

MASTERING
CP/M

ALAN R. MILLER

A
7

Berkeléy ¢ Paris ® Dusseldorf

Cover design by Daniel Le Noury
Technical illustrations, book design, and layout by Marlyn Amann

CP/M is a registered trademark of Digital Research, Inc.
Grammatik is a trademark of Aspen Software Co.

Lifeboat is a trademark of Lifeboat Associates.

MAC is a trademark of Digital Research, Inc.

MACRO-80 is a trademark of Microsoft Corporation.

MBASIC is a trademark of Microsoft Corporation.

SID is a trademark of Digital Research, Inc.

Spellguard is a trademark of Sorcim Corporation.

WordStar is a trademark of MicroPro International Corporation.
Z80 is a registered trademark of Zilog, Inc.

Sybex is not affiliated with any manufacturer.

Every effort has been made to supply complete and accurate information. However, Sybex assumes no
responsibility for its use, nor for any infringements of patents or other rights of third parties which would

result.

© 1983 SYBEX Inc., 2344 Sixth Street, Berkeley, CA 94710. World rights reserved. No part of this publica-
tion may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic or other record, without the prior agreement and written permission of

the publisher.

Library of Congress Catalog Card Number: 82-62006
ISBN 0-89588-068-7

Printed in the United States of America
1098765432

CONTENTS

Preface xi

1 CP/M Organization and Operation

Introduction 1

Memory Organization 2
Operation of CP/M 5

First Executable Program 11
Summary 13

2 Duplicating and Altering CP/M Disks 15

Introduction 15

Formatting and Duplicating Disks 16

General Procedure for Altering the BIOS 20
Locating the Working Version of BIOS 21
Assembling the BIOS or USER Source Program 23
Copying the Altered BIOS to Disk 26

Summary 31

vi MASTERING CP/M

3 Adding Features to BIOS 33

Introduction 33

Assembly Language Programming 34

BIOS Entry Vectors 39

Engaging the Printer with the Debugger 42

A Program to Engage and Disengage the Printer 43
Engaging the Printer with the CP/M IOBYTE 45
Adding a Printer-Ready Routine 50

