OTHENSO=1
2210 GOT02240
2220 SO=0:S1=-1:LG=XE:SH=YE
2230 IFXD)=OTHENS1=1
2240 REM SET UP
2250 TT=LG:TS=SH:UD=LG-SH:CT=SH-LG!2
2255 D=O
2260 REM WHILE MORE POINTS DO
2270 POKE48,X1:POKE49,Y1:POKE50,0:POKE51 ,D:SYS(826)
2280 IFCT)=OTHEN2320
2290 CT=CT+TS:X1=X1+S1 :Y1=Y1+S0
2310 GOT02360
2320 CT=CT-UD:X1=X1+A1:Y1=Y1+AO
2360 TT=TT-1
2370 IF TT<OTHEN RETURN
2380 GOT02270

167



~6
lB 18 BOil c-;-

BAl5 2 2 2 HLS2•• l-4l ~IJ 3
T4LS 10 L+ 16 BOl

3
1 • .J.;J ~

HLSOO 4- 1. BD2 •BA 14 N OUT 6 .1.;J ~
prIN Lf. 12 803

5

r---o 8 ...!..!....J ~SIT8 u... ~ BD.

~'O :wU ~
6

SEL~
BOs

7

~
~.

74LS04 74LS244 BD6

l L+ 16
~

B

• -LU BD7
9

4- 14
~74LSOO

.1.;J6 r----<>s îBA8 1 Lf. 12

BA9 2 \6
2;]> -cl: ...!..!....J R I7ë..r-2>

8AI0 4 ~
~

3vf ~74154 ~ ~BAil +sv
2

3 SEL 2
10

1 •
1

3
5

Il
74LS04 IK 4 1210

~
6.--

+r
v
8 91 Y- 19

GI 5
7

13

= 23
G2 6

8
14

A 7 15
YCC

...... DAO
33 DIJ~ 22

B 8
9

16
"'OAI

32 DI 21
C 9

ID
31 D2~[ 23" 20 Il A

11
... DA2

3D 234 03~ o ID
13 Fr 18

...... DA3
29 04~r~

Il
14 SEI -cD II~

19
.... DA"

2B 234 05
234

'2 15
~

CIRCUIT 1
.. DAS

21 06.r2:T4>.~
13

16 sn

~
SEL BD:::S...... DAG 14

... DAT 26 ~ 07..r2.3.4> 15 17 SEL

ABD
9 2 18 BAil -

6502 ID 17 3 BA 1 2
AB 1

Il 4 16 BA 3+5V AB2
12 IS 74LS244 S A 4

AB3
13 6 14 BA. 5

AB4

"

13 7 BA5 6

IK IK 1K
AB5

15 8 12 BA6 7
AB6

16 Il 9 8AT :AB7
17

~;
-'-- ~ 2 3457>

IL
ABB

18
AB9

19
~23457'>

23 ROY ABIO BA2~

d NMI
~ s.o. AB 1 1

20 18 BA3 3 S 7

AB 12
22

1
""T

3 BA4 3 S 7
2 23 16 B<5 2 4 5 7

1
ROY A813

IS HLS2H S

l·3<

AB 14

~
BA6 2 4 5 7

6
NMI A815

6 14 BA7~

~-:: CLK 1 37 13 7 BA8
$0

B 12 BAB
10

IRQ • $1
Il 9 BAiO

Il

! 19

~
..i!?.

IRQ SYNC '34 ..!!. -'- BA Il
12

RESfT RiO
39 BAl2

13
YSS $2 14

~21
BAI 3

IS
BAI 4

= BAI 5
16

î V

~~
17

1. 18 +SY rt ' 1'."
~457

220 BA.11~lM lM
6 BA 12 • 6 7

3 1 2 13 12 Rn
2 3 7417 +V ~ BA13~1 LMSSS BAl4 6 6

+

~
74LSD4 7417

~7
8 470 BIl2 2 3 6 7

BAIS S

1".0 ~
SYNC

18
+ V Cf2

21

,1' T·OI

~=
~.

6BO
0.1 BR/'

22

l ~8 RAh4 R/W
S7417 1

13 12 HLS04 6B BR/'

lflz!.o:>
23

74LS04
L.---



10

1

2
3
4
12

r-

roI

DIO'3

Dlo'5
Dlo'6

010,2

010'7
010'8

010,4

DIO' 1

J3llAV ~

A 8
Il

mIN

CHASSISm--

mIN]

3:> roI IN , roI 1

la
14

10
i4

+5V
1 16

+5V
1 16

LJi

+5V

f2.4K

!R47

l~·IK

00-8 13
01'8 15

llAV IN 1 2
DAV our 3 6
N D IN 7 la
N OU'" 5 MC3446 14
N A IN 9 4
NDAC our Il 12
A IN 15 8

74! 7

0:::> nN OUT 13
1 1

2

3:> toï OUT 5 Il

CIRCUIT

t>CS 1Il

+5V

1 20
VCC

6520

~

+5V ( 3

". '"' '~O 12

•

4K ~ml~1_-~==J~-------------'------------7'417 H

1 _•. " ~
~ M

N

8A6

r-- BA5 24
170 ~--~ 23 ~~

>-""=......_-'2~2'-l CSO

BA 1 ~~ RSO
RS 1

~
'-R/' 21

8~2 ,-._-I 25 R/W
.2

C-, 34 R1sET

lRQA li hTRQ ~_ CA 1 40 {Tv

L-'-----r"-'--;=:::::~;:;::===m00" ......... CA2 39

G~-;===:::=;;==:=l±1DI -D2 -
G~' D5 D3-_ 04"

07 05 ....D6 _

07_

.... PA0 ,,---1--

.... PAl

.. PA.2 tt~~~t~~~~·~g~~~~~~~~~~~~~;~... PA3
........ PA4=~:~ 10-+-- r~=~4~~~D~I~'il ~~~~*_ PAl DO'IDI'2
_ P89 DD'2_ .." OH ~"..

