	General Information
	Interchangeability Guide
	Glossary/Timing Conventions/Data Sheet Structure
	Dynamic RAMs
	Dynamic RAM Modules
- 16 - 17	EPROMs/PROMs
_	ROMs
2	Military Products
	Military Products Applications Information
	Applications Information

ATTENTION

These devices contain circuits to protect the inputs and outputs against damage due to high static voltages or electrostatic fields; however, it is advised that precautions be taken to avoid application of any voltage higher than maximumrated voltages to these high-impedance circuits.

Unused inputs must always be connected to an appropriate logic voltage level, preferably either supply voltage or ground.

Additional information concerning the handling of ESD sensitive devices is provided in Section 12 in a document entitled *''Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies.''*

OCTOBER 1977-REVISED NOVEMBER 1985

- 16,384 X 1 Organization
- 10% Tolerance on All Supplies
- All Inputs Including Clocks TTL Compatible
- Unlatched Three-State Fully TTL-Compatible Output
- Performance Ranges:

	ACCESS	ACCESS	READ	READ-	
	TIME	TIME	OR	MODIFY-	
	ROW	COLUMN	WRITE	WRITE	
	ADDRESS	ADDRESS	CYCLE	CYCLE	
	(MAX)	(MAX)	(MIN)	(MIN)	
TMS4116-15	150 ns	100 ns	375 ns	375 ns	
TMS4116-20	200 ns	135 ns	375 ns	375 ns	
TMS4116-25	250 ns	165 ns	410 ns	515 ns	

- Page-Mode Operation for Faster Access Time
- Common I/O Capability with Early Write Feature
- Low-Power Dissipation
 - Operating . . . 462 mW (Max)
 - Standby . . . 20 mW (Max)
- 1-T Cell Design, N-Channel Silicon-Gate Technology
- 16-Pin 300-Mil (7,62-mm) Package Configuration

description

The TMS4116 series is composed of monolithic high-speed dynamic 16,384-bit MOS random-access memories organized as 16,384 one-bit words, and employs single-transistor storage cells and N-channel silicon-gate technology.

All inputs and outputs are compatible with Series 74 TTL circuits including clocks: Row-Address Strobe \overline{RAS} (or \overline{R}) and Column-Address Strobe \overline{CAS} (or \overline{C}). All address lines (A0 through A6) and data in (D) are latched on chip to simplify system design. Data out (Q) is unlatched to allow greater system flexibility.

Typical power dissipation is less than 350 milliwatts active and 6 milliwatts during standby (V_{CC} is not required during standby operation). To retain data, only 10 milliwatts average power is required which includes the power consumed to refresh the contents of the memory.

The TMS4116 series is offered in a 16-pin dual-in-line plastic (N suffix) package and is guaranteed for operation from 0°C to 70°C. The package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

operation

address (AO-A6)

Fourteen address bits are required to decode 1 of 16,384 storage cell locations. Seven row-address bits are set up on pins A0 through A6 and latched onto the chip by the row-address strobe (RAS). Then the

[†]The term "read-write cycle" is sometimes used as an alternative to "read-modify-write cycle."

	N P	ACKA	GE
	(то	P VIE	V)
VBB	d1	U16	D vss
D		15	CAS
Ŵ	□3	14	Da
RAS	04	13	D A6
AO		12	A3
A2	6]	11	A 4
A1		10	A5
VDD	<u>Ц</u> 8	9	D vcc

PIN	NOMENCLATURE
A0-A6	Addresses
CAS	Column-Address Strobe
D	Data Input
Q	Data Output
RAS	Row-Address Strobe
VBB	- 5-V Power Supply
Vcc	5-V Power Supply
VDD	12-V Power Supply
VSS	Ground
W	Write Enable

seven column-address bits are set up on pins A0 through A6 and latched onto the chip by the columnaddress strobe (CAS). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overrightarrow{CAS} or \overrightarrow{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overrightarrow{W} is brought low prior to \overrightarrow{CAS} and the data is strobed in by \overrightarrow{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overrightarrow{CAS} will already be low, thus the data will be strobed in by \overrightarrow{W} with setup and hold times referenced to this signal.

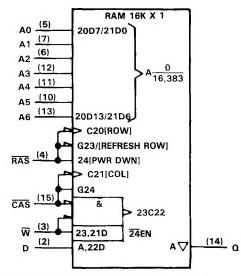
data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overline{CAS} is brought low. In a read cycle, the output goes active after the enable time interval $t_a(C)$ that begins with the negative transition of \overline{CAS} as long as $\underline{t_a(R)}$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} is low; \overline{CAS} going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state. In a delayed-write or read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

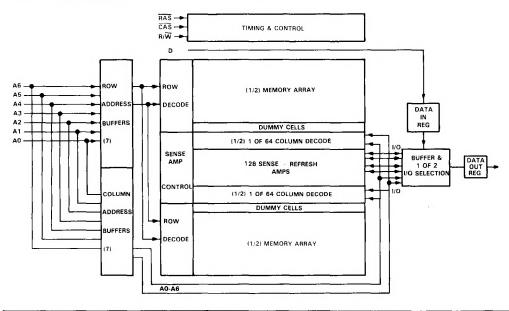
A refresh operation must be performed at least every two milliseconds to retain data. Since the output buffer is in the high-impedance state unless CAS is applied, the RAS-only refresh sequence avoids any output during refresh. Strobing each of the 128 row addresses (A0 through A6) with RAS causes all bits in each row to be refreshed. CAS remains high (inactive) for this refresh sequence, thus conserving power.

page mode


Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses on the same page is eliminated. To extend beyond the 128 column locations on a single RAM, the row address and RAS is applied to multiple 16K RAMs; CAS is decoded to select the proper RAM.

power up

VBB must be applied to the device either before or at the same time as the other supplies and removed last. Failure to observe this precaution will cause dissipation in excess of the absolute maximum ratings due to internal forward bias conditions. This also applies to system use, where failure of the VBB supply must immediately shut down the other supplies. After power up, eight \overline{RAS} cycles must be performed to achieve proper device operation.



logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage on any pin (see Note 1)	-0.5 V to 20 V
Voltage on VCC, VDD supplies with respect to VSS	. -1 V to 15 V
Short circuit output current	50 mA
Power dissipation	1 W
Operating free-air temperature range	. 0°C to 70°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: Under absolute maximum ratings, voltage values are with respect to the most-negative supply voltage, VBB (substrate), unless otherwise noted. Throughout the remainder of this data sheet, voltage values are with respect to VSS.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VBB	Supply voltage		-4.5	-5	-5.5	V
Vcc	Supply voltage		4.5	5	5.5	V
VDD	Supply voltage		10.8	12	13.2	v
Vss	Supply voltage			0		V
VIH	High-level input voltage	All inputs except RAS, CAS,	2.4		7	v
• 111	riigh lovel inper voltage	RAS, CAS, W:	2.7		7	
VIL	Low-level input voltage (see Note 2)		-1	0	0.8	V
TA	Operating free-air temperature		0		70	°C

NOTE 2: The algebraic convention, whera the more negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage only.

	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
VOH	High-level output voltage	1 _{0H} = -5 mA	2.4			V
VOL	Low-level output voltage	$l_{OL} = 4.2 \text{ mA}$			0.4	V
ų	Input current (leakage)	$V_I = 0 V$ to 7 V, All other pins = 0 V except $V_{BB} = -5 V$			10	μΑ
10	Output current (leakage)	$V_0 = 0$ to 5.5 V, CAS high			± 10	μA
IBB1				50	200	μA
ICC1‡	Average operating current	Minimum cycle time		125	4 §	mA
IDD1	during read or write cycle			27	35	mA
IBB2	A COMPANY AND A COMPANY			10	100	μA
ICC2	Standby current	After 1 memory cycle			±10	μA
IDD2		RAS and CAS high		0.5	1.5	mA
IBB3		Minimum cycle time		50	200	μA
ICC3	Average refresh current	RAS cycling,			±10	μA
IDD3		CAS high	_	20	27	mA
IBB4		Minimum cycle time	1	50	200	μA
ICC4 [‡]	Average page-mode current	urrent RAS low,			4§	mA
IDD4		CAS cycling		20	27	mA

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

[†] All typical values are at $T_A = 25^{\circ}C$ and nominal supply voltages.

[‡] V_{CC} is applied only to the output buffer, so I_{CC} depends on output loading.

§ Output loading two standard TTL loads.

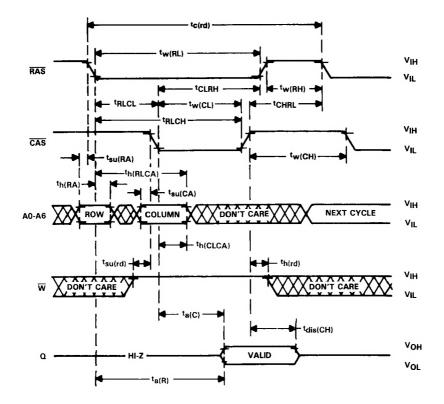
capacitance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

	PARAMETER	TYP [†] MAX	UNIT
Ci(A)	Input capacitance, address inputs	4 5	pF
Ci(D)	Input capacitance, data input	4 5	pF
Ci(RC)	Input capacitance, strobe inputs	8 10	pF
Ci(W)	Input capacitance, write enable input	8 10	pF
Co	Output capacitance	5 7	pF

switching characteristics over recommended supply voltage range and operating free-air temperature range

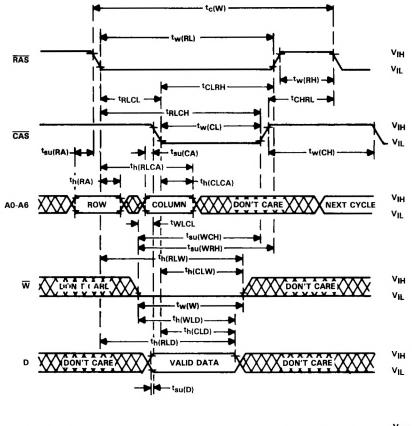
	DADAMETER	TEAT CONDITIONS	ALT.	14.4	116-15	15454	116-20	r₩5-116-25		UNIT
	PARAMETER	TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
^t a(C)	Access time from CAS	CL = 100 pF, Load ≃ 2 Series 74 TTL gates	^t CAC		100		135		165	ns
^t a(R)	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF, Load ≈ 2 Series, 74 TTL gates	^t RAC		150		200		250	ns
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	toff	0	40	0	50	0	60	ns

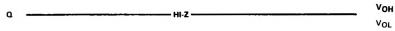
[†] All typical values are at $T_A = 25^{\circ}C$ and nominal supply voltages.

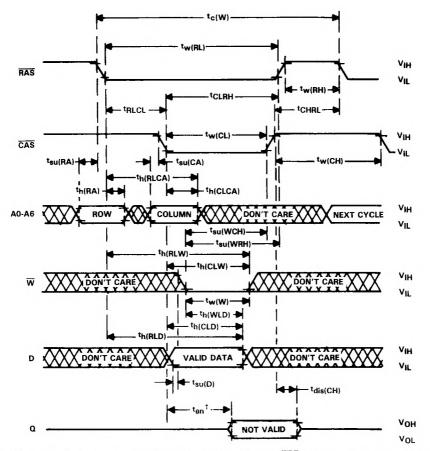


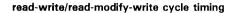
timing requirements over recommended supply voltage range and operating free-air temperature range

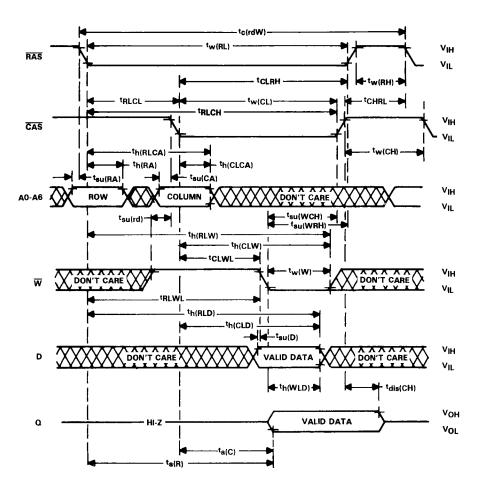
		ALT.	TMS	4116-15	TMS4116-20		TMS4116-25		UNIT
	an unan in commenter for	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
tc(P)	Page-mode cycle time	tPC	170		T .		T		ns
tc(rd)	Read cycle time	tRC	375		375		410		ns
t _{c(W)}	Write cycle time	twc	375		375		410		ns
tc(rdW)	Read-modify-write cycle time	tRWC	375		375		515		ns
tw(CH)	Pulse duration, CAS high (precharge time)	tCP	60		80		100		ns
tw(CL)	Pulse duration, CAS low	tCAS	100	10,000	135	10,000	165	10,000	ns
1	Pulse duration, RAS high (precharge time)	tRP	100		120		150		ns
tw(RH)	Pulse duration, RAS low			10.000	200	10,000	250	10,000	
tw(RL)	Write pulse duration	TRAS	45	10,000	55	10,000	75	10,000	ns
tw(W)	Transition times (rise and fall) for	twp	45		00		/5		ns
tt	RAS and CAS	ţ	3	35	3	50	3	50	ns
tsu(CA)	Column-address setup time	tASC	-10		-10		-10		ns
t _{su(RA)}	Row-address setup time	tASR	0		0	2	0		ns
tsu(D)	Data setup time	tDS	0		0	<u> </u>	0		ns
tsu(rd)	Read-command setup time	tRCS	0	-	0		0		ns
^t su(WCH)	Write-command setup time before CAS high	tCWL	60		80		100		ns
t _{su} (WRH)	Write-command setup time before RAS high	tRWL	60		80		100		ns
th(CLCA)	Column-address hold time after CAS low	tCAH	45		55		75	1	ns
th(RA)	Row-address hold time	^t RAH	20		25		35	-	ns
th(RLCA)	Column-address hold time after RAS low	tAR	95		120		160		ns
th(CLD)	Data hold time after CAS low	^t DHC	45		55		75		ns
th(RLD)	Data hold time after RAS low	TDHR	95		120		160		ns
th(WLD)	Data hold time after W low	tDHW	45		55		75		ns
th(rd)	Read-command hold time	tRCH	0		0		0		ns
th(CLW)	Write-command hold time after CAS low	tWCH	45		55		75		ns
^t h(RLW)	Write-command hold time after RAS low	tWCR	95		120		160		ns
TRLCH	Delay time, RAS low to CAS high	tCSH	150		200		250		ns
CHRL	Delay time, CAS high to RAS low	tCRP	-20		-20		-20		ns
tCLRH	Delay time, CAS low to RAS high	tRSH	100		135		165		ns
tCLWL	Delay time, CAS low to W low (read-modify-write-cycle only)	tCWD	70		95		125		ns
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	^t RCD	20	50	25	65	35	85	ns
TRLWL	Delay time, RAS low to W low (read-modify-write-cycle only)	tRWD	120		160		200		ns
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-20		-20		-20		ns
trf	Refresh time interval	tREF		2		2		2	ms



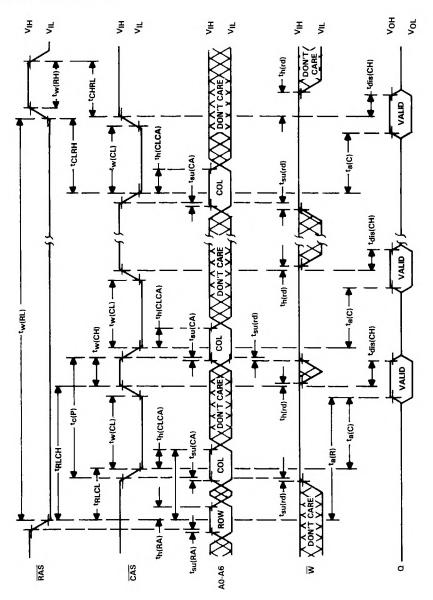

read cycle timing


early write cycle timing

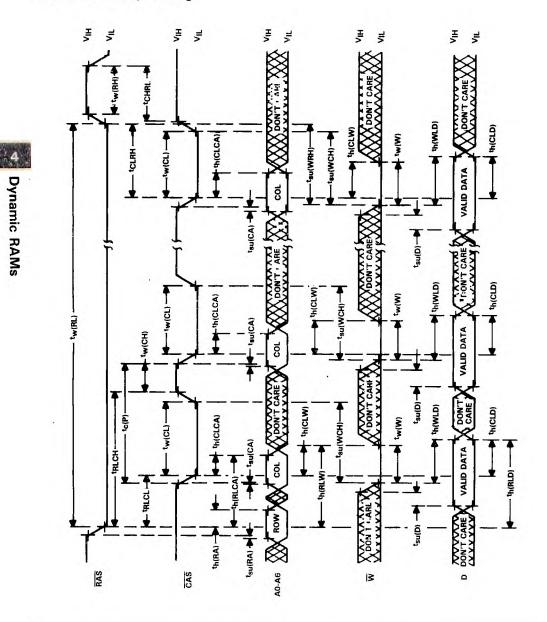



write cycle timing

[†] The enable time (t_{en}) for a write cycle is equal in duration to the access time from \overline{CAS} (t_{a(C)}) in a read cycle; but the same active levels at the output are invalid.

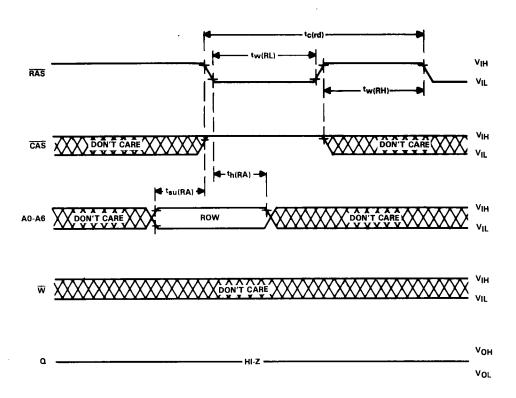


page-mode read cycle timing

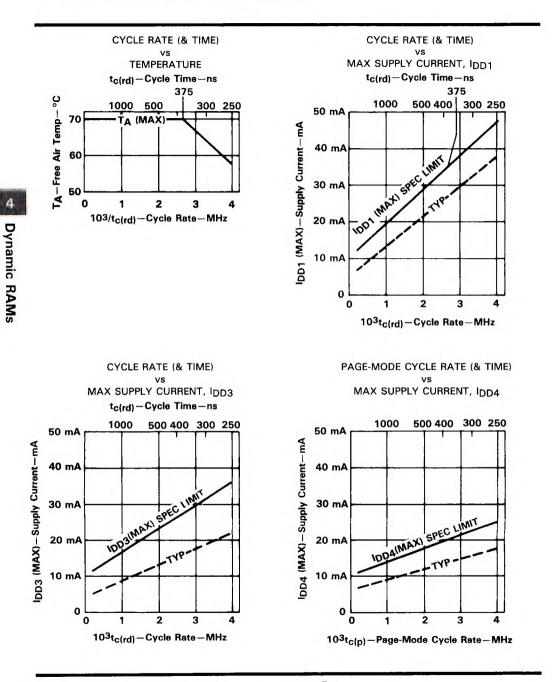

İP

TEXAS

INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 Dynamic RAMs


4

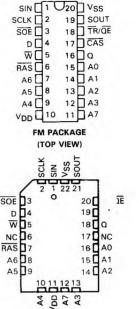
page-mode write cycle timing



RAS-only refresh timing

4-16

ED NOVEMBER 1985


JULY

N PACKAGE

- Dual Accessibility One Port Sequential (TOP VIEW) Access, One Port Random Access Four Cascaded 64-Bit Serial Shift Registers for Sequential Access Applications Designed for Both Video and Non-Video Applications Fast Serial Port . . . Can Be Configured for Video Data Rates in Excess of 150 MHz TR/QE as Output Enable Allows Direct Connection of D. Q and Address Lines to **Simplify System Design Random Access Port Looks Exactly Like a** TMS4164 Separate Serial In and Serial Out to Allow . Simultaneous Shift In and Out SOE 3 65.536 × 1 Organization Supported by TI's TMS34061 Video System
- Controller (VSC)
- Maximum Access Time from RAS Less Than 150 ns
- Minimum Cycle Time (Read or Write) Less Than 240 ns
- Long Refresh Period . . . 4 ms
- Low Refresh Overhead Time . . . As Low As 1.7% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Unlatched Outputs for Both Random and Serial Access
- Common I/O Capability with "Early Write" Feature
- Page-Mode Operation for Faster Access
- Low Power Dissipation (TMS4161-15) -Operating . . . 250 mW (Typical) -Standby . . . 80 mW (Typical)
- New SMOS (Scaled-MOS) N-Channel Technology
- SOE Simplifies Multiplexing of Serial Data Streams
- Available with MIL-STD-883B Processing and L(0°C to 70°C), E(-40°C to 85°C), or S(-55°C to 100°C) Temperature Ranges

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Taxas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

	PIN NOMENO	CLATURE	
A0-A7	Address Inputs	SIN	Serial Data In
CAS	Column-Address Strobe	SOE	Serial Output Enable
D	Random-Access	SOUT	Serial Data Out
	Data In	TR/QE	Register Transfer/
NC	No Connection		Q Output Enable
a	Random-Access	VDD	5-V Supply
	Data Out	VSS	Ground
RAS	Row-Address Strobe	W	Write Enable
SCLK	Serial Data Clock		

Copyright © 1985, Texas Instruments Incorporated

4-17

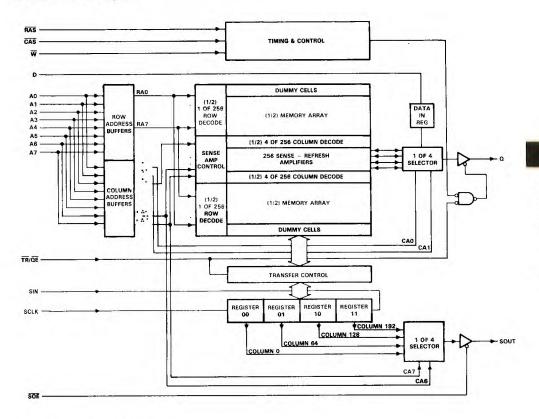
description

The TMS4161 is a high-speed, dual-access 65,536-bit dynamic random-access memory. The randomaccess port makes the memory look like it is organized as 65,536 words of one bit each like the TMS4164. The sequential access port is interfaced to an internal 256-bit dynamic shift register organized as four cascaded 64-bit shift registers which makes the memory look like it is organized as up to 256 words of up to 256 bits each which are accessed serially. One, two, three, or four 64-bit shift registers can be sequentially read out after a transfer cycle depending on a two-bit code applied to the two most significant column address inputs. The TMS4161 employs state-of-the-art SMOS (Scaled-MOS) N-channel doublelevel polysilicon gate technology for very high performance combined with low cost and improved reliability.

The TMS4161 features full asynchronous dual access capability except when transferring data between the shift register and the memory array.

Refresh period is extended to 4 milliseconds, and during this period each of the 256 rows must be strobed with RAS in order to retain data. CAS can remain high during the refresh sequence to conserve power. Note that the transfer of a row of data from the memory array to the shift register also refreshes that row.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address lines and data in are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.


The TMS4161 is offered in 20-pin plastic dual-in-line and 22-pin plastic chip carrier packages. It is guaranteed for operation from 0 °C to 70 °C. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

random access address space to sequential address space mapping

The TMS4161 is designed with each row divided into four, 64-column sections (see functional block diagram). The first column section to be shifted out is selected by the two most significant column address bits. If the two bits represent binary 00, then one to four registers can be shifted out in order. If the two bits represent binary 01, then only 1 to 3 (the most significant) registers can be shifted out in order. If the two bits represent 10, then one to two of the most significant registers can be shifted out in order. Finally, if the two bits represent 11 only the most significant register can be shifted out. All registers are shifted out with the least significant bit (bit 0) first and the most significant bit (bit 63) last. Note that if the two column address bits equal 00 during the last register transfer cycle (TR/ \overline{OE} at logic level "O" as RAS falls) a total of 256 bits can be sequentially read out.

functional block diagram

random-access operation

TR/QE

The TR/OE pin has two functions. First, it selects either register transfer or random-access operation as RAS falls, and second, if this is a random-access operation, it functions as an output enable after CAS falls.

To use the TMS4161 in the random-access mode, $\overline{TR}/\overline{QE}$ must be high as \overline{RAS} falls. Holding $\overline{TR}/\overline{QE}$ high as \overline{RAS} falls keeps the 256 elements of the shift registers disconnected from the corresponding 256 bit lines of the memory array. If data is to be shifted, the shift registers must be disconnected from the bit lines. Holding $\overline{TR}/\overline{QE}$ low as \overline{RAS} falls enables the 256 switches that connect the shift registers to the bit lines and indicates that a transfer will occur between the shift registers and one of the memory rows.