Directing List Output with the IOBYTE 56

Storing List Output in a Memory Cache 59
Summary 69

4 Beginning a Macro Library 71

Introduction 71

Macros 71

Generating Z80 Instructions with an 8080 Assembler 75

The 8080/Z80 Switch 78

Starting the Macro Library 80

A Macro to Move Information 92

A Macro to Fill Memory with a Constant 109

A Macro to Compare Two Blocks of Information 113

A Macro to Raise Lowercase Letters to Uppercase 118

A Macro to Convert an Ambiguous File Name to an
Unambiguous File Name 121

A Macro to Move the Upper Four Bits to the Lower
Position 123

A Macro to Perform 16-Bit Subtraction 125

Summary 126

5 Using BDOS for Nondisk Operations 129

Introduction 129

BDOS Calls 130

A Macro to Perform BDOS Calls 131

A Macro to Read a Single Console Character 132

A Macro to Write a Single Console Character 135

A Macro to Display a Carriage Return and Line
Feed 136

CONTENTS vii

A Program to Test Macros SYSF, READCH, PCHAR,
and CRLF 137

Printing a String of Characters 139

A Program to Discover Which CPU Is Being Used 146

A Macro to Convert Binary to Hexadecimal 149

A Macro to Find the CP/M Version Number 153

A Program to Display the IOBYTE Value 153

A Program to Go to Any Address in Memory 164

A Program to Eject Pages on the Printer 167

Summary 170

6 Reading Disk Files With BDOS 173

Introduction 173

The File Control Block 173

A Macro to Display an Error Message and Abort the
Program 176

Opening an Existing Disk File 177

A Macro to Set the DMA Address 182

A Macro to Read One Disk Sector 182

A Macro to Input a File Name 184

Displaying an ASCII File on the Console 188

A Macro to Abort the Program from the Console 192

Displaying a Binary File on the Console 194

Automatic Envelope Addressing 198

Checking for Paired Control Characters 198

Summary 208

7 Writing Disk Files With BDOS 211

Introduction 211

A Macro to Create a New Disk File 211

Unprotecting a Disk File 212

A Macro to Print an FCB File Name 215

A Macro to Delete a Disk File 216

Investigating Two File Control Blocks with the
Debugger 219

Opening a File When Two File Names Are Given 221

A Macro to Rename a Disk File 225

viii MASTERING CP/M

A Macro to Write a Disk Sector 225

A Macro to Close a Disk File 226

Duplicating a Disk File 229

Encrypting an ASCII File 230

Copying a File by Buffering into Memory 238

A Buffered Copy Program with Verification 245
A Program to Rename Disk Files 251

A Program to Delete Disk Files 252

Saving the Memory Cache on Disk 260
Summary 263

8 The CP/M Disk Directory 267

Introduction 267

The Disk Parameters 268

The Disk Parameter Block 270

Viewing the Disk Parameters 274

The Disk Directory Blocks 289

The Block Allocation Map 291

Viewing the Disk Directory Blocks and the Block

Allocation Map 292
Summary 311
Appendices 315

A The ASCII Character Set 316
B A 64K Memory Map 320
C The 8080 Instruction Set (Alphabetic) 324
ID The 8080 Instruction Set (Numeric) 328

CONTENTS

ix

E The Z80 Instruction Set (Alphabetic) 332
F The Z80 Instruction Set (Numeric) 341
(G Details of the 8080 Instruction Set 350
H Details of the Z80 Instruction Set 367

] The CP/M BDOS Functions 392

Index

394

PREFACE

CP/M has become the standard operating system for Z80, 8080, and
8085 microcomputers. As a consequence, there are a large number of pro-
grams that run under CP/M. These include assemblers, editors, spelling
checkers, compilers for the engineering languages BASIC, Pascal, FOR-
TRAN, and APL, as well as general business packages.

Some CP/M programs can be run automatically so that only a minimal
knowledge of CP/M is necessary. However, other programs require a
greater understanding of the operating system. In either case, certain
routine tasks, such as formatting new disks and making backup copies of
important disks, require a working knowledge of the operating system.
Unfortunately, it is difficult to learn the operation of CP/M from the
documentation that is provided. There are introductory books on the sub-
ject,* but these do not discuss the inner workings of CP/M in great detail.
Furthermore, there are numerous inconsistencies and idiosyncracies in
the operation of CP/M that are waiting to trap the unwary programmer.

*See R. Zaks, The CP/M Handbook with MP/M, Berkeley: Sybex, 1980.

xii

MASTERING CP/M

I have been working with CP/M from its inception (version 1.3). Con-
sequently, I have developed many techniques for improving its usefulness
by altering parts of CP/M itself and by writing auxiliary assembly
language programs. This book describes what I have learned. Itis a guide
for the person who wants a deeper knowledge of the inner workings of
CP/M.

Although the operation of each program is described, thereader should
have some prior experience with 8080 assembly language programming.
Further information on assembly language programming can be found in
8080/Z80 Assembly Language and Programming the Z80.* To gain the
fullest benefit of the book, it will be necessary to have a computer with
CP/M, a system editor, a macro assembler such as MAC or MACRO-80,
and an assembly language debugger such as SID or DDT.

The book begins with a detailed description of the organization and oper-
ation of CP/M. The topics include the system parameter area, TPA, CCP,
BDOS, and BIOS. Use of the built-in commands, control characters, and
transient programs is also covered. Routine tasks such as formatting new
disks and making backup copies are discussed in Chapter 2. The opera-
tion of COPY, SYSGEN, and SAVEUSER are also considered, leading
to the discussion of procedures for altering the CP/M system and saving
the altered version on disk. In Chapter 3 we actually alter the BIOS to in-
corporate the IOBYTE feature.