== ='
12

=::: 00'"-- -- "" ~
+5V

Dl'5 1 16

DO'5 1DI'6 3
DO'6 7
01-7 5 ~C3'446

00'7 9Il

T4Lsoa



*2 CASS

(-. CASS

PA" C
PA 1 D
PA2 E
PA3 F
PA4

-+-'5.

·1 CASS

*2 CASS

CAS) wHITE. 5
-1 :A$S ~OTOR F 3

-1 CASS READ 0-4
*1 CA55 swnCH F-6 J

PA5 H
PA6 J

PA, 7 :

2 S~iD~~ 3
8 HORZ DR IVE ,2

06 VERT DRIVE F

6 CAS5 O~;:~ !
A

N

1

Il

CB2 12

REAO ~
READ 6

A~
+{iV - 8-2

62 ("55 READ 4
+9\1 LJNRfG 1 .J..l.l -2 CASS 1140 r OR D~3

CAS5 WRr~E c '5
.", CAS") SWITCrl E

I~~

! [A-;
B 5

~ÎQ4'29

+9V UNREG

, P29 '-:.'

.01

"'~/ ;,,44ül2'1 • SK

3CIRCUIT

1 .01

: OK

OK

~ 4 [5.IK K;
~) 2N39û4 "Uj 7. 2V ~ / 2N440 1

1 ©2N;904 U>·2V j

, K

IK

DAY IN
NFRD IN

CA 1 r;-ml ~

.. IRQA 38
33

00 ..... CA 1
40

32 39
; D -- CA?

30
02

2

29
DJ ..... PAO

3
28

04 ... PA
4

27 05 ...... PA2
5

26
06 ... PA3

D"

+5V

120

r--;-- 33
VCC ..... IRQ~

00

00" -"~"~
DI 32 DI .... ...- CA2
02 31

D2'" 2r-'-< 03 3D
03"'''' PAO .3r-'-< 04 29
04 ....... PAI 4r-'-< 05 28
D5 ........ PA2 5r-'-< 06 27
D6 .......... PA] 6>--!--.< 07 26
07 ....... PA4 7'-"-- 1111 .... PAS

8....... PA6
6522 ....... PA 1

9

CS 1 24
CS 12 23
CS2 .... pao 10

.. PS'
Il

38 ...... PB;?
12

RSO
1337

R~I .. PB3
14BA2 36

RS2 .. PB4
35 15BA3 RS3 .. PBS

16
.. P8G

1722
RIO .. PSl

25 $2
34

RESE T .. CBI '8

... ca? 19
VSS

T

'SV

6520

_.- BA4 1 24
C~ 1

23 ' 01/0 CS? .. pao
X8XX 22

l'
_ .. PB

~

..... PB?
BA0 36 Rsa -- PB3C

.. PB4
SAI 35

RS .... PBS-'- ... PBG
RiO 2

RiO ...... PB?

~
802 25

02 ........... ca 1
R 5 34

Rt5ET ....... C82
.... TRaB

VS5

-r

'OK 10K 1011.. 10K 10K lOK 10K 10K



+5V +5v +5V +5V +5V +5V +5V

<' <' <' .' " L' <, <, < <. <' L' . ..
P--<

BA0 8 A0CS3YCC " A0 C53 vec 8 A0 C53 vec 8 /1.,0 C53 vec 8 A0 C53 vec 8 Ai:' C53 vec 8 .4." C53 vec
BA 1 7 7 7 7 7 7 7

>--'-< BA2 6
AI

6
AI

6
AI

6
AI

6
AI

6 " 6
AI

1
BA3 5

A2
2332 5

A2
2332 5

A2
2332 5 '2 2332 5

A2
2332 S '2 2332 5

A2
2332~

BA4
A3

4
A3

4
A3 A3 '3 .3

4
A3

'""J-< 4
A4 A4 A4

4
A' • • A4 A4

BAS 3 3 3 3
A4

3~ '5 FOOD- A5 1.:000- '5 0000- 3
A5 cooo- A5 8000- 3

'5 AOOO- AS 9000-
r--;--< BA6 2

A6 F~FF
2

A6 EFFF
2

A6 DFFF 2
A6 CFH

2
A6 B~TF

2
A6 AF FF

2
A6 9FFF

'""J-< BAl 1
Al

1
A7

1
Al

1
Al

1
Al

1
Ar

1
A7

BAB 23 23 23 23 23 23 23,---<
BA9 22

A8
22

A8
22

AB
22

A8 A8 A8
22

A8>-j< A9 A9 A9 A9
22

A9
22

A9 A9

:::t:: BA 10 19
AlO

19
AlO

19
AlO

19
AlO

19
AlO

19
AlO

19
AiO

BA Il 19 18 18 18 18 18 18
~'--

Ail Ail Ail Ai 1 Ail Ail Ai 1

00
9

00
9

00
9

00
9

DO
9

DO
9

DO
9 00 ".---;,

DI
la

DI
10

DI
10

DI
10

DI
10

DI
10

DI
10 DI~

Il Il Il Il Il Il Il D2 :--,<,
D2 D2 02 02 02 02 02

D3
13

D3
13

03
13

D3
13

03
13

D3
13

D3
13 D3~

D4
14

D4
14

D4
14

04
14

"
04

14 D4
14 D4~

15 15 15 15
D4

15 15 15 D5 ri
D5 05 D5 05 05 05 05

06
16

06
16

06
16

D6
16 16

06
16

06
16 06 :--,<,

17 17 17 17
06

17 17 17 D7~
SELF 2D

D7
20

D7

~
07

,.......?2-
07

,....2.9-
D7 07

--12-
07 ~

1 m YSS CST vss m Y$5 ffi vss m vss ,.......?2- CST vss CST vss

1 12
J'2 1 '2 1 '2 1 '2 J'2 4c '2

i
SELf

(I~ SELD

C'=--- SELC

CC SfLB

-'-
$ELA

1
SEL9

CIRCUIT 4



+'Sv

0.1
1,6

f-k FA' 5
A'

5 r--- 5r-- 5 r--- 5 r--- 5 .----- 5 r--- 5 r---
RA7 6 :~O 74153

1

FA 1 7
AI

4116 7 o4! 16 7 41 16 7 4116 7 4116 7 41 Ils 7 41 16 7 41 16
8

L r-+ FA2 6 6 6 6 6 6 6 6
IC 1

7 FA3 12
A2

12 12 12 12 12 12 12BAe 4
A31

3
IC2 1y

FA4 Il Il Il Il Il Il Il Il
+5V A C B 14

IC3 68
FA5 10

A4
10 10 10 10 10 10 10

~ro A
rA6 13

A5
13 13 13 13 13 13 13

\1:> BAI3 1. - ~ B A6

ffi RAI - r f-;"7'" 2CO
9 3 3 3 3 3 3 3 3

12
2C 1 2Y iË

8 8 8 8 8 8 8 81 BA 1 2C2 68 VOOLï:5 BAT 13
2c3 VCC

9 9 9 9 9 9 9 9
1 1 1 1 1 1 1 -h-~ 2G VBB
16 16 16 16 16 16 16

RTIJ 4
VSS

4 4 4 4 4 4 4
-'-=--

8
6 RAS

T AS 1 15 15 15 15 15 15 15 15
7 6

( ~~S oo~ (~~ (~~ (~~ (~~ ("-~ (~~ (_~
0.1 116

f-k
6

RA2 6 :~O 74153

L ,..2.- 1CI
7

1
BA2 4

1C2 1y

1
BAB 3

103 68 5 r--- 5r-- 5 r--- 5 r--- 5"- 5 r--- 5-14 FAe 5
A

FAI 7
Ae

"116 7 '" 16 r 41 '15 7 '" 16 7 4116 7 4116 7 4116 r 4116
~~ B

FA2 6
AI

6 6 6 6 6 6 60=:- RA3
2CO A2

L~ 9 FA3 12
A3

12 12 12 12 12 12 12

(1"
2C 1 2Y

FA4 Il Il Il Il II Il Il IlBA3 12
A4

BA9 13
2C2 6B FA5 10 10 10 10 10 10 10 10G:5

~
2C3

FA6 13
A5

13 13 13 13 13 13 13
2G A6

8
1

RAM R1'11' 3
iË

3 3 3 3 3 3 3

T VOO
8 8 8 8 8 • 8 8

~

VCC
9 8 9 9 9 9 9 9

1,6
VBB

1 1 1 1 1 1 1 r-fs0.1
16 16 16 16 16 16 16

4
vss

4 4 4 4 4 4 4 '-'-"-
RA' He :~O 74153 EASS 15

RAS
15 15 15 15 15 15 15 =

6
L r-+

6

(~ DO ~

r-~ (-~
,..2. ~

(-~ (~~
,...1- ~ .-L ~IC 1

-5v
,"""1"': BA< 4

IC2 1y
7

~ - ~ +5V

Lï:5 8AI0 3
IC3 68 +12

14

~
A

0=:- RA5
~ B

L~
2CO

9
(1" BA5

2e 1 2Y, 2
2C2 6BtI:S BAil 13
2C3

~ 2G

B

T R04 8 RD' 8
7

R05 ~
74LS244 12 B04

ROI ~
74LS244 :~ BO'CI>

0.1 116 ...!+l 1

R06 l.f- 14 B05~

R02 l.f- -H-J BOl 1

---!< +'Sv ~ ~ ..ill
6

RA6 6 :~o 74153
R07 Lt 16 BD6 1

R03 LT 16 B02 -e:::I::>
~ ~. -4J1CI

IK

~
~ 8A6 4

1C2 1y
r 18 B07 CI> L;f 18 803..(1)ffi 8A12 3 JU"PERS 10 f-LLJ ...!..!...J

6 t.tUX A
"

1C3 6B
8A 13

o ~ ~'3
Il 8

1

1

2
A CI=> 8A1' 9 ./tI:S C'2 8 "....!E...

r
2CO

~
1 12 G 8 BANK SEL

74LS 10

~ 2C 1 2Y ,.L
J 10 ) 6

4 2c2...g. ~A15 9
7425 0::::::- 8 RIW

2C3

f---!.."< 2G

8 CIRCUIT 5
7



CIRCUIT 616MHl1]'---1
~ 'Ur-22PF '-=-J +5v

Pc 12 '-{/-
3 B'2A 4

T
74504 1 74504 74164 ~: 4 B'2B

1
2 o P Q~

1 5 B'2C 2
3 4 4 ri-

A QC
6 B820 3

lA
74157 7457'"

1K
51

6
B QO

-:+ B82F -+
1B

4 3
470 470

74504

1

+SV -L...1c
CK QE 2A YI CK

CL QF
12 B82G ï+ 2B

r!-74508 QG
13 B'2H B82H ID

3A Y2
6 13

QH 7
14

3B
9 MUXA

~
" Il

RAS:O
4A Y3 5 5

13
4B

12
47

5
BANK SEL 2 c:::c::: B R1W 1

5 Y4 ,..!l. 740a
\ 3 15

B82 1 /"
G

-~ ~~~UP74191
1

+5V
-r-;t 3 CLKS-eI:>

74L500

~'O 9l21ï 10
~f-'t A QA

~

1

REFRE5H 12 D P Q~~'""it B QB S

~
74LS04

~r-i" C QC
CLK 1 74574

~I-;t o QO
7

~4~ l!W Il
I-ji< LO MAXIMIN CK
c..:..;.. CK ,RIe p..