During random-access operation, once \overline{CAS} has been pulled low, $\overline{TR}/\overline{QE}$ controls when the data will appear at the Q output (if this is a read cycle). Whenever $\overline{TR}/\overline{QE}$ is held high during random-access operation, the Q output will be in the high-impedance state. This feature removes the possibility of an overlap between data on the address lines and data appearing on the Q output making it possible to connect the address lines to the Q and D lines (Use of this organization prohibits the use of the early write cycle.).

4

Dynamic RAMs

address (A0 through A7)

Sixteen address bits are required to decode 1 of 65,536 storage cell locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (\overrightarrow{RAS}). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the column-address strobe (\overrightarrow{CAS}). All addresses must be stable on or before the falling edges of \overrightarrow{RAS} and \overrightarrow{CAS} . \overrightarrow{H} \overrightarrow{H} \overrightarrow{H} \overrightarrow{H} similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overrightarrow{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (W) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. The falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data c. 1 \cdot the same polarity as data in. The output is in the high-impedance (floating) state as long as \overline{CAS} or \overline{TR} .1 s held high. Data will not appear on the output until after both \overline{CAS} and $\overline{TR}/\overline{QE}$ have been brought low. In a read cycle, the guaranteed maximum output enable access time is valid only if tCQE is greater than tCQE MAX, and tRLCL is greater than tRLCL MAX. Likewise, ta(C) MAX is valid at 1. if tRLCL is greater than *RI CL MAX. Once the output is valid, it will remain valid while \overline{CAS} or \overline{TR} at going high will return the output to a high-impedance state. In an early write cycle, the output is always in a high-impedance state. In a register transfer cycle, the output will follow the sequence for the read cycle. In a register transfer cycle, the output will always be in a high-impedance state.

refresh

A refresh operation must be performed at least every four milliseconds to retain data. Since the output buffer is in high-impedance state unless CAS is applied, the RAS-only refresh service nce avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with the causes all bits in each row to be refreshed. CAS can remain high (inactive) for this refresh sequence to conserve power.

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 256 column locations on a single RAM,

the row address and RAS are applied to multiple 64K RAMs. CAS is then decoded to select the proper RAM.

power up

After power up, the power supply must remain at its steady-state value for 1 ms. In addition, \overline{RAS} must remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight \overline{RAS} cycles before proper device operation is achieved.

sequential-access operation

TR/QE

Memory transfer operations involving parallel use of the shift register are first indicated by bringing $\overline{TR}/\overline{QE}$ low before \overline{RAS} falls low. This enables the switches connecting the 256 elements of the shift register to the 256 bit lines of the memory array. The \overline{W} line determines whether the data will be transferred from or to the shift registers.

write enable (W)

In the sequential access mode, \overline{W} determines whether a transfer will occur from the shift registers to the memory array, or from the memory array to the shift registers. To transfer from the shift registers to the memory array, \overline{W} is held low as \overline{RAS} falls, and, to transfer from the memory array to the shift registers, \overline{W} is held high as \overline{RAS} falls. Thus, reads and writes are always with respect to the memory array. The write setup and hold times are referenced to the falling edge of \overline{RAS} for this mode of operation.

row address (A0 through A7)

Eight address bits are required to select one of the 256 possible rows involved in the transfer of data to or from the shift registers. A0-A7, \overline{W} , and $\overline{TR}/\overline{QE}$ are latched on the falling edge of \overline{RAS} .

register column address (A7, A6)

To select one of the four shift registers (transfer from memory to register only), the appropriate 2-bit column address (A7, A6) must be valid when \overline{CAS} falls. However, the \overline{CAS} and register address signals need not be supplied every transfer cycle, only when it is desired to change or select a new register.

SCLK

Data is shifted in and out on the rising edge of SCLK. This makes it possible to view the shift registers as though it were made of 256 rising edge D flip-flops connected D to Q. The TMS4161 is designed to work with a wide range duty cycle clock to simplify system design. Note that data will appear at the SOUT pin not only on the rising edge of SCLK but also after an access time of $t_a(RSO)$ from RAS high during a parallel load of the shift registers.

SIN and SOUT

Data is shifted in through the SIN pin and is shifted out through the SOUT pin. The TMS4161 is designed such that it requires 3 ns hold time on SIN as SCLK rises. SOUT is guaranteed not to change for at least 8 ns after SLCK rises. These features make it possible to easily connect TMS4161s together, to allow SOUT to be connected to SIN, and to give external circuitry a full SLCK cycle time to allow manipulation of the serial data. When loading data into the shift register from the serial input in preparation for a shift register to memory transfer operation, the serial clock must be clocked an even number of times. To guarantee proper serial clock sequence after power up, a transfer cycle must be initiated before a serial data stream is applied at SIN.

SOE

The serial output enable pin controls the impedance of the serial output, allowing $1 \cdots p$ lexing of more than one bank of TMS4161 memories into the same external video circuitry. When \cdots I is at a logic low level, SOUT will be enabled and the proper data read out. When \overline{SOE} is at a logic high level, SOUT will be disabled and be in the high-impedance state.

refresh

The shift registers are also dynamic storage elements. The data held in the registers will be lost unless SCLK goes high to shift the data one bit position, a transfer write operation is invoked, or the data is reloaded from the memory array. See specifications for maximum register data retention times. Important: If the shift register has remained idle for a time period which exceeds the maximum SCLK high or SCLK low time, the dynamic clock circuits will also lose charge. Under these conditions, the shift register clocks must be re-enabled by performing any transfer cycle before data can be shifted into or out of the shift register.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage range on any pin except VDD and data out (see Note 1)
Voltage range on V _{DD} supply and data out with respect to V _{SS}
Short circuit output current
Power dissipation
Operating free-air temperature range
Storage temperature range

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions

	•	MIN	NOM	MAX	UNIT
VDD	Supply voltage	4.5	5	5.5	V
Vss	Supply voltage		0		V
VIH	High-level input voltage	2.4		VDD+0.3	V
VIL	Low-level input voltage (see Notes 2 and 3)	-0.6			V
TA	Operating free-air temperature	0		70	°C

NOTES: 2. The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

Due to input protection circuitry, the applied voltage may begin to clamp at -0.6 V; test conditions must comprehend this occurrence.

4. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

4

		TEST CONDITIONS	TMS4161-15			TMS4161-20			UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	MIN	TYP [†]	MAX	UNIT
Vон	High-level output voltage (Q, SOUT)	1 _{OH} = -5 mA	2.4			2.4			v
Vol	Low-level output voltage (Q, SOUT)	I _{OL} = 4.2 mA			0.4			0.4	v
ų	Input current (leakage)	$V_I = 0 V$ to 5.8 V, $V_{DD} = 5 V$, All other pins = 0 V			±10			±10	μА
ю	Output current (leakage) (Q, SOUT)	$V_{O} = 0.4 V \text{ to } 5.5 V,$ $V_{DD} = 5 V$			±10			±10	μA
IDD 1	Average operating current during read or write cycle	1 = minimum cycle time, ⁺ F low after RAS falls, [‡] SCLK and SIN low, SOE high, No load on Q and SOUT		50	70		50	70	mA
IDD2 [§]	Standby current	After 1 RAS cycle, RAS and CAS high, SCLK and SIN low, SOE high,		16	20		16	20	mA
IDD3	Average refresh current	No load on Q and SOUT = minimum cycle time, nigh, RAS cycling, SCLK and SIN low, SOE high, TR/QE high, No load on Q and SOUT		42	55		37	50	mA
^I DD4	Average page-mode current	t _{C(P)} = minimum cycle time, RAS low, CAS cycling, TR/QE low after RAS falls, SCLK and SIN low, SOE high, No load on Q and SOUT		45	55		40	50	mA
IDD5	Average shift register current (includes IDD2)	RAS and CAS high, No load on Q and SOUT, t _c (SCLK) = t _c (SCLK) min		30	40		30	40	m/
IDD6	Worst case average DRAM and shift register current	$\begin{array}{l} t_{C(rd)} = \mbox{minimum cycle time,} \\ t_{C(SCLK)} = \mbox{minimum cycle time,} \\ TR/QE low after RAS falls, \\ No load on Q and SOUT \end{array}$		85	95		80	90	m/

electrical characteristics over full range of recommended operating conditions (unless otherwise noted)

NOTE 5: Additional information on $I_{DD1}-I_{DD6}$ on page 4-40. [†] All typical values are at $T_A=25\,^{\circ}\text{C}$ and nominal supply voltages. [‡] See appropriate timing diagram. [§] $V_{JL}>-0.6$ V.

capacitance over recommended supply voltage and operating free-air temperature range, f = 1 MHz

	PARAMETER	TYP	MAX	UNIT
Ci(A)	Input capacitance, address inputs	4	5	
Ci(D)	Input capacitance, data input	4	5	
Ci(RC)	Input capacitance, strobe inputs	8	10	
Ci(W)	Input capacitance, write enable input	8	10	
Ci(CK)	Input capacitance, serial clock	8	10	
Ci(SI)	Input capacitance, serial in	4	5	pF
Ci(SOE)	Input capacitance, serial output enable	4	5	
Ci(TR)	Input capacitance, register transfer input	4	5	1
Co(Q)	Output capacitance, random-access data	5	7	
Co(SOUT)	Output capacitance, serial out	5	7	

[†] All typical values are at $T_A = 25 \,^{\circ}C$ and nominal supply voltages.

switching characteristics over recommended supply voltage range and operating free-air temperature range (see Figure 1)

	PARAMETER	TEST CONDITIONS	ALT.	TMS4161-15	TMS4161-20		
		TEST CONDITIONS	SYMBOL	MIN MAX	MIN MAX		
ta(C)	Access time from CAS	$C_L = 100 \text{ pF}$	^t CAC	100	135		
ta(QE)	Access time of Q from TR/QE low	$C_L = 100 \text{ pF}$		40	50		
t _{a(R)}	Access time from RAS	tRLCL = MAX, CL = 100 pF	^t RAC	150	200		
t _a (RSO)	SOUT access time from	C _L = 30 pF		65	85		
t _a (SOE)	Access time from	C _L = 30 pF		20	. 25	ns	
ta(SO)	Access time from SCLK	CL = 30 pF		45	50		
^t dis(CH) [‡]	Q output disable time from CAS high	C _L = 100 pF	tOFF	40	40		
^t dis(QE) [‡]	Q output disable time from TR/QE high	C _L = 100 pF		30	40		
tdis(SOE) [‡]	Serial output disable time from • • • • nigh	$C_L = 30 \text{ pF}$		20	25		

[†]Figure 1 shows the load circuit.

⁺The maximum values for t_{dis(CH)}, t_{dis(QE)}, and t_{dis(SOE)} define the time at which the output achieves the open circuit condition and are not referenced to V_{OH} or V_{OL}.

		ALT.	199.41	161-15	1₩161-20		
	A second second second second second	SYMBOL	MIN	MAX	Mille	MAX	UNIT
t _{c(P)}	Page-mode cycle time	tPC	160		225		ns
tc(rd)	Read cycle time [†]	t RC	240		315	1.00	ns
t _{c(W)}	Write cycle time	tWC	240		315		ns
tc(TW)	Transfer write cycle time [‡]		240	1.1	315		ns
tc(Trd)	Transfer read cycle time		240	199	315		ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	265	1.23	330	1.1.1.1.1.1	ns
tc(SCLK)	Serial-clock cycle time	tSCC	45	50,000	50	50,000	ns
tw(CH)	Pulse duration, CAS high (precharge time§	tCP	50		80		ns
tw(CL)	Pulse duration, CAS low¶	tCAS	100	10,000	135	10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	80		105		ns
tw(RL)	Pulse duration, RAS low#	tRAS	150	10,000	200	10,000	ns
tw(W)	Write pulse duration	tWP	45		45		ns
tw(CKL)	Pulse duration, SCLK low		10		10	(a. 2 a f	ns
tw(CKH)	Pulse duration, SCLK high		12		12		ns
tw(QE)	TR/QE pulse duration low time (read cycle)		40		40		ns
tt	Transition times (rise and fall) RAS, CAS, and SCLK	tŢ	3	50	3	50	ns
tsu(CA)	Column-address setup time	tASC	0	1	0	100	ns
t _{su(RA)}	Row-address setup time	tASR	0		0		ns
t _{su(RW)}	\overline{W} setup time before \overline{RAS} low with $\overline{TR}/\overline{QE}$ low		0		0		ns
t _{su(D)}	Data setup time	tDS	0		0		ns
tsu(rd)	Read-command setup time	tRCS	0		0		ns
tsu(WCL)	Early write-command setup time before CAS low	twcs	- 5		- 5		ns
t _{su} (WCH)	Write-command setup time before CAS high	tCWL	40		60	1.1	ns
t _{su} (WRH)	Write-command setup time before RAS high	tRWL	40		60	1.1.1	ns
tsu(TR)	TR/QE setup time before RAS low		0		0		ns
t _{su} (SI)	Serial-data setup time before SCLK high		6		6		ns
th(SI)	Serial-data-in hold time after SCLK high		3		3	(ns
th(CLCA)	Column-address hold time after CAS low	tCAH	45		55		ns
th(RA)	Row-address hold time	^t RAH	20		25		ns
th(RW)	W hold time after RAS low with TR/QE low		20		20		ns
th(RLCA)	Column-address hold time after RAS low	tAR	95		120	1.2.17	ns
th(CLD)	Data hold time after CAS low	tDH	60	0.000	80		ns
th(RLD)	Data hold time after RAS low	tDHR	110	1.23	145		ns
th(WLD)	Data hold time after W low	tDH	45		55		ns
th(CHrd)	Read-command hold time after CAS high	tRCH	0	1.1.1.1	0		ns

(Continued next page.)

NOTE 6: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, VIL max and VIH min must be met at the 10% and 90% points.

[†]All cycle times assume $t_t = 5$ ns except $t_c(SCLK)$ which assumes $t_t = 3$ ns.

*Multiple transfer write cycles require separation by either a 500 ns RAS-precharge interval or any other active RAS-cycle. §Page-mode only.

In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{W(CL)}). This applies to page-mode read-modify-write also.

#In a read-modify-write cycle, tRLWL and t_{SU(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (tw(RL)).

		ALT.	TMS4161-15		TMS4161-15 TMS4161-20		UNIT
	and the second se	SYMBOL	MIN	MAX	MIN	MAX	UNIT
th(RHrd)	Read-command hold time after RAS high	tRRH	5		5		ns
th(CLW)	Write-command hold time after CAS low	tWCH	60		80		ns
th(RLW)	Write-command hold time after RAS low	tWCR	110		145		ns
th(RSO)	Serial-data-out hold time after RAS low with TR/QE low		30		30		ns
th(SO)	Serial-data-out hold time after SCLK high		8		8		ns
th(TR)	TR/QE hold time after RAS low (transfer)		20		20		ns
TRLCH	Delay time, RAS low to CAS high	tCSH	150		200		ns
^t CHRL	Delay time, CAS high to RAS low	tCRP	0		0		ns
^t CLQEH	Delay time, CAS low to QE high		100		135		лѕ
^t CLRH	Delay time, CAS low to RAS high	tRSH	100		135		ns
tCLWL	Delay time, CAS low to W low (read-modify-write cycle only)	tCWD	65		75		ns
^t CQE	Delay time, ow to QE low (maximum value specified only to guarantee t _{a(QE)} access time)			60		85	ns
TRHSC	Delay time, RAS high to SCLK high		80	50,000	80	50,000	ns
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	tRCD	25	50	30	65	ns
^t RLWL	Delay time, RAS low to W low (read-modify-write cycle only)	^t RWD	135		150		ns
^t CKRL	Delay time, SCLK high before RAS low with TR/QE low		10	50,000	10	50,000	ns
trf(MA)	Refresh time interval, memory array	tREF1		4		4	ms
trf(SR)	Refresh time interval, shift register \$\$	tREF2		50,000		50,000	ns

timing requirements over recommended supply voltage range and operating free-air temperature range (concluded)

NOTE 6: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, V_{IL} max and V_{IH} min must be met at the 10% and 90% points.

SCLK may be high or low during t_{W(RL)}, but there can not be any positive edge transitions on SCLK for a minimum of 10 ns prior to RAS going low with TR/QE low (i.e., before a transfer cycle).

☆See "refresh" on page 4-22.

PARAMETER MEASUREMENT INFORMATION

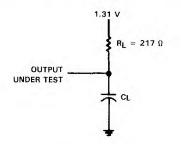
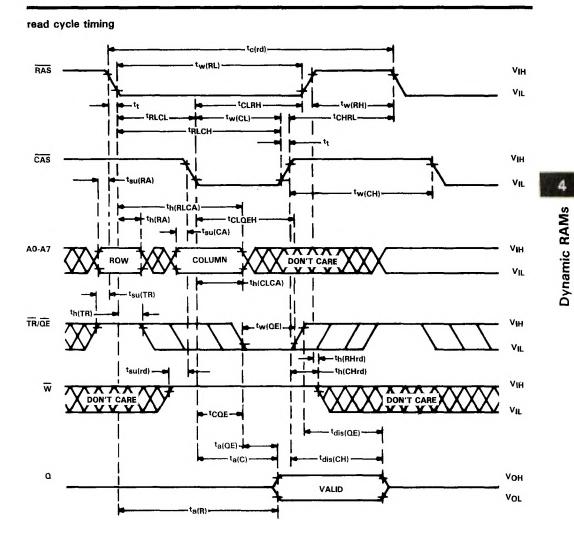
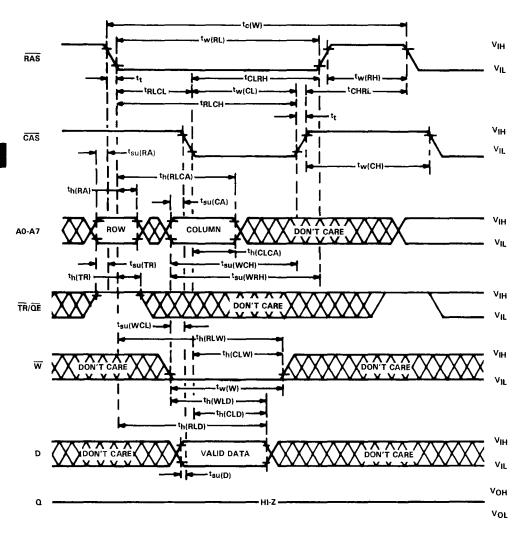
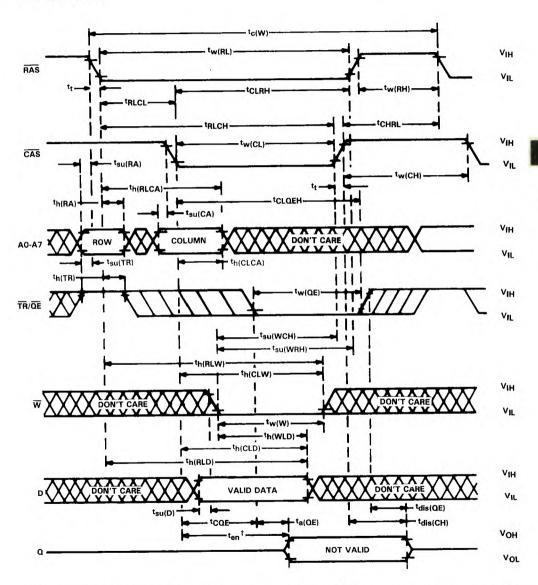
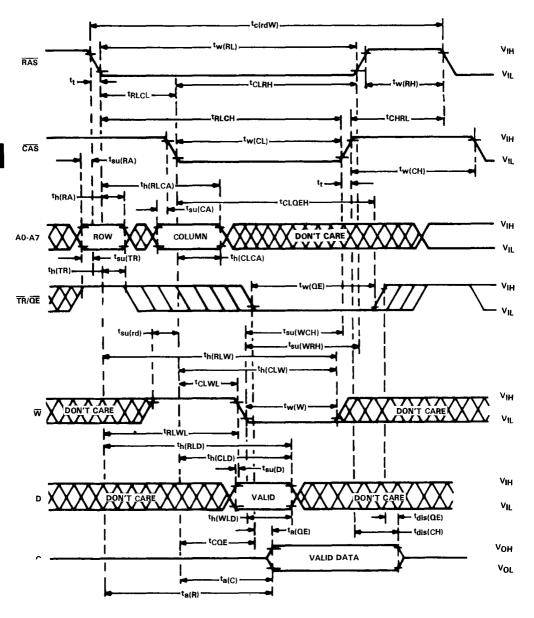




FIGURE 1. LOAD CIRCUIT

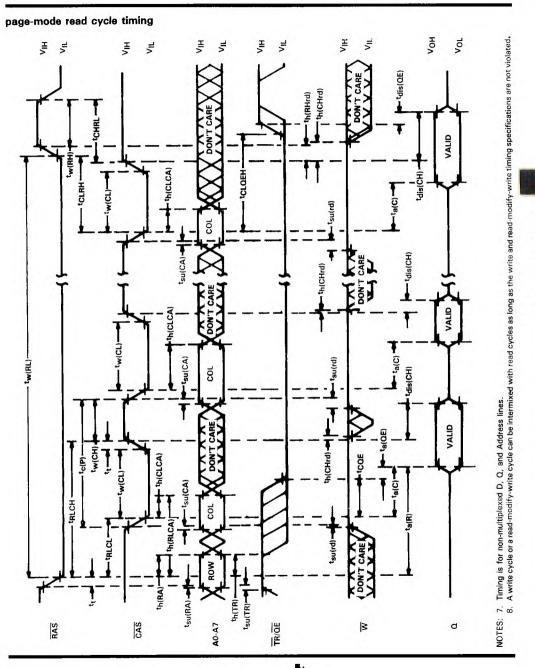

early write cycle timing

Dynamic RAMs

write cycle timing

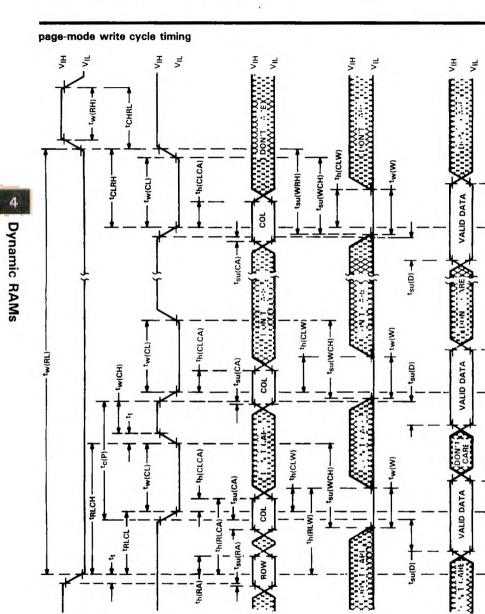

[†]The enable time (t_{en}) for a write cycle is equal in duration to the access time from CAS (t_{a(C)}) in a read cycle; but the active levels at the output are invalid.