The powerful concept of macros is introduced in Chapter 4. Macros for
comparing, moving, and filling regions of memory are the foundation of
a macro library. The use of BDOS for performing console input and
output is implemented with macros in Chapter 5. Several executable pro-
grams are written,

Chapters 6 and 7 describe the CP/M disk file system. The macro library
is expanded with BDOS operations for reading and writing disk files, and
additional executable programs are written. The final chapter presents
the details of the CP/M disk directory. A general utility program is
written that can be used to display the disk parameters, a block allocation
map, and a detailed presentation of the directory.

The appendices contain all the reference material needed to write 8080
and Z80 assembly language programs. Appendix A identifies the ASCII
codes in decimal, hexadecimal, and octal. Appendix B presents a
64K-byte memory map. Appendices C and D summarize the 8080 instruc-
tion set alphabetically and numerically, respectively. Appendices E and F

*A. R. Miller, 8080/Z80 Assembly Language: Techniques for Improved Pro-
gramming, New York: Wiley, 1981.
R. Zaks, Programming the Z80, Berkeley: Sybex, 1980.

PREFACE xiii

give the entire Z80 instruction set according to the official Zilog
mnemonic, with E being ordered alphabetically and F numerically. Those
instructions common to the 8080 set are marked with an asterisk.

The 8080 instruction set is discussed in detail in Appendix G, including
potential pitfalls and interesting techniques. The Z80 mnemonic is also
referenced. Appendix H gives a detailed description of the Z80 instruc-
tion set. Appendix I summarizes the CP/M BDOS calls.

All of the assembly language programs given in this book were
developed on a Z80 microcomputer fitted with three 5-inch disks (drives
A, B, and C) and two 8-inch disks (drives D and E). The operating system
was the Lifeboat 2.2 version of CP/M. The source programs were written
with MicroPro’s WordStar word processing program. The programs
were assembled with both the Digital Research MAC assembler and the
Microsoft MACRO-80 assembler.

The manuscript was created and edited on the same Z80 computer with
WordStar. The manuscript was proofed with Speliguard, a spelling
checker, and Grammatik, a syntax checker. The assembly language
source programs have been incorporated directly into the manuscript
from the original source files. The computer printouts that appear were
also incorporated magnetically into the manuscript. This was ac-
complished by altering the CP/M operating system so that printer output
was written into a block of memory. The block was then saved as a disk
file. (This technique is described in Chapter 3.) The final manuscript was
submitted to the publisher in a magnetic form compatible with the
photocomposer.

I am sincerely grateful to Barbara Gordon, editor of the manuscript,
for all of her helpful suggestions. I also want to thank Douglas Hergert,
Jim Compton, Joe Sharp, and Eric Novikoff for reviewing the manu-
script and making additional suggestions. John Wiley & Sons kindly gave
permission to reproduce Appendices A—F and H from my book
8080/ 7280 Assembly Language: Techniques for Improved Programming.

Alan R. Miller
Socorro, New Mexico
September 1982

CHAPTER 1

CP/M
ORGANIZATION
AND
OPERATION

INTRODUCTION

The purpose of this first chapter is to review the organization and
operation of the CP/M operating system. First we will discuss the various
parts of CP/M—the system parameter area, the transient program area,
the console command processor, the basic disk-operating system, and the
basic input/output system. Then we will summarize the operation of
CP/M, including the use of built-in commands, control characters, and
transient programs. (Additional details on these subjects can be found in
The CP/M Handbook.*) After reviewing standard executable programs
such as STAT and PIP, we will create a new command, CONTIN, and
look at how and why it works.

*R. Zaks, The CP/M Handbook with MP/M, Berkeley: Sybex, 1980.

2

MASTERING CP/M

MEMORY ORGANIZATION

The hardware of a computer can be divided logically into several parts.
These include the central processing unit (CPU), the main or random
access memory (RAM), and the peripherals, such as the console, printer,
phone modem, and disks. The disk-operating system (DOS) is a software
program that coordinates the operation of the computer. CP/M is the
most widely used DOS for the 8080, 8085, and Z80 CPUs. Let us review
the operation of CP/M.

The 8080, 8085, and Z80 CPUs are very similar.. The concepