
COMMODORE
DISK REFERENCE MANUAL

FOR

D9090 D9060 8250 8050 4040 2031

NOTICE

The information in this manual has been reviewed and is believed to be
entirely reliable. However, Commodore assumes no responsibility for any
inaccuracies. This is a preliminary manual v»*iich is provided for
information purposes only and is subject to change without notice. It is
being provided now, in preliminary form, so as not to delay introduction
of new disk-storage products. A more complete and comprehensive version
of this manual is being prepared and will be available soon.

TABLE OF CCKTENTS

Page

Chapter 1 Introduction 5

General Information 5

Description D9090 & D9060 5

Description 8250 5

Description 8050 6

Description 4040 6

Description 2031 6

Preparing to use the Disk Unit 6

Unpacking the Disk Unit 6

Connecting the Disk Unit to the Computer 7

Performing the Power-On Test 7

Handling Diskettes 8

Disk Unit Specifications 9

Chapter 2 Learning How to Use Your Disk Drive 10

Conventions Used 11

Prerequisites 12

Files 12

The Disk Operating System (DOS) 12

The Block Availability Map (BAM) 13

Communicating with DOS 13

File Name Pattern Matching 14

Disk Maintenance Commands 15

Var iable Command Parameters 15

Command Abbreviations 16

HEADER 16

INITIALIZE 16

DIRECTORY/CATALOG 17

COLLECT 18

COPY <. 18

CONCAT 19

RENAME 19

SCRATCH 19

Chapter 3 Basic Commands for File Handling 21

Data File Coimiands 22

DSAVE (Writing a Program to a disk) 22

DLOAD (Reading a program from a disk) 22

DOPEN 23

DOLOSE 23

PRINT# 24

INPUT* 25

GET# 25

RECORD* 26

Chapter 4 Advanced Disk Progranming 27

Overview of DOS Versions 28
General Operation of DOS '.'.'.'.'.

28

Disk Utility Coinmands 29
BLOCK-READ [[] 3q
BLOCK-WRITE !.!!!!.*!!!!!!!!.* 31
BLOCK-EXECUTE .*.*.*!.*!!.'.*.*.*!!

31
BUFFER-POINTER !!!!!!!!!!! 32
BLOCK-ALLOCATE !!!!!!!! 32

Memory Commands 33
MEMORY-WRITE .*.*.*.*!!!.'!

33
MEMORY-READ !!!!!!!!!!! 34
MEMCRY-EXECUTE !!!!!!!!!!! 34

USER Commands 34
STAlsDARD USER JUMP TABLE .*!!!!!!! 35

Chapter 5 Advanced File Handling 36

Relative Files 37

Creating a Relative File 39
Expanding a Relative File 39
Accessing a Relative File 40

Using 8050 Diskettes in 8250 Drives 41
Managing Relative Files on the 8250 42

Chapter 6 Disk Storage Formats 43

Block Distribution by Track 44
BAM Formats

, 44
Structure of BAM Entries for one Track .] 46
Directory Header Formats 47
Directory Block Formats ,[43
Disk Data File Formats 49

Chapter 7 DOS Error Messages - Disk Commands Quick Reference. 50

Requesting Error Messages 51
Summary of CBM Disk Error Messages 51
Description of DOS Error Messages 52
Disk Commands Quick Reference 54

Appendix A Permanent Alteration of Device Number 56

CHAPTER 1

INTRODUCTIOJ

Introduction ^

General Information 5

Description of D9090 & D9060 5

Description of 8250 5

Description of 8050 ^

Description of 4040 6

Description of 2031 6

Preparing to Use the Disk Unit 6

Unpacking the Disk Unit 6

Connecting the Disk Unit to

the Computer 7

Performing the Power-On Test 7

Handling Diskettes 8

Disk Unit Specifications 9

INTRODUCTiai

Read the Table of Contents to become acquainted with the broad scope of
material covered in this manual, \n*iich has been designed to assist you in
using the ccanputer as an aid to the learning process. Once thf disk drive
is properly interfaced to a Commodore Cbmputer, the worth and utility of
the system, is measured in direct relationship to how well you learn to
use the hardware and software.

This manual presents material specific to the Commodore 5 1/4 - inch hard
Winchester Disk Drives, thie 8250 dual drive, double sided disk unit, the
8050 and 4040 single sided dual disk units and the 2031 single disk unit.
Conmands and procedures will, for the most part, work on all models. The
exceptions will be described in the appropriate sections of this manual.

Users \^o have attained some degree of programming skills may desire to
begin with the advanced subjects such as advanced file handling, v>^ile
others may be content with following the manual's format. In either case,
you are provided with essential information in a logical sequence. Follow
the examples, attempt the step-by-step procedures, and learn by doing.

GENERAL INFORMATION

With the purchase of the Commodore Disk system, you have greatly enhanced
the computing power of your Commodore computer system. All Commodore disk
units are "intelligent" peri{*ierals, therefore requiring no computer
memory for operation. This means that you have just as much computer
memory available, v^^iether the disk drive is attached or not. To get the
most out of the system you should study both the computer user's guide and
this manual.

DESCRIPTION OF THE D9060 & D9090

The two models of hard Disk Drives described in this manual are single-
drive storage devices. The primary components consist of read/write
controls, drive motor electronics, a drive mechanism, two or three
platters with recording surfaces on both sides, four or six read/write
heads, and track positioning mechanisms. The disk drives conform to PET-
IEEE interface requirements. An IEEE interface connector is located on
the back of the drive. Near the lower edge of the rear panel is a power
ON/OFF switch. There is also a "slow blow" fuse, and an AC power cord.

DESCRIPTION OF THE 8250

The model 8250 dual floppy disk unit uses a 100 Track per Inch (TPI) two
headed drive with a formatted capacity of 1,066,496 bytes (characters) per
drive. Each 8250 diskette has 154 tracks, 77 on each side, and is
read/write compatible with the model 8050 disk drive. The 8250 uses
Micropolis Tandon drives.

DESCRIPTICN OF THE 8050

The model 8050 dual floppy disk unit uses a 100 Track per Inch (TPI)

sinqle headed drive with a formatted capacity of 533,248 bytes per drive.

Each 8050 diskette has 77 tracks, and is read/write compatible with the

model 8250 disk drive. This compatibility is limited to one side of the

diskette. The 8050 uses either Micropolis or Tandon drives.

DESCRIPTIC»I OF THE 4040

The model 4040 dual floppy disk unit uses 48 track per inch (TPI) single

headed drives with formatted capacities of 174,848 bytes (characters) per

drive. Each 4040 diskette has 35 tracks. The 4040 is neither read nor

write compatible with the model 8050 or the 8250 disk
f
J-^^^^; .^^^t^f

^^^
created on 4040 drives are read/write compatible with the model 2031 and

the VIC-1540 disk units.

DESCRIPTION OF THE 2031

The model 2031 is a low-cost single drive disk unit. The 2031 uses a 35

track (48 TPI) single headed drive with a formatted capacity of 174,84b

bySs. Diskettes created on 2031 drives are read/write compatible with

the model 4040 and VIC-1540 disk units.

PREPARING TO USE THE DISK UNIT

Before starting to use the disk drive, make sure it is in good working

condition. This includes properly connecting it to the computer, giving

it power-on and initial checkout tests, and finally running performance

tests using the TEST/DEMO diskette (except hard disk) .

commodore disk units described in this manual are operationally compatible

with any model PET or CBM computer equipped with BASIC 3.0 ?r BASIC 4.0.

VIC-20 and Commodore-64 computers equipped with the appropriate PET-IEEE

adapter cartridge can also use these disk units.

UNPACKING THE DISK UNIT

Before unpacking the disk drive, inspect the shipping carton for signs of

external damage. If the carton is damaged, caution should be excercised

when inspecting its contents. The contents and all packing material

should be removed from the carton. NO packing materials should be

discarded until all the contents are located. -Kie carton should contain:

1. Model D9060, D9090, 8250, 8050, or 4040 Disk

2. User Manual

3. TEST/DEMO diskette (except for D9060 or D9090 hard disk units)

If any item is missing, your Commodore dealer should be notified.

C(M!JECTING THE DISK UNIT TO THE COMPUTER

One of two connector cables are required to interface the disk drive to
the computer. These cables can be supplied by your Commodore dealer.

PET-to-IEEE cable: Part # 320101
This cable shoud be used if the disk drive is to be connected
directly to the computer.

lEEE-to-IEEE cable: Part # 905080
This cable shoud be used if the disk drive is to be connected
('daisy-chained') to another peripheral device such as the Commodore
Model 4022 or any other suitably interfaced printer.

NOTE: The disk drive should be the first peripheral attached to the
computer if other devices are to be 'daisy-chained'.

Procedure for connecting the disk drive to the computer:

STEP 1: Power to the computer and all peripherials should be turned OFF.

STEP 2:

STEP 3:

STEP 4:

The disk drive should be located as close as possible to the
computer

.

The PET-to-IEEE cable connects between the IEEE-488 interface on
the computer and the disk drive. If additional IEEE devices are
to be connected, the lEEE-to-IEEE cable (s) must be used.

The disk unit power cable should be connected to an AC outlet at
this time, but with its power switch turned OFF.

PERFORMING THE POWER-ON TEST

Procedure for power-on checkout:

STEP 1: Power should now be applied to the computer to verify that it is
working properly. Tlie following message will be displayed:

*** Commodore Basic ***

31743 Bytes BYee (Depends on Memory Size)
ready

STEP 2: Power should now be applied to the disk drive. All indicator
lights (LEDS) on the front panel should flash twice. The two-
color power/error LED should stay green, indicating power Oti.

If the drive lights remain on or all lights flash continuously or if the
power/error LED stays red for more than five seconds, turn the power OFF.
Wait a mcsnent and try again. If these conditions are repeated, all other
devices should be removed from the IEEE bus. This will assure that a
possible problem related to another device does not affect the disk unit.
If the problem persists, your Commodore dealer should be contacted.

NOTE: After applying power to D9060 or D9090 Hard Disk units,. WAIT ONE

FULL MINUTE before attempting to use any disk conmand. This time is

required to allow rotational speed of the disk to stabilize. Any

commands issued before this time will cause a DRIVE NOT READY error

message to occur, and the drive will not respond to further commands

until the INITIALIZE command is used.

HANDLING DISKETTES

Unless you have one of the hard disk drives, your disk unit will have

either Micropolis, Tandon, or Shugart drive mechanisms. Suggested

procedures for inserting diskettes into the drive (s) differ from model to

model. However, as a general precaution (for all models) to help insure

proper seating of diskettes, be sure that the diskette is reasonably well

centered in its casing before inserting it into the drive.

1. Micropolis - 8250: The Micropolis drives used in the 8250 include

switches to detect diskette insertion; however, closing the door^does

not start the drive motor. For proper seating of diskettes the 'flip

down' door should be 'teased' once or twice before final closing.

2. Micropolis - 8050: The 8050 Micropolis drive starts the drive motor

as the diskette is locked in position. The gate should not be
_

'teased' shut, \«^ich may cause a mis-seating of the diskette. Simply

insert the disk and press the gate latch down firmly, but gently,

without hesitation.