4


Dynamic RAMs

read-write/read-modify-write cycle timing

4



TEXAS TEXAS INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

4-31

4

Dynamic RAMs

th(RA)

CAS

A read cycle or a read-modify-write cycle can be intermixed with write cycles as long as the read and read-modify-write timing specifications are not violated. Timing is for non-multiplexed D, Q, and Address lines. ~ 0 NOTES:

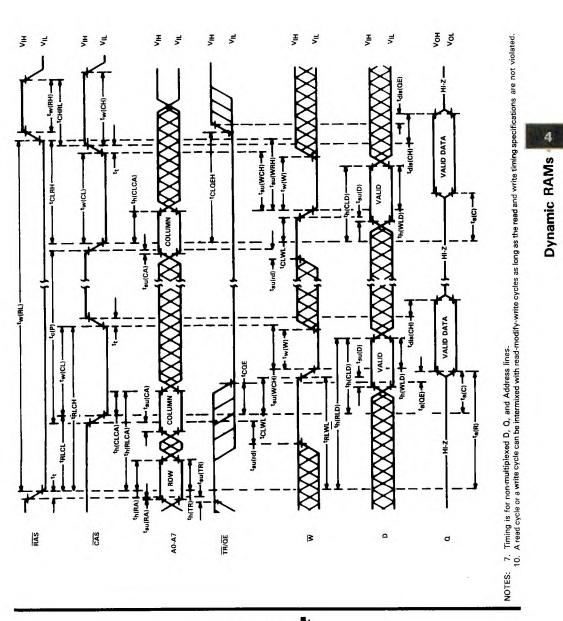
th(CLD)

th(CLD)

th(CLD)

DQ1-DQ8

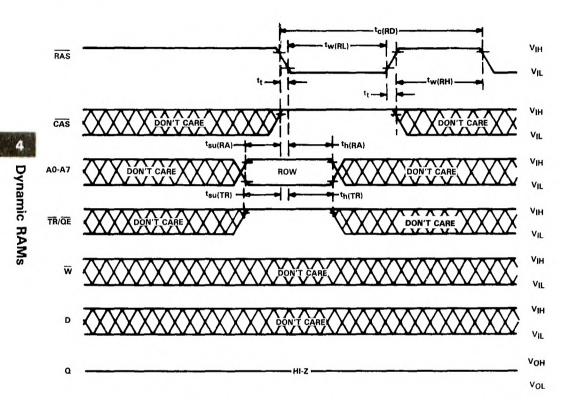
th(RLD)



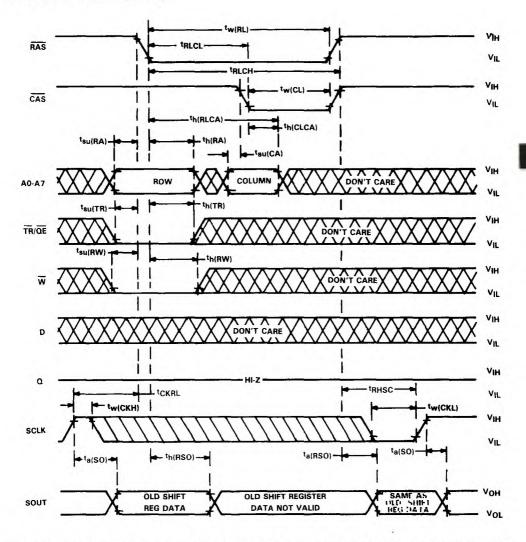
13

A0-A7

RAS

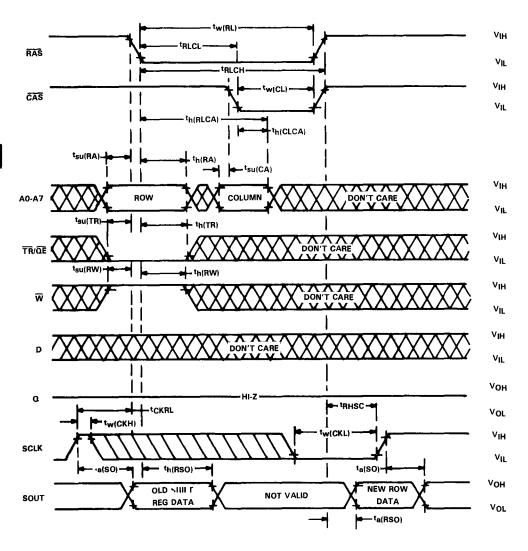

page-mode read-modify-write cycle timing

.


TEXAS VI INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON. TEXAS 77001

RAS-only refresh timing

shift register to memory timing



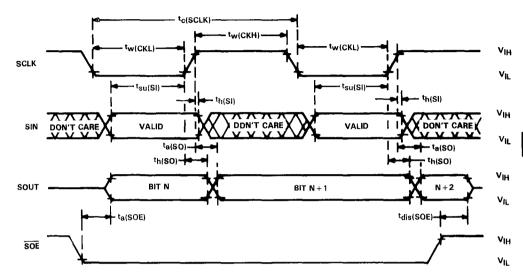
- - 12. ** rows.
 - 13. SCLK may be high or low during tw(RL).

4

Dynamic RAMs

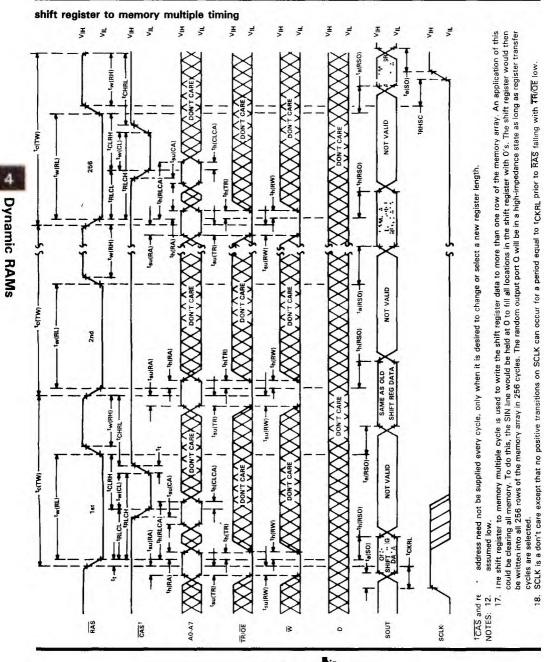
memory to shift register timing

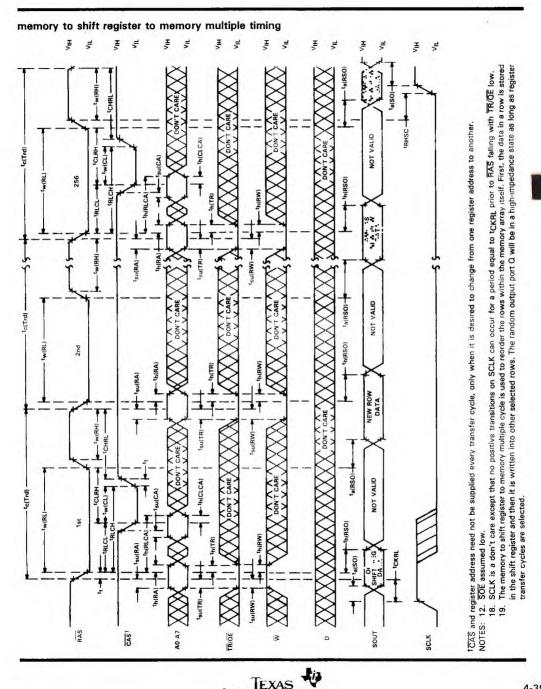
NOTES: 12. $\overline{\text{SOE}}$ assumed low.


13. SCLK may be high or low during tw(RL).

14. The memory to shift register cycle is used to load the shift register in parallel from the memory array. Every one of the 256 locations in the shift register are written into from the 256 columns of the selected row. Note that the data that is loaded into the shift register may be either shifted out or written back into another row.

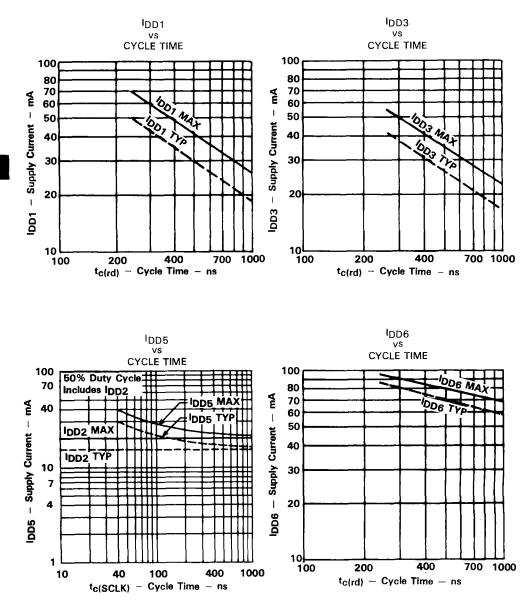
4


serial data shift timing


- NOTES: 15. When loading data into the shift register from the serial input in preparation for a shift register to memory transfer operation, the serial clock must be clocked an even number of times.
 - 16. While shifting data through the serial shift register, the state of TR/QE is a don't care as long as TR/QE is held high when RAS goes low and t_{su(TR)} and t_{h(TR)} timings are observed. This requirement avoids the initiation of a register-to-memory or memory-to-register data transfer operation. The serial data transfer cycle is used to shift data in and/or out of the shift register.

TMS4161 65,536-BIT MULTIPORT VIDEO RAM

TEXAS W INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001


TMS4161 65,536-BIT MULTIPORT VIDEO RAM

INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001 4-39

4

Dynamic RAMs

TMS4161 65,536-BIT MULTIPORT VIDEO RAM

TEXAS INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

4

MAY 1985-REVISED NOVEMBER 1985

This Data Sheet Is Applicable to All TMS4164s Symbolized with Code "A" as Described on Page 4-57.

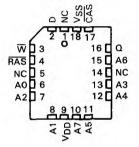
- 65,536 X 1 Organization
- Single 5-V Supply (10% Tolerance)
- JEDEC Standardized Pinout in Dual-in-Line Package
- Performance Ranges:

	ACCESS	ACCESS	READ	READ-
	TIME	TIME	OR	MODIFY-
	ROW	COLUMN	WRITE	WRITE
	ADDRESS	ADDRESS	CYCLE	CYCLE
	(MAX)	(MAX)	(MIN)	(MIN)
4164-12	120 ns	70 ns	230 ns	255 ns
4164-15	150 ns	85 ns	260 ns	290 ns
4164-20	200 ns	135 ns	330 ns	345 ns

- Upward Pin Compatible with TMS4116 (16K Dynamic RAM)
- First Military Version of 64K DRAM
- Also Available with MIL-STD-883B Processing and L(0°C to 70°C), E(-40°C to 85°C), S(-55°C to 100°C), or M(-55°C to 125°C) Temperature Ranges
- Operations of the TMS4164 Can Be Controlled by TI's TMS4500A and/or THCT4501 Dynamic RAM Controllers
- Long Refresh Period . . . 4 ms
- Low Refresh Overhead Time . . . As Low As 1.8% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Unlatched Output
- Common I/O Capability with Early Write Feature
- Page-Mode Operation for Faster Access
- Low Power Dissipation

 Operating . . . 135 mW (Typ)
 Standby . . . 17.5 mW (Typ)
- SMOS (Scaled-MOS) N-Channel Technology

description


The TMS4164 is a high-speed, 65,536-bit, dynamic random-access memory, organized as 65,536 words of one bit each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon gate technology for very high performance combined with low cost and improved reliability.

PRODUCTION DATA documents contain information rections of pitale thind date. Pit date reconform to specifications per the terms of Teams informents standard warring. Production procisions out necessarily include testing of all parameters.

C	го	P VIEV	V)
NC	1	U16	D vss
DD	2	15	CAS
\overline{w}	3	14	Da
RAS	4	13	A6
AO	5	12] A3
A2	6	11	A4
A1	7	10	A5
VDD	8	9	A 7

N PACKAGE

P	IN NOMENCLAT
A0-A7	Address Inputs
CAS	Column-Address Strobe
D	Data In
NC	No Connection
Q	Data Out
RAS	Row-Address Strobe
VDD	5-V Supply
Vss	Ground
W	Write Enable

The TMS4164 features \overline{RAS} access times of 120 ns, 150 ns, and 200 ns maximum. Power dissipation is 135 mW typical operating and 17.5 mW typical standby.

Refresh period is extended to 4 milliseconds, and during this period each of the 256 rows must be strobed with RAS in order to retain data. CAS can remain high during the refresh sequence to conserve power.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address lines and data in are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility. Pin 1 has no internal connection to allow compatibility with other 64K RAMs that use this pin for an additional function.

The TMS4164 is offered in 16-pin dual-in-line plastic (N suffix) and 18-lead plastic chip carrier (FP suffix) packages. The dual-in-line plastic package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers. The TMS4164 is guaranteed for operation from 0°C to 70°C.

operation

address (A0 through A7)

Sixteen address bits are required to decode 1 of 65,536 storage cell locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

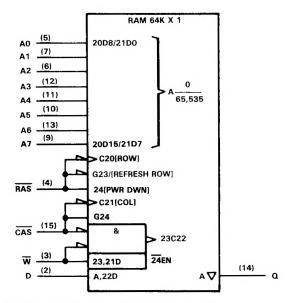
Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overrightarrow{CAS} is brought low. In a read cycle the output goes active after the access time interval $t_a(C)$ that begins with the negative transition of \overrightarrow{CAS} as long as $t_a(R)$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while \overrightarrow{CAS} is low; \overrightarrow{CAS} going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state. In a delayed-write or read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

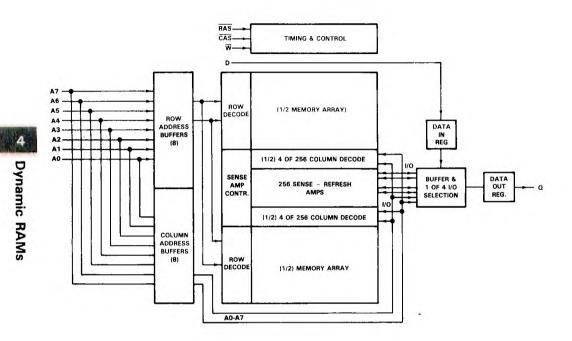
A refresh operation must be performed at least every four milliseconds to retain data. Since the ouput buffer is in the high-impedance state unless \overline{CAS} is applied, The \overline{RAS} -only refresh sequence avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with \overline{RAS} causes all bits in each row to be refreshed. \overline{CAS} can remain high (inactive) for this refresh sequence to conserve power.


page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 256 column locations on a single RAM, the row address and RAS are applied to multiple 64K RAMs. CAS is then decoded to select the proper RAM.

power up

After power up, the power supply must remain at its steady-state value for 1 ms. In addition, RAS $\frac{1}{16}$ remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight $\frac{1}{16}$ cycles before proper device operation is achieved.


logic symbol[†]

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the dual-in-line package.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage on any pin except VDD and data out (see Note 1)	-1.5 V to 10 V
Voltage on VDD supply and data out with respect to VSS	1 V to 6 V
Short circuit output current	50 mA
Power dissipation	1 W
Operating free-air temperature range	0°C to 70°C
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NGTES: 1. All voltage values in this data sheet are with respect to VSS.
 - 2. Additional information concerning the handling of ESD sensitive devices is available in a document entitled "Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies" in Section 12.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VDD	Supply voltage	4.5	5	5.5	v
Vss	Supply voltage		0		V
VIH	$V_{DD} = 4.5 V$	2.4		4.8	
	$V_{DD} = 5.5 V$	2.4		6	v
VIL	Low-level input voltage (see Notes 3 and 4)	-0.6		0.8	V
TA	Operating free-air temperature	0		70	°C

NOTES: 3. The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

4. Due to input protection circuitry, the applied voltage may begin to clamp at -0.6 V. Test conditions must comprehend this occurrence. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

		TEST	TMS4164-12 TMS4		AS4164	4164-15			
	PARAMETER	CONDITIONS	MIN	TYP:	MAX	MIN	TYPT	MAX	UNIT
VOH	High-level output voltage	$I_{OH} = -5 \text{ mA}$	2.4			2.4			V
VOL	Low-level output voltage	$I_{OL} \approx 4.2 \text{ mA}$			0.4		-	0.4	V
ų	Input current (leakage)	$V_I = 0 V$ to 5.8 V, $V_{DD} = 5 V$, All other pins = 0 V			±10			±10	μA
10	Output current (leakage)	$V_{O} = 0.4 \text{ to } 5.5 \text{ V},$ $V_{DD} = 5 \text{ V},$ $\overline{CAS} \text{ high}$			±10			±10	μА
IDD1 [‡]	Average operating current during read or write cycle	t _C = minimum cycle, All outputs open		40	48		35	45	mA
IDD2 [§]	Standby current	After 1 memory cycle, RAS and CAS high, All outputs open		3.5	5		3.5	5	mA
IDD3‡	Average refresh current	t_{C} = minimum cycle, CAS high and RAS cycling, All outputs open		28	40		25	37	mA
IDD4	Average page-mode current	$t_{C(P)}$ = minimum cycle, RAS low and CAS cycling, All outputs open		28	40		25	37	mA

[†]All typical values are at $T_A = 25 \,^{\circ}C$ and nominal supply voltages.

[‡]Additional information on page 4-58.

[§]V_{IL} > -0.6V. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

		TEST		
	PARAMETER	CONDITIONS	MIN LYPT MAX	UNIT
VOH	High-level output voltage	$I_{OH} = -5 \text{ mA}$	2.4	V
VOL	Low-level output voltage	IOL = 4.2 mA	0.4	V
4	Input current (leakage)	$V_1 = 0 V$ to 5.8 V, $V_{DD} = 5 V$ All other pins = 0 V	±10	μA
ю	Output current (leakage)	$V_0 = 0.4$ to 5.5 V, $V_{0D} = 5$ V, $\overline{v_0} \overline{z}$ high	± 10	μA
IDD1 [‡]	Average operating current during read or write cycle	t _C = minimum cycle All outputs open	27 37	mA
IDD2 [§]	Standby current	After 1 memory cycle, RAS and CAS high, All outputs open	3.5 5	mA
IDD3 [‡]	Average refresh current	t _c = minimum cycle, CAS high and RAS cycling, All outputs open	20 32	mA
IDD4	Average page-mode current	t _{c(P)} = minimum cycle, RAS low and CAS cycling, All outputs open	20 32	mA

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

 † All typical values are at T_A = 25 °C and nominal supply voltages. ‡Additional information on page 4-58.

[§]VIL>-0.6V. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

capacitance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

	PARAMETER	TYP [†]	MAX	UNIT
Ci(A)	Input capacitance, address inputs	4	5	pF
ſ	Input capacitance, data input	4	5	pF
LUNC)	Input capacitance strobe inputs	6	8	pF
Ci(W)	Input capacitance, write enable input	6	8	pF
Co	Output capacitance	5	6	pF

[†]All typical values are at $T_A = 25 \,^{\circ}C$ and nominal supply voltages.

switching characteristics over recommended supply voltage range and operating free-air temperature range

PARAMETER		TEST CONDITIONS	ALT.	TMS4164-12		TM\$4164-15		
		TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAN	UNIT
tA(C)	Access time from CAS	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tCAC		70		85	ns
t _{a(R)}	Access time from RAS	$C_L = 100 \text{ pF}, t_{RLCL} = MAX,$ Load = 2 Series 74 TTL gates	^t RAC		120		150	ns
^t dis(CH)	Output disabla time after CAS high	Сլ = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0	40	0	40	ns

Texas INSTRUMENTS POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001

Dynamic RAMs

PARAMETER		TEST CONDITIONS	ALT.	TMS4164-20	
		TEST CONDITIONS	SYMBOL	ΜΙΝ ΜΑΧ	UNIT
t _{a(C)}	Access time from CAS	C _L = 100 pF, Load = 2 Series 74 TTL gates	^t CAC	135	ns
t _{a(R)}	Access time from RAS	C _L = 100 pF, t _{RLCL} = MAX, Load = 2 Series 74 TTL gates	^t RAC	200	ns
t _{dis} (CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0 50	ns

switching characteristics over recommended supply voltage range and operating free-air temperature range

timing requirements over recommended supply voltage range and operating free-air temperature range (see Note 1)

		ALT.	TMS4164	-12	TMS4	4164-15	
		SYMBOL	Mily N	AAX	MIN	MAX	UNIT
t _c (P)	Page-mode cycle time	tPC	130		145		ns
tc(rd)	Read cycle time [†]	tRC	230		260		ns
t _c (W)	Write cycle time	1Wr	230		260		ns
tc(r.)	Read-write/read	- 	255		290		ns
twich)	Pulse duration, A light precharge time)*		50		50		ns
tw(CL)	Pulse duration, CAS low 5	tCAS	70 10	000	85	10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	80		100		ns
tw(RL)	Pulse duration, RAS low	tRAS	120 10	000	150	10,000	ns
tw(W)	Write pulse duration	tWP	40		45		ns
^t t	Transition times (rise and fall) for it and CAS	tŢ	3	50	3	50	ns
t _{su} (CA)	Column-address setup time	tASC	-5		-5		ns
t _{su} (RA)	Row-address setup time	tASR	0		0		ns
t _{su} (D)	Data satup time	tDS	0		0		ns '
tsu(rd)	Read-command setup time	^t RCS	0		0		ns
tsu(WCH)	Write-command setup time befora	tCWL	50		50		ns
t _{su} (WRH)	Write-command setup time before	^t RWL	50		50		ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	40		45		ns
th(RA)	Row-address hold time	^t RAH	15		20		ns
th(RLCA)	Column-address hold time after RAS low	tAR	85		95		ns
th(CLD)	Data hold time after CAS	^t DHC	40		45		ns
th(RLD)	Data hold time after RAS	^t DHR	85		95		ns
th(WLD)	Data hold time after W low	tDHW	40		45		ns
th(CHrd)	Read-command hold time after CAS high	^t RCH	0		0		ns
th(RHrd)	Read-command hold time after RAS high	tRRH	5		5		ńs
th(CLW)	Write-command hold time aftar CAS low	tWCH	40		45		ńs
th(RLW)	Write-comn : : hold time after RAS low	tWCR	85		95		ns
^t RLCH	Delay time, low to CAS high	tCSH	120		150		ns
^t CHRL	Delay time, CAS high to RAS low	tCRP	0		0		ns
^t CLRH	Delay time, CAS low to RAS high	tRSH	70		85		ns
	Delay time, CAS low to W low	1.000	40		60		ns
tCLWL	(read-modify-write cycle	tCWD					
	Delay time, RAS low to	^t RCD	15	50	20	65	ns
^t RLCL	value specified only to guarantee access time)	- HCD					
	Delay time, RAS low to W low	town	110		120	j	ns
tRLWL	(read-modify-write cycle only)	tRWD			120		110
	Delay time, W low to CAS	twee	-5		-5		ns
tWLCL	low (early write cycle)	twcs			-5		113
t _{rf}	Refresh time interval	^t REF		4		4	ms

NOTE 1: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, VIL max and VIH min must be met at the 10% and 90% points.

[†] All cycle times assume $t_t = 5$ ns.

[‡] Page mode only.

⁵In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{w(CL)}). This applies to page-mode read-modify-write also.

1 ead-modify-write cycle, tRLWL and t_{sul}(WRH) must be observed. Depending on the user's transition times, this may require additional in the two time (two time (two time)).

		ALT.	TMS4164-20	UNIT
		SYMBOL	MIN MAX	UNIT
t _{c(P)}	Page-mode cycle time	tPC	225	ns
tc(rd)	Read cycle time [†]	tRC	330	ns
t _c (W)	Write cycle time	twc	330	ns
c(rdW)	Read-write/reac write cycle time	tRWC	345	ns
tw(CH)	Pulse duration, Minuth (precharge time) [‡]	tCP	80	ns
tw(CL)	Pulse duration, CAS low §	tCAS	1* 10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP		ns
tw(RL)	Pulse duration, RAS low	tRAS	200 10,000	ns
tw(W)	Write pulse duration	twp	55	ns
^L t	Transition times (rise and fall) for RAS and CAS	^t т	3 50	лs
tsu(CA)	Column-address setup time	tASC	-5	ns
su(RA)	Row-address setup time	tASR	0	ns
t _{su} (D)	Data setup time	tDS	0	ns
tsu(rd)	Read-command setup time	tRCS	0	ns
tsu(WCH)	Write-command setup time before high	tCWL	60	ns
t _{su} (WRH)	Write-command setup time before	tRWL	60	ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	55	ns
th(RA)	Row-address hold time	tRAH	25	ns
th(RLCA)	Column-address hold · after RAS low	tAR		ns
th(CLD)	· · · · · · · · · · · · · · · · · · ·	*DHC	55	ns
th(RLD)	In time after RAS low	^t DHR	145	ns
th(WLD)	Data hold time after W low	tDHW	55	ns
th(CHrd)	Read-command hold time after CAS high	tRCH	0	ns
th(RHrd)	Read-command hold time after RAS high	tRRH	5	ns
th(CLW)	Write-command hold time after CAS low	tWCH	55	ns
th(RLW)	Write-comn: vold time after RAS low	tWCR	145	ns
TRLCH	Delay time, iow to CAS high	tCSH	200	n
tCHRL	Delay time, CAS high tc low	tCRP	0	n
^t CLRH	Delay time, CAS low to in igh	tRSH	135	ns
tCLWL	Delay time, CAS low to W low (read-modify-write cycle	tCWD	65	ns
^t RLCL	Delay time, RAS low to ow (maximum value specified only to guarantee access time)	tRCD	25 65	n:
^t RLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	130	n
tWLCL	Delay time, W low to CAS low (early write cycle)	tWCS	-5	n
trf	Refresh time interval	tREF	4	m

timing requirements over recommended supply voltage range and operating free-air temperature range (see Note 1)

NOTE 1: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, VIL max and VIH min must be met at the 10% and 90% points.

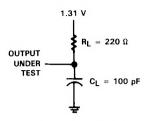
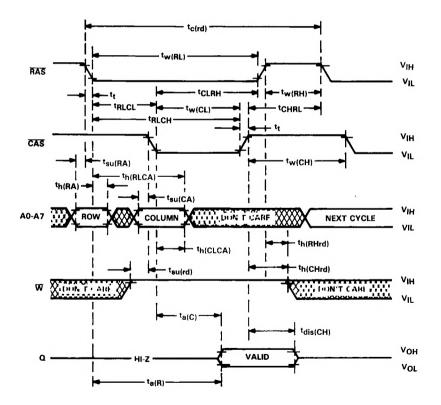
[†]All cycle times assume $t_t = 5$ ns.