74LS04

13 12 mG CLQ~
RAI

5 ~

1

74LS04

r--- 121
1 2 mA 3

~ J Q 3 14
A QA

RA2
5 1 ~

\_6 ëET.(5"'>
74LS04 ID

74LS93
9 RA3

9l
VIDEO LATCH~

47
74L5 107 ---'<:P.B QS 5

S 74LS t 0

,!le 4
P. CK

---3.. B RA4a::> ---3.. o P 5 LOAO SR{I;I>RD 1 QC Q

~K Q~ ----l. R02 QO
Il RA5

5
74LS7'"

~
3

CK
1

13 =rt1 \. 12 CEl
5

~ SAI3 E
O

aK
9 S ./

6 LOAilSR H2 47 VERT DRIVE
CL Q 161 74LS 10 3S

0=::- BA 14 F
Il 10 r ROW SELECT

74504 13
VERT DRIVE --;-

121
\. Il

9 KEY 6

ID]
S

74LSOO

1=i74LSOS

HORZ OISP ON

1

r S
13

~ 5

Sr-:;--; 5 I:-;~ --l. -:;--; 3 1 S~5 12 1

Il VIDEO ON.r3>

r--- 1 - 4 1

\6 ./ ~

r-!-J Q5
!4LS 1or T<4LSIOT 74LS 107 74LS 107

r4Lsoa
r4LSOS

74LS 107 l..2c1> CK
12

CK cr: NEXT 12
CK .....2c CK

i..4:P. CK
2

Il
\ 3 Il

~
6 4 K Q~

( K CL Q 2 Il K CL il ,.L.
~K Q 6

~
HORZ DRIVE

3

~ 74LSOS
13 --yrr -p-

10

~ HORZ OISP OH --r:;, DRIVE
5



6
ïNTf 8~..L-

74LSIOr

T6
LOAD SR 9

CK
+SV

IK

----!..!... K Ci~ 9

~
1

B R/W ,,1 8 TV RE AD
8

1K

10 lol

G::::
HORZ DISP ON

74LS 10
BA Il 5 ~ 3A

6 TV SEL 13 ~ 38 74LSI57
SEL 8 4 8 R/W 2 12 ~ 2A Y2 7 TV RA~ R/W 81 t±5 802 1

74LSDS • 1 ~ 28 9
1~3 74LSIO

~ BAS
13 4A Y3 ~

......:... J Q
2 ~~ V4 12 SA"

74LS 107 c=c 8A1 3 1B

...!le 1 S YI 4 SA 1

CIRCUIT 7
CK r G

~ K CL Ci r1-
J"3 Il

Œ/ 8A2 ID ~: 74LSI57
S

2A
9 SA2

c=c 8A3 6
Y3

4 CLK2 QA~
14

2B
7 SA3

~ '2 c::;::::: 8A4 13
4A y2

D5 QG
19 2

48
12 SA4~ D8 QB

i 5
l...--.2( CLK 1

CC' 8AS 3
lA V4

14
06 Q6 ~ CT/LD QB~

Ir 16 1 lB 4 SA5
4

,-)f QI
5 4 CLK 2 >---;i- S YI

r UI' Q2

+- 10 A QC f~<G
lJ3 Q3

3 ~ i?3
DI QIRIT DAO 13 B ~

1 1 l, aD

-- - -" Il Il
1J4 Q4 o 741fT

NEXT 12 1 G 2
- -r or (4L.$.37"3

C~
8A6 3 :: 74LSI5774L500

41> CLK2 QA

14 4 SA6

cs=: 8., 13
4A

5 5
4B

12 S.,

o:=: BA8 6
2A Y4

L.....fI>CLKI
9 Il

28
7

~ CT/l.O aB " Y2
SA8

CT:: BA9 10
4 CLK

2 1 3B
9 SA9

10 ~ QC '---;i- 5 Y3

3 C QD 12 r G
SA0-9 8US~

'1
o '41 rr

+SV
, 0

~ o P Q
9 NEXT

6 8

74574

6
VIDEO LATet-<

" CK

T
L-C~

8 iltX'T'

4 - 13

IK 1 12 6~ 9
sl 6 10 8 9 , 8 S

10l
8 2

VIDEO ON 5 6 2 13
HLSOO

2Ol:1NrS ,1 )2-3

74LS04 Œ=:
RA9 4 9 74504

74L52D 74LS2D 74LSOO

HORZ DISP OFF 1 74LS08
6

6
812H



LSD7 12~9 5

4J

6
74LS74

6
LOAO SR Il

CK 74LSOO
9

8 4
10

+5V =:ij 6 VIDEO 1

'--'i~
8 9

74LS08 ~
1

10 j 8 1~ 74LS20
6

INlT 13 r:c: VIDEO ON ~

13

l~
8 RELOAO

r4LSOO
7

li 74LS2D

1

=:l~~ I>A QA ~ 2 RU 1V2,

HORZ OISP ON 1
74L593

9
74LS08 1 5

8 LOAn SR 1

/
B QB

7
AD

6316
6

CLI(8 1 S~~HLSI6S
NExT 2 8 6

AI 6
I~

~Ra: QC A2
~~~~~ QH

~ ~ ,...--!.Q..
Ra2 QO

Il RA9.r-r> Lsoe S
A3 00

9 Il
A

SDe 2 17 80e
1

~ lSO 1 4
A4 01

10 12
B W- 74LS244 f..!.g..I

lS02 3
A5 02

Il 13
C

SOI 4 15 BOl
1

LS03 2 13 ,. W- ~
lS04 1

A6 03
14 3

0
SOI B02

AT 04 ; QH~
6 13

1
lS05 23 15 4 L;. i-li.J
LSD6 22

A8 05
16 5 503 B03

A9 06 G
8 Il

1
GRAPHIe 19 17 6 l..;t ~3 A 10 Dr 1 HFCS2 CS3 j-L.

CL TV REAO LooRg~
CS 1 vss

12

Je

C~_-'
VIDEO LATCH Il

QI 2 LSD0 504 2 17 B04
1

~
19 LSD 1 W- 74LS244 f..!JJsoe

Q8
S lS02 505 BOS3

01 Q2
, 15

1
SOI 18

08 Q7
16 LS03 L+ ~502 4

02 Q3
6 lS04 506 6 14 B06

1
503 17 IS lSoS Li:- ~504 7

D7 QG
9 lS06 507 B07

03 Q4
8 12

1
SOS 14 12 lS07 L;%- W-!-!506 8

06 Q5

1

507 13
04

~05 74LS373

=
CIRCUIT 8

Œ TV RAM R/W lo=W'RDE

1,0 1,0
18 R/W 00 14 soe

+5V4
R/W 00 14 504

~ "e-9 BUS +5VP 13 501 13 505
'---~- 8 VSS 01

12 502

~
VSS DI

12 506ëS 02
Il 503

ëS 02
Il 507

SAe = 5
03 03

SA 1 6 :~ 21 14 6 :~ 2114
SA2 7 7
SA3 4

A2
4

A2

SA4 3
A3

3
A3

SA5 2
A4

2
A4

SA6 1
A5

1
A5

SA7 17
A6

17
A6

SA8 16
A7

16
A7

SAi 1~
A8

15
A8

Ai Ai

6502 Instruction Set - Hex and Timing

IMPLIED ACCUM. ABSOLUTE ~RO PAGE IMl1EDIATE ABS. X

MNEMONIC OP n # OP n # OP n # OP n # OP n # OP n #
AD C (I) 6D 4 3 65 3 2 69 2 2 7D 4 3
A N D (1) 2D 4 3 25 3 2 29 2 2 3D 4 3
A S L OA 2 l OE 6 3 06 5 2 lE 7 3
B C C (2)
B C S (2)

B E Q (2)
B l T 2C 4 3 24 3 2
B M l (2)
B N E (2)
B P L (2)

B R K 00 7 l
B V C (2)
B V S (2)
C L C 18 2 l
C L D D8 2 I

C L I 58 2 I
C L V B8 2 I
C M P CD 4 3 CS 3 2 c9 2 2 DD 4 3
C P X EC 4 3 E4 3 2 EO 2 2
C P y CC 4 3 c4 3 2 CO 2 2

D E C CE 6 3 c6 5 2 DE 7 3
D E X CA 2 I
D E Y 88 2 I
E 0 R (I) 4D 4 3 45 3 2 49 2 2 5D 4 3
l N C EE 6 3 E6 5 2 FE 7 3

l N X E8 2 I
l N Y C8 2 l •
J M P 4c 3 3
J S R 20 6 3
L D A (1) AD 4 3 AS 3 2 A9 2 2 BD 4 3

L D X (1) AE 4 3 A6 3 2 A2 2 2
L D Y (1) AC 4 3 A4 3 2 AO 2 2 BC 4 3
L S R 4A 2 l 4E 6 3 46 5 2 SE 7 3
N 0 P EA 2 l
o RA OD 4 3 05 3 2 09 2 2 ID 4 3

P H A 48 3 2
P H P 08 3 l
PLA 68 4 l
P L P 28 4 l
R 0 L 2A 2 l 2E 6 3 26 5 2 3E 7 3
R 0 R 6A 2 l 6E 6 3 66 5 2 7E 7 3
RTl 40 6 l
R T S 60 6 I
S B C (1) ED 4 3 ES 3 2 E9 2 2 FD 4 3
SEC 38 2 I
S E D F8 2 I
SEI 78 2 l
S T A 8D 4 3 85 2 9D 5 3
S T X 8E 4 3 86 2
S T y 8c 4 3 84 2
T A X AA 2 l

T A Y A8 2 l
T S X BA 2 I
T X A 8A 2 I

T X S 9A 2 I
T Y A 98 2 I

S
PROCESSOR

ABS. y (IND. x) (IND)Y Z.PAGE,X RELATIVE INDIRECT Z.PAGE,Y STATUS CODE

OP n # OP n # OP n # OP n # OP n # OP n # OP n # NV BDIZC

79 4 3 61 6 2 71 5 2 75 4 2 • • ••
39 4 3 21 6 2 31 5 2 35 4 2 • •

16 6 2 • • •
90 2 2
BO 2 2

PO 2 2

•
30 2 2
DO 2 2
10 2 2

50 2 2
70 2 2

D9 4 3 CI 6 2 DI 5 2 D5 4 2

• ••
• • •
• ••

D6 6 2 • •
• •
• •

59 4 3 41 6 2 SI 5 2 55 4 2 • •
F6 6 2 • •

• •
6c 5 3 • •

89 4 3 AI 6 2 81 5 2 B5 4 2 • •
BE 4 3 B6 4 2 • •

B4 4 2 • •
56 6 2 • •

19 4 3 01 6 2 II 5 2 15 4 2 • •

• •
• • • ••••

36 6 2 • ••
76 6 2 • • •

• •••• • •