3. Tandon - 8050: Two versions of the Tandon drive are supplied. The

versions are visually identical; however, the later version has a

switch to start the drive motor to aid in seating disks. To properly

seat a disk in earlier Tandon drives, the 'flip-down' door should be

'teased' once or twice before final closing. Bbr later version

drives, the motor startup will seat diskettes without the teasing.

4. Shugart - 4040 / 2031: Diskettes will seat properly in the 4040/2031

Shugart drives by just closing the 'flip-down' door without teasing.

These drives do not have diskette insertion detect or automatic motor

start. Thus, the INITIALIZE command (Chapter 2) should always be

used after changing diskettes, before any other command is used.

Floppy diskettes are fragile but they can be a long-lasting and very

reliable data storage medium v*ien handled properly. Always treat your

diskettes gently; never force them into the disk drive. Keep them in

their paper sleeves when not in use - in a case designed to hold them.

Keep diskettes away from magnetic fields, as found near electric motors or

power transformers. Never set heavy objects, such as cups, bottles or

books on top of diskettes. Be prepared for the inevitable unforseen

accident: MAKE FREQUENT BACKUP COPIES of your data - and keep the copies

in a safe place.

Any 'soft-sectored' single-density or double-density certified diskette

will work reasonably well with Commodore floppy disk units. However, for

the 8050 and 8250 disk units, double-density diskettes are recommended.

Diskette hub rings also help long-term reliability of any diskette.

COMMODORE DISK SYSTEM SPECIFICATIONS

MODEL D9090 D9060 8250 8050 4040 2031

Drives per Unit
Heads per Drive

1

6

1

4

2

2

2

1

2

1

1

1

Formatted Storage
Capacity per Unit 7.47 Mb 4.98 Mb 2.12 Mb 1.05 Mb 340 Kb 170 Kb

Max Sequential File
Max Relative File

7.41 Mb
7.35 Mb

4.94 Mb
4.90 Mb

1.05 Mb
1.04 Mb

521 Kb
183 Kb

168 Kb
167 Kb

168 Kb
167 Kb

Disk System
Buffer RAM (Bytes) 4 Kb 4 Kb 4 Kb 4 Kb 4 Kb 2 Kb

DISK FORMATS

Cylinders (Tracks)
Sectors/Cyl inder
Sectors per track
Bytes per sector
Blocks Free (Unit)

153 153 77 77 35 35
128 192 - - - -

32 32 23-29 23-29 17-21 17-21
256 256 256 256 256 256
29162 19442 8266 4104 1328 664

TRANSFER RATES (Bytes/Sec)

Internal to Unit 5 Mb 5 Mb 40 Kb 40 Kb 40 Kb 40 Kb
IEEE-488 Bus 1.2 Kb 1.2 Kb 1.2 Kb 1.2 Kb 1.2 Kb 1.2 Kb

ACCESS TIMES (Milli-seconds)

Track-to-track 3 3 5 * 30 30
Average Track 153 153 125 ** 360 360
Head settling time 15 15 - - — -

Average Latency 8.34 8.34 100 100 100 100
RPM 3600 3600 300 300 300 300

* Track-to-track

:

** Average Track:
Micropolis 8050 = 30 ms. Tandon 8050 = 5 ms,

Micropolis 8050 = 750 ms. Tandon 8050 = 125 ms.

PHYSICAL DIMENSIONS

Height (in.) 5.75 5.75 7.0 7.0 7.0 5.5
Width (in.) 8.25 8.25 15.0 15.0 15.0 8.0
Depth (in.) 15.25 15.25 13.75 13.75 13.75 14.25
Weight (lbs.) 21 21 28 28 28 20

ELECTRICAL

Power (watts) 200 200 60 50 50 40
Voltage (all 1Models) 110 - 120 VAC, 60 Hz

CHAPTER 2

LEARNING HOW TO USE THE DISK DRIVE

Conventions Used H
Prerequisites 12

Files 12

The Disk Operating System 12

The Block Availability Map 13

Conmunieating With DOS 13

File Name Pattern Matching 14

Disk Maintenance Corrmands 15

Variable Command Parameters 15

DOS Command Abbreviations 16

Header 16

Initialize 16

Directory 1^

Collect 18

Copy 18

Concat 19

Rename 19

Scratch 19

10

CaWEJJTIC^JS USED IN THIS MANUAL

b byte
d destination
dn device #
dr drive #
fn file name
ft file type (REL, SEQ, USR, PRG)
Ifn logical file #
mode READ or WRITE
n new
o old
r record #
R read
rl record length
s source
sa secondary address
vn variable name (eg. A, Xl$)
W write
XX two character diskette identifier

NOTE: The description of disk coitmands and all examples of usage that
follow are given in BASIC 4.0 syntax. Disk command syntax used with BASIC
3.0 (or earlier) are shown in Chapter 7. It should also be noted that
since the hard disks are single-drive units, use of two-drive commands is
not valid for those devices. Ihe Commodore BASIC 4.0 Reference Manual may
be consulted for additional information on disk commands.

11

PREREQUISITES

Commodore disk units add to and enhance the computing power of your system

with added storage and file handling capability. They are controlled

directly with:

o BASIC commands entered via the keyboard

o BASIC statements within programs, and

o Special disk commands.

In this manual you will learn how to apply disk commands and statements.

Functions and format of disk commands, which permit the user to perform

disk-related tasks, are described here. For BASIC 4.0 users, those BASIC

commands which correspond to each disk maintenance command are also

discussed.

This chapter will advance toward an understanding of those BASIC commands

used for data handling. The disk conmands should be practiced along with

the examples, and the illustrations should be followed. The understanding

of the more advanced disk progranming techniques will depend to a large

degree upon how well the fundamentals have been mastered.

To facilitate understanding and mastery of Commodore BASIC, scane computer

terms are stressed in this Chapter: Files, Disk Operating System (DOS)

and Block Availability Map (BAM). Although these are conventional terms,

they will be briefly discussed as they relate to Commodore disk usage.

FILES

For the novice computer user, an explanatory word about files is in order.

A file is an organized set of information vs^ich is stored on some form of

media, be it tape, diskette, or even something as mundane as a filing

cabinet.

With regard to computers, however, any information entity v/hich is stored

external to computer memory is a file. This requires that files be given

names for identification and that some means of locating them be provided.

The Disk Operating System (DOS) takes care of most of these details.

A file can be a set of program instructions (a program file) or a set of

data (such as a list of names or an inventory of auto parts) vihich a

program can access to store and retrieve information.

THE DISK OPERATING SYSTEM (DOS)

The DOS is responsible for managing information exchange between the disk

controller and the computer. The DOS performs many functions vvhich are

transparent to the user but which are vital to the operation of the

system. For example, the DOS monitors the input/output (I/O) of the disk

so that channels are properly assigned and that no lengthy waits for an

open channel occur. In addition to monitoring of disk I/O, the DOS also

uses the channel structure to search the directory and to delete and copy

files.

12

THE BLOCK AVAILABILITY MAP (BAM)

The BAM is a disk memory representation of available and allocated (used)
space on a disk. Formatting a disk creates the BAM which is then loaded
into DOS memory upon initialization. The BAM is stored on disk in various
locations, depending upon the model of disk unit.

When the system stores data on a disk, the BAM will be referenced by the
Disk Operating System (DOS) to determine whether space is available. For
Sequential or Program files the DOS checks for space before each block of
the file is written. If a free block is found, the BAM is updated to
account for the space used and the data block is written to the disk. If
no free blocks are available an error message will be generated.

As changes occur to the BAM in DOS memory, the BAM on disk will be updated
periodically to reflect these changes. Updates to the BAM occur when a
program is DSAVEd or vjhen DCLOSE is performed on a Relative or Sequential
data file. One block of the BAM is loaded into DOS memory at a time.
When updated, this block is written back to the disk and the other block
loaded into memory. This interchange of information between the two BAMs,
one in DOS memory and the other on disk, enables the system to maintain a
record of free and allocated space on the disk.

COMMUNICATING WITH DOS

Input/output programming can become complex v*ien data is transfered to or
from cassette drives, printers, disk drives and external devices other
than the screen or keyboard. For these more complex operations a
'channel' must be opened between the program and the selected device by
using the CBM BASIC OPEN statement. After performing required operations
the channel must be CLOSEd.

Each device attached to the computer has its own unique fiiysical device
number (8 thru 15 for disk units) to v*iich it responds when being accessed
by the computer. The device number is also used as a parameter when
OPENing a channel, to identify the physical unit to be accessed.

CBM disk units are preset at the factory to respond to 0iysical device
number 8; however, their device number may be changed (see Memory-Write
command Chapter 4) by means of DOS commands. The DOS recognizes an
optional device number specification for all Disk Maintenance commands and
some Data File commands (Chapter 3) . If device number is not specified
DOS will assume unit number 8.

Channel numbers (vi^ich can range from thru 255) do not have permanent
assignments, but are assigned arbitrarily by the programmer. Thus,
channel numbers are refered to as 'logical file' numbers. The 'logical
file number' relates OPEN, CLOSE, INPUT, GET and PRINT statements with
each other and associates them with the {±iysical device being accessed.

In addition to a logical file number and a device number. Commodore disk
units also respond to several 'secondary addresses'. Secondary addresses
are best visualized as 'commands' from the computer telling the disk unit
what operation it is to perform.

13

Address is used (with DLOAD) to read a program file into computer
memory. Address 1 is used (with DSAVE) to write programs from memory into

a diskette program file. Addresses 2-14 are used to access data files.

Address 15 is a special 'command/status' address used to perform many of

the special disk operations described in this manual and to retrieve

status information about disk operations.

FILE NAME PATTERN MATCHING

Pattern matching of file names is available on all Commodore disk units.

Pattern matching uses question marks (?) and asterisks (*) to perform an

operation on several files with similar names using a single command. The

asterisk is used at the end of a string of characters to indicate that the

rest of the name is insignificant and is to be ignored in the search for

matching file names. For example "FIL*" could refer to files named:

FIL
or FILEl
or FILEDATA
or FILLER
or Any other file name starting with the letters FIL.

The question mark may be used anywhere within the string of characters to

indicate that only the character in that particular position should be

disregarded. For example "?????. SCR" could refer to files named:

TSTER.SRC
or DIAGN.SRC
or PROGR.SRC

but not SRC. FILES

Both the characters and the position of the characters are significant.

The question mark and asterisk may be combined in many useful ways.

However, the asterisk should always appear as the last character in any

pattern, whether or not question marks are used. For example the pattern

"J*?????" does not make sense because the question marks are in an area

which is insignificant (because of the asterisk)

.

The pattern "P???FIL*" will access files with the names:

PET FILE

or PRG-FILE-32
or POKEFILES$$
or Any other file starting with 'P' and having 'FIL' in positions 5-7.

DLOAD "*" will load the first program file in the disk directory. DOPEN

with pattern matching may be used to open an existing file, in ^ich case

the first file encountered which fits the pattern will be opened. DOPEN

must NOT be used with pattern matching v*en creating a new file.

The SCRATCH command with pattern matching should be used carefully, since

multiple files will be scratched. Never use RENAME, DSAVE, or COPY with

pattern matching, since an error condition will result.