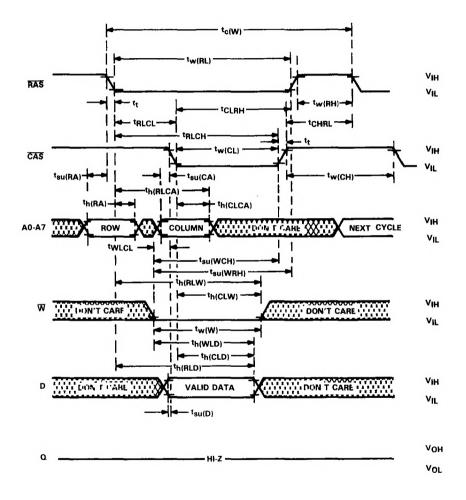
[‡]Page mode only.

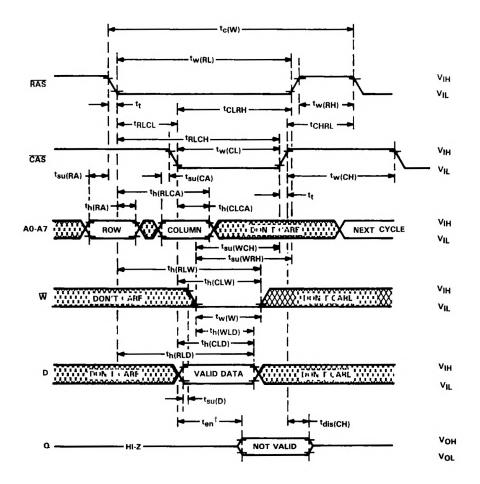
In a read-modify-write cycle, t_{CLWL} and t_{SU(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{w(CL)}). This applies to page-mode read-modify-write also.

1 · · · · ad-modify-write cycle, tRLWL and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional

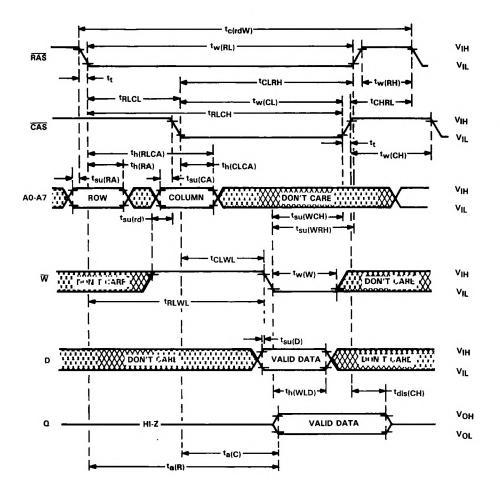
PARAMETER MEASUREMENT INFORMATION

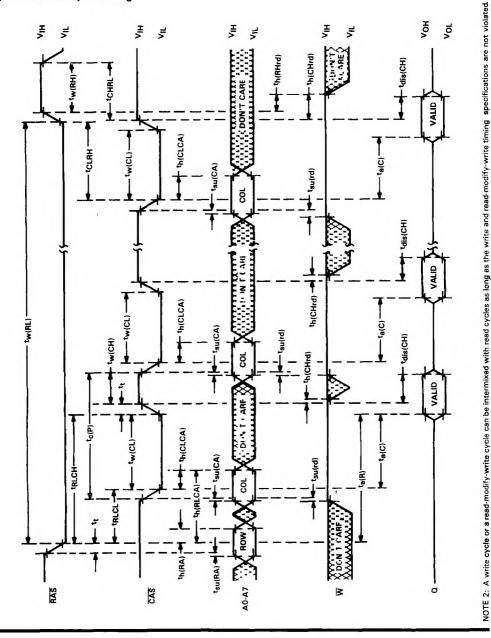




FIGURE 1. LOAD CIRCUIT

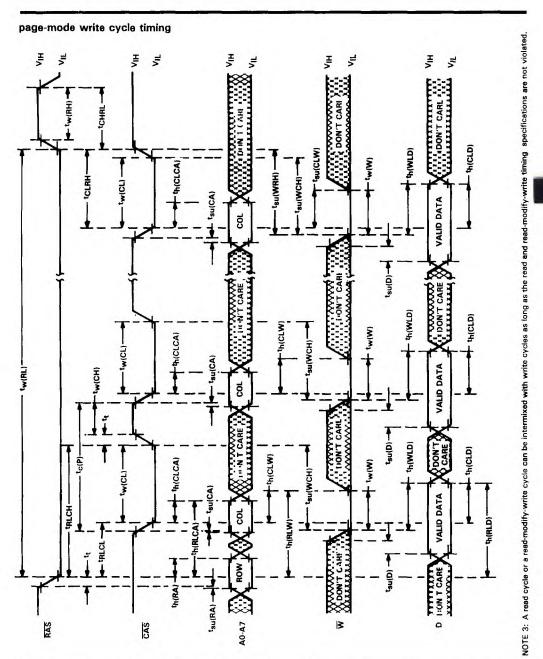


early write cycle timing


write cycle timing


[†] The enable time (t_{en}) for a write cycle is equal in duration to the access time from CAS (t_{a(C)}) in a read cycle; but the active levels at the output are invalid.

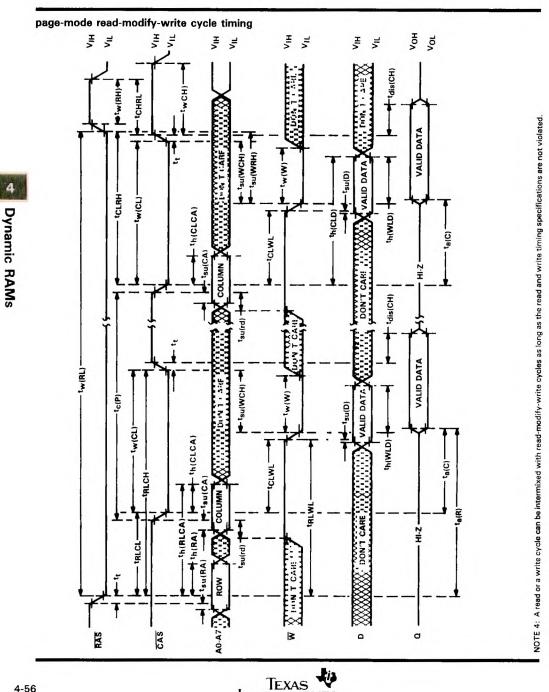
read-modify-write cycle timing


page-mode read cycle timing

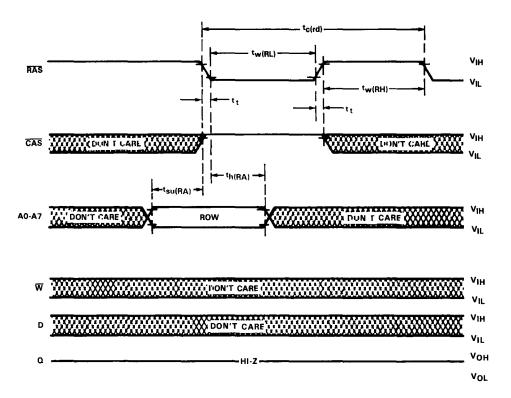
TEXAS TEXAS INSTRUMENTS

Dynamic RAMs

4


TEXAS V INSTRUMENTS POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001

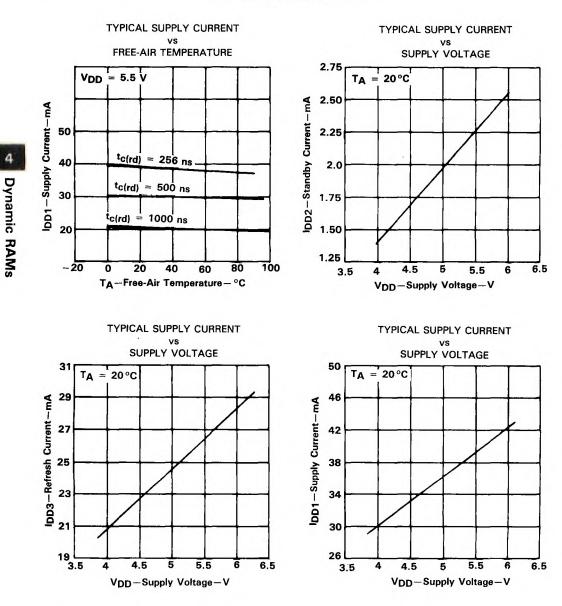
ij


4-55

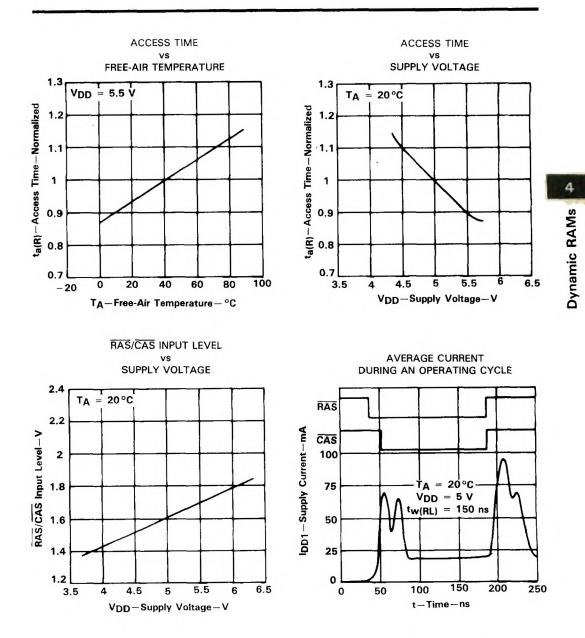
Dynamic RAMs

4

INSTRUMENTS POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001 RAS-only refresh timing



device symbolization


This data sheet is applicable to all TI TMS4164 Dynamic RAMs with the code ''A'' to the left of the date code as shown below:

TYPICAL CHARACTERISTICS

Dynamic RAMs

•

,

•

.

•

APRIL 1985-REVISED NOVEMBER 1985

- 2 X 65,536 X 1 Organization
- Single 5-V Supply (10% Tolerance)
- Operating Free-Air Temperature . . . 0 °C to 70 °C
- Long Refresh Period . . . 4 ms
- Low Refresh Overhead Time . . . As Low As 1.8% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Unlatched Output
- Common I/O Capability with "Early Write" Feature
- Page-Mode Operation for Faster Access
- Low Power Dissipation
 - Operating . . . 193 mW (Typ)
 - Standby . . . 35 mW (Typ)
- Max Access/Min Cycle Times:

	ACCESS TIME	ACCESS TIME	READ	READ- MODIFY-
	ROW	COLUMN		
	(MAX)	(MAX)	(MIN)	(MIN)
TMS41128B-15	150 ns	85 ns	260 ns	315 ns

SMOS (Scaled-MOS) N-Channel Technology

description

The TMS41128B consists of two high-speed, 65,536-bit, dynamic random-access memories that are separately packaged. These DRAMs are electrically similar to TMS4164s; however, the pin out is different. The two packages are permanently connected, pin for pin, one on top of the other. The result is a 16-pin memory device organized as 131,072 words of one bit each with essentially the same characteristics of the TMS4164 NMOS dynamic RAM.

A logic low on the RAS1 input selects the lower DRAM; a logic low on the RAS2 input selects the upper DRAM.

The TMS41128B-15 features a RAS access time of 150 ns. Power dissipation is 193 mW typical operating, 35 mW typical standby.

Refresh period is extended to 4 ms, and during this period each of the 256 rows must be strobed with RAS1 and RAS2 in order to retain data. CAS can remain high during the refresh sequence to conserve power.

All inputs and outputs, including clock, are compatible with Series 74 TTL. All address lines and data in are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The TMS41128B is offered in 16-pin plastic dual-in-line stacked packages and is guaranteed for operation from 0°C to 70°C. This package is designed for insertion in mounting-hole rows on 300-mil (7,62-mm) centers.

PRODUCTION DATA documents contain information current as of f L1: 4;ion data. Products conform to specifications j=1 '70 terms of Texas Instruments standard warranty. '1-youtcion processing does not necessarily include testing of all parameters.

16-PIN PLASTIC	
DUAL-IN-LINE STACKED PACKAGES	t
(TOP VIEW)	

DD	1	U16 VSS
WC	2	15 CAS
RAS1	3	1400
RAS2	4	13 A6
AO	5	12 A3
A2	6	11 🗍 A4
	7	10 A5
VDD	8	9 🛛 A7

 † RAS1 (pin 3) selects the lower DRAM, and pin 3 on the upper DRAM is a no connect. RAS2 (pin 4) selects the upper DRAM, and pin 4 on the lower DRAM is a no connect.

PIN	NOMENCLATURE
A0-A7	Address Inputs
CAS	Column-Address Strobe
D	Data In
٥	Data Out
RAS1, RAS2	Row-Address Strobes
VDD	5-V Supply
Vss	Ground
W	Write Enable

4

operation

address (A0 through A7)

Sixteen address bits are required to decode 1 of 65,536 storage cell locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe ($\overline{RAS1}$ or $\overline{RAS2}$). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of $\overline{RAS1}$, $\overline{RAS2}$, and \overline{CAS} . All addresses must be stable on or before the falling edges of $\overline{RAS1}$, $\overline{RAS2}$, and \overline{CAS} . The value of \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers. When \overline{CAS} is applied to the device, only one of the \overline{RAS} signals (either $\overline{RAS1}$ or $\overline{RAS2}$) must be applied to select either the lower DRAM or the upper DRAM. When a \overline{RAS} -only refresh is performed (\overline{CAS} logic high), both $\overline{RAS1}$ and $\overline{RAS2}$ may be applied simultaneously.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal.

data out (Q)

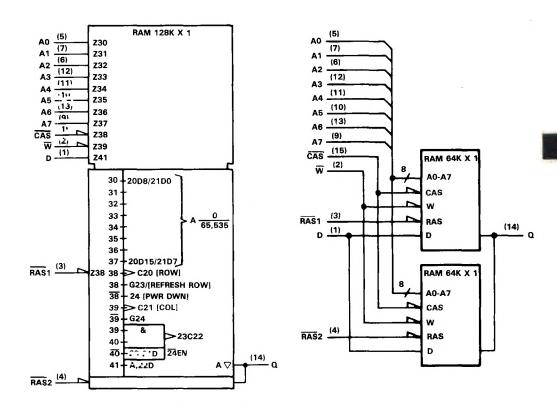
The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval $t_a(C)$ that begins with the negative transition of CAS as long as $t_a(R)$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state. In a delayed-write or read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

A refresh operation must be performed at least every 4 ms on both DRAMs to retain data. Since the output buffer is in the high-impedance state unless \overline{CAS} is applied, The \overline{RAS} -only refresh sequence avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with both $\overline{RAS}1$ and $\overline{RAS}2$ causes all bits in each row to be refreshed. \overline{CAS} must remain high (inactive) for this refresh sequence.

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 256 column locations on a single RAM, the row address and RAS are applied to multiple 64K RAMs. CAS is then decoded to select the proper RAM.


power-up

After power up, $\overline{RAS1}$ and $\overline{RAS2}$ must remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight \overline{RAS} cycles before proper device operation is achieved.

logic symbol[†]

functional block diagram

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

4

Dynamic RAMs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage on any pin except VDD and data out (see Note 1)	-1.5 V to 10 V
Voltage on VDD supply and data out with respect to VSS	1 V to 6 V
Short circuit output current	50 mA
Power dissipation	2 W
Operating free-air temperature range	
Storage temperature range	-65 °C to 150 °C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values in this data sheet are with respect to VSS.

 Additional information concerning the handling of ESD sensitive devices is available in a document entitled "Guidelines for Handling Electrostatic-Discharge-Sensitive (ESDS) Devices and Assemblies" in Section 12.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VDD	Supply voltage		4.5	5	5.5	V
VSS	Supply voltage			0		V
1000	19.5.1.1.	V _{DD} = 4.5 V	2.4		4.8	v
∨ін	High-level input voltage	V _{DD} = 5.5 V	2.4		6	v
VIL	Low-level input voltage (s	ee Notes 3 and 4)	-0.6		0.8	V
TA	Operating free-air tempera	ture	0	_	70	°C

NOTES: 3. The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

4. Due to input protection circuitry, the applied voltage may begin to clamp at -0.6 V. Test conditions must comprehend this occurrence. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	UNIT
VOH	High-level output voltage	IOH = -5 mA	2.4			٧
VOL	Low-level output voltage	IOL = 4.2 mA	-1223		0.4	V
4	Input current (leakage)	$V_{I} = 0 V$ to 5.8 V, $V_{DD} = 5 V$, All other pins = 0 V			± 20	μA
ю	Output current (leakage)	Vo = 0.4 to 5.5 V, Vor = 5 V, .∴ nigh			± 20	μA
IDD1	Average operating current during read or write cycle	ι _C = minimum cycle, All outputs open		38.5	65	mA
IDD2 [‡]	Standby current	After 1 memory cycle, RAS and CAS high, All outputs open		7	10	mΑ
1DD3	Average refresh current	t _c = minimum cycle, RAS low, CAS high, All outputs open			90	mA
IDD4	Average page-mode current	t _{c(P)} = minimum cycle, RAS low, CAS cycling, All outputs open			90	mA

[†]All typical values are at T_A = 25 °C and nominal supply voltages.

 $^{\dagger}V_{\rm IL} > -0.6 V.$

capacitance over recommended supply voltage range and operating free-air temperature range, $f\,=\,1\,\,\text{MHz}$

	PARAMETER	TYP	MAX	UNIT
Ci(A)	Input capacitance, address inputs	8	14	pF
Ci(D)	Input capacitance, data input	8	14	pF
Ci(RC)	Inpuut capacitance strobe inputs	16	20	pF
Ci(W)	Input capacitance, write-enable input	16	20	pF
Co	Output capacitance	10	16	pF

[†]All typical values are at $T_A = 25$ °C and norminal supply voltages.

switching characteristics over recommended supply voltage range and operating free-air temperature range

PARAMETER		TEST CONDITIONS	ALT. SYMBOL	MIN	MAX	UNIT
t _{a(C)}	Access time from \overline{CAS}	CL = 100 pF, Load = 2 Series 74 TTL gates	^t CAC		85	ns
t _{a(R)}	Access time from RAS	tRLCL = MAX, Load = 2 Series 74 TTL gates	^t RAC		150	ns
tdis(CH)	Output disable time after CAS high	CL = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0	40	ns

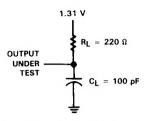
		ALT. SYMBOL	MIN MAX	
t _{c(P)}	Page-mode cycle time	tPC		ns
tc(rd)	Found cycle time [†]	tRC	20	ns
tc(W)	with cycle time	twc		ns.
tc(rdW)	Iwod-write/read-modify-write cycle time	tRWC	315	ns
tw(CH)	Pulse duration, 🎄 nigh (precharge time)‡	tCP	60	ns
tw(CL)	Pulse duration, CAS low §	tCAS	85 10,000) ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	10	ns
tw(RL)	Putse duration, Rein low	tRAS	10,000) ns
tw(W)	wine pulse duration	twp	45	ns
t _t	Transition times (rise and fall) for RAS and CAS	tŢ	3 50) ns
tsu(CA)	Column-address setup time	tASC	0	ns
tsu(RA)	Row-address setup time	tASR	0	ns
t _{su(D)}	Data setup time	tDS	0	ns
tsu(rd)	Read-command setup time	TRCS	0	ns
t _{su} (WCH)	Write-command setup time before CAS high	tCWL	55	ns
t _{su} (WRH)	Write-command setup time before RAS high	tRWL	55	ns
th(CLCA)	Column-address hold time after CAS low	*CAH	45	ns
th(RA)	Row-address hold time	tRAH	20	ns
th(RLCA)	Column-address hold in after RAS low	tAR	110	ns
th(CLD)	Data hold time after · * ow	^t DH	45	ns
th(RLD)	Data hold time after 11.0 ow	^t DHR	127	ns
th(WLD)	Data hold time after 💀 iow	^t DH	40	ns
th(CHrd)	Read-command hold time after CAS high	tRCH	0	ns
th(RHrd)	Read-command hold time after RAT test	tBRH	20	пз
th(CLW)	Write-command hold time afte:	tWCH	60	ns
th(RLW)	Write-communate cold time after ow	tWCR	120	ns
TRLCH	Delay time, ow to CAL high	^t CSH	150	ns
tCHRL	Delay time, this high to the ow	_tCRP	10	ns
tCLRH	Delay time, 1 ow to 1 igh	TRSH	85	ns
^t CLWL	Delay time, CAS low to W low (read-modify-write cycle	tCWD	75	ns
^t RLCL	Delay time, RAS low to	^t RCD	30 6	5 ns
tRLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	150	ns
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	0	ns
trf	Refresh time interval	tREF		1 ms

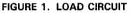
timing requirements over recommended supply voltage range and operating free-air temperature range

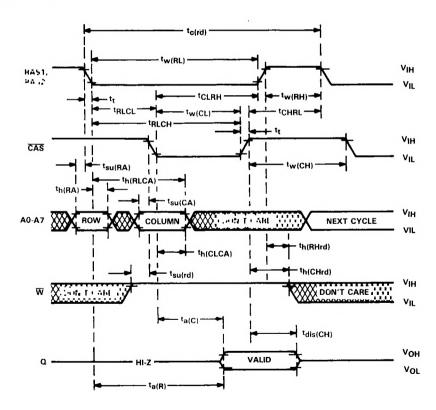
NOTE 5: Timing measurements are made at the 10% and 90% points of input and clock transitions. In addition, VIL max and VIH min must be mat at the 10% and 90% points.

[†] All cycle times assume $t_t = 5$ ns.

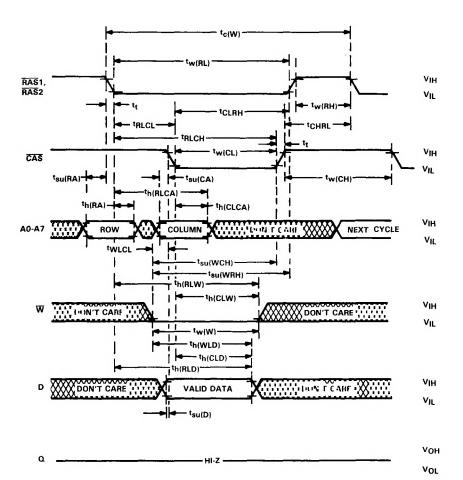
[‡]Page mode only.