F9 4 3 El 6 2 FI 5 2 F5 4 2 • • • •

99 5 3 81 6 2 91 6 2 95 4 2
96 4 2

94 4 2

• •
• •
• •
• •

• •

HEXADECIMAL CONVERSION TABLE

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
8 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
9 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
A 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
B 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
C 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

D 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

E 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

F 240 241 242 243 244 ·245 246 247 248 249 250 251 252 253 254 255

5 4 3 2 1 0

1 1 1 1 1 1 -HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC HEX DEC

0 0 0 0 0 0 0 0 0

1 1,048,576 1 65,536 1 4,096 1 256 1 16 1 1

2 2,097,152 2 131,072 2 8,192 2 512 2 32 2 2

3 3,145,728 3 196,608 3 12,288 3 768 3 48 3 3

4 4,194,304 4 262,144 4 16,384 4 1,024 4 64 4 4

5 5,242,880 5 327,6BO 5 20,480 5 1,280 5 80 5 5

6 6,291,456 6 393,216 6 24,576 6 1,536 6 96 6 6

7 7,340,032 7 458,752 7 28,672 7 1,792 7 112 7 7

8 8,388,608 8 524,288 8 32,768 8 2,048 8 128 8 8

9 9,437,184 9 589,824 9 36,864 9 2,304 9 144 9 9

A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10

B 11,534,336 B 720,896 B 45,056 B 2,816 B 176 B 11

C 12,582,912 C 786,432 C 49,152 C 3,072 C 192 C 12

D 13,631,488 D 851,968 D 53,248 D 3,328 D 208 D 13

E 14,6BO,064 E 917,504 E 57,344 E 3,584 E 224 E 14

F 15,728,640 F 983,040 F 61,440 E 3,840 F 240 F 15

Table of PET Codes

DECIMAL HEX ASCII SCREEN BASIC 6502 DECIMAL DECIMAL HEX ASCII SCREEN BASIC _ 65_02 DECIMAL

0 00 @ end-line BRK 0
1 01 A ORA(I,X) 1 50 32 2 2 2 50

2 02 B 2 51 33 3 3 3 51

3 03 C 3 52 34 4 4 4 52

4 04 D 4 53 35 5 5 5 AND Z,X 53

5 05 E ORA Z 5 54 36 6 6 6 ROL Z,X 54

6 06 F ASL Z 6 55 37 7 7 7 55

7 07 G 7 56 38 8 8 8 SEC 56

8 08 H PIIP 8 57 39 9 9 9 AND Y 57

9 09 I ORA '# 9 58 3A : : : CLI 58

10 OA J ASL A 10 59 3B ; ; ; 59

11 OB K 11 60 3C 60

12 OC L 12 61 3D = = = AND X 61

13 OD car ret M ORA 13 62 3E ROL X 62

14 OE N ASL 14 63 3F ? ? ? 63

15 OF 0 15 64 40
,a A RTl 64

16 10 P BPL 16 65 41 A A EOR (I ,X) 65

17 11 cur down Q ORA(I) , Y 17 66 42 B ,b B 66

18 12 reverse R 18 67 43 C ,c C 67

19 13 cur home S 19 68 44 D ,d D 68

20 14 de1ete T 20 69 45 E ,e E EOR Z 69

21 15 U ORA Z,X 21 70 46 F , f F LSR Z 70

22 16 V ASL Z,X 22 71 47 G ,g G 71

23 17 W 23 72 48 H ,h H PHA 72

24 18 X CLC 24 73 49 I , i I EOR '# 73

25 19 Y ORA Y 25 74 4A J , j J LSR A 74

26 lA Z 26 75 4B K ,k K 75

27 lB [27 76 4C L ,1 L JMP 76

28 1C f 28 77 4D M ,m M EOR 77

29 ID cur right ORA X 29 78 4E N ,n N LSR 78

30 lE t ASL X 30 79 4F 0 ,0 0 79

31 IF - 31 80 50 P ,p P BVC 80

32 20 space space space JSR 32 81 51 Q ,q Q EOR(I),Y 81

33 21 : : : AND(I,X) 33 82 52 R ,r R 82

34 22 34 83 53 S ,s S 83

35 23 # '# # 35 84 54 T t, T 84

36 24 $ $ $ BIT Z 36 85 55 U u, U EOR Z,X 85

37 25 % % % AND Z 37 86 56 V ,v V LSR Z,X 86

38 26 8< 8< 8< ROL Z 38 87 57 W ,w W 87

39 27 , , . 39 88 58 X ,x X CLI 88

40 28 (((PLP 40 89 59 Y ,y Y EOR Y 89

41 29))) AND,# 41 90 5A Z , z Z 90

42 2A * * * ROL A 42 91 5B 91

43 2B + + + 43 92 5C 92

44 2C , , , BIT 44 93 5D EOR X 93

45 2D - - - AND 45 94 5E , 1
LSR X 94

46 2E ROL 46 95 5F , 95

47 2F / / / 47 96 60 RTS 96

48 30 lOI la lOI BMI 48 97 61 ADC(I, X) 97

49 31 1 1 1 AND(I) , Y 49 98 62 98

99 63 99

DECIMAL lIE X ASCII SCREEN BASIC 6502 DECIMAL DECIMAL lIE X ASCII ASIC E
100 64 100 150 96 DEF Z,Y 150
101 65 ADe Z 101 151 97 POKE 151
102 66 RCR Z 102 152 98 PRINT 1f TYA 152
103 67 103 153 99 PRINT STA y 153
104 68 PLA 104 154 9A CONT TXS 154
105 69 ~ AOC 1f 105 155 9B LIST 155
106 6A RCR A 106 156 9C CLR 156
107 6B 107 157 9D cur left CMD STA X 157
108 6C JMP(I) 108 158 9E SYS 158
109 6D ADC 109 159 9F r-- OPEN 159
110 6E ROR 110 160 AO • CLOSE LDY 'If 160
111 6F 111 161 Al r-~ GET LDA(I,X) 161
112 70 BVS 112 162 A2 r_ ft NEW LDX 'If 162
113 71 ADe(l) , Y 113 163 A3 r-'If TAB(163
114 72 114 164 A4 r-$ TO LDY Z 164
115 73 115 165 A5 r-% FN LDA Z 165
116 74 116 166 A6 r-& SPC(LDX Z 166
117 75 ADe Z,X 117 167 A7 r-' TIIEN 167
118 76 ROR Z,X 118 168 A8 r- (NOT TAY 168
119 77 119 169 A9 ~ r-) STEP LDA 1f 169
120 78 SEI 120 170 AA r-* + TAX 170
121 79 ADC Y 121 171 AB r-+ - 171
122 7A [Z] 122 172 AC r-, * LDY 172,
123 7B 123 173 AD r-- 1 LDA 173
124 7C 124 174 AE r-. LDX 174
125 7D ADC X 125 175 AF r-I AND 175
126 7E ROR X 126 176 BO r-9J OR BCS 176
127 7F 127 177 BI r-1 LDA(I) , Y 177
128 80 r-O END 128 178 B2 r-2 = 178
129 81 r-A FOR STA(l,X) 129 179 B3 r-3 179
130 82 r-B NEXT 130 180 B4 r-4 SGN LDY Z,X 180
131 83 r-C DATA 131 181 B5 r-5 INT LDA Z,X 181
132 84 r-D INPUT 1f STY Z 132 182 B6 r-6 ABS LDX Z,Y 182
133 85 r-E INPUT STA Z 133 183 B7 r-7 USR 183
134 86 r-F DIM STX Z 134 184 B8 r-8 FRE CLV 184
135 87 r-G READ 135 185 B9 r-9 POS LDA Y 185
136 88 r-H LET DEY 136 186 BA [2] r-: SQR TSX 186
137 89 r-I GOTO 137 187 BB :r-j RND 187
138 8A r-J RUN TXA 138 188 BC r- LOG LDY X 188
139 8B r-K IF 139 189 BD r-= EXP LDA X 189
140 SC r-L RE STORE STY 140 190 BE r- COS LDX Y 190
141 8D car ret r-M GOSUB STA 141 191 BF r-? SIN 191
142 8E r,..N RETURN STX 142 192 CO TAN CPY 'If 192
143 8F r-O REM 143 193 Cl ,a ATN CMP(I) ,X 193
144 90 r-P STOP Bec 144 194 C2 ,b PEEK 194
145 91 cur up r-Q ON STA(I),Y 145 195 C3 ,c LEN 195
146 92 rvs off r-R WAIT 146 196 C4 ,d STR$ CPY Z 196
147 93 clear r-S LOAD 147 197 C5 ,e VAL CMP Z 197
148 94 insert r-T SAVE STY Z,X 148 198 C6 , f ASC DEC Z 198
149 95 r-U VERIFY STA Z,X 149 199 C7 ,g C/IR$ 199

DECIMAL lIE X SCREEN BASIC 6502 DECIMAL DECIMAL lIE X ASCII SCREEN BASIC 6502 DECnlAL
200 C8 ,h LEFT$ INY 200 250 FA l'· 250
201 C9 , i RIGHT$ CMP ;;= 201 251 FB 251
202 CA ,j MID$ DEX 202 252 FC 252
203 CB ,k 203 253 -FD SBC X 253
204 CC ,1 CVP 204 254 FE INC X 254
205 CD ,m CMP 205 255 FF 1t' 255
206 CE ,n DEC 206
207 CF ,0 U 207
208 00 ,p CI) BNE 208ct
209 Dl ,q CMP(I) , y 209
210 D2 ,r ... 210
211 D3 • 0

211,B
212 D4 , t CIl 212

CIl
213 D5 ,u Qi CMP Z,X 213
214 D6 ,v > DEC Z,X 214CIl
215 D7 ,w a: 215
216 D8 ,x CLD 216
217 D9 ,y CMP y 217
218 DA • , z 218
219 DB 219
220 OC 220
221 DO CMP X 221
222 DE :- DEC X 222
223 DF 223
224 EO CPX '# 224
225 El SBC(I) ,X 225
226 E2 226
227 E3 227
228 E4 CPX Z 228
229 E5 SBC Z 229
230 E6 INC Z 230
231 E7 231
232 E8 INX 232
233 E9 ,fa!t SBC '# 233
234 EA NOP 234
235 EB 235
236 EC CPX 236
237 ED SBC 237
238 EE INC 238
239 EF 239
240 FO BEQ 240
241 FI SBC(I), y 241
242 F2 242
243 F3 243
244 F4 244
245 F5 SBC Z ,X 245
246 F6 INC Z,X 246
247 F7 247
248 F8 SED 248
249 F9 SBC y 249

INDEX

A/D CONVERTORS 80, 98
, ABSOLUTE ADDRESSING 27

ABSOLUTE INDEXED ADDRESSING 27, 28
ACCUMULATOR 19
ADDITION 21
ADDRESS BUS 2
ADDRESSED COMMANDS 150
ADDRESSING MODES 26, 39
ARITHMETIC UNIT 19
ARRAY LIMITATION 76
ARRAYS 72, 73, 75
ASCII 15, 37,95
ASCII FILE 135, 136, 137
ASSEMBLER 35
AUTO PROGRAM GENERATOR 128
BASIC INTERPRETER SUBROUTINES 44-64
BASIC TOKENS 68
BINARY FILES 135
BLANKING 161
BRANCH 23
BREAK COMMAND 23, 32
CARRY FLAG 23
CASSETTE 1, 10, 14, 85, 133
CASSETTE BUFFERS 100, 130
CASSETTE MOTOR 14, 134
CHARACTER GENERATOR 15
CHARGOT 33
CHIP SELECT 7
CLOCK 4, 104, 108
COMMUNICATION 83,85, 87, 109
CONDITIONAL TEST 24
CONTROL BUS 4
CPU 1
CURSOR CONTROL 11, 85
DATA BUS 2
DATA DIRECTION REGISTER 90
DATA MODIFY IN~TRUCTIONS 32
DATA STATEMENT GENERATOR 129
DATA STATEMENTS 72, 129
DATA STORAGE 72
DECIMAL MODE 23
DECREMENT 32
DEVICE NUMBERS 13 3
DIAGNOSTICS 83
DIVISION 22
DOUBLE DENSITY PLOT 163
FLAGS 22, 23, 95, 117
FLOATING POINT VARIABLES 74
FLOPPY DISK 134, 142
FLOW DIAGRAMS 37
GARBAGE COLLECTION 78
HAND ASSEMBLY 35, 39
HANDSHAKE LINES 90, 92, 96, 101, 116
1/0 6, 10, 89

1/0 PORT EXPANSION 109
IEE E 488 10, 11 , 133, 142
IEEE CONNECTOR 142
IEEE HANDSHAKING 143, 147, 158
IEEE TIMING 147
IEEE TO RS232 156
IMMEDIATE ADDRESSING 26
IMPLIED ADDRESSING 26
INCREMENT 32
INDEX REGISTERS 27
INDEXED ADDRESSING 27
INDIRECT INDEXED ADDRESSING 28
INSTRUCTION SET 19
INTEGER VARIABLES 73
INTERRUPT 5, 30, 31, 100, 111
INTERRUPT DISABLE 23
INTERRUPT POLLING 31, 92, 99
INTERRUPT VECTOR 5, 31
IRQ 5
JIFFY CLOCK 94, 97
JOYSTICK 98
JUMP 23, 25
KEYBOARD la, Il, 85, 123
KEYBOARD BUFFER 128
KEYBOARD DISABLE 125, 126
KIM 111
LINE NUMBER 71
LINE NUMBERING 71
LINK ADDRESS 69, 71, 72
LOGICAL FILE NUMBER 134
LOGICAL OPERATIONS 19
MACHINE CODE 33, 35, 96, 104
MACHINE CODE MONITOR 140
MANAGEMENT BUS 147
MEMORY l, 6
MEMORY 2114 7
MEMORY 6550 7
MEMORY BLOCK SELECT 8
MEMORY EXPANSION 8
MEMORY MAP 6, 10, 122
MEMORY MAPPED 6
MEMORY TEST 8, 9, 65
MICROPROCESSOR 6502 2, 3
MULTIPLE PRECISION 20
MULTIPLICATION 22
MUSIC GENERATOR 103, 104, 105
NEGATIVE FLAG 23
NEW BASIC INSTRUCTIONS 80
NMI 5, 30, 34, 101
OP-CODE 6, 25
OPERAND 25
OPERATING SYSTEM 43
OPERATING SYSTEM SUBROUTINES 44-64
OVERFLOW FLAG 23

OVERLAYS 70, 71
PAGE ZERO MEMORY MAP 39, 65
PIA 6520 la, 12, 119
PIXEL 15
POWER SUPPLY 2
PROCESSOR ST ATUS REGISTER 22
PROGRAM COUNTER 24, 31
PROGRAM MERGE 133, 140
PROGRAM STORAGE FORMAT 69
PULL ACCUMULATOR 29
PUSH ACCUMULA TOR 29
R/W 4, 89, 134
RAM ROM 5, 6, 7
READ 2, 83, 87, 134
READY 6
RECORDING FORMAT 136
REGISTERS 6520 119
REGISTERS 6522 89, 114
RELATIVE ADDRESSING 25, 27
REPEAT KEY 131
RESET 4, 5, 30
RESET VECTOR 5
RETRACE INTERRUPT 161
RETURN KEY DISABLE 131
REVERSE FIELD 127
ROTA TE BYTE 32
SCREEN EDITOR 130
SERIAL 1/0 107, 108, 109, 156
SHIFT BYTE 32
SHIFT KEY 126
SHIFT REGISTER 87, 89, 104, 105, 109, 115
STACK POINTER 29, 30
STACK REGISTER 29
STOP DISABLE 126
STOP KEY 94, 126
STRING VARIABLES 74
SUBROUTINES 33, 43, 97, 100, 111, 141
SUBTRACTION (SBC) 21
SWITCH SENSING 93
SYNC 6, 85
SYS 33, 34
SYSTEM ARCHITECTURE 17
SYSTEM VARIABLES 44-64
TALK AND LISTEN ADDRESS 144, 149
TAPE BUFFER 136
TAPE ERROR CHECKING 137, 138
TIMERS 4, 5, 115, 116
TOKENS 66, 68
TOP OF MEMORY POINTERS 34, 65
TRACE 80
TRANSFER BUS 145
TV MONITOR 85
TWO'S COMPLEMENT 21
UNCOPYABLE TAPES 139, 140
UNIVERSAL COMMANDS 149
UNAUTHORISED DATA ENTRY 125

USER PORT 14, 83, 87, 92
USR 33, 34
VARIABLE POINTER 72, 73
VARIABLE STORAGE 72, 73
VIA 6522 13, 83, 87, 89, 91
VIDEO ADDRESS GENERATOR 15
VIDEO CIRCUIT 14, 86
VIDEO RAM 15
WAIT 94
WRITE 2, 4, 87, 135
ZERO FLAG 23'
ZERO PAGE ADDRESSING 27