14

DISK MAINTENANCE COMMANDS

The following disk cortmands permit file manipulation and disk maintenance.
The disk-level commands provide for formatting disks to ready them for
use, displaying a directory of file names contained on disks, initializing
a drive to assure that DOS 'knows' v>4iich blocks on a disk are used and
unused and for re-building a valid BAM in the event of software failures.

The file-level commands provide for copying files from one drive or disk
unit to another, appending one file to another, changing the names of
files and for removing unwanted files from the disk directory.

Disk Level

File Level

FUNCTICN COMMAND NAME

Format a disk HEADER

Read Block Availability
Map (BAM) into DOS buffer INITIALIZE

Read disk directory DIRECTORY

Reconstruct Block
Availability Map COLLECT

Copy files COPY

Copy with append CONCAT

Rename a file RENAME

Erase a file SCRATCH

NOTE: The drive number reference in all DOS commands has been maintained
in the examples v\^ich follow to be compatible with dual drive disk units.
If using the 2031 single disk or the D9050/D9090 hard disk drives, all
references to drive number must be a zero (0) . Any reference to drive 1
will result in an error condition.

VARIABLE COWIAND PARAMETERS

Each disk command has associated with it one or more optional parameters
which may be used to specify file names, drive numbers, device numbers,
etc. When needed, command parameters may appear in either of two forms.
Parameters may be stated explicitly, such as: D0PEN#1," Inventory File",Dl
or BASIC variable names enclosed in parentheses may be used, such as:
D0PEN#1,(A$) ,(DN). The two DOPEN commands above would produce the same
results.

When entering disk commands from the keyboard in direct mode, parameters
must be stated explicitly. When used in programs, parameters may either
be explicit or variable, and both forms may be used in the same command.

15

COMMAND ABBREVIATIONS

Whether entered in direct mode or used in a program, EXDS coinnands may

appear either with their full spelling or in abbreviated form. Commands

are abbreviated by entering enough characters of the coirsnand name to

uniquely distinguish it from any other DOS command or BASIC keyword. All

but the last character of the abbreviation are keyed unshifted and the

last character shifted.

For example, 'catalog' and 'cA' are identical to the DOS, as are 'print#l'

and 'pRl'. Abbreviation of commands does not reduce memory usage in

programs, but is supported as a convenience for user of the system. When

a program containing comnand abbreviations is listed, the commands will

appear in fully spelled form.

HEADER

A previously unused diskette must first be formatted in the soft-sector

format recognized by your disk unit by using the HEADER command. This

process writes track/sector addresses on the disk, writes binary zeros to

all blocks, and creates the BAM, Directory Header and the Directory.

Since formatting destroys any data previously stored on a disk, the HEADER

command has a built-in safety feature that first queries: ARE YOU SURE?

Typing a "y" in response permits the disk to be HEADERed. Any other

response aborts the operation without writing on ttie disk.

Format:

HEADER "diskname" [,Ddr] [onu#] [,Ixx]

Example

:

HEADER "Inventory",do onu9,i02

The above statement will format the disk in drive # on unit # 9, giving

it the name "Inventory" and disk identification number (ID) of "02". Hard

disk units (D9060 and D9090) must also be HEADERed before using them to

store data. If the drive number is omitted DOS will default to drive # 0.

Ihe DOS provides for 'quick formatting' of previously used disks. If the

disk ID number is omitted, the DOS will create a new Directory Header (the

disk name may be changed) and write an 'empty' BAM and Directory to the

disk, but without writing zeros to all data blocks.

INITIALIZE

Whenever a diskette is inserted into a drive, for any reason, that drive

MUST be initialized to ensure that the BAM data in DOS memory is the

proper data for the diskette currently in the drive. Failure to properly

initialize the drive may cause a DISK ID MISMATCH error, or loss of data.

16

Format

:

PRINT#lfn,"Idr"

Example

:

OPEN 15,8,15
PRINT#15,"I0"
CLOSE 15

Initializes drive # of the disk unit. If the drive number is omitted
then both drives will be initialized, on dual disk units.

The 4040 and 2031 disk units check diskette ID each time the disk is

addressed to find vAiether initialization is needed. If a new diskette ID
is detected the drive is initialized without need for operator action. If
the ID is the SAME as a previous diskette the change of diskettes WILL NOT
be detected and data will be lost if the drive is not initialized.

Since the 8050 and 8250 disk units feature automatic detection of diskette
removal/insertion, these units will self-initialize either when the door
is closed (8050 Micropolis) or vhen the drive is first addressed (8250 and
8050 Tandon)

.

DIRECTORY / CATALOG

This command will display a listing of the file names stored on a disk.
The contents of computer memory are not disturbed. The directory display
includes the following information:

o Disk Name, Disk ID and DOS Version
o File name and File Type
o File size (number of blocks used)

o Number of available (free) blocks on the disk

Format:

DIRECTORY [Ddr] [onu#] or CATALOG [Ddr] [onu#]

Example:

DIRECTORY Dl or CATALOG Dl

These will cause the directory for drive 1 to be displayed, emission of
the drive number will cause the directory of BOTH drives to be displayed
in succession on dual drive units. Unit numbers other than 8 may be used.
To list a disk directory on a Commodore printer, the following command
sequence may be used.

0PEN1,4 Opens a channel to device 4 (printer).
CMDl Switches the screen output to device 4.

DIRECTORY Prints the directory.
PRINT#1 Returns output to the screen.
CLOSEl Closes the Channel to the printer.

17

By changing the OPEN statement above to the format: DOPEW#l,"name" a
sequential data file would be created on disk, called 'name', containing
the contents of the disk directory. This provides a convenient means of

accessing the directory as input data to a program.

COLLECT

The COLLECT command traces through each block of data contained in all

files on the disk. If this trace is successful, a new BAM is generated in

the disk memory and written to the disk. Any blocks v*iich have been

allocated but are not associated with a file name, as in the case of

direct access files (User file type) will be freed for other use.

In addition to reconstructing the BAM, COLLECT deletes files from the

directory that were never properly closed. If a READ error is encountered

during a COLLECT, the operation aborts and leaves the disk in its previous

state. If a COLLECT error does occur, the drive must be initialized

before proceeding.

COLLECT accomplishes the following:

o Recreate a Block Availability Map (BAM) according to valid

data on the disk.

o Delete files from the directory which were never properly closed

(DOPENed but never DCLOSEed)

.

Format:

COLLECT [Ddr] [onu#]

Example

:

COLLECT DO

This will reconstruct the BAM, delete any unclosed files on drive and

free any blocks reserved via the Block-Allocate command (see Chapter 4)

.

Omitting the drive number will cause both drives to be COLLECTed on dual

drive units. The device number specification (onu#) is optional.

COPY

This command creates an identical copy of a file, either on a different

drive (or device number) or, with a different file name, on the same disk.

Format:

COPY [Dsdr] [onu#] ,"sfn" TO [Dddr] [onu#] ,"dfn"

Example

:

COPY DO, "names" TO Dlonu9, "friends"

18

This will copy a file called "names" on drive unit # 8 to drive 1 on
unit # 9. The name of the new file is "friends". The COPY command may be
used with pattern matching to copy several files at a time. If the file
name already exists on the destination disk, an error condition results
and the copy is not done, emission of source drive number causes a search
of both drives for the file. Destination drive number defaults to 0.

CCNCAT

Concatenation of files amounts to copying one SEQUENTIAL file and
appending its data to the end of another SEQUENTIAL file. "Itie source file
remains unchanged and its contents are appended to the destination file
which then contains all records from both files.

Format:

CONCAT [Dsdr] [onu#],"sfn" TO [Dddr] [onu#] ,"dfn"

Example

:

CONCAT DO, "names" TO Dl, "friends"

This will add the data in a file called "names" on drive to a file
called "friends" on drive 1. The file "names" on drive will remain
unchanged and "friends" will contain all data frcm both files. The CONCAT
command may only be used on SEQuential files. Omission of source drive
number causes a search of both drives. Destination drive defaults to 0.

RENAME

The RENAME command changes the name of an existing file. The file name to
be changed must be properly closed. The new file name must not currently
exist on that drive or the error message FILE EXISTS will be generated and
the file name will not be changed.

Format:

RENAME [Ddr] [onu#],"o fn" TO "n fn"

Example

:

RENAME Dl, "clients" TO "patients"

This will change the file named "clients" on drive 1 to "patients". Drive
number will default to is not present. Pattern matching may not be used
to rename files. Both drives will be searched if drive number is omitted.

SCRATCH

The SCRATCH coirmand removes unwanted files frcxn the directory. The file
is not 'erased', instead the directory entry for the file is marked as
SCRATCHed by setting its File Type (Directory Block Formats, Chapter 6) to

19

zero. The blocks occupied by the file are marked as available in the BAM.

A built-in DOS safety feature queries the user: ARE YOU SURE? Typing a

"y" in response permits the file to be SCRATCHed. Any other response

aborts the operation.

Format:

SCRATCH [Ddr] [onu#] ,"fn"

Example

:

SCRATCH dl,"data-x"

Are you sure ? y

This will cause the file named "data-x" on drive # 1 to be scratched and

the blocks occupied by that file freed for other use. Pattern matching

may be used to SCRATCH several files at a time. If drive number is

omitted, both drives will be searched for files.

20

CHAPTER 3

BASIC CCM»1ANDS

For FILE HANDLING

Data File Commands 21
DSAVE 21

DLOAD 21
DOPEN 22
DCLOSE 23
PRINT# 23
INPUT* 24
GET# 24

RECORD* 25

21

DATA FILE COMMANDS

The BASIC coitmands described in this chapter, allow the user to open,

communicate with, and transfer data to and from files on the disk unit.

It should be noted that these are not program (PRG) files, but rather data

files that are either RELative or SEQuential. A SEQuential file is one m
which information is stored and retrieved in sequence, one record after

the other, i.e. the file must be searched from the beginning up until the

desired information is found. A RELative file is one which allows direct

access to any piece of information.

All characters shown as upper-case in the following formats are essential

for the proper execution of a command and must appear exactly as shown.

These coitmands are entered via the keyboard (using unshifted characters

only) or they may be used in BASIC programs. Characters shown in lower

case or within quotes represent parameters supplied by the programner.

DSAVE"fn" PRINT#lfn,vn

DLOAD" f
n" INPUT#1 fn ,vn

DOPENlfn,"fn" GET#lfn,vn

DCLOSE#lfn RECORD*lfn,R,B

DSAVE

This command transfers the program currently in computer memory to a file

on the disk. The DOS will flag the file as a program (PRG) file type.

Format:

DSAVE [Ddr] [onu#],"fn"

Example

:

DSAVE Dl, "payroll acct"

This coimiand will save a file named "payroll acct" to drive 1 on the disk.

The file name may be any name up to 16 characters, including blanks. If

drive number is omitted the program will be stored on drive # 0. An

optional device number (onu#) may be specified.

DLOAD

The DLOAD conmand transfers PRG files from the specified disk to the

computer's memory. The user must specify the program name. A successful

DLOAD closes all open files. Therefore the user must give a new DOPEN

conmand in order to continue communicating with the disk drive command and

error channels. (DOPEN will be discussed later in this chapter)

.

Format:

DLOAD [Ddr] [onu#] ,"fn"

22

Example

:

DLOAD "custOTiers" , DO

A program file named "customers" will be loaded from drive into the
computer's memory. The drive number will default to if not specified.

QUICK LOAD FEATURE: For computers with BASIC 4.0, pressing the SHIFT and
the RUN/STOP keys simultaneously causes the first program file in the
directory of drive # 0, unit # 8 to be loaded into memory and executed.

DOPEN

This command sets up a correspondence between a logical file number and a
Relative or Sequential file on disk. It also reserves buffer space within
the disk unit for operations on the file being opened. The format is
slightly different for each file type.

Format (SEQuential files)

:

OPEN#lfn,"filename",Ddr,W (or R)

Example

:

D0PEN#1, "account",DO ,W

This will open a SEQuential file called "account" on drive for writing
to disk. The file name "account" must not currently exist on the disk or
the error message FILE EXISTS will be displayed. If a non-existant file
is opened for reading, the error message FILE NOT FOUND is displayed. If
the W is omitted or an R is used, DOS will open the file for reading.

Format (RELative files)

:

DOPEN#lfn,"filename",Ddr,Lrl

Example

:

D0PEN#1," account", DO, LI28

Ihis will open a RELative file called "account" on drive with a record
length of 128 characters. If the file name "account" does not currently
exist, the file will be created. If the named file does exist, it will be
opened for both reading and writing.

Using the DOPEN conmand on an already open file will cause an error v^iich

automatically closes the file. To recover, simply DOPEN the file again.

DCLOSE

This command closes files opened with the DOPEN command, updates the BAM
to reflect the last block (s) allocated to the file and updates the file's
directory entry to show the number of blocks occupied by the file.

23

Format:

DCLOSE# Ifn

Example :

DCL0SE#25

This statement will close logical file number 25. If the logical file

number is omitted all currently open disk files will be closed.

NOTE- It is good practice to always close a file after working with it.

A maximum of ten open files in the computer and five in the disk drive are

permitted, therefore it is prudent to make a habit of closing files as

soon as possible. This way you will always have the maximum number of

files available for use.

PRINT#

The PRINT* statement is used to transmit data to a previously DOPENed

SEQuential or RELative file. Using BASIC 4.0, any file opened with

logical file number greater than 127 will automatically result m a line

feed character CHR$(10) being transmitted to the device when a carriage

return character CHR$(13) is sent. I/^gical file numbers less than 128

will suppress the line feed character. Note that earlier versions of

BASIC do not support this feature.

Format:

PRINT#lfn,variable name

Example:

PRINT#8,Y$

This will cause the value of Y$ to be written to logical file number 8.

Several variables may be written to the disk at the same time.

Example

:

PRINT#lfn,A$;B$;C$

This will result in variables A$, B$, and C$ being concatenated into a

single data string stored on disk. Note that the variable names in the

PRINT statement are separated by semicolons.

Example

:

PRINT#lfn,ACHR (13)BCHR (13)C$

This will result in writing the variables A$,B$, and C$ separated by

carriage returns. They may then be retrieved as separate variables using

the INPUT or GET statements.

24

INPUT*

The INPUT# command is used to transfer information frcan the disk drive
into computer memory. INPUT# is valid only v^en referencing a logical
file that has been DOPENed for input.

Format

:

INPUT#lfn,variable name

Example

:

INPUT#5,A$

This will read data from logical file number 5 into variable name A$. The
input is terminated by encountering (whichever occurs first) : a maximum
of 80 characters, a carriage return CHR$(13), a comma CHR$(44) or a semi-
colon CHR$(59).

Example

:

INPUT#5,A$,B$,C$

In this example, the data strings must have been separated by some
delimiter character at the time they were written to the disk in order to

be retrieved separately. No single string may contain more than 80
characters if it is to be INPUT. For strings longer than 80 characters,
the GET# command must be used.

GET*

The GET# command is used to tranfer individual bytes of information from
an IEEE device such as the disk unit into computer monory. GET# is valid
only when referencing a file that has been DOPENed for reading.

Format:

GET#lfn,variable name

Example

:

GET#15,A

In this example a single byte of numeric data will be retrieved from
logical file number 15 into the variable named A.

When using the GET statement to retrieve string data, if the data read is

a binary zero (or null character) the variable used to hold it will have a

length attribute of zero. For proper handling of later operations, such

as comparisons, the null must be converted to its CHR$ value as shown.

Example

:

GET#7,B$:IF B$="" THEN B$=CHR$(0)

25

The GET# statement may be used to transfer several bytes of data, v^ich is

useful for retrieving strings v*iich have been written to the disk in a

format unacceptable for the INPUT command (longer than 80 characters)

.

Example

:

AA$=""
F(» 1=1 TO 254
GET#12,A$
AA$=M$+A$
NEXT

This program segment would result in a string of length 254 being
transferred from logical file number 12 to computer memory and stored in
the variable AA$.

RECORD!

The RECORD# command is used prior to a PRINT#, INPUT#, or GET# in order to

position the file pointer to the desired record (and byte) of a RELative
file. For example, if the file pointer is set beyond the last record and
PRINT! is used, the appropriate number of records are generated to expand
the file to the desired size.

Format

:

RECORD#lfn,r,b

Example

:

RECORD#15,12,8

This will position the RELative record file pointer to byte number 8, of
the 12th record, in logical file number 15. The byte number (8) is

optional and if omitted the file pointer will be positioned to the first
data character of the record.

Example

:

RECORD* 1,25
INPUT*1,A$

Inputs the next record as a string and assigns it to variable A$. A
detailed discussion of the RECCRD command for relative file manipulation
is found in Chapter 5.

26

CHAPTER 4

ADVANCED

DISK PROGRAMMING

Overview of DOS Versions 27
General Operation of DOS 27
Disk Utility Coirmand Set 28
BLOCK-READ 29
BLOCK-WRITE 30
BLOCK-EXECUTE 30
BUFFER-POINTER 30
BLOCK-ALLOCATE 31
MEMORY-WRITE 32
MEM(»Y-READ 32
MEMCRY-EXECUTE 33
Standard User Jump Table 34

This chapter provides detailed information about DOS structure and disk
utility commands. The utility commands provide the programmer with low-
level functions that may be used for special applications such as special
disk handling routines and random access techniques.

27

COMMODORE DISK OPERATING SYSTEM (DOS)

Overview of DOS Versions

DOS 2.1 works with the 4040 dual disk unit. Model 2040 disk units can be

upqraded to DOS 2.1 by replacement of ROM chips. Reliability of the

recording format of DOS 2.1 was improved over DOS 1.0 by ^moving one

block from tracks 18 thru 24. As a result the directory holds 144 file

entries and 664 blocks for user data.

The Relative Record file structure was added to DOS 2.1 to provide for

random access to files. The Block Read/Write commands of DOS l-O are

supported, but the corresponding 'Ul' and 'U2' utility commands should be

used for upward compatibility with future CBM disk products.

in general, software which does not depend upon physical device attributes

should be upward compatible for all versions of DOS. Programs using the

Block Read/Write commands are very vulnerable to DOS changes.

DOS 2.5 is used in all 8050 dual disk units. All of the features of DOS

2 1 are included in DOS 2.5 and adapted for additional capacity. DC^ 2.5

also includes enhancements such as disk insertion detect and expanded

error recovery techniques. The directory provides 224 file entries and

2052 blocks are available for user data.

DOS 2.6 is used in the 2031 single disk unit. DOS 2.6 is a functional

equivalent to DOS 2.1 (used in the 4040) and is fully compatible with DOS

2;i with one exception. Since the 2031 is a single-drive unit, dual drive

commands will not operate on the 2031.

DOS 2.7 is used in the 8250 double-sided dual disk unit. DOS 2.5 disk

commands and the 8050 disk unit are upward compatible with DOS 2.7 and the

8250. With certain restrictions diskettes created on either disk unit are

read/write compatible. One important feature of the 8250 is the Expanded

Relative File capability of DOS 2.7 which allows these files to occupy an

entire 8250 diskette, providing a capacity of over 1 million bytes.

DOS 3.0 is used in the D9060 and D9090 hard disk units. Features of DOS

3.0 include a dynamically expandable directory allowing an unlimited

number of file entries, replacement-mapping of bad sectors, and a self-

locating BAM.

General Operation of DOS

The DOS file interface controller is responsible for managing all data

transfers between the IEEE bus and the disk controller. Most disk I/O is

performed on a pipelined basis, resulting in faster response to requested

operations.

The file system is organized by channels which are opened with the BASIC

DOPEN statement. When the DOPEN statement is executed, the DOS assigns a

workspace to each channel and allocates one to three disk I/O buffer

areas. If either the workspace or the buffer is not available, a NO

CHANNEL error is generated. The DOS also uses the channel structure to

search the directory, and to delete and copy files.

28

The common memory between the disk controller and the file interface
controller is used for 256-byte buffer areas. Three of the sixteen
buffers are used by the DOS for the Block Availability Map (BAM), variable
space, command channel I/O, and the disk controller's job queue.

The job queue is the vital link between the two controllers. Jobs are
initiated on the file side by providing the disk controller with sector
header and type of operation information. The disk controller seeks the
optimum job and attempts execution. An error condition is then returned
in place of the job command. If the job is unsuccessful, the file side
re-enters the job a given number of times, depending upon the operation,
before generating an error message.

The secondary address given in the OPEN statanent is used by DOS as the
channel number. The number the user assigns to a channel is only a
reference number that is used to access the work areas, and is not related
to the DOS ordering of channels.

The DLOAD and DSAVE statanents trananit secondary addresses of and 1,
respectively. The DOS automatically interprets these secondary addresses
as DLOAD and DSAVE functions. Unless these functions are desired v*ien
opening files, avoid secondary addresses of and 1. The remaining
numbers, 2 through 14, may he used as secondary addresses to open up to
five channels for data.

DISK UTILITY COMMAND SET

The disk utility command set consits of the following commands:

Commands Abbreviations General Format

BLOCK-READ B-R "B-R:"ch;dr;t;s

BLOCK-WRITE B-W "B-W:"ch;dr;t;s

BLOCK-EXECUTE B-E "B-E:"ch;dr;t;s

BUFFER-POINTER B-P "B-P:"ch;p

BLOCK-ALLOCATE B-A "B-A:"dr;t;s

BLOCK-FREE B-F "B-F:"dr;t;s

Memory-Write M-W "M-W"adl/adh/nc/data

Memory-Read M-R "M-R"adl/adh

Memory-Execute M-E "M-E"adl/adh

USER U "Ux:ch;dr;t;s

29

ch=the channel number in DOS: identical to the secondary address

in the associated OPEN statement.

dr=the drive number: (or 1 for floppy dual drives)

t=the track number: 1 thru 154 (depending on Model #)

s=sector number: thru 112 (depending on Model #)

p=the pointer position for the buffer pointer.

adl=the low byte of the address.

adh=the high byte of the address.

nc=the number of characters: 1 through 34.

data=the actual data in hexidecimal. This is transmitted by using

the CHR$ function, i.e. CHR$(17) would send the decimal

equivalent of hexadecimal 11.

x=the index to the User Table.

parms=the parameters associated with the U command (optional)

.

These commands may be abbreviated to the first character of each of the

key words. Only abbreviations are accepted for the MEMORY Read, Write and

Execute commands. DOS searches for parameters associated with each

command starting at a colon(:), or in the fourth character position if a

colon is not present. The following example shows four ways that the same

BLOCK-READ command may be given.

Examples:

"BLOCK-READ: "2, 1,4,0
"B-R"2, 1,4,0
"B-R"2;l;4;0
"B-READ:"A;B;C;D

Parameters following the key words within quotation marks may be separated

by any combination of <cursor-right>, SPACE or Comma characters. If using

variable names to pass coimiand parameters, only the command string should

be enclosed in quotes as shown in the general format examples above.

BLOCK READ

This disk utility command provides direct access to any block on the disk.

Used in conjunction with other block commands, a random access file system

may be created through BASIC. This command positions the DOS file pointer

to the first character or "0-position" of the block. When a character in

this position is read with GET# or INPUT#, an End-or-Identify (EOI) is

sent. This terminates an INPUT* and sets the Status Word (ST) to 64 m
the computer.

30

Format

:

"B-R:"ch;dr;t;s

Example:

"B^R:5;0;18;0

Reads the block from drive 0, track 18, sector 0, into channel 5 buffer
area.

After using BLOCK-READ to transfer the data to the buffer, the data may be
transferred to memory by INPUT# or GET# from the logical file opened to
that disk channel (i.e., using that secondary address). The Ul command
described under USER is similar to the BLOCK-READ cormand.

BLOCK-WRITE

When this command is initiated, the current buffer pointer is used as the
last character pointer and is placed in the 0-position of the new buffer.
The buffer is then written to the indicated block on the disk and the
buffer pointer is left in postion 1.

Format:

"B-W:"ch;dr;t;s

Example

:

"B-W:"7;0;35;10

Writes channel 7 buffer to the block on drive 0, track 35, sector 10. The
U2 command described under USER is similar to the BLOCK-WRITE command.

BLOCK-EXECUTE

This command allows part of the DOS or user designed routines to reside on
disk, be loaded into disk drive memory, and be executed. The File
Interface Controller begins execution of the contents after the block is
read into the specified buffer. Execution must be terminated with a
"Return From Subroutine" (RTS) instruction. Future system extensions or
user-created functions may implanent this feature.

Format:

"B-E"ch;dr;t;s

Example

:

"B-E:"6;0;l;10

Reads a block from drive 0, trackl, sector 10, head into channel 6
buffer and executes its contents beginning at position in the buffer.

31

BUFFER-POINTER

This command changes the pointer associated with the given channel to a

new value. This is useful when accessing particular fields of a record

within a block or, if the block is divided into records, individual

records may be set for transmitting or receiving data.

Format:

"B-P:"ch,p

Example

:

"B^P:"2;1

Sets channnel 2 buffer pointer to the beginning of the data area in the

direct access buffer.

BLOCK-ALLOCATE

This command requests that the DOS flag the block on the specified drive

track and sector as being "in use". If successful, the appropriate Block

Availability Map (BAM) is updated in DOS memory to reflect the block as

allocated (used). In future operations, the DOS skips over the allocated

block when saving programs or writing files. The updated BAM is written

to disk upon closing an output file or closing the command channel.

If the block requested has been previously allocated, the error channel

indicates the next available block (increasing track and sector numbers)

with a NO BLOCK error. If no blocks are available, greater m number than

the one v^ich was requested, zeroes are shown as the track and sector

parameters when the NO BLOCK error is returned.

Format:

"B-A:"dr;t;s

Example

:

"B-A:"0;10;0

Requests that block (sector) of track 10 Head be flagged as allocated

on the disk. Always check the error channel when using this command to

prevent an allocated block from being overwritten. If the block is

allocated, the error message will also indicate the next available block.

Example

:

INPUT* 1 5 , EN , EM$, ET , ES

Reads the next available track and sector, respectively, into ET and ES.

Assumes that lfn=15 was previously OPENed to the disk command channel.

EN=Error Number EM$=Error Message

32

MEMC«Y COMMANDS

All three MEMORY commands are byte-oriented so that the user may utilize
machine language programs. BASIC statements may be used to access data
via the MEMORY commands by using the CHR$ function. The syston accepts
only M-R, M-W, and M-E; neither verbose spelling or the use of the colon
{:) is permitted. The INITIALIZE command must be sent (once only) to a
drive before issuing a sequence of MEMCBY commands to that drive.

MEMORY-WRITE

This command provides direct access to the DOS memory. Special routines
may be down-loaded to the disk drive via this command and then executed
using the MEMORY-EXECUTE command or one of the USER commands. Up to 34
bytes may be deposited with each use of the M-W command. The hexadecimal
value of the DOS memory address must be specified low-byte first and must
be converted to decimal for use with the CHR$ function.

Format:

"M-W"adl/adh/nc/data

Example

:

"M-W"CHR$ (0)CHR$ (18)CHR$ (4)CHR$ (32)CHR$ (0)CHR$ (17)CHR$ (96)

Writes four bytes to buffer 2 ($1200 or decimal 4608) . Another use for
the M-W coirmand is to temporarily change the physical device number of a
disk unit. All disk units are set to device number 8 at the factory.
When two or more disk units are attached to the computer, the device
number of each unit must be made unique or none will operate correctly.
The following program fragment will change the device number of 4040, 8050
or 8250 floppy disk units and D9060 or D9090 hard disk units.

Example:

OPEN15,odn,15
"M-W"CHR$ (12) CHR$ (0) CHR$ (2) CHR$ (ndn+32) CHR$ (ndn+64)
CL0SE15

To change the device number of 2031 disk units use this M-W statanent:

Example:

"M-W"CHR$ (119) CHR$ (0) CHR$ (2) CHR$ (ndn+32) CHR$ (ndn+64)

The general procedure to change device number is:

1. power-up the first disk unit only.
2. run the above program.
3. then power-up the next disk unit.

The device number will remain at the new value until changed again by the
M-W command or a (U: or UJ) conmand is issued or the unit is powered down.

33

MEMORY-READ

The byte pointed to by the DOS memory address in the command string may be

accessed with this command. Variables from the DOS or the contents of the

buffers may also be read with this command. The M-R command changes the

contents of the error channel since it is used for transmitting data to

the computer. The next GET# from the error channel (secondary address 15)

transmits the byte. An INPUT! should not be executed from the error

channel after a MEMORY-READ command until a DOS command other than one of

the MEMCfflY commands is executed.

Format:

"M-R"adl/adh

Example

:

"M-R"CHR$ (128) ;CEiR$ (0)

GET#15,A$

This will access and reads the byte located at ($0080 hexadecimal or

decimal 128)

.

MEMORY-EXECUTE

Subroutines in the DOS memory may be executed with this command. To

return to the DOS, terminate the subroutine with an RTS instruction.

Format:

"M-E"adl/adh

Example

:

"M-E"CHR$ (128)CHR$ (49)

Requests execution of the code beginning at $3180 hexadecimal.

USER COMMANDS

Ihese coinnands provides a link to 6502 machine code according to a jump

table pointed to by the special USER pointer. The second character in

this command is used as an index to the table. The ASCII character

through 9 or letters A through may be used. Zero sets the USER pointer

to a standard jump table that contains links to special routines.

The special USER commands Ul (or UA) and U2 (or UB) can be used to replace

the BLOCK-READ and the BLOCK-WRITE commands on all DOS versions. Because

of errors in DOS 2.1 the B-R and B-W commands do not operate correctly in

4040 disk units. Thus B-R and B-W must be replaced by Ul and U2 v^en

programming for the 4040.

The Ul cormand forces the character count (buffer pointer) to 255 and

reads an entire block into memory. This allows complete access to all

34

bytes in the block, including the track/sector link pointer.

Format:

"Ul:"ch;dr;t;s

Example:

"Ul:"5;0;18;0

The block at track # 18, Sector # on drive # is read into buffer
channel number 5. The data may then be accessed via the M-W and GET#
commands

.

U2 writes a buffer to a block on thie disk without changing the contents of
position as B-W does. This is useful when a block is to be read in
(with B-R) and updated (B-P to the field and PRINT#) , then written back to
disk with U2.

Format

:

"U2:"ch;dr;t;s

Example:

"U2:"5;0;18;0

Writes the data in channel buffer # 5 to drive # 0, track 18, sector 0.

STANDARD USER JUMP TABLE

STANDARD ALTERNATE
DESIGNATIOJ DESIGNATION FUNCTION

"1 UA BLOCK-READ replacement

U2 UB BLOCK-WRITE replacement

"3 UC jump to $1300
U4 UD jump to $1303
^5 UE jump to $1306
U6 UF
U7 UG
U8 UH
U9 UI

jump to $1309
jump to $130C
jump to $130F
jump to $10fO (NMI)

U* UJ Power-up Vector

Ihe U3 thru U9 commands are user-defined. The locations jumped to are
located in the buffer areas of disk unit RAM. User-written DOS routines
may be coded to reside there and may be downloaded from the computer using
the M-W command or read from disk using the B-W or Ul commands. Location
$10F0 is the location of the NMI interrupt handler. The U: or UJ commands
cause the disk unit to perform its power-up sequence and resets device
number. The drive (s) must be initialized before issuing further conmands.

35

CHAPTER 5

ADVANCED FILE HANDLING

RELATIVE FILES

Relative Files 36

Creating a Relative File 38

Expanding a Relative File 38

Accessing a Relative File 39

Using 8050 Diskettes
in 8250 Drives 40

Managing Relative Files

on the 8250 Disk 41

The preceding chapters explained how to manipulate files on the disk, and

described the format of commands used to create and manipulate sequential

files. In this chapter, these skills will be utilized in discussing

direct access file handling using Relative Record files.

36

RELATIVE FILES

Direct access (or RELative files) is a method that allows the progranmer
to position a pointer to any record on the disk relative to the beginning
of that file. Compare this method to the standard procedure of having to
search each track and sector for the desired information and it becomes
apparent that such a relative handling method would result in a great
reduction in the amount of time required to find and fetch a specific
record stored on disk.

The three main components of a relative file are the super side sector
(DOS 2.7 and DOS 3.0 only), the side sector chain of blocks and the data
block chain. All are linked together through forward pointers similar to
those used in a sequential file.

The super side sector points to the first side sector in a group of side
sectors., Each side sector points to other side sectors in the same group
and points to a data block chain. Record sizes, v^ile fixed in length,
may range from 1 to 254 bytes. The number of records is limited (under
DOS 2.1 and DOS 2.5) to that v^ich can be contained in 720 data blocks, as
each side sector can contain a maximun of 120 data block pointers. The
number of records under DOS 2.7 and DOS 3.0 is limited to the capacity of
the disk but for practical purposes should not exceed 65,535.

The side sectors do not contain record information, but do contain
pointers to the data blocks. The record size dictates v^ere the pointer
is positioned v^en a record number is referenced because the record size
is used in an algorithm to compute v^ere the pointer is positioned v*ien a
record number is given through the RECORD conmand.

The side sector also contains a table of pointers to all of the other side
sectors within the file. In order to move from one side sector to
another, the pointer is referenced through the appropriate DOS command,
and the corresponding side sector is read into memory. Using information
contained in the referenced side sector, the data block pointer can be
located and used to read in the actual data block containing the record.

The relative file data block pointers in the side sectors allow the DOS to
move from one record to another within two disk read commands - a
considerable savings in the amount of time required to find a desired data
block v\^en compared to sequential methods.

Each side sector contains pointers for 1 to 120 data blocks. There are
six side sectors for each relative file under DOS 2.1 (4040) and DOS 2.5
(8050) . This provides a total file capacity of 182,880 bytes (120
pointers/side sector * six side sectors * 254 bytes/data block) . The
super side sector of DOS 2.7 (8250) and DOS 3.0 (Hard Disks) has the
capacity to point to 127 groups of side sectors, giving a total capacity
of 23,225,760 bytes per file (182,880 bytes * 127 groups of side sectors).

Spanning of data blocks is a key feature of relative files which aids in
reducing the number of disk read/write operations required to find and
retrieve data. Before explaining how this feature of DOS improves time
utilization efficiency, we need to examine how I/O channels are utilized
by relative files:

37

When a channel is opened to a previously existing file, the DOS will

position to the first record provided that the given parameters match

properly. The record length variable is not necessary on the DOPEN

statement if the file already exists. The DOS checks the record size

(if specified) against the record size that appears in the directory

entry for an existing file. If these do not match, then an error

message will be generated.

Relative files require three memory buffers from the system, whereas

sequential files only require two. Since there are twelve buffers m
the system and two of these are used in directory searches and

internal functions, only three relative files can be open at once.

The highest number of buffers that can be used is ten, which limits

the total number of channels which can be open at any one time.

If a record was found to be on the boundary between two data blocks, that

is, starting in one data block and finishing in another, then the DOS

would read the first segment as well as any following records in the

second data block. In practice, the records of most relative data files

will span across data blocks. The only exceptions are record size 1,^,

127, and 254. These divide evenly into the 254 size of the data block and

spanning is unnecessary.

This method of spanning has the advantage of requiring no system memory

overhead aside from that required for the side sector blocks in the

relative files. When a record is written via the PRINT# statement, the

data block is not immediately written to disk. It is only written out

when the DOS moves beyond the particular data block in which that record

resides. This can occur through successive printing to sequential

records, or when positioning to another record outside of that particular

block.

Because of the spanning feature, it is imperative that multiple channels

NOT be open to a single relative file at the same time if any channel will

be writing to the file. An update may be made in one channel's particiHar

memory buffer area, but the change may not be made on disk until the DOS

moves beyond that particular data block. DOS places no restriction on

this, and when the file is open for READ only, it may be advantageous to

have multiple channels open to a single relative file.

The DOS terminates printing to a record by detecting the EOI signal which

is generated with each PRINT* statement. If the PRINT* statement goes

over the maximum record size an error message will be generated. Any data

overflow will be truncated to fit the number of character specified by the

record size and the DOS will position to the next record in sequence.

If the print statement contains less characters than the actual record

size, the remaining positions within that record will be filled with nulls

or binary zeros. Consequently, when positioning to a record for input the

EOI signal is generated from the DOS to the computer when the last non-

null byte is transmitted. Should the programmer desire to store binary

information, a record terminator such as carriage return must be used and

the record size increased by one character to accommodate the terminator.

38

CREATING A RELATIVE FILE

When a relative file is opened for the first time, the file should be
initialized by the prograimier to allow for faster subsequent access, and
to assure that the DOS reserves sufficient space on the disk for the
future data. A relative file may be initialized by first opening the
file, setting the file pointer to the last (highest) record number to be
contained in the file, printing to that record, and then closing the file.

Example

:

DOPEN#1,"FILE1",DO,L50
RECORD* 1,100
PRINT#1, CHR$(255)
DCL0SE#1

In the preceding example the DOPEN creates a file on drive # with the
name FILEI and a record length of 50.

The RECORD# statement positions the file pointer to record number 100
v^ich does not yet exist. The error message 50 RECORD NOT PRESENT will
occur at this point, but should be interpreted as a warning rather than an
error condition. This message is nonnally expected to occur as a warning
when a new record is accessed for the first time and indicates that no
INPUT or GET operation should be attempted.

The PRINT# statement causes record number 100 to be written. During this
write operation, the DOS detects that records 1 thru 99 do not already
exist, and automatically initializes them by placing CHR$(255) in the
first character of each record. During this process, all necessary side
sectors and data block pointers are also created.

While the DOS is generating new data blocks for relative files, the
requested record number is compared to the number of data blocks left on
the disk. If the resulting number of data blocks is greater than the
number available on the disk, then error 52 FILE TOO LARGE is generated.

The DCLOSE statement closes the file and causes space to be allocated in
the BAM and updates the block count in the file's directory entry.

After the file has been initialized, data may be written to the file.
Initialization of a file in this manner need be, performed only once when
the file is originally created.

EXPANDING A RELATIVE FILE

To expand an existing file, the same procedure as for creation is used,
with the record number changed to reflect the greater number of records.

When DOPEN is used on an existing relative file, the record length
parameter is optional. If present, it must match the length set at the
time the file was created or error 50 RECORD NOT PRESENT will result.

When a file is expanded in this manner, required side sectors are also

39

created. Side sectors are transparent to the user since they are

automatically generated and accessed by the DOS.

ACCESSING A RELATIVE FILE

In order to make the relative file system practical, the user must be able

to access the file for reading and writing of data. Both of these

operations are simplified by relative files and both may use the RECORD

command for positioning to the desired record before the operation.

To write data to or read from a predetermined record in a file, the

RECORD* statement is used to set the DOS file pointer to the desired
_

record. The record number parameter may be a constant or a BASIC variable

name enclosed in parentheses as shown.

Example

:

DOPEN#1,"FILE1",DO
RECORD*1,25
or: REC0RD#1,(RN) Where RN has the value 25

PRINT#1, "Philadelphia"

DCL0SE#1

The resulting record would appear as follows:12 3 4 5

12345678901234567890123456789012345678901234567890

Philadelphia*

Where * represents a carriage return CHR$(13).

The following program illustrates an optional feature of the RECORD*

statement which permits access to individual bytes within a record for

writing or reading.

DOPEN#1,"FILE1",DO
RECORD#l,25 (Sets file pointer to record 25)

PRINT#1, "Philadelphia"

RECORD#1,25,20 (Sets character pointer to position # 20)

PRINT*l,"Penna." ... u o^n
RECORD*!, 25, 30 (Sets character pointer to position # 30)

PRINT*1, "19204"

DCL0SE#1

The following illustration is a representation of the contents of record

number 25 after the above example is executed:12 3 4 5

12345678901234567890123456789012345678901234567890

Philadelphia* Penna.* 19204*

40

NOTE: It is important that the fields be written in sequence, since
writing to a byte at the beginning of the record destroys the rest of the
record in DOS memory. This means that v^ile it is possible to position
and write first to byte 1 and then to byte 20, it is NOT possible to first
write byte 20 and then byte 1.

Since the carriage return is recognized as a terminator by the BASIC
INPUT# statement, the data in the preceeding example may be retrieved by
the following sequence:

Example

:

DOPEN#1,"FILE1",DO
RECORD*1,25
INPUT#1,A$ (Reads "E^iiladelphia" into A$ variable).
RECORD#1,25,20
INPUT#1,B$ (Reads "Penna." into B$ variable).
RECORD#1,25,30
INPUT#1,C$ (Reads "19204" into C$ variable).
DCL0SE#1

The RECORD# command may be emitted if the file is to be accessed
sequentially, v>^ich saves time during program execution. An example of
this occurs vhen writing a large data base to the disk file. Assume that
the program has already dimensioned variable D$ as an array v^iich contains
100 elements. These elements are to be written to the disk in records
number 1 thru 100 of file FILEl. This could be accomplished with the
following program segment:

Example

:

D0PEN#1,"FILEl",DO
FOR 1=1 TO 100

PRINT#1,D$(I)
NEXT I

DCL0SE#1

Since the record pointer is automatically set to record 1 when the file is
opened, record 1 is the first record written. If no RECORD command is
executed the DOS automatically positions to the next record after each
PRINT#. Therefore, the contents of D$ array elements will be written to
records 1 thru 100 of the file.

USING 8050 DISKETTES IN 8250 DRIVES

Although the 8050 and 8250 disk units are read/write compatible, the first
access to an 8050 diskette inserted into an 8250 drive (or use of the
Initialize command) will cause an error 66 ILLEGAL TRACK OR SECTOR
message. The message occurs because of the different BAM contents of the
two disk systems and may be ignored. The error will occur only once and
all further disk commands will operate correctly unless the diskette is

moved to another drive.

41

For ease of use, data on 8050 diskettes should be transfered to 8250

formatted diskettes using the COPY command. The BACKUP conmand will not

work for this.

The 8050 disk unit is upward ccanpatible (read/write) to the 8250 with some

exceptions. The 8050 disk unit cannot access the reverse (top) side of an

8250 formatted diskette. Relative files created on an 8250 disk unit

cannot be accessed by an 8050 unless the Expanded Relative File feature of

the 8250 was disabled before creating the file and unless the file resides

entirely on the (bottom) diskette surface that the 8050 can access.

MANAGING RELATIVE FILES ON THE 8250

Relative files on 8050 disk units are limited to a size of 182,880 bytes.

On 8250 disk units with DOS 2.7 this limit no longer applies and relative

files may use the entire capacity of an 8250 diskette. The 8250 will

power-up with the Expanded Relative File feature enabled. To read/write

8050 formatted relative files, this feature must be disabled as follows:

Example

:

OPEN 15,8,15
PRINT#15,"M-W"chr$ (164)chr$ (67)chr$ (l)chr$ (255)

CLOSE 15

This disables access to expanded relative files until the 8250 is powered

down or reset by a (U: or UJ) USER command or until the Expanded Relative

File feature is re-enabled as follows:

Example

:

OPEN 15,8,15
PRINT#15,"M-W"chr$ (164)chr$ (67)chr$ (l)chr$ (0)

CLOSE 15

Existing relative files in 8050 format can be converted to the 8250

Expanded Relative File format by means of a program named "EXPAND. REL"

V(^ich is included on the TEST/DEMO diskette supplied with 8250 disk units.

To convert 8050 relative files to 8250 format DLOAD and RUN this program

(you must use an 8250 disk unit) . A series of instructions will be

displayed on the screen. The expanded relative files output by this

program cannot be accessed by an 8050 disk unit.

42

CHAPTER 6

DISK STORAGE FORMATS

Block Distribution by Track 43
2031 BAM Format 43
4040 BAM Format 43
8050 BAM Format 44
8250 BAM Format 44
D9060/D9090 BAM Format 45
Structure of BAM Entries 45
2031 Directory Header 46
4040 Directory Header 46
8050 Directory Header 46
8250 Directory Header 46
D9060/D9090 Directory Header 47
Directory Block Formats 47
Disk Data File Formats 48

niis chapter provides the details of disk storage fromats of the 4040,
8050, and 8250 floppy disk units and the D9090 and D9060 hard disk units.
For each type of disk the tables v^ich follow show: Block Distribution by
track, locations and formats of the Block Allocation Map, the Directory
Header, the Directory, and the formats of Program, Sequential, and
Relative files.

43

BLOCK DISTRIBUTION BY TIRACK

Nr. Blocks

21

19

18

17

21

19

18

17

29
27

25
23

29

27

25

23

29

27

25

23

153 tracks per recording surface (4 on D9060,

and 6 on D9090) with 32 sectors per track.

BAM (Block Allocation Map) FORMATS

2031 BAM Format - Track 18 Sector 00

Byte Data Definition

0-1 18-00 Track-Sector of first directory block

2 65 ASCII 'a' identifies DOS 2.6 format

3 00 Reserved for future DOS use

4_143 Bit map of available blocks, tracks 1-35

4040 BAM Format - Track 18 Sector 00

Byte Data Definition

0-1 18-00 Track-Sector of first directory block

2 65 ASCII 'a' identifies DOS 2.1 format

3 00 Reserved for future DOS use

4_143 Bit map of available blocks, tracks 1-35

isk Unit Track Nr.

2031 1 - 17

18 - 24

25 - 30

31 - 35

4040 1 - 17

18 - 24

25 - 30

31 - 35

8050 1-39
40 - 53

64 - 64

65 - 77

8250 1 - 39

40 - 53

54 - 64

65 - 77

78 - 116

117 - 130

131 - 141

142 - 154

D9060A'9090: 153 t

44

8050 BAM (First Block) Fonnat - Track 38 Sector 00

Byte Data Definition

0-1 38-03

2 67

3 00

4 01

5 51

6

7-10

11-255

Track-Sector of second BAM block
ASCII 'c' identifies DOS 2.5 format
Reserved for future DOS use
Lowest track # mapped in this BAM block
Highest track # (+1) mapped in this BAM block
Nr. of unused blocks on track # 1

Bit map of available blocks on track # 1

Bit map of available blocks, tracks 2-50

8050 - Second BAM Block Format - Track 38 Sector 03

Byte Data Definition

0-1 39-01 Track-Sector of first directory block
2 67 ASCII 'c' identifies DOS 2.5 format
3 00 Reserved for future DOS use
4 51 Lowest track # mapped in 2nd BAM block
5 78 Highest track # (+1) mapped in 2nd BAM block
6 Nr. of blocks unused on track # 51
7-10 Bit map of available blocks on track # 51
11-140 Bit map of available blocks, tracks 52-77

8250 BAM (First Block) Format - Track 38 Sector 00

Byte Data Definition

0-1 38-03 Track-Sector of second BAM block
2 67 ASCII 'c' identifies DOS 2.7 fonnat
3 00 Reserved for future DOS use
4 01 Lowest track # mapped in 1st BAM block
5 51 Highest track # (+1) mapped in 1st BAM block
6 Nr. of unused blocks on track # 1

7-10 Bit map of available blocks on track # 1

11-255 Bit map of available blocks, tracks 2-50

8250 - Second BAM Block Format - Track 38 Sector 03

Byte Data Definition

0-1 38-06 Track-Sector of third BAM block
2 67 ASCII 'c' identifies DOS 2.7 format
3 00 Reserved for future DOS use

4 51 Lowest track # mapped in 2nd BAM block
5 101 Highest track # (+1) mapped in 2nd BAM block
6 Nr. of blocks unused on track # 51
7-10 Bit map of available blocks on track # 51
11-255 Bit map of available blocks, tracks 52-100

45

8250 Ttiird BAM Block Format - Track 38 Sector 06

Byte Data Definition

0-1 38-09 Track-Sector of fourth BAM block

2 67 ASCII 'c' identifies DOS 2.7 format

3 00 Reserved for future DOS use

4 101 Lowest track # mapped in 3rd BAM block

5 151 Highest track # (+1) mapped in 3rd BAM block

6 Nr. of unused blocks on track # 101

7_10 Bit map of available blocks on track # 101

11_255 Bit map of available blocks, tracks 102-150

8250 - Fourth BAM Block Format - Track 38 Sector 09

Byte Data Definition

0-1 39-01 Track-Sector of first directory block

2 67 ASCII 'c' identifies DOS 2.7 format

3 00 Reserved for future DOS use

4 151 Lowest track # mapped in 4th BAM block

5 155 Highest track # (+1) mapped in 4th BAM block

6 Nr. of blocks unused on track # 151

7_10 Bit map of available blocks on track # 151

11_255 Bit map of available blocks, tracks 152-154

D9060A)9090 BAM Block Format - Track 1 Sector (Normal Location)

Byte Data Definition

0_i Track-Sector pointer to next BAM block

(hexadecimal $ffff = last BAM block)

2_3 Track-Sector pointer to previous BAM block

(hexadecimal $ffff = first BAM block)

4 Lowest track # mapped in this BAM block

5 Highest track # (+1) mapped in this BAM block

6 Nr. of blocks unused on this track

7_10 Bit map of available blocks on this track

11-255 Bit map of next 49 tracks

Structure of BAM Entries for one Track - All DOS Versions

Each track has five bytes allocated to map it. A map bit=l means the

block is available; bit=0 means the block has been used. Blocks are

mapped by bytes, the high order bit of each mapping the lowest numbered

block of each group.

Byte Definition

1 Current number of available blocks for this track

2 Bit map blocks 0-7. Bit 7 = block 0, bit = block7

3 Bit map blocks 8 - 15. Bit 7 = block 8, bit = block 15

4 Bit map blocks 16-23. Bit 7 = block 16, bit = block 23

5 Bit map blocks 24 - 31. Bit 7 = block 24, bit = block 31

46

2031 Directory Header

Byte Data

1-143
144-161
162-163
164 160
165-166 50, 65
167-170 160
171-255 00

4040 Directory Header

Byte Data

1-143
144-161
162-163
164 160
165-166 50, 65
167-170 160
171-255 00

DIRECTORY HEADER FCSRMATS

Track 18 Sector 00

Definition

Reserved for 2031 BAM
Diskette name, padded with shifted spaces
Diskette ID Nr.
Shifted space
ASCII '2a' identifies DOS version & format
Shifted spaces
Not used

Track 18 Sector 00

Definition

Reserved for 4040 BAM
Diskette name, padded with shifted spaces
Diskette ID Nr.
Shifted space
ASCII '2a' identifies DOS version & format
Shifted spaces
Not used

Note: ASCII data may appear in bytes 180 - 191 on some diskettes.

8050 Directory Header - Track 39 Sector 00

Byte Data Definition

0-1

2

3

4-5
6-21
22-23
24-25
26
27-28
29-32
33-255

38-00
67

00

160

160

50, 67

160

00

Track-Sector pointer to first BAM block
ASCII 'c' identifies DOS 2.5 format
Reserved for future DOS use
Not used
Diskette name, padded with shifted spaces
Shifted spaces
Diskette ID Nr.
Shifted space
ASCII '2c' identifies DOS version & format
Shifted spaces
Not used

8250 Directory Header - Track 39 Sector 00

Byte Data Definition

0-1 38-00
2 67
3 00
4-5
6-21
22-23 160
24-25

Track-Sector pointer to first BAM block
ASCII 'c' identifies DOS 2.7 format
Reserved for future DOS use
Not used
Diskette name, padded with shifted spaces
Shifted spaces
Diskette ID Nr.

47

26
27-28
29-32
33-255

D9060/D9090

Byte

0-1
2-3
4-5
6-7

8-9

160

50, 67

160

00

Shifted space

ASCII '2c' identifies DOS version

Shifted spaces

Not used

& format

Directory Header - Track Sector

Data

00-255
76-00
00-00

01-00

Definition

Track-Sector pointer to Bad Track & Sector List

Identifies DOS 3.0 format

Track-Sector of first Directory Block

Not used
Track-Sector of first BAM Block

DIRECTORY BLOCK FORMATS - ALL DOS VERSIONS

2031 Directory Blocks - Track 18 Sectors 01 thru 18

4040 Directory Blocks - Track 18 Sectors 01 thru 18

8050 Directory Blocks - Track 39 Sectors 01 thru 29

8250 Directory Blocks - Track 39 Sectors 01 thru 29

D9060/D9090 Directory Blocks - Starting on Cylinder 76, uses all

tracks - Sectors 00 thru 31, then expands to additional

blocks as needed, providing 'unlimited' directory size.

Byte

0-1

2

3-4

5-20
21-22
23
24-27
28-29
30-31
32-255

Data Definition

Track-Sector pointer to next directory block

File type

Track-Sector pointer to first file block

File name, padded with shifted spaces

Track-Sector of 1st side sector if RELative file

Record length if RELative file

Reserved for future file info

Track-Sector pointer for replacement

Number of blocks used by the file

Seven more 32-byte file entries (same as 2-31

above, plus two additional unused bytes)

Notes to Directory Block formats - all DOS versions:

1.

2.

3.

32 bytes per file entry, except the first entry is 30 bytes

Total of eight (8) file entries per directory block

File Type are: Scratched files $00

Sequential data $01

Program files $02
User-defined $03

Relative Record $04

48

4. File Type codes are OR'ed with $80 when file is properly closed
5. Track value of 00 in byte zero indicates the last used block

in the directory. Sector value then shows next byte to use,

Program Files

Byte

0-1

2-255

DISK DATA FILE FORMATS - All DOS Versions

Definition

Track-Sector pointer to next program block
Up to 254 bytes of BASIC program text. End-of-file
is marked by three consecutive bytes of $00.

Sequential and Relative Record Data

Byte Definition

0-1

2-255

Notes

:

Track-Sector pointer to next sequential data block
Up to 254 bytes of data with carriage returns as
terminators between data items

Track link of $00 in byte zero indicates last data block.
Sector link is then next byte position to receive data.

End of Relative Record data indicated by reading $ff

.

Relative File Side Sector Format

Byte

0-1

2

3

4-5

6-7
8-9

10-11
12-13
14-15
16-255

Definition

Track-Sector pointer to next side sector
Side sector number - if 4040 or 8050 relative file
Constant $FE - if DOS 2.7 or DOS 3.0 relative file
Relative Record length
Track-Sector pointer - 1st side sector
Track-Sector pointer - 2nd side sector
Track-Sector pointer - 3rd side sector
Track-Sector pointer - 4th side sector
Track-Sector pointer - 5th side sector
Track-Sector pointer - 6th side sector
Track-Sector pointers to 120 data blocks
Total of 720 blocks (max. 182.8 K bytes) per file.

DOS 2.7 and DOS 3.0 Super Side Sector contains track/sector pointers to

127 groups of 6 side sectors as above for maximum file size of 23.25 Mb.

49

CHAPTER 7

DOS ERRCF MESSAGES

DISK COMMANDS - QUICK REFERENCE

Requesting Error Messages 49

Summary of Disk Error Messages 49

Descriptions of Error Messages 50

Disk Commands - Quick Reference 52

50

REQUESTING ERROR MESSAGES

The execution of the following program displays the error on the computer
screen and resets the device error indicator:

BASIC 3.0 BASIC 4.0

OPEN 1,8,15
INPUT#1,A,B$,C,D PRINT DS$
PRINT A,B$,C,D

INPUT#1,A,B$,C,D,E (Used with 8250 DOS 2.7 only)
PRINT A,B$,C,D,E

Where: A=^essage number, B$=error message, C=track, D=sector, E=drive nr.
Error messages requested from the 8250 include drive number as a fifth
variable. The BASIC 4.0 'PRINT DS$' automatically prints drive number.

SUMMARY OF CBM DISK ERROR MESSAGES

OK, no error exists.
1 Files scratched reponse. Not an error condition.
2-19 Unused error messages: should be ignored.
20 Block header not found on disk.
21 Sync character not found.
22 Data block not present.
23 Checksum error in data.
24 Byte decoding error.
25 Write-verify error.
27 Checksum error in header
30 General syntax error.
31 Invalid command.
32 Long line.

33 Invalid filename.
34 No file given. •

39 Command file not found.
50 Record not present.
51 Overflow in record.
52 File too large.
60 File open for write.
61 File not open.
62 File not found.
63 File exists.
64 File type mismatch.
65 No block.
66 Illegal track or sector.
67 Illegal system track or setor.
70 No channels available.
71 Directory error,
72 Disk full or directory full.

73 Power up message, or write attempt with DOS mismatch.
74 Drive not ready.
75 Format Speed Error

76 Controller Error

51

DESCRIPTION OF DOS ERROR MESSAGES

NOTE: Error message numbers less than 20 should be ignored with the

exception of 01 which gives information about the number of files

scratched with the SCRATCH command.

20- READ ERROR (block header not found)

The disk controller is unable to locate the header of the requested

data block. Caused by an illegal sector number, or the header has

been destroyed.

21: READ ERROR (drive not ready) Indicates a hardware failure.

22: READ ERROR (data block not present)

The disk controller has been requested to read or verify a data
_

block that was not properly written. This error message occurs in

conjunction with the BLOCK commands and indicates an illegal track

and/or sector request.

23- READ ERROR (checksum error in data block)

This error message indicates that there is an error m one or more

of the data bytes. The data has been read into the DOS memory, but

the checksum over the data is in error. This message may also

indicate grounding problems.

24: READ ERROR (bad sector flag)
_

A hardware error has been created due to an invalid bit pattern in

the data byte. Ihis message may also indicate grounding problems.

25: WRITE ERROR (write-verify error)
.

This message is generated if the controller detects a mismatch

between the written data and the data in the DOS memory.

27- READ ERROR (checksum error in header)

The controller has detected an error in the header of the requested

data block. The block has not been r'ead into the DOS memory. This

message may also indicate grounding problems.

30: SYNTAX ERROR (general syntax)

The DOS cannot interpret the command sent to the command channel.

Typically caused by an illegal number of file names, or pattern

matching illegally used.

31- SYNTAX ERROR (invalid comnand) .

The DOS does not recognize the command. The command must start in

the first position.

32: SYNTAX ERROR (long line)

The command sent is longer than 58 characters.

33- SYNTAX ERROR (invalid file name)

Pattern matching is illegally used in the DOPEN or DSAVE command.

34: SYNTAX ERROR (no file given)

The file name was left out of a command or the DOd does not

52

recognize it as such. Typically, a colon (:) has been left out of
the command.

39: SYNTAX ERROR (invalid command)
This error may result if the conmand sent to command channel
(secondary address 15) is unrecognizable by the DOS.

50: RECORD NOT PRESENT
Result of disk reading past the last record via INPUT*, or GET#
commands. This message will also occur after positioning to a

record beyond end of file in a relative file. If the intent is to
expand the file by adding the new record (with a PRINT# command)

,

the error message may be ignored. INPUT or GET should not be
attempted after this error is detected without first repositioning
to a valid record number.

51: OVERFLOW IN RECORD
Data written with a PRINT# statement exceeds the defined relative
record size. Data is truncated to the defined size. Typical cause
is failing to include carriage returns sent as field or record
terminators in calculating the record size.

52: FILE TOO LARGE
Record position within a relative file indicates that not enough
blocks remain available on the disk to contain the specified number
of records.

60: WRITE FILE OPEN
This message is generated v^en a write file that has not been
closed is being opened for reading.

61: FILE NOT OPEN
This message is generated V\^en a file is being accessed that has
not been opened in the DOS. Sometimes, in this case, a message is

not generated; the request is simply ignored.

62: FILE NOT FOUND
The requested file does not exist on the indicated drive.

63: FILE EXISTS
The file name of the file being created already exists on the disk.

64: FILE TYPE MISMATCH
The file type on a DOPEN command does not match the file type in

the directory entry for the requested file.

65: NO BLOCK
This message occurs in conjunction with the B-A command. It

indicates that the block to be allocated has been previously

allocated. The parameters indicate the next higher track and

sector number available. If the parameters are zeros then all

higher numbered blocks are in use.

66: ILLEGAL TRACK AND SECTOR

The DOS has attempted to access a track or sector which does not

53

exist in the format being used. This may indicate a problem

reading the pointer to the next block.

67: ILLEGAL SYSTEM T OR S .,^^^^„
Special error message indicating an illegal system track or sector.

70- NO CHANNEL (available)

The requested channnel is not available, or all channels are in

use. A maximum of five sequential files or three relative files

may be opened at one time to the DOS. Direct access channels may

have six opened files.

71: DIRECTORY ERROR

The BAM does not match the internal count. There is a problem m
the BAM allocation or the BAM has been overwritten in DOS memory.

To correct this problem, reinitialize the disk to restore the BAM

in memory. Active files may be terminated by the corrective

action.

72: DISK FULL ^. ^^

Either all blocks on the disk are used or the directory is at its

limit. DISK FULL is sent when two blocks remain available to allow

the current file to be closed.

74: DRIVE NOT READY ^ .,

An attempt has been made to access an invalid device number or the

disk is not powered-up or not up to speed.

75: FORMAT SPEED ERROR
. ^ .

While formatting diskettes the 8250 verifies that drive speed is

within 2 milliseconds (1%) of being 200 milliseconds per

revolution. If speed is outside that limit the formatting is

halted with the disk error light on.

76: Controller error - a variety of conditions indicating controller

hardware problems.

QUICK REFERENCE - DISK COMMANDS

The quick reference guide will assist the user in becoming familiar with

the various commands as used in both BASIC 3.0 and BASIC 4.0, as well as

with all Commodore disk units. Commands in BASIC 3.0 are upward

compatible with BASIC 4.0. That is, if the user is ff^^^^^ar with BASIC

3 0, those commands will still work on computers furnished with BASIC 4.0.

54

DISK COMMANDS QUICK REFERENCE

BASIC 3.0 UNIVERSAL WEDGE BASIC 4.0

SAVE "dr:fn",8 SAVE"dr:fn",8 DSAVE"fn",Ddr
(drive defaults to 0)

L0AD"dr:fn",8 /dr:fn DLOAD"fn",Ddr
(drive defaults to 0)

L0AD"dr:*",8
RUN

"dr:fn
(Runs program)

DLOAD"*"
(Shifted Run/Stop key)

LOAD" $0",

8

LIST
(destroys memory)

>$0

(preserves memory)

DIRECTORY or
DKshifted R>
(preserves memory)

10 0PEN1,8,15
20 INPUT#1,A,B$,C,D
30 PRINT A,B$,C,D

>return ?DS$ or ?DS
(DS is number of error)

(DS$ is error message)

NOTE: Assume that
PRINT# commands in

abbreviated by the

OPEN 1,8,15 has already been typed for all of the
the following formats. Commands may be spelled out or
first letter as illustrated.

PRINT#1 , "Ndr :dname

,

,xx"

FORMAT A DISK
>Ndr:dname,xx HEADER"dname" ,Ddr , Ixx

PRINT#l,"Idr"
INITIALIZE
>Ix PRINT#l,"Idr"

PRINT*l,"Vdr"
VALIDATE
>Vdr COLLECT Ddr

PRINT#l,"Cddr=sdr"
COPY (all disk)
>Cddr=sdr COPY Dsdr TO Dddr

PRINT#l/'Cdr:dfn=
dr:sfn"

COPY (single file)

>Cdr:dfn=dr:sfn
COPY Ddr,"sfn"TO

Ddr,"dfn"

PRINT#l,"Cdr:dfn=
dr :sfnl,dr :sfn2, . .

.

CONCATENATE FILES
>Cdr:dfn=dr:sfl,
dr:sfn2,. ..

CONCAT Ddr,"sfn"TO
Ddr,"dfn"

PRINT#1 , "Rdr :dfn=sfn"
RENAME FILES
>Rdr:dfn=sfn RENAME Ddr,"sfn" TO

"dfn"

PRINT#l,"Sdr:fn"
SCRATCH
>dr:fn SCRATCH" fn",Ddr

55

APPENDIX A

PERMANENT ALTERATIOJ OF DEVICE NUMBER

As assembled at the factory all CBM disk units have a device number of 8.

This may be changed temporarily via the M-W corrmand and will revert to 8

on power-up or reset. The device number may be changed permanently by

means of modifications to printed circuit boards within the disk units.

The hardware changes necessary differ for each model of disk unit.

WARNING

These hardware modifications should be performed only by qualified CBM

service technicians. Alterations attempted by unauthorized personnel will

void the warranty on your disk unit.

(= Unchanged)

1 (1 = Lead Cut)

1

1 1

CHANGE 2031

Two diodes (CRIB and CR19) control device number on the 2031. The diodes

are located adjacent to I.C. chip U3J on the digital PCB. To change the

device number, cut either one of the leads on one or both diodes as shown:

DEVICE NR. CR18 CR19

8

9
10

11

CHANGE 4040 / 8050 / 8250

Three pins (22, 23, 24) on I.C. chip UEl (on the digital PCB) control

device number on these units. These pins are normally strapped to ground

by the circuit etch. Three small circular blocks appear just to the left

of UEl - pin 22 is connected to the topmost of these blocks (when viewing

the digital PCB from the front of the disk unit. To change device number

either cut the appropriate trace (s) or remove UEl and bend the correct

pin(s) up so that they will not make connection when the chip is replaced.

DEVICE NR. Pin 22 Pin 23 Pin 24

g (= Unchanged)

9 1 (1 = Cut/Bent)

10 10
11 oil
12 10
13 10 1

14 110
15 111

56

CHANGE D9060 / D9090

Three pins (22, 23, 24) on I.C. chip 7G (on the topmost PCB) control the
device number of these units. These pins are normally strapped to ground
by the circuit etch. Tb change device number either cut the appropriate
trace (s) or remove 7G and bend the correct pin(s) up so that they will not
make connection v*ien the chip is replaced.

DEVICE NR. Pin 22 Pin 23 Pin 24

8 (= Unchanged)
9 1 (1 = Cut/Bent)

10 1

11 1 1

12 1

13 1 1

14 1 1

15 1 1 1

57