^c i · · · ad-modify-write cycle, t_{CLWL} and t_{sul(WCH)} must be observed. Depending on the user's transition times, this may require additional

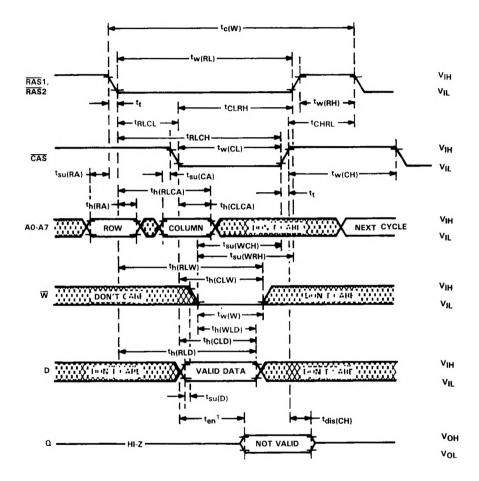

1...: ad-modify-write cycle, tRLWL and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional


4

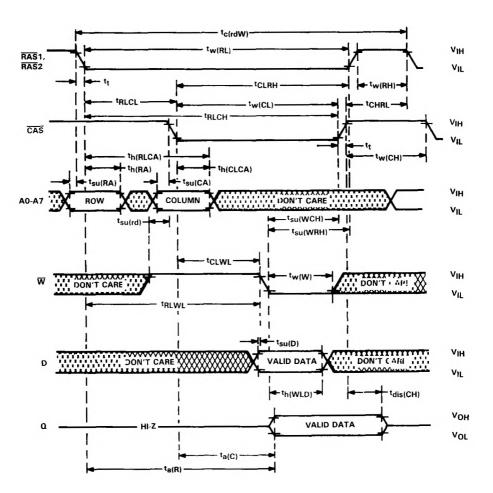
PARAMETER MEASUREMENT INFORMATION

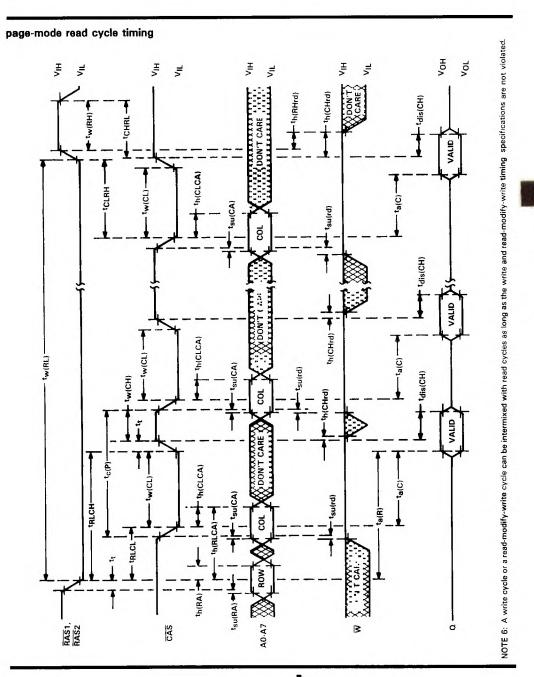


read cycle timing

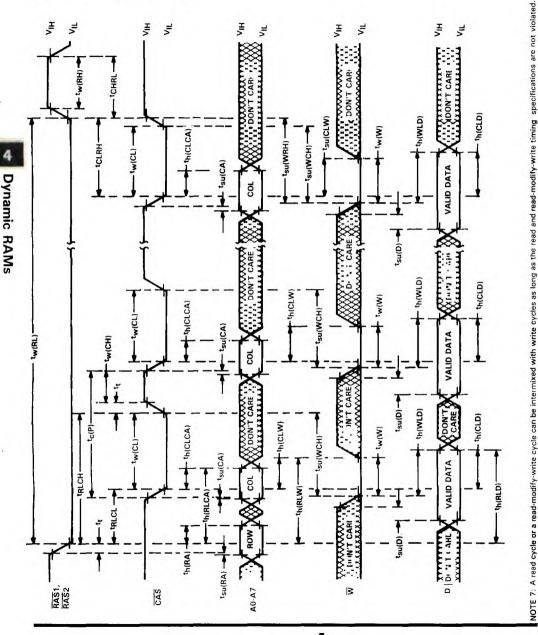

early write cycle timing

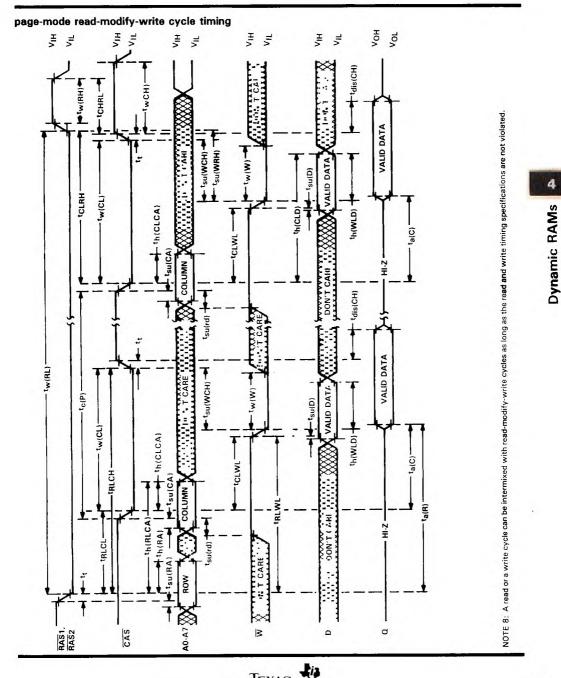
Dynamic RAMs


write cycle timing


[†] The enable time (t_{en}) for a write cycle is equal in duration to the access time from CAS (t_{a(C)}) in a read cycle; but the active levels at the output are invalid.

read-modify-write cycle timing

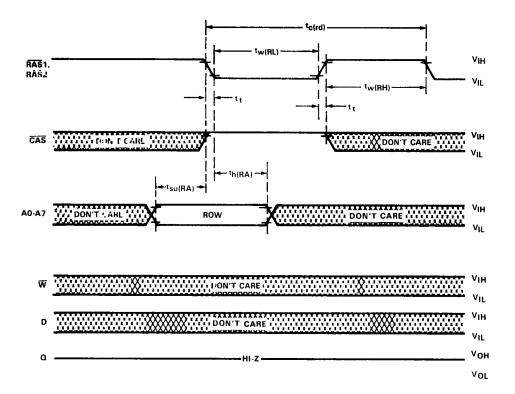

TEXAS VI INSTRUMENTS


4-71

4

Dynamic RAMs

page-mode write cycle timing


TMS41128B 131,072-BIT DYNAMIC RANDOM-ACCESS MEMORY

TEXAS TO INSTRIMENTS POST OFFICE BOX 1443 • HOUSTON TEXAS 77001

4-73

TMS41128B 131,072-BIT DYNAMIC RANDOM-ACCESS MEMORY

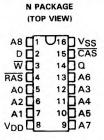
RAS-only refresh timing

•

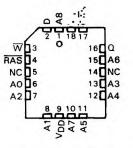
MAY 1983-REVISED NOVEMBER 1985

- 262,144 X 1 Organization
- Single 5-V Supply (10% Tolerance)
- JEDEC Standardized Pinout
- Upward Pin Compatible with TMS4164 (64K Dynamic RAM)
- Performance Ranges:

DEVICE	ACCESS TIME ROW ADDRESS (MAX)	ACCESS TIME COLUMN ADDRESS (MAX)	READ OR WRITE CYCLE (MIN)
TMS4256-12 TMS4257-12	120 ns	60 ns	230 ns
TMS4256-15 TMS4257-15	150 ns	75 ns	260 ns
TMS4256-20 TMS4257-20	200 ns	100 ns	330 ns


- Long Refresh Period . . . 4 ms (Max)
- Low Refresh Overhead Time . . . As Low As 1.3% of Total Refresh Period
- On-Chip Substrate Bias Generator
- Operations of the TMS4256/TMS4257 Can Be Controlled by TI's THCT4502 Dynamic RAM Controller
- All Inputs, Outputs, and Clocks Fully TTL Compatible
- 3-State Unlatched Output
- Common I/O Capability with "Early Write" Feature
- Page ('4256) or Nibble-Mode ('4257) Options for Faster Access Operation
- Power Dissipation As Low As — Operating . . . 275 mW (Typ) —Standby . . . 12.5 mW (Typ)
- RAS-Only Refresh Mode
- Hidden Refresh Mode

description


The '4256 and '4257 are high-speed, 262,144-bit dynamic random-access memories, organized as 262,144 words of one bit each. They employ state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon/polycide gate technology for very high performance combined with low cost and improved reliability.

PRODUCTION DATA documents contain information ri irani as of publication date. Products conform to specifications put the terms of Taxas Instruments standard warranty. Production processing does Luct necessarily include testing of all parameters.

PIN	NOMENCLATURE				
A0-A8	AO-A8 Address Inputs				
CAS	Column-Address Strobe				
D	Data In				
NC	No Connection				
Q	Data Out				
RAS	Row-Address Strobe				
VDD	5-V Supply				
Vss	Ground				
W	Write Enable				

- CAS-Before-RAS Refresh Mode
- Available with MIL-STD-883B Processing and L(0°C to 70°C), E(-40°C to 85°C), or S(-55°C to 100°C) Temperature Ranges

4

These devices feature maximum RAS access times of 120 ns, 150 ns, or 200 ns. Typical power dissipation is as low as 275 mW operating and 12.5 mW standby.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. IDD peaks are 125 mA typical, and a - 1-V input voltage undershoot can be tolerated, minimizing system noise considerations.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address and data-in lines are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The '4256 and '4257 are offered in 16-pin plastic dual-in-line and 18-lead plastic chip carrier packages. They are guaranteed for operation from 0°C to 70°C. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

operation

address (A0 through A8)

Eighteen address bits are required to decode 1 of 262,144 storage cell locations. Nine row-address bits are set up on pins A0 through A8 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the nine column address bits are set up on pins A0 through A8 and latched onto the chip by the column-address strobe ($\hat{r} \div \div$. All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (D)

Data is antien during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overrightarrow{IAS} or \overrightarrow{W} strobes data into the on-chip data latch. This latch can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overrightarrow{W} is brought low prior to \overrightarrow{CAS} and the data is strobed in by \overrightarrow{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overrightarrow{CAS} will already be low, thus the data will be strobed in by \overrightarrow{W} with setup and hold times referenced to this signal.

data out (Q)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until CAS is brought low. In a read cycle the output goes active after the access time interval $t_{a(C)}$ that begins with the negative transition of CAS as long as $t_{a(R)}$ is satisfied. The output becomes valid after the access time has elapsed and remains valid while CAS is low; CAS going high returns it to a high-impedance state. In a read-modify-write cycle, the output will follow the sequence for the read cycle.

refresh

A refresh operation must be performed at least once every four milliseconds to retain data. This can be achieved by strobing each of the 256 rows (A0-A7). A normal read or write cycle will refresh all bits in each row that is selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state.

CAS-before-RAS refresh

The CAS-before-RAS refresh is utilized by bringing CAS low earlier than RAS (see parameter t_{CLRL}) and ining it low after RAS falls (see parameter t_{RLCHR}). For successive CAS-before-RAS refresh cycles, cas can remain low while cycling RAS. The external address is ignored and the refresh address is generated internally.

hidden refresh

Hidden refresh may be performed while maintaining valid data at the output pin. This is accomplished by houth in: $\Box S$ at V_{IL} after a read operation and cycling RAS after a specified precharge period, similar to a ' $b \div 5$ -only'' refresh cycle. The external address is also ignored during the hidden refresh cycles.

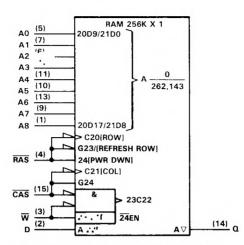
page mode (TMS4256)

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. The maximum number of columns that can be addressed is determined by $t_w(RL)$, the maximum RAS low pulse duration.

nibble mode (TMS4257)

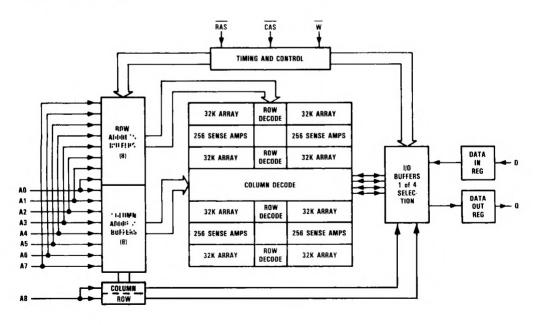
Nibble-mode operation allows high-speed serial read, write, or read-modify-write access of 1 to 4 bits of data. The first bit is accessed in the normal manner with read data coming out at $t_a(C)$ time. The next sequential nibble bits can be read or written by cycling \overrightarrow{CAS} while \overrightarrow{RAS} remains low. The first bit is determined by the row and column addresses, which need to be supplied only for the first access. Column A8 and row A8 (CA8, RA8) provide the two binary bits for initial selection of the nibble addresses. Thereafter, the falling edge of \overrightarrow{CAS} will access the next bit of the circular 4-bit nibble in the following sequence:

 	 ——— (1,1) — — —


In nibble-mode, all normal memory operations (read, write, or ready-modify-write) may be performed in any desired combination.

power-up

To achieve proper device operation, an initial pause of 200 μ s is required after power up followed by a minimum of eight initialization cycles.



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. The pin numbers shown are for the 16-pin dual-in-line package.

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage range for any pin including VDD supply (see Note 1)	V
Short circuit output current	
Power dissipation	
Operating free-air temperature range	С
Storage temperature range	С

¹Stresses beyond those listed under ''Absolute Maximum Ratings'' may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the ''Recommended Operating Conditions'' section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VDD	Supply voltage	4.5	5	5.5	V
VSS	Supply voltage		0		v
VIH	High-level input voltage	2.4		6.5	V
VIL	Low-level input voltage (see Note 2)	-1		0.8	V
TA	Operating free-air temperature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage levels only.

PARAMETER		TEST	TMS4256 TMS4255		UNIT
		CONDITIONS	MIN TYP	MAX	
VOH	High-level output voltage	$i_{OH} = -5 \text{mA}$	c.4		٧
VOL	Low-level output voltage	$I_{OL} = 4.2 \text{ mA}$		0.4	V
4	Input current (leakage)	$V_I = 0 V$ to 6.5 V, $V_{DD} = 5 V$, All other pins = 0 V to 6.5 V		±10	μA
ю	Output current (leakage)	V _O = 0 V to 5.5 V, V _{DD} = 5 V, The nigh	1	± 10	μΑ
IDD1	Average operating current during read or write cycle	t _C = minimum uyule, Output open	65	78	mA
IDD2	Standby current	After 1 memory cycle, RAS and CAS high, Output open	2.5	4.5	mA
IDD3	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high, Output open	45	60	mA
IDD4	Average page-mode current	t _{C(P)} = minimum cycle, RAS low, CAS cycling, Output open	35	48	mA
IDD5	Average nibble-mode current	t _{c(N)} = minimum cycle, RAS 1ow, CAS cycling, Output open	32	44	mA

PARAMETER		PARAMETER TEST		TMS4256-15 TMS4257-15		TMS4256-20 TMS-1,"20			UNIT
		CONDITIONS	MIN	TYPT	MAX	MIN	1.1	MAX	
VOH	High-level output voltage	IOH = -5 mA	2.4	1.000	100	2.4		1.1.1	v
VOL	Low-level output voltage	IOL = 4.2 mA			0.4	12-1-		0.4	۷
h	Input current (leakage)	$V_1 = 0 V$ to 6.5 V, $V_{DD} = 5 V$, All other pins = 0 V to 6.5 V	-		±10			±10	μA
ю	Output current (leakage)	V _O = 0 V to 5.5 V, V _{DD} = 5 V, CAS high			±10			±10	μA
IDD1	Average operating current during read or write cycle	t _C = minimum cycle, Output open		55	68		45	58	mA
IDD2	Standby current	After 1 memory cycle, RAS and CAS high, Output open	1	2.5	4.5		2.5	4.5	mA
IDD3	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high, Output open		40	53		35	48	mA
IDD4	Average page-mode current	t _{c(P)} = minimum cycle, RAS low, CAS cycling, Output open		30	43		25	35	mA
IDD5	Average nibble-mode current	t _{c(N)} = minimum cycle, RAS low, CAS cycling, Output open		27	39		22	32	mA

[†]All typical values are at $T_A = 25 \,^{\circ}$ C and nominal supply voltages.

capacitance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

	PARAMETER	TYPT	MAX	UNIT
Ci(A)	Input capacitance, address inputs	4	7	pF
Ci(D)	Input capacitance, data input	4	7	pF
Ci(RC)	Input capacitance strobe inputs	4	8	pF
Ci(W)	Input capacitance, write enable input	4	8	pF
Co	Output capacitance	5	10	pF

[†]All typical values are at $T_A = 25 \,^{\circ}$ C and nominal supply voltages.

switching characteristics over recommended supply voltage range and operating free-air temperature range

PARAMETER		PARAMETER TEST CONDITIONS		TMS4256-12 TMS4257-12	UNIT	
ta(C)	Access time from CAS	$t_{RLCL} \ge MAX, C_L = 100 pF,$ Load = 2 Series 74 TTL gates	^t CAC	MIN MAX 60	ns	
t _{a(R)}	Access time from RAS	t _{RLCL} = MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	^t RAC	120	ns	
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0 30	ns	

PARAMETER		PARAMETER TEST CONDITIONS ALT. SYMBOL		TMS4256-15 TMS4257-15		TMS4256-20 TMS4257-20		UNIT
				MIN	MAX	MIN	MAX	
t _a (C)	Access time from CAS	$t_{RLCL} \ge MAX, C_L = 100 \text{ pF},$ Load = 2 · · · 3 74 TTL gates	^t CAC		75		100	ns
t _{a(R)}	Access time from RAS	$t_{RLCL} = M \cdot \cdot C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	^t RAC		150		200	ns
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	toff	0	30	0	35	ns

		ALT.	TMS4256-12 TMS4257-12	UNIT
		SYMBOL	MIN MAX	
t _{c(P)}	Page-mode cycle time (read or write cycle)	tPC	1.50	ns
tc(PM)	Page-mode cycle time (read-modify-write cycle)	^t PCM	24.5	ЛS
tc(rd)	Read cycle time [†]	^t RC	230	ns
tc(W)	Write cycle time	twc	230	ns
tc(rdW)	Read-write/read-modify-write cycle time	^t RWC	275	ns
tw(CH)P	Pulse duration, high (page mode)	tCP	50	ns
tw(CH)	Pulse duration, A high (non-page mode)	tCPN	25	ns
tw(CL)	Pulse duration, CAS low [‡]	tCAS	60 10,000	ns
tw(RH)	Pulse duration, RAS high	tRP	100	ns
tw(RL)	Pulse duration, RAS low§	tRAS	120 10,000	ns
tw(W)	Write pulse duration	tWP	40	ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3 50	ns
t _{su(CA)}	Column-address setup time	tASC	0	ns
tsu(RA)	Row-address setup time	tASR	0	ns
t _{su(D)}	Data setup time	tDS	0	ns
tsu(rd)	Read-command setup time	tRCS	0	ns
t _{su} (WCL)	Early write-command setup time before CAS low	twcs	0	ns
tsu(WCH)	Write-command setup time before CAS high	tCWL	40	ns
t _{su} (WRH)	Write-command setup time before RAS high	tRWL	40	ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	20	ns
th(RA)	Row-address hold time	^t RAH	15	ns
th(RLCA)	Column-address hold time after RAS low	tAR	80	ns
th(CLD)	Data hold time after CAS low	^t DH	35	ns
th(RLD)	Data hold time after RAS low	^t DHR	95	ns
th(WLD)	Data hold time after W low	tDH	35	ns
th(CHrd)	Read-command hold time after CAS high	tRCH	0	ns
th(RHrd)	Read-command hold time after RAS high	tRRH	10	ns
th(CLW)	Write-command hold time after CAS low	tWCH	35	ns
th(RLW)	Write-command hold time after RAS low	tWCR	95	ns

timing requirements over recommended supply voltage range and operating free-air temperature range

Continued next page.

NOTE 3: Timing measurements are referenced to VIL max and VIH min.

[†]All cycle times assume $t_t = 5$ ns.

⁺In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time t_{w(CL)}). This applies to page-mode read-modify-write also.

In a read-modify-write cycle, tRLWL and tsu(WRH) must be observed. Depending on the user's transition times, this may require additional RAS low time (tw(RL)).

		ALT. Symbol	TMS4256-12 TMS4257-12		UNIT
			MIN	MAX	
^t RLCH	Delay time, RAS low to CAS high	tCSH	1∠∪		пз
tCHRL	Delay time, CAS high to RAS low	tCRP	0		ns
^t CLRH	Delay time, CAS low to RAS high	tRSH	60		ns
^t RLCHR	Delay time, RAS low to CAS high	tCHR	25		ns
tCLRL	Delay time, CAS low to RAS low	tCSR	25		ns
TRHCL	Delay time, RAS high to CAS low¶	tRPC	20		ns
^t CLWL	Delay time, \overline{CAS} low to \overline{W} low (read-modify-write cycle	tCWD	60		ns
^t RLCL	Delay time, .⊷ ow to 조೯ low (maximum value specified only to guarantee access time)	tRCD	25	60	ns
tRLWL	Delay time, RAS low to W low (read-modify-write cycle only)	tRWD	120		ns
trf	Refresh time interval	tREF		4	ms

timing requirements over recommended supply voltage range and operating free-air temperature range (continued)

Continued next page.

NOTE 3: Timing measurements are referenced to VIL max and VIH min. ICAS-before-RAS refresh only.

timing requirements over recommended supply voltage range and operating free-air temperature range (continued)

		ALT.		256-15 257-15		256-20 257-20	UNIT
		SYMBOL	MIN	MAX	MIN	MAX	
tc(P)	Page-mode cycle time (read or write cycle)	tPC	145		190		ns
tc(PM)	Page-mode cycle time (read-modify-write cycle)	^t PCM	190		245		ns
tc(rd)	Read cycle time [†]	tRC	260		330		ns
tc(W)	Write cycle time	twc	260		330	1000	ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	305		370		ns
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	60		80	-	ns
tw(CH)	Pulse duration, CAS high (non-page mode)	^t CPN	25		30		ns
tw(CL)	Pulse duration, CAS low [‡]	tCAS	75	10,000	100	10,000	ns
tw(RH)	Pulse duration, RAS high	tRP	100		120		ns
tw(RL)	Pulse duration, RAS low§	TRAS	150	10,000	200	10,000	лs
tw(W)	Write pulse duration	tWP	45		55		ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	3	50	ns
tsu(CA)	Column-address setup time	tASC	0		0		ns
tsu(RA)	Row-address setup time	tASR	0		0		ns
tsu(D)	Data setup time	tDS	0		0		ns
tsu(rd)	Read-command setup '	TRCS	0		0		ns
t _{su} (WCL)	Early write-command secur time before CAS low	twcs	0		0		ns
tsu(WCH)	Write-command setup time before CAS high	tCWL	45		60		ns
t _{su} (WRH)	Write-command setup time before RAS high	tRWL	45		60		ns
th(CLCA)	Column-address hold time after CAS low	tCAH	25		30		ns
th(RA)	Row-address hold time	^t RAH	15		20		ns
th(RLCA)	Column-address hold time after RAS low	tAR	100		130		ns
th(CLD)	Data hold time after CAS low	tDH	45	1.1.1	55	1.000	ns
th(RLD)	Data hold time after RAS low	^t DHR	120		155		ns
th(WLD)	Data hold time after W low	tDH	45		55		ns
th(CHrd)	Read-command hold time after CAS high	^t RCH	0		0	C	ns
th(RHrd)	Read-command hold time after RAS high	TRRH	10		15		ns
th(CLW)	Write-command hold time after CAS low	tWCH	45		55		ns
th(RLW)	Write-command hold time after RAS low	tWCR	120		155		ns

Continued next page.

NOTE 3: Timing measurements are referenced to VIL max and VIH min.

[†]All cycle times assume $t_t = 5$ ns.

⁺In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time t_{w(CL)}). This applies to page-mode read-modify-write also.

§In a read-modify-write cycle, tRLWL and t_{su(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_{w(RL)}).

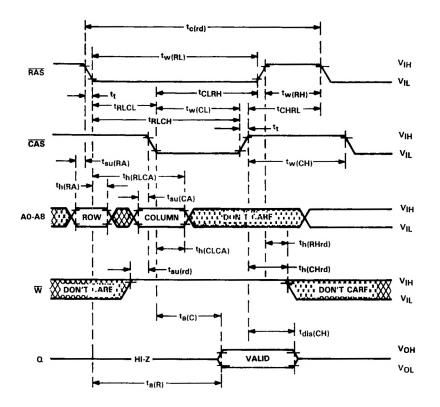
		ALT.	TMS42		TMS42		
		SYMBOL	MIN	MAX	MIN	MAX	
TRLCH	Delay time, RAS low to CAS high	tCSH	150		200		ns
tCHRL	Delay time, CAS high to RAS low	tCRP	0		0		ns
tCLRH	Delay time, CAS low to RAS high	trsh	75		100	- Andrews	ns
TRLCHR	Delay time, RAS low to CAS high	^t CHR	30		35		ns
tCLRL	Delay time, CAS low to RAS low 1	tCSR	30		35		ns
TRHCL	Delay time, RAS high to CAS low	tRPC	20		25	- 11	ns
tCLWL	Delay time, \overline{CAS} low to \overline{W} low (read-modify-write cycle only)	tCWD	70		90		ns
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	tRCD	25	75	30	100	ns
tRLWL	Delay time, RAS low to ₩ low (read-modify-write cycle only)	tRWD	145		190		ns
trf	Refresh time interval	tREF		4		4	ms

timing requirements over recommended supply voltage range and operating free-air temperature range (concluded)

NOTE 3: Timing measurements are referenced to V_{IL} max and V_{IH} min. \P_{CAS}^{CAS} before RAS refresh only.

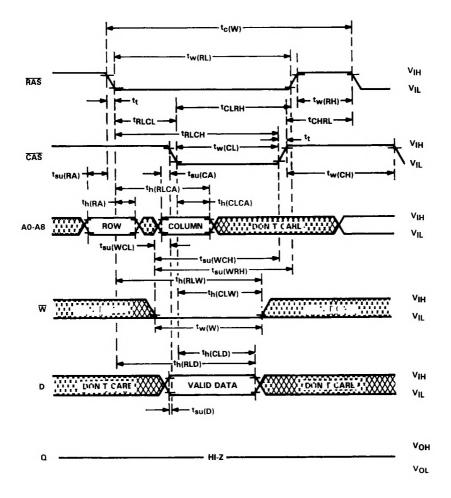
NIBBLE-MODE CYCLE

switching characteristics over recommended supply voltage range and operating free-air temperature range

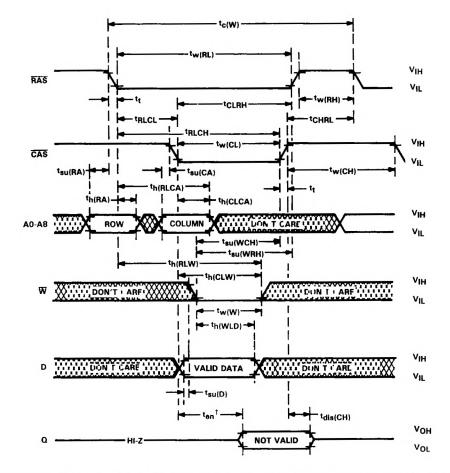

		ALT.	IMS4	257-12	1454	257-15	TMS4	257-20	-
	PARAMETER	SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	UNIT
ta(CN)	Nibble-mode access time from CAS	^t NCAC	F	30		40		50	ns

timing requirements over recommended supply voltage range and operating free-air temperature range

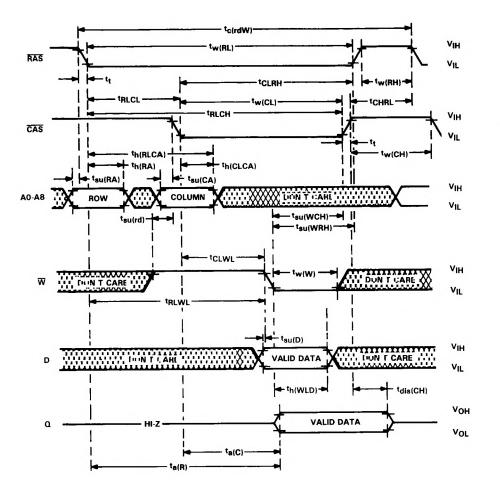
		ALT. SYMBOL	TMS4	257-12 MAX	TM54 MIN	257-15 MAX	TM542 MIN	257-20 MAX	UNIT
t _{c(N)}	Nibble-mode cycle time	^t NC	60		75	-	90		
tc(rdWN)	Nibble-mode read-modify-write cycle time	tNRMW	85		105		130		100
tCLRHN	Nibble-mode delay time, CAS low to RAS high	^t NRSH	30		40		50		
tCLWLN	Nibble-mode delay time, CAS to W delay	tNCWD	25		30		40		1.1
tw(CLN)	Nibble-mode pulse duration, CAS low	^t NCAS	30		40		50	-	ns
tw(CHN)	Nibble-mode pulse duration, CAS high	tNCP	20	5.00	25		30		
^t w(CRWN)	Nibble-mode read-modify-write pulse duration, CAS low	^t NCRW	55		70		90		
t _{su} (WCHN)	Nibble-mode write command setup time before CAS high	^t NCWL	25		35		45		-



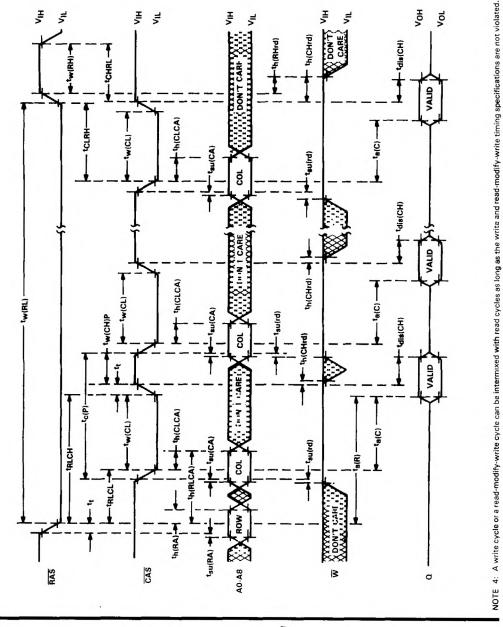
read cycle timing

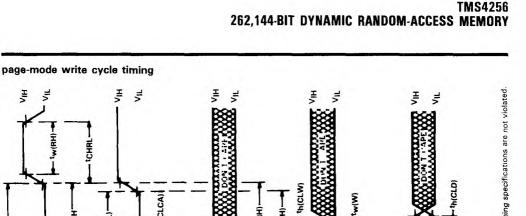


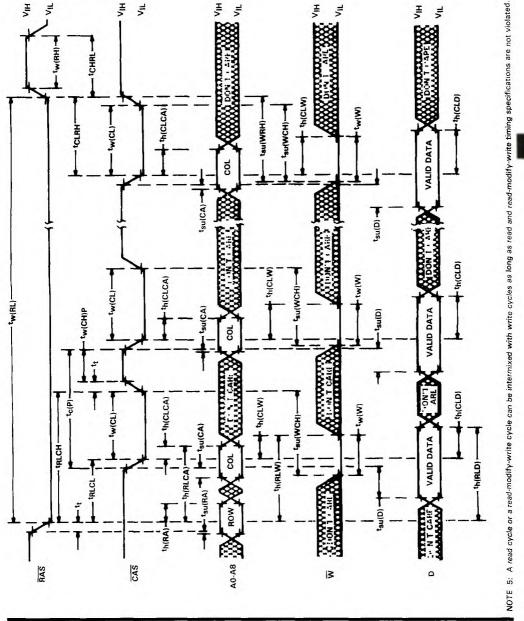
early write cycle timing


write cycle timing

[†]The enable time (t_{en}) for a write cycle is equal in duration to the access time from CAS (t_{a(C)}) in a read cycle; but the active levels at the output are invalid.

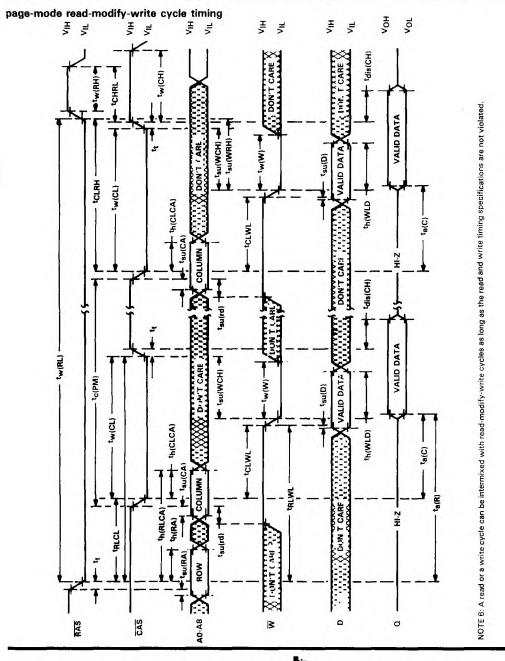

read-write/read-modify-write cycle timing



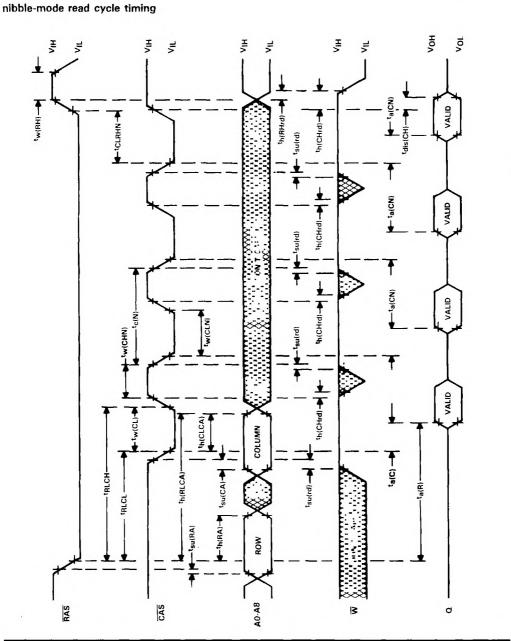

TMS4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

page-mode read cycle timing

4



4-91

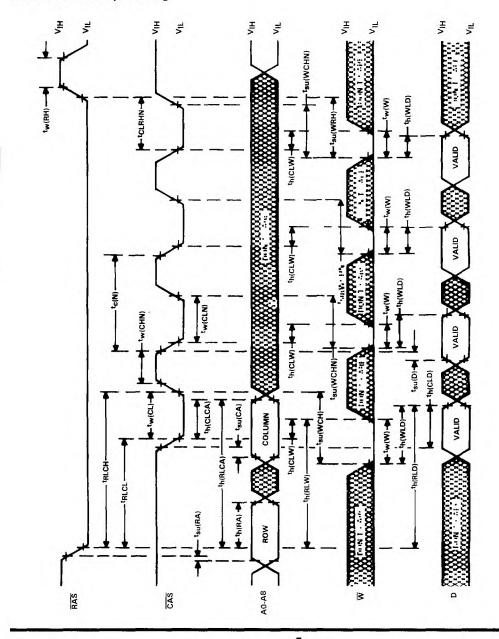

4

TMS4256 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

TEXAS V INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

4

TMS4257 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

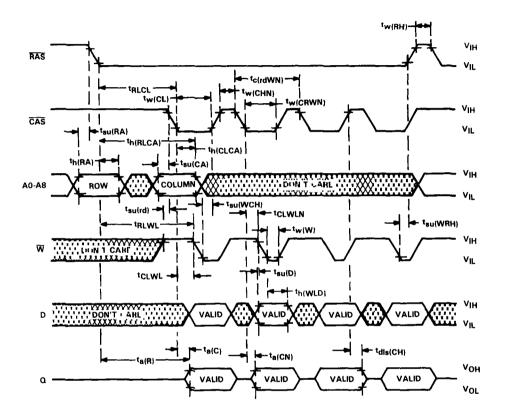


TEXAS INSTRUMENTS

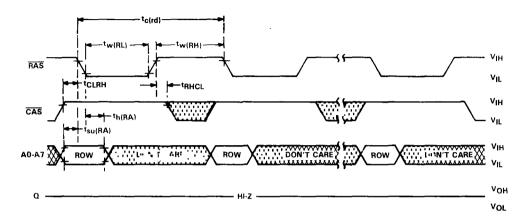
4

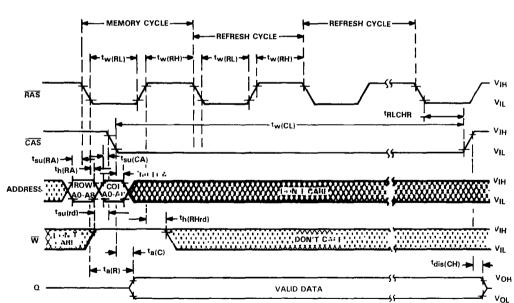
TMS4257 262,144-BIT DYNAMIC RANDOM-ACCESS MEMORY

nibble-mode write cycle timing

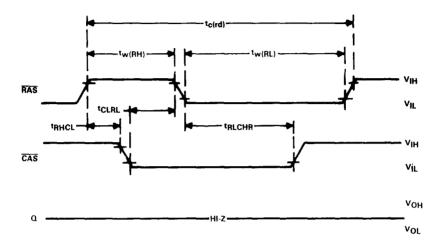


Dynamic RAMs


4


nibble-mode read-modify-write-cycle timing

RAS-only refresh cycle timing



hidden refresh cycle timing

4

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

AUGUST 1980-REVISED NOVEMBER 1985

- 16,384 X 4 Organization
- Single 5-V Supply (10% Tolerance)
- Performance Ranges:

	ACCESS	ACCESS	READ	READ-
	TIME	TIME	OR	MODIFY-
	ROW	COLUMN	WRITE	WRITE
	ADDRESS	ADDRESS	CYCLE	CYCLE
	(MAX)	(MAX)	(MIN)	(MIN)
TMS4416-12	120 ns	70 ns	230 ns	315 ns
TMS4416-15	150 ns	80 ns	260 ns	365 ns
TMS4416-20	200 ns	120 ns	330 ns	445 ns

- Available with MIL-STD-883B Processing and L(0°C to 70°C), E(-40°C to 85°C), or S(-55°C to 100°C) Temperature Ranges
- Long Refresh Period . . . 4 ms
- Low Refresh Overhead Time . . . As Low As 1.7% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- 3-State Unlatched Outputs
- Early Write or G to Control Output Buffer Impedance
- Page-Mode Operation for Faster Access
- Low Power Dissipation

 Operation . . . 200 mW (Typ)
 Standby . . . 17.5 mW (Typ)
- SMOS (Scaled-MOS) N-Channel Technology

	18 VSS
	16 CAS
W 14	15 003
RAS 5	14 🗖 AO
A6 🗍 6	13 A1
A5 🔲 7	12 A2
A4 🛛 8	11 🗋 A3
VDD [9	10 A7
	16 CAS
RAS 5	15 DQ3 14 A0
A6 06	130 A1
A5 07	120 A2
<u>ه</u> م ۲	1011 2 E

N PACKAGE (TOP VIEW)

PIN	NOMENCLATURE
A0-A7	Address Inputs
CAS	Column-Address Strobe
DQ1-DQ4	Data In/Data Out
G	Output Enable
RAS	Row-Address Strobe
V _{DD}	5-V Supply
VSS	Ground
W	Write Enable

description

The TMS4416 is a high-speed, 65,536-bit, dynamic, random-access memory, organized as 16,384 words of 4 bits each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon gate technology for very high performance combined with low cost and improved reliability.

The TMS4416 features \overline{RAS} access times to 120 ns maximum. Power dissipation is 200 mW typical operating, 17.5 mW typical standby.

SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. IDD peaks have been reduced to 60 mA typical, and a -1-V input voltage undershoot can be tolerated, minimizing system noise considerations. Input clamp diodes are used to ease system design.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address lines and data in are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

The TMS4416 is offered in 18-pin plastic dual-in-line and 18-lead plastic chip carrier packages. It is guaranteed for operation from 0° C to 70° C. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

operation

address (A0 through A7)

Fourteen address bits are required to decode 1 of 16,384 storage locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the six column-address bits are set up on pins A1 through A6 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (W) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state allowing a write cycle with \overline{G} grounded.

data in (DQ1 through DQ4)

Data is antern during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overrightarrow{C} or \overrightarrow{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overrightarrow{W} is brought low prior to \overrightarrow{CAS} and the data is strobed in by \overrightarrow{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overrightarrow{G} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data out (DQ1 through DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overline{CAS} is brought low. In a read cycle the output goes active after the access time interval $t_a(C)$ that begins with the negative transition of \overline{CAS} as long as $t_a(R)$ and $t_a(G)$ are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overline{CAS} and \overline{G} are low. \overline{CAS} or \overline{G} going high returns it to a high-impedance state. In an early write cycle, the output is always in the high-impedance state prior to applying data to the DQ input. This is accomplished by bringing \overline{G} high prior to applying data, thus satisfying t_{GHD}.

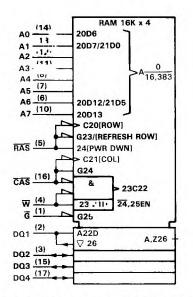
output enable (G)

The \overline{G} input controls the impedance of the output buffers. When \overline{G} is high, the buffers will remain in the high-impedance state. Bringing \overline{G} low during a normal cycle will activate the output buffers putting them

in the low-impedance state. It is necessary for both \overline{RAS} and \overline{CAS} to be brought low for the output buffers to go into the low-impedance state. Once in the low-impedance state, they will remain in the low-impedance state until \overline{G} or \overline{CAS} is brought high.

refresh

A refresh operation must be performed at least every four milliseconds to retain data. Since the output buffer is in the high-impedance state unless \overline{CAS} is applied, the \overline{RAS} -only refresh sequence avoids any output during refresh. Strobing each of the 256 row addresses (A0 through A7) with \overline{RAS} causes all bits in each row to be refreshed. \overline{CAS} can remain high (inactive) for this refresh sequence to conserve power.

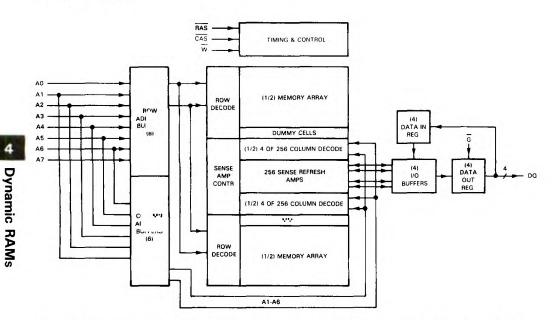

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing successive column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is eliminated. To extend beyond the 64 column locations on a single RAM, the row address and RAS are applied to multiple 16K × 4 RAMs. CAS is then decoded to select the proper RAM.

power up

After power up, the power supply must remain at its steady-state value for 1 ms. In addition, the \overline{RAS} input must remain high for 100 μ s immediately prior to initialization. Initialization consists of performing eight \overline{RAS} cycles before proper device operation is achieved.

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std.91-1984 and IEC Publication 617-12.

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

functional block diagram

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage range for any pin except VDD and data out (see Note 1)	1.5 V to 10 V
Voltage range for VDD supply and data out with respect to VSS	1 V to 6 V
Short circuit output current	50 mA
Power dissipation	1 W
Operating free-air temperature range	
Storage temperature range	-65°C to 150°C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values in this data sheet are with respect to VSS.

2. Additional information concerning the handling of ESD sensitive devices is available in a document entitled "Guidelines for Handling Electrostatic-Discharge Sensitive (ESDS) Devices and Assemblies" in Section 12.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VDD	Supply voltage		4.5	5	5.5	v
VSS	Supply voltage			0		v
		$V_{DD} = 4.5 V$	2.4		4.8	v
VIH	High-level input voltage	$V_{DD} = 5.5 V$	2.4		5.8	ľ
VIL	Low-level input voltage (see Not	tes 3 and 4)	-0.6	0	0.8	V
Тд	Operating free-air temperature		0		70	°C

NOTES: 3. The algebraic convention, where the more negative (less positive) limit is designated as minimum, is used in this data sheet for logic voltage levels only.

4. Due to input protection circuitry, the applied voltage may begin to clamp at -0.6 V. Test conditions must comprehend this occurrence. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

			TN	AS4416	12	
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	МАХ	UNIT
VOH	High-level output voltage	$I_{OH} = -2 \text{ mA}$	2.4			V
VOL	Low-level output voltage	$l_{OL} = 4.2 \text{ mA}$			0.4	V
ų	input current (leakage)	$V_I = 0 V$ to 5.8 V, $V_{DD} = 5V$, All other pins = 0 V			± 10	μA
١o	Output current (leakage)	$V_0 = 0.4 V$ to 5.5 V, $V_{DD} = 5 V$, CAS high			± 10	μΑ
1 ₀₀₁	Average operating current during read or write cycle	t _C = minimum cycle, All outputs open			54	mA
IDD2	Standby current (see Note 5)	After 1 memory cycle, RAS and CAS high, All outputs open		3.5	5	mA
IDD3	Average refresh current	t _c = minimum cycle, RAS cycling, CAS high, All outputs open			46	mA
^I DD4	Average page-mode current	t _{c(} ρ) = minimum cycle, RAS low, CAS cycling, All outputs open			46	mA

[†] All typical values are at $T_A = 25^{\circ}C$ and nominal supply voltages.

NOTE 5: VIL 2-0.6V on all inputs. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

			TM	AS4416	-15	TN	AS4416	20	
	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	
Vон	High-level output voltage	$I_{OH} = -2 \text{ mA}$	2.4			2.4			v
VOL	Low-level output voltage	$I_{OL} = 4.2 \text{ mA}$			0.4			0.4	V
կ	Input current (leakage)	$V_I = 0 V \text{ to } 5.8 V,$ $V_{DD} = 5V,$ All other pins = 0 V			± 10			±10	μA
ю	Output current (leakage)	$V_0 = 0.4 \text{ V to } 5.5 \text{ V},$ $V_{DD} = 5 \text{ V}, \overline{\text{CAS}} \text{ high}$			±10			±10	μA
IDD1	Average operating current during read or write cycle	t _C = minimum cycle, All outputs open		40	48		35	42	mA
IDD2	Standby current (see Note 5)	After 1 memory cycle, RAS and CAS high, All outputs open		3.5	5		3.5	5	mA
¹ DD3	Average refresh current	t _C = minimum cycle, RAS cycling, CAS high, All outputs open		25	40		21	34	mA
IDD4	Average page-mode current	t _{c(P)} = minimum cycle, RAS low, CAS cycling, All outputs open		25	40		21	34	mA

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)

[†] All typical values are at $T_A = 25^{\circ}C$ and nominal supply voltages.

NOTE 5: VIL≥ -0.6V on all inputs. See application report entitled "TMS4164A and TMS4416 Input Protection Diode" on page 9-5.

capacitance over recommended supply voltage range and operating free-air temperature range, f = 1 MHz

	PARAMETER	ТҮР	MAX	UNIT
Ci(A)	Input capacitance, address inputs	5	7	pF
Ci(RC)	Input capacitance, strobe inputs	8	10	pF
Ci(W)	Input capacitance, write-enable input	8	10	pF
Ci/o	Input/output capacitance, data ports	8	10	pF

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

PARAMETER			ALT.	1MS4416-12		UNIT
		TEST CONDITIONS	SYMBOL	MIN	MAX	UNIT
t _{a(C)}	Access time from CAS	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	†CAC	Ţ	70	ns
^t a(R)	Access time from RAS	$t_{RLCL} = MAX,$ $C_L = 100 \text{ pF},$ Load = 2 Series, 74 TTL gates	tRAC		120	ns
t _{a(G)}	Access time after G low	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tOEA		30	ns
^t dis(CH)	Output disable time after CAS high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOFF	0	30	ns
^t dis(G)	Output disable time after G high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOEZ	0	30	ns

switching characteristics over recommended supply voltage range and operating free-air temperature range

PARAMETER		TEST CONDITIONS	ALT.	TMN-1416-15		TM5-1416-20		UNIT
			SYMBOL	MIN	MAX	MIN	MAX	UNIT
t _{a(C)}	Access time from CAS	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tCAC		80		120	ns
t _{a(R)}	Access time from RAS	$t_{RLCL} = MAX,$ $C_L = 100 \text{ pF},$ Load = 2 Series, 74 TTL gates	^t RAC		150		200	ns
t _{a(G)}	Access time after \overline{G} low	CL = 100 pF, Load = 2 Series 74 TTL gates	tOEA		40		50	ns
t _{dis} (CH)	Output disable time after CAS high	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tOFF	0	30	0	40	ns
t _{dis(G)}	Output disable time after G high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tOEZ	0	30	0	40	ns

		ALT.	TM54416-12	
-		SYMBOL	MIN N	AX UN
tc(P)	Page-mode cycle time	tPC	<u> </u>	n
tc(rd)	Read cycle time [†]	tRC		n
tc(W)	Write cycle time	twc		n
tc(rdW)	Read-write/reac ·· I fy-write cycle time	tRWC		п
tw(CH)	Pulse duration, " nigh (precharge time) [‡]	tCP	40	n
tw(CL)	Pulse duration, CAS low §	tCAS	70 10	000 г
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	80	r
tw(RL)	Pulse duration, Fat low	tRAS	120 10	000 r
tw(W)	Write pulse duration	tWP	30	r i
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50 r
t _{su(CA)}	Column-address setup time	tASC	0	Г
t _{su(RA)}	Row-address setup time	tASR	0	n
t _{su(D)}	Data setup time	tDS	0	r
tsu(rd)	Read-command setup time	tRCS	0	r
tsu(WCH)	Write-command setup time before CAS high	tCWL	50	n
tsu(WRH)	Write-command setup time before RAS high	tRWL	50	r
th(CLCA)	Column-address hold time after CAS low	tCAH	35	r
th(RA)	Row-address hold time	tRAH	15	
th(RLCA)	Column-address hold time after RAS low	tAR	85	ſ
th(CLD)	Data hold time after CAS low	tDH	40	r
th(RLD)	Data hold time after RAS low	tDHR	90	r
th(WLD)	Data hold time after W low	tDH	30	r
th(RHrd)	Read-command hold time after RAS high	tRRH	10	r
th(CHrd)	Read-command hold time after CAS high	tRCH	0	r
th(CLW)	Write-command hold time after CAS low	tWCH	40	r
th(RLW)	Write-command hold time after RAS low	tWCR	90	r
TRLCH	Delay time, RAS low to CAS high	tCSH	120	r
tCHRL	Delay time, CAS high to RAS low	tCRP	0	r
tCLRH	Delay time, CAS low to RAS high	tRSH	70	
	Delay time, CAS low to W low			
tCLWL	(read-modify-write-cycle , #	tCWD	120	r
ALC: N	Delay time, RAS low to to ow		-	
TRLCL	(maximum value specified only to guarantee access time)	tRCD	20	50 r
100 C	Delay time, RAS low to W low	- X# 3/23	170	
^t RLWL	(read-modify-write-cycle only)#	tRWD	170	1
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-5	r
tGHD	Delay time, G high before data applied at DQ	tOED	30	1
trf	Refresh time interval	tREF		4 n

...

[†] All cycle times assume $t_t = 5$ ns.

[‡] Page mode only.

[§] In a read-modify-write cycle, t_{CLWL} and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time tw(CL)-

In a read-modify-write cycle, tRLWL and tsu(WRH) must be observed. Depending on the user's transition times, this may require additional FAS low time t_w(RL).
 # Necessary to insure G has disabled the output buffers prior to applying data to the device.

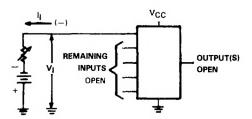
TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

		ALT.	TMS4416-15	TMS4416-20	UNIT
		SYMBOL	MIN MAX	MIN MAX	
t _{c(P)}	Page-mode cycle time	tPC	140	. 1-1	กร
tc(rd)	Read cycle time [†]	^t RC	260	330	ns
tc(W)	Write cycle time	twc		· h	ns
tc(rdW)	Read-write/read-r · · write cycle time	^t RWC	[440	ns
tw(CH)	Pulse duration, CAS mgh (precharge time) [‡]	tCP	50	80	ns
tw(CL)	Pulse duration, CAS lows	tCAS	80 10,000	120 10,000	ns
tw(RH)	Pulse duration, RAS high (precharge time)	tRP	100	120	ns
tw(RL)	Pulse duration, RAS low¶	tRAS	150 10 .	. 10,000	ns
tw(W)	Write pulse duration	twp	40	- UV	ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3 50	3 50	ns
t _{su(CA)}	Column-address setup time	tASC	0	0	ns
t _{su(RA)}	Row-address setup time	tASR	0	0	ns
t _{su(D)}	Data setup time	tDS	0	0	ns
t _{su(rd)}	Read-command setup time	tRCS	0	0	ns
t _{su} (WCH)	Write-command setup time before CAS high	tCWL	60	80	ns
t _{su} (WRH)	Write-command setup time before RAS high	TRWL	60	80	ns
th(CLCA)	Column-address hold time after CAS low	tCAH	40	50	ns
th(BA)	Row-address hold time	^t RAH	20	25	ns
th(RLCA)	Column-address hold time after RAS low	tAR	110	130	ns
th(CLD)	Data hold time after CAS low	tDH	60	80	ns
th(RLD)	Data hold time after RAS low	^t DHR	130	160	ns
th(WLD)	Data hold time after W low	tDH	40	50	ns
th(RHrd)	Read-command hold time after RAS high	tRRH	10	10	ns
th(CHrd)	Read-command hold time after CAS high	^t RCH	0	0	ns
th(CLW)	-command hold time after CAS low	tWCH	60	80	ns
th(RLW)	write-command hold time after RAS low	tWCR	130	160	ns
TRLCH	Delay time, RAS low to CAS high	tCSH	150	1.1.1	ns
tCHBL	Delay time, CAS high to RAS low	tCRP	0	v	ns
tCLRH	Delay time, CAS low to RAS high	tRSH	80	120	ns
tCLWL	Delay time, CAS low to W low (read-modify-write-cycle only)#	tCWD	120	150	ns
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	tRCD	20 70	25 80	ns
^t RLWL	Delay time, RAS low to W low (read-modify-write-cycle only)#	tRWD	190	230	ns
tWLCL	Delay time, W low to CAS low (early write cycle)	twcs	-5	-5	ns
tGHD	Delay time, G high before data applied at DQ	tOED	30	40	ns
trf	Refresh time interval	tREF	4	4	m

[†] All cycle times assume $t_t = 5$ ns.

[‡] Page mode only.

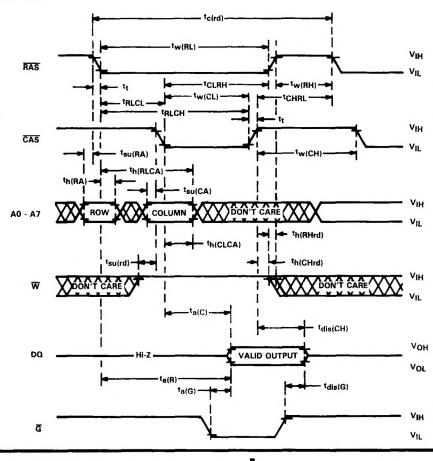
[§] In a read-modify-write cycle, tCLWL and t_{SU(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time tw(CL)-


In a read-modify-write cycle, tRLWL and tsu(WRH) must be observed. Depending on the user's transition times, this may require additional TAS low time tw(RL).
 # Necessary to insure G has disabled the output buffers prior to applying data to the device.

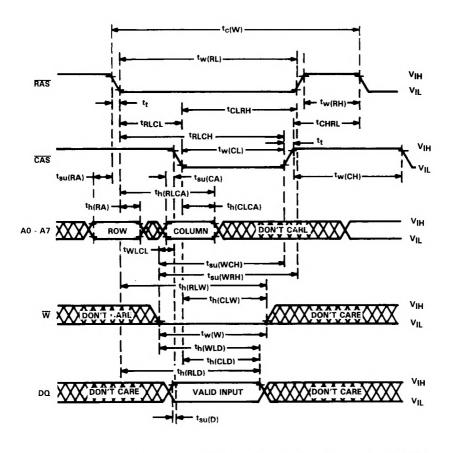
4

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

PARAMETER MEASUREMENT INFORMATION



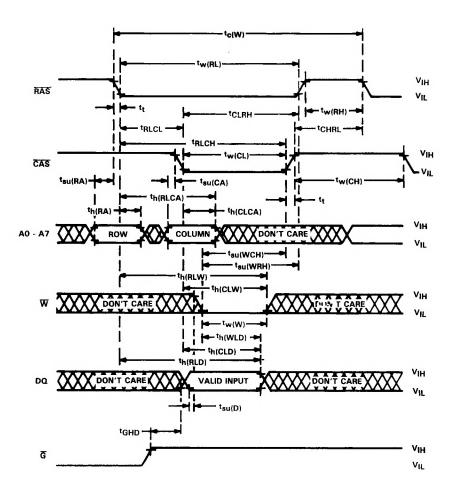
NOTE 6: Each input is tested separately.

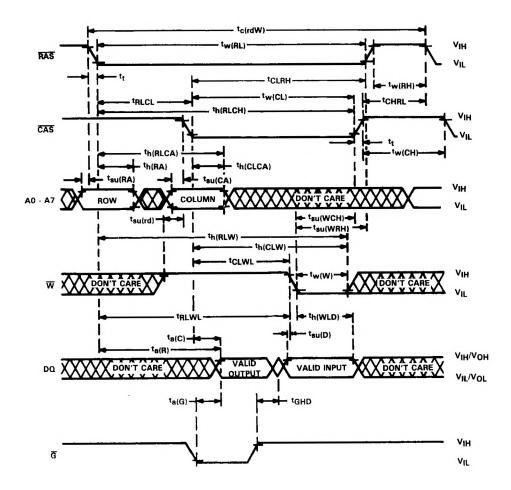

FIGURE 1. INPUT CLAMP VOLTAGE TEST CIRCUIT

read cycle timing

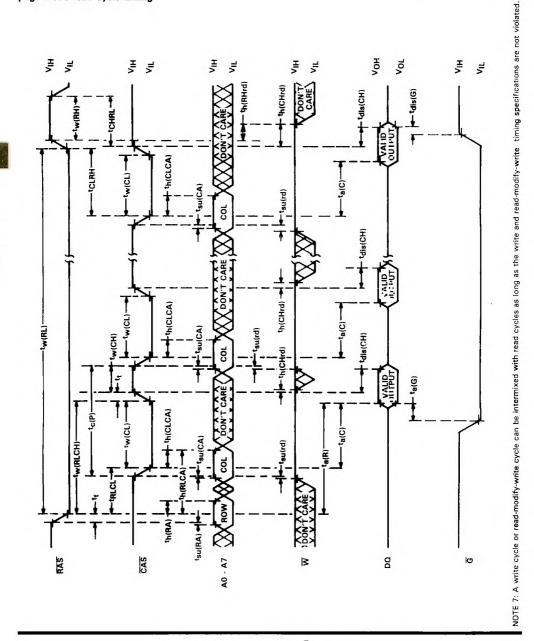
Dynamic RAMs

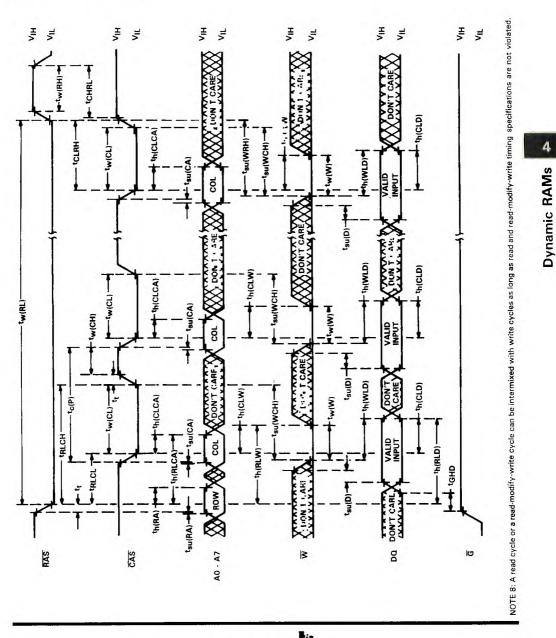
TEXAS VI INSTRUMENTS POST OFFICE BUX 1443 • HOUSTON TEXAS 77001 early write cycle timing




TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

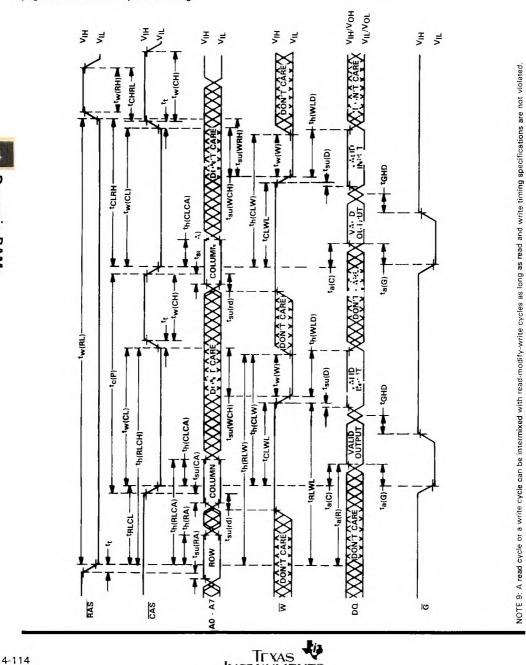
write cycle timing


read-write/read-modify-write cycle timing


TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

page-mode read cycle timing

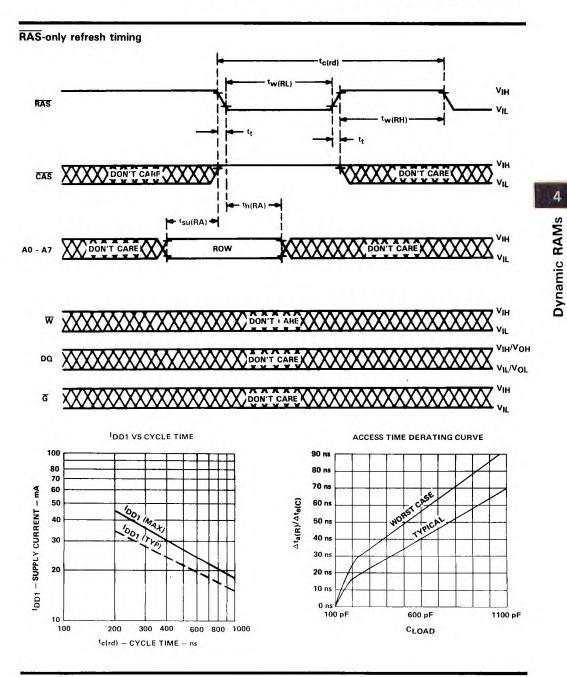
4


page-mode write cycle timing

TEXAS INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

page-mode read-modify-write timing



4

Dynamic RAMs

INSTRUMENTS POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001

TMS4416 16,384-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

Oynamic RAMs

,

•

.

,

TMS4464 65,536-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

NOVEMBER 1983-REVISED NOVEMBER 1985

- 65,536 X 4 Organization
- Single 5-V Supply (10% Tolerance)
- JEDEC Standardized Pinout
- Pinout Identical to TMS4416 (16K X 4 Dynamic RAM)
- Performance Ranges:

	ACCESS	ACCESS	READ	READ-	
	TIME	TIME	OR	MODIFY-	
	ROW	COLUMN	WRITE	WRITE	
	ADDRESS	ADDRESS	CYCLE	CYCLE	
	(MAX)	(MAX)	(MIN)	(MIN)	
TMS4464-12	120 ns	60 ns	230 ns	310 ns	
TMS4464-15	150 ns	75 ns	260 ns	345 ns	
TMS4464-20	200 ns	100 ns	330 ns	435 ns	

- Long Refresh Period . . . 4 ms (Max)
- Low Refresh Overhead Time . . . As Low As 1.3% of Total Refresh Period
- On-Chip Substrate Bias Generator
- All Inputs, Outputs, and Clocks Fully TTL Compatible
- 3-State Unlatched Output
- Early Write or G to Control Output Buffer Impedance
- Page-Mode Operation for Faster Access
- Power Dissipation As Low As:
 - Operating . . . 275 mW (Typ)
 - Standby . . . 12.5 mW (Typ)
- RAS-Only Refresh Mode
- CAS-Before-RAS Refresh Mode

	(TOP VIEW)
G DQ1 DQ2 W RAS A6 A5 A4	2 17 DQ4 3 16 CAS 4 15 DQ3 5 14 A0 6 13 A1 7 12 A2
VDD	9 10 A7
/	FM PACKAGE (TOP VIEW)
D02 03	0 20 CAS
₩ 5 4	19 DO3
RAS 5	18 🚺 AO
NC D6	17 🗖 NC
NC D7	16 🖸 NC
A6 08	15 🖸 A1
A5 D 9	14 🖸 A2
	10 11 12 13
	A4 A7 A3 A3
PIN	NOMENCLATURE
A0-A7	Address Inputs
CAS	Column-Address Strobe
DQ1-DQ4	Data In/Data Out
Ğ	Output Enable

N PACKAGE

A0-A7	Address Inputs	
CAS	Column-Address Strobe	
DQ1-DQ4	Data In/Data Out	
Ğ	Output Enable	
NC	No Connection	
RAS	Row-Address Strobe	
VDD	5-V Supply	
VSS	Ground	
$\overline{\mathbf{w}}$	Write Enable	2

description

The TMS4464 is a high-speed, 262,144-bit dynamic random-access memory, organized as 65,536 words of four bits each. It employs state-of-the-art SMOS (scaled MOS) N-channel double-level polysilicon/polycide gate technology for very high performance combined with low cost and improved reliability.

This device features maximum \overline{RAS} access times of 120 ns, 150 ns, or 200 ns. Typical power dissipation is as low as 275 mW operating and 12.5 mW standby.

New SMOS technology permits operation from a single 5-V supply, reducing system power supply and decoupling requirements, and easing board layout. IDD peaks are 125 mA typical, and a -1-V input voltage undershoot can be tolerated, minimizing system noise considerations.

All inputs and outputs, including clocks, are compatible with Series 74 TTL. All address and data-in lines are latched on chip to simplify system design. Data out is unlatched to allow greater system flexibility.

4

The TMS4464 is offered in 18-pin plastic dual-in-line and 22-lead plastic chip carrier packages. It is guaranteed for operation from 0 °C to 70 °C. The dual-in-line package is designed for insertion in mounting-hole rows on 7,62-mm (300-mil) centers.

operation

address (A0 through A7)

Sixteen address bits are required to decode 1 of 65,536 storage locations. Eight row-address bits are set up on pins A0 through A7 and latched onto the chip by the row-address strobe (\overline{RAS}). Then the eight column-address bits are set up on pins A0 through A7 and latched onto the chip by the column-address strobe (\overline{CAS}). All addresses must be stable on or before the falling edges of \overline{RAS} and \overline{CAS} . \overline{RAS} is similar to a chip enable in that it activates the sense amplifiers as well as the row decoder. \overline{CAS} is used as a chip select activating the column decoder and the input and output buffers.

write enable (W)

The read or write mode is selected through the write-enable (\overline{W}) input. A logic high on the \overline{W} input selects the read mode and a logic low selects the write mode. The write-enable terminal can be driven from standard TTL circuits without a pull-up resistor. The data input is disabled when the read mode is selected. When \overline{W} goes low prior to \overline{CAS} , data out will remain in the high-impedance state for the entire cycle permitting common I/O operation.

data in (DQ1-DQ4)

Data is written during a write or read-modify-write cycle. Depending on the mode of operation, the falling edge of \overline{CAS} or \overline{W} strobes data into the on-chip data latches. These latches can be driven from standard TTL circuits without a pull-up resistor. In an early write cycle, \overline{W} is brought low prior to \overline{CAS} and the data is strobed in by \overline{CAS} with setup and hold times referenced to this signal. In a delayed-write or read-modify-write cycle, \overline{CAS} will already be low, thus the data will be strobed in by \overline{W} with setup and hold times referenced to this signal. In a delayed or read-modify-write cycle, \overline{G} must be high to bring the output buffers to high impedance prior to impressing data on the I/O lines.

data out (DQ1-DQ4)

The three-state output buffer provides direct TTL compatibility (no pull-up resistor required) with a fan out of two Series 74 TTL loads. Data out is the same polarity as data in. The output is in the high-impedance (floating) state until \overrightarrow{CAS} is brought low. In a read cycle the output goes active after the access time interval $t_a(C)$ that begins with the negative transition of \overrightarrow{CAS} as long as $t_a(R)$ and $t_a(G)$ are satisfied. The output becomes valid after the access time has elapsed and remains valid while \overrightarrow{CAS} and \overrightarrow{G} are low. \overrightarrow{CAS} or \overrightarrow{G} going high returns it to a high-impedance state. In a delayed-write or read-modify-write cycle, the output must be put in the high-impedance state prior to applying data to the DQ input. This is accomplished by bringing \overrightarrow{G} high prior to applying data, thus satisfying t_{GHD} .

output enable (G)

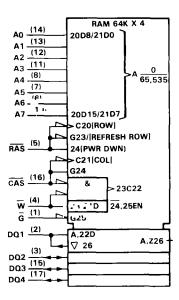
The \overline{G} input controls the impedance of the output buffers. When \overline{G} is high, the buffers will remain in the high-impedance state. Bringing \overline{G} low during a normal cycle will activate the output buffers putting them in the low-impedance state. It is necessary for both \overline{RAS} and \overline{CAS} to be brought low for the output buffers to go into the low-impedance state. Once in the low-impedance state they will remain in the low-impedance state until \overline{G} or \overline{CAS} is brought high.

refresh

A refresh operation must be performed at least once every four milliseconds to retain data. This can be achieved by strobing each of the 256 rows (A0-A7). A normal read or write cycle will refresh all bits in each row that is selected. A RAS-only operation can be used by holding CAS at the high (inactive) level, thus conserving power as the output buffer remains in the high-impedance state.

CAS-before-RAS refresh

The CAS-before-RAS refresh is utilized by bringing CAS low earlier than RAS (see parameter t_{CLRL}) and and holding it low after RAS falls (see parameter t_{RLCHR}). For successive CAS-before-RAS refresh cycles, CAS can remain low while cycling RAS. The external address is ignored and the refresh address is generated internally.

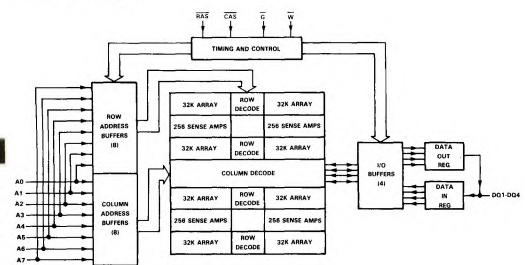

page mode

Page-mode operation allows effectively faster memory access by keeping the same row address and strobing random column addresses onto the chip. Thus, the time required to setup and strobe sequential row addresses for the same page is elimined in the maximum number of columns that can be addressed is determined by $t_{W(RL)}$, the maximum H^{A} low pulse duration.

power up

To achieve proper device operation, an initial pause of 200 μ s is required after power up followed by a minimum of eight initialization cycles.

logic symbol[†]



[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for the dual-in-line package.

TMS4464 65,536-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Voltage on any pin including VDD supply (see Note 1)	1 V to 7 V
Short circuit output current	50 mA
Power dissipation	1 W
Operating free-air temperature range	C to 70°C
Storage temperature range	C to 150°C

[†] Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the "Recommended Operating Conditions" section of this specification is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values in this data sheet are with respect to VSS.

recommended operating conditions

		MIN	NOM	MAX	UNIT
VDD	Supply voltage	4.5	5	5.5	V
VSS	Supply voltage		0		V
VIH	High-level input voltage	2.4		VDD+1	V
VIL	Low-level input voltage (see Note 2)	-1		0.8	V
TA	Operating free-air temperature	0		70	°C

NOTE 2: The algebraic convention, where the more negative (less positive) limit is designated as maximum, is used in this data sheet for logic voltage levels only.

4

TMS4464 65,536-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

	DADAMETER	TEST CONDITIONS	TMS4464	-12	UNIT
	PARAMETER	TEST CONDITIONS	MIN TYP [†]	MAX	UNIT
VOH	High-level output voltage	$I_{OH} = -5 \text{ mA}$	2.4		V
VOL	Low-level output voltage	I _{OL} = 4.2 mA		0.4	V
h.	Input current (leakage)	$V_{I} = 0 V$ to 6.5 V, $V_{DD} = 5 V$, All other pins = 0 V to 6.5 V		±10	μA
1 ₀	Output current (leakage)	$V_0 = 0 V$ to 5.5 V, $V_{DD} = 5 V$, \overline{CAS} high, All outputs open		±10	μA
IDD1	Average operating current during read or write cycle	t _C = minimum cycle, All outputs open	65	80	mA
IDD2	Standby current	After 1 memory cycle, DQ1-DQ4 held at > 0 V, RAS and CAS high, All outputs open	2.5	5	mA
IDD3	Average refresh current	t _c = minimum cycle, RAS low, CAS high, All outputs open	50	60	mA
IDD4	Average page-mode current	t _{c(P)} = minimum cycle, RAS low, CAS cycling, All outputs open	45	55	mA

electrical characteristics over full ranges of recommended operating conditions (unless otherwise noted)
--

		TEST CONDITIONS	TA	AS4464	-15	TN	154464	20	UNIT
	PARAMETER	TEST CONDITIONS	MIN	TYPT	MAX	MIN	TYP [†]	MAN	UNIT
Voн	High-level output voltage	IOH = -5 mA	4.4			2.4			V
VOL	Low-level output voltage	I _{OL} = 4.2 mA	-		0.4	1.5		0.4	۷
h	Input current (leakage)	$V_I = 0 V$ to 6.5 V, $V_{DD} = 5 V$, All other pins = 0 V to 6.5 V			± 10			±10	μA
ю	Output current (leakage)	$V_O = 0 V \text{ to } 5.5 V,$ $V_{DD} = 5 V, \overline{CAS} \text{ high}$ All outputs open		4	±10			± 10	μA
IDD1	Average operating current during read or write cycle	t _C = minimum cycle All outputs open		55	70		50	60	mA
IDD2	Standby current	After 1 memory cycle, DQ1-DQ4 held at > 0 V, RAS and CAS high, All outputs open		2.5	5		2.5	5	mA
IDD3	Average refresh current	t _c = minimum cycle, ŘAS Iow, CAS high, All outputs open		45	55		40	50	mA
IDD4	Average page-mode current	t _{C(P)} = minimum cycle, RAS low, CAS cycling, All outputs open		40	50		30	40	mA

 $^{\dagger}\text{All}$ typical values are at T_{A} = 25 °C and nominal supply voltages.

4-121

.

capacitance over recommended supply voltage range and operating free-air temperature range, $f\,=\,1\,\,\text{MHz}$

		TMS4464	
	PARAMETER	TYP [†] MAX	UNIT
Ci(A)	Input capacitance, address inputs	4 7	pF
Ci(RC)	Input capacitance strobe inputs	8 10	pF
Ci(W)	Input capacitance, write enable input	8 10	pF
Ci/o	Output capacitance	8 10	pF

[†] All typical values are at $T_A = 25$ °C and nominal supply voltages.

switching characteristics over recommended supply voltage range and operating free-air temperature range

		ADAMETER TEST CONDITIONS		TMS4464-12	
	PARAMETER	TEST CONDITIONS	SYMBOL	MIN MAX	UNIT
ta(C)	Access time from CAS	t RLCL \geq MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	^t CAC	60	ns
^t a(R)	Access time from RAS	$t_{RLCL} = MAX, C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	^t RAC	120	ns
^t a(G) [‡]	Access time after G low	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tGAC	35	ns
^t dis(CH)	Output disable time after · high	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tOFF	0 30	ns
^t dis(G)	Output Juable time after G high	C _L = 100 pF, Load = 2 Series 74 TTL gates	tGOFF	0 30	пѕ

switching characteristics over recommended supply voltage range and operating free-air temperature range

			ALT.	TMS4	464-15	TMS4	464-20	UNIT
1	PARAMETER	TEST CONDITIONS	SYMBOL	MIN	MAX	MIN	MAX	UNIT
t _a (C)	Access time from CAS	t RLCL \geq MAX, C _L = 100 pF, Load = 2 Series 74 TTL gates	^t CAC		75		100	ns
ta(R)	Access time from RAS	$t_{RLCL} = MAX, C_{L} = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	^t RAC		150		200	ns
t _{a(G)} ‡	Access time after G low	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tGAC		45		55	ns
tdis(CH)	Output disable time after CAS high	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tOFF	0	30	0	35	ns
^t dis(G)	Output disable time after G high	$C_L = 100 \text{ pF},$ Load = 2 Series 74 TTL gates	tGOFF	0	30	0	35	ns

[‡]t_{a(C)} and t_{a(R)} must be satisfied to guarantee t_{a(G)}.

TMS4464 65,536-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

		ALT.	TMS4464-12	UNIT
		SYMBOL	MIN MAY	Olari
tc(P)_	Page-mode cycle time	tPC	120	ns
tc(PM)	Page-mode cycle time (read-modify-write cycle)	^t PCM	200	ns
tc(rd)	Read cycle time [†]	tRC	230	ns
tc(W)	Write cycle time	tWC	230	ns
tc(rdW)	Read-write/read-modify-write cycle time	tRWC	310	ns
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	50	ns
tw(CH)	Pulse duration, CAS high (non-page mode)	tCPN	50	ns
tw(CL)	Pulse duration, CAS low [‡]	tCAS	60 10,000	ns
tw(RH)	Pulse duration, RAS high	tRP	1.1	ns
tw(RL)	Pulse duration, RAS low §	tRAS	10,000	ns
tw(W)	Write pulse duration	tWP	40	ns
t _t	Transition times (rise and fall) for RAS and CAS	tT	3 50	ns
tsu(CA)	Column-address setup time	tASC	0	ns
t _{su} (RA)	Row-address setup time	tASR	0	ns
t _{su(D)}	Data setup time	tDS	0	ns
tsu(rd)	Read-command setup time	tRCS	0	ns
t _{su} (WCL)	Early-write command setup time before CAS low	twcs	0	ns
t _{su} (WCH)	Write-command setup time before CAS high	tCWL	40	ns
tsu(WRH)	Write-command setup time before RAS high	tRWL	40	ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	20	ns
th(RA)	Row-address hold time	tRAH	15	ns
th(RLCA)	Column-address hold time after RAS low	tAR	80	ns
th(CLD)	Data hold time after . ow	tDH	35	ns
th(RLD)	Data hold time after ' ow	^t DHR	95	ns
th(WLD)	Data hold time after W low	t _{DH}	35	ns
th(CHrd)	Read-command hold time after CAS high	tRCH	0	ns
th(RHrd)	Read-command hold time after RAS high	TRRH	10	ns
th(CLW)	Write-command hold time after CAS low	tWCH	35	ns
th(RLW)	Write-command hold time after RAS low	tWCR	95	ns

timing requirements over recommended supply voltage range and operating free-air temperature range

Continued next page.

[†]All cycle times assume $t_t = 5$ ns.

⁺In a read-modify-write cycle, t_{CLWL}and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional CAS low time (t_{w(CL)}).

In a read-modify-write cycle, tRLWL and t_{SU(WRH)} must be observed. Depending on the user's transition times, this may require additional RAS low time (t_{w(RL)}).

timing requirements over recommended supply voltage range and operating free-air temperature range (continued)

		ALT. SYMBOL	MIN MAX	UNIT
tRLCHR	Delay time, RAS low to CAS high	tCHR	25	ns
TRLCH	Delay time, i ow to CAS high	tCSH	120	ns
^t CHRL	Deley time, At high to RAS low	tCRP	. 0	ns
TRHCL	Delay time, this high to i A ow	tRCP	· 0	ns
tCLRH	Delay time, ow to	tRSH	60	กร
tCLWL	Delay time, ' ow to to w (read-modify-write cycle #	tCWD	95	ns
tCLRL	Delay time, CAS low to ow 1	tCSR	25	กร
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	tRCD	25 60	ns
tRLWL	Deley time, RAS low to W low (read-modify-write cycle only)#	tRWD	155	ns
tGHD	Delay time, G high before data applied at DQ	tGDD	30	ns
trf	Refresh time interval	tREF	4	ms

ICAS-before-RAS refresh option only.

#G must disable the output buffers prior to applying data to the device.

		ALT.	TMS	4464-15	TMS	1464-20	UNIT
		SYMBOL	MIN	MAX	MIN	MAX	UNIT
tc(P)	Page-mode cycle time	tPC	140		190		ns
t _c (PM)	Page-mode cycle time (read-modify-write cycle)	^t PCM	230		295		ns
tc(rd)	Read cycle time [†]	tRC	260		330		ns
tc(W)	Write cycle time	tWC	_				ns
tc(rdW)	Read-write/read-modify-write cycle time	^t RWC	340		400		ns
tw(CH)P	Pulse duration, CAS high (page mode)	tCP	60		80		ns
tw(CH)	Pulse duration, CAS high (non-page mode)	^t CPN	60	1.1.	80		ns
tw(CL)	Pulse duration, CAS low [‡]	^t CAS	75	10,000	100	10,000	ns
tw(RH)	Pulse duration, RAS high	tRP					ns
tw(RL)	Pulse duration, RAS low [§]	tRAS	1	10,000		10,000	ns
tw(W)	Write pulse duration	twp	45		55		ns
tt	Transition times (rise and fall) for RAS and CAS	tŢ	3	50	3	50	ns
t _{su(CA)}	Column-address setup time	tASC	0		0		ns
t _{su} (RA)	Row-address setup time	tASR	0		0		ns
t _{su(D)}	Data setup time	tDS	0		0		ns
tsu(rd)	Read-command setup time	tRCS	0		0	1910	ns
t _{su} (WCL)	Early-write command setup time before CAS low	twcs	0		0	1.51	ns
t _{su} (WCH)	Write-command setup time before CAS high	tCWL	45		60		ns
tsu(WRH)	Write-command setup time before RAS high	TRWL	45		60	1000	ns
th(CLCA)	Column-address hold time after CAS low	^t CAH	25		45		ns
th(RA)	Row-address hold time	tRAH	15		20		ns
th(RLCA)	Column-address hold time after RAS low	tAR	100		145		ns
th(CLD)	Data hold time after CAS low	tDH	45		55		ns
th(RLD)	Data hold time after RAS low	tDHR	120		155		ns
th(WLD)	Data hold after W low	tDH.	45		55		ns
th(CHrd)	Read-command hold time after CAS high	^t RCH	0		0		ns
th(RHrd)	Read-command hold time after RAS high	tBRH	10		15		ns
th(CLW)	Write-command hold time after CAS low	tWCH	45		55		กร
th(RLW)	Write-command hold time after RAS low	tWCR	120		155		ns

timing requirements over recommended supply voltage range and operating free-air temperature range (continued)

Continued next page.

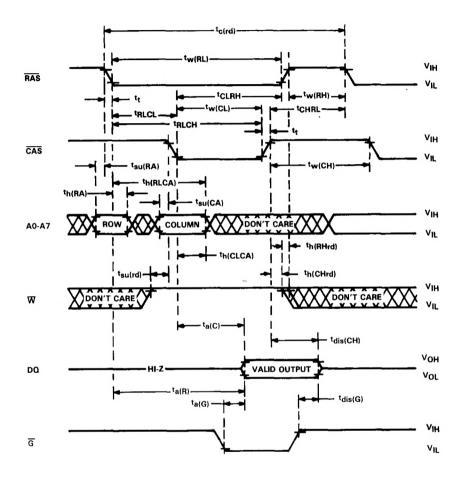
[†]All cycle times assume $t_t = 5$ ns.

*In a read-modify-write cycle, t_{CLWL}and t_{su(WCH)} must be observed. Depending on the user's transition times, this may require additional \overline{CAS} low time ($t_{w(CL)}$). $\frac{S_{In a}}{S_{In a}}$ read-modify-write cycle, t_{RLWL} and $t_{su(WRH)}$ must be observed. Depending on the user's transition times, this may require additional

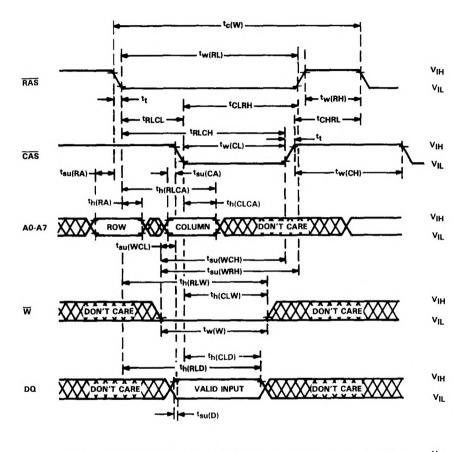
RAS low time (tw(RL)).

timing requirements over recommended supply voltage range and operating free-air temperature range (concluded)

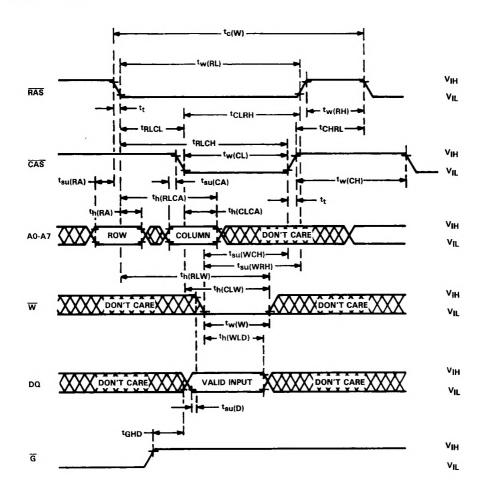
		ALT.	ALT. TMS4464-15		TMS4464-20		
		SYMBOL	MIN	MAX	MIN	MAX	UNIT
TRLCHR	Delay time, 14 ow to 4 high 1	tCHR	30		35		ns
tRLCH	Delay time, which we high	tCSH	150		200		ns
tCHRL	Delay time, CAS high to RAS low	tCRP	0		0		ns
TRHCL	Delay time, RAS high to CAS low	tRCP	0		0		ns
tCLRH	Delay time, CAS low to RAS high	tRSH	75		100		ns
tCLWL	Delay time, CAS low to W low (read-modify-write cycle . #	tCWD	110		140		ns
tCLRL	Delay time, CAS low to ow1	tCSR	30		35		ns
^t RLCL	Delay time, RAS low to CAS low (maximum value specified only to guarantee access time)	tRCD	25	75	30	100	ns
^t RLWL	Delay time, \overrightarrow{RAS} low to \overrightarrow{W} low (read-modify-write cycle only) [#]	tRWD	185		240		ns
tGHD	Delay time, \overline{G} high before data applied at DQ	tGDD	30		35		ns
trf	Refresh time interval	tREF		4		4	ms

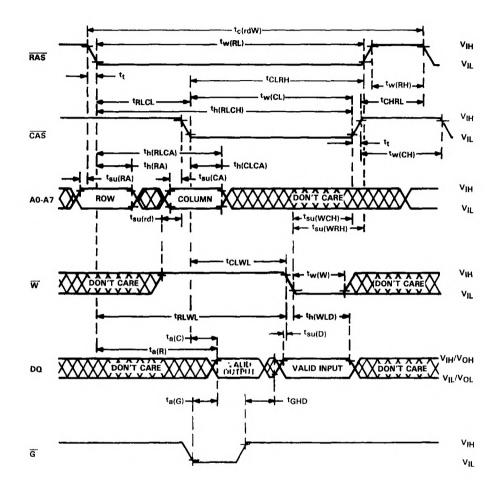

ICAS-before-RAS refresh option only.

#G must disable the output buffers prior to applying data to the device.

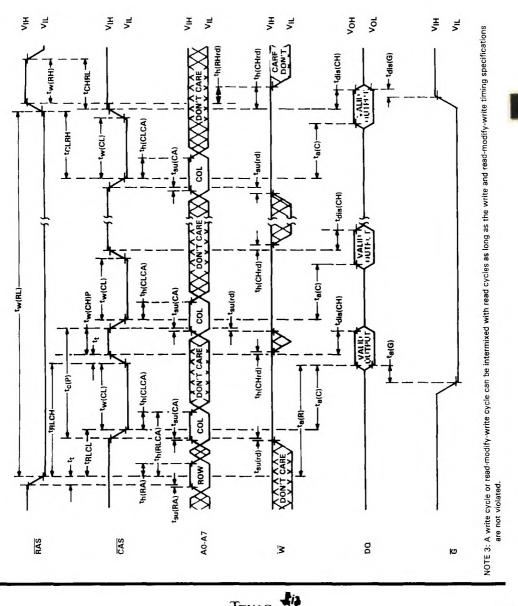

read cycle timing

TMS4464 65,536-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY


early write cycle timing

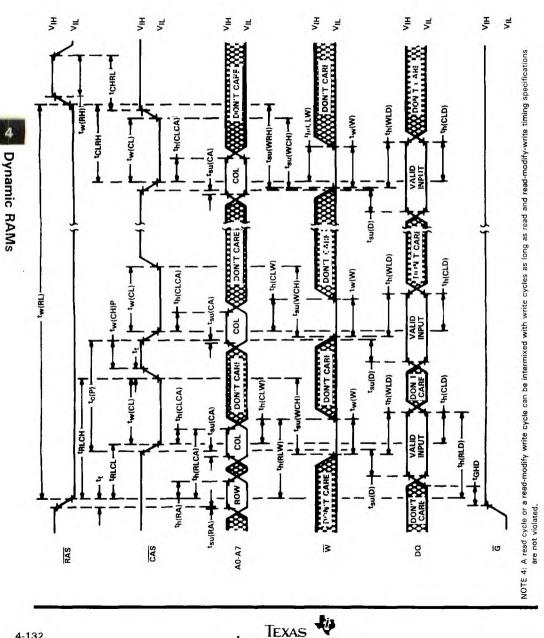


write cycle timing

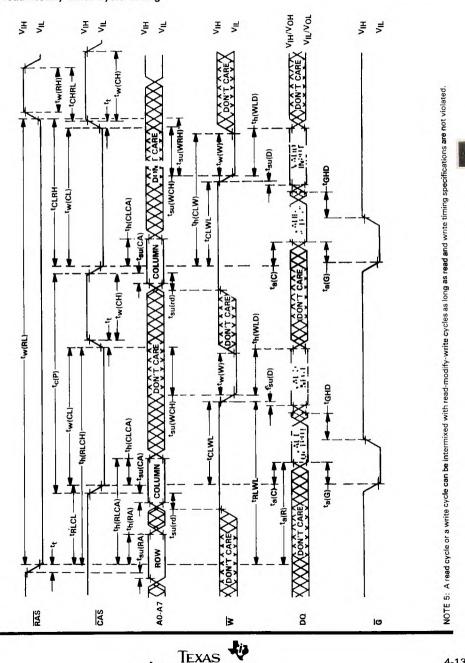


read-write/read-modify-write cycle timing

page-mode read cycle timing

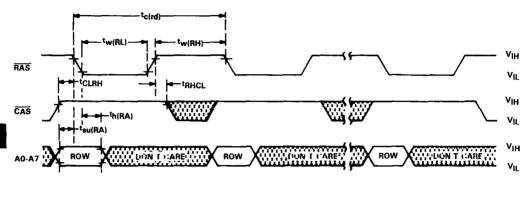

TEXAS V INSTRUMENTS POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

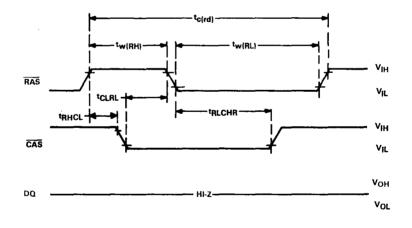
4-131


4

TMS4464 65,536-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORY

page-mode write cycle timing


INSTRUMENTS POST OFFICE BOX 1443 . HOUSTON, TEXAS 77001 page-mode read-modify-write cycle timing


POST OFFICE BOX 1443 • HOUSTON, TEXAS 77001

4

RAS-only refresh cycle timing

CAS-before-RAS refresh cycle timing

PRODUCT PREVIEW

TMX4461 262,144-BIT MULTIPORT VIDEO RAM

NOVEMBER 1985

- 65,536 X 4 Organization
- Dual-Port Accessibility Four I/O's for Sequential Access, Four I/O's for Random Access
- One Serial Data Register Built into Each Serial I/O for Sequential-Access Applications
- Fast Serial Ports . . . 30-MHz Shift Rate
- Mid-Scan Load Serial Data Streams Uninterrupted by Register Reload
- TRG as Output Enable Allows Direct Connection of DQ and Address Lines to Simplify System Design
- Random-Access Port Is Compatible with the TMS4464, 64K X 4 DRAM
- 3-State Serial I/O's Allow Easy Multiplexing of Video Data Streams
- Maximum Access Time from RAS ... 120 ns
- Minimum Cycle Time (Read or Write) . . . 200 ns
- Long Refresh Period . . . 4 ms
- Low Refresh Overhead Time . . . As Low As 1.3% of Total Refresh Period
- All Inputs, Outputs, Clocks Fully TTL Compatible
- Three-State Unlatched Random-Access Outputs
- Common Random-Access I/O Capability with "Early Write" Feature
- High-Speed Page-Mode Operation for Faster Access
- CAS-Before-RAS Refresh and Hidden Refresh Modes

description

The 256K Multiport Video RAM is a high-speed dual-ported $65,536 \times 4$ bit dynamic random-access memory with on-chip data registers. The random-access port makes the memory look like it is organized as 65,536 words of four bits each like the TMS4464. The sequential-access port is interfaced to four internal 256-bit dynamic data registers which make the memory look like it is organized as 256 four-bit words of up to 256 bits each which are accessed serially.

The 256K Multiport Video RAM employs state-of-the art double-level polysilicon/polycide gate technology for very high performance combined with low cost and improved reliability.

N PACKAGE (TOP VIEW)						
sc	1	U24	Vss			
SDQ1	2	23	SDQ4			
SDQ2	3	22	5 SDQ3			
TRG	4	21	SG			
DQ1	5	20	DQ4			
DQ2	6	19	Dog			
WE	7	18	CAS			
RAS	8	17	DAO			
A6	9	16	A1			
A5C	10	15	A2			
A4	11	14	DA3			
VDD	12	13	□ A7			

F	IN NOMENCLATURE
A0-A7	Address Inputs
CAS	Column-Address Strobe
DQ1-DQ4	Random-Access Data In/
	Data Out/Write-Mask Bit
RAS	Row-Address Strobe
SC	Serial Data Clock
SDQ1-SDQ4	Serial Data In/Data Out
SG	Serial Output Enable
TRG	Transfer Register/
	Q Output Enable
VDD	5-V Supply
VSS	Ground
WE	Write-Mask Select/
	Write Enable

- Low Power Dissipation — Operating . . . 250 mW (Typical, DRAM Port)
- 24-Pin, 400-Mil Dual-in-Line Package

PRODUCT PREVIEW

TMX44C256, TMX44C257, TMX44C259 262,144-WORD BY 4-BIT DYNAMIC RANDOM-ACCESS MEMORIES

NOVEMBER 1985

- 262,144 X 4 Organization . Single 5-V Supply (10% Tolerance) **Pinout to Proposed JEDEC Standard** Performance Ranges: ACCESS ACCESS READ TIME TIME OR ROW COLUMN WRITE ADDRESS ADDRESS CYCLE (MAX) (MAX) (MIN) TMX44C25_-10 100 ns 50 ns 200 ns TMX44C25 -12 120 ns 60 ns 230 ns TMX44C25_-15 150 ns 75 ns 260 ns **Multiple Operations Options:** TMX44C256 — Page Mode/Enhanced Page Mode TMX44C257 - Static Column Mode TMX44C259 - 256 X 4 Bit Nibble Mode (Serial Mode)
 - Long Refresh Period
 512-Cycle Refresh in 8 ms (Max)
 - Three-State Unlatched Output
 - Lower Power Dissipation
 - New Scaled-CMOS Technology
 - Low Standby Power with CMOS-Level Inputs
 - High-Reliability Plastic 20-Pin 300-Mil-Wide DIP or Surface-Mount Packages

description

The Megabit DRAM devices are high-speed, 1,048,576-bit dynamic random-access memories organized as 262,144 words of four bits each. They employ state-of-the-art TIC-MOS (Scaled CMOS) technology for high performance, reliability and lower power at a low cost.

	PACI TOP V			
TF [A0 [A1 [6 7 8	19 18 17 16 15 14 13 12	Vss DQ4 DQ3 CAS G A8 A7 A6 A5 A4	
	PACI TOP V			
DQ1 DQ2 W RAS TF	4	25 24]Vss]DQ4]DQ3]CAS]G	
A0 [A1 [A2 [A3 [Vcc [10 11	17] A8] A7] A6] A5] A4	

[†]The packages shown here are for pinout reference only. The DJ package is actually 75% of the length of the N package.

P	IN NOMENCLATURE
A0-A8	Address Inputs
CAS	Column-Address Strobe
DQ1-DQ4.	Data In/Data Out
G	Data Output Enable
RAS	Row-Address Strobe
TF	Test Function
$\overline{\mathbf{W}}$	Write Enable
Vcc	5-V Supply
VSS	Ground

PRODUCT PREVIEW documents contain information on gravaris in the form atom ar design phase of devisors are. Characterivate data and other specifications are design guels. Taxas instruments reserves the right to change or discontinus these products without notice.

PRODUCT PREVIEW

TMX4C1024, TMX4C1025, TMX4C1026, TMX4C1027, TMX4C1029 1,048,576-BIT DYNAMIC RANDOM-ACCESS MEMORIES

•	1,	048	576	х	1	Organization
---	----	-----	-----	---	---	--------------

- Single 5-V Supply (10% Tolerance)
- Pinout to Proposed JEDEC Standard
- Performance Ranges:

	ACCESS	ACCESS	READ
	TIME	TIME	OR
	ROW	COLUMN	WRITE
	ADDRESS	ADDRESS	CYCLE
	(MAX)	(MAX)	(MIN)
TMX4C10210	100 ns	50 ns	200 ns
TMX4C10212	120 ns	60 ns	230 ns
TMX4C102 -15	150 ns	75 ns	260 ns

- Multiple Operations Options: TMX4C1024 — Page Mode/Enhanced Page Mode
 TMX4C1025 — 4-Bit Nibble Mode
 TMX4C1026 — 8-Bit Nibble (Byte)
 TMX4C1027 — Static Column Mode
 TMX4C1029 — 1024-Bit Nibble Mode
 (Serial Mode)
- Long Refresh Period 512-Cycle Refresh in 8 ms (Max)
- Three-State Unlatched Output
- Lower Power Dissipation
- New Scaled-CMOS Technology
- All Inputs and Clocks Are TTL Compatible
- Low Standby Power with CMOS-Level Inputs
- High-Reliability Plastic 18-Pin 300-Mil-Wide DIP or Surface-Mount Packages

description

The Megabit DRAM devices are high-speed, 1,048,576-bit dynamic random-access memories organized as 1,048,576 words of one bit each. They employ state-of-the-art TIC-MOS (Scaled CMOS) technology for high performance, reliability and lower power at a low cost.

	PAC			
	1 U 2 3 4 5 6 7	18 17 16 15 14 13 12 11	VSS 0 CAS A9 A8 A7 A6 A5 A5 A4	
	PAC			
	1 ° 2 3 4 5	25 24 23	DVSS DQ DCAS DNC DA9	
A0 [A1 [A2] A3 [Vcc]	9 10 11 12 13	17 16	A8 A7 A6 A5 A4	

[†]The packages shown here are for pinout reference only. The DJ package is actually 75% of the length of the N package.

PIN NOMENCLATURE				
A0-A9	Address Inputs			
CAS	Column-Address Strobe			
D	Data in			
NC	No Connection			
Q	Data Out			
RAS	Row-Address Strobe			
TF	Test Function			
$\overline{\mathbf{w}}$	Write Enable			
Vcc	5-V Supply			
VSS	Ground			

TEXAS

NOVEMBER 1985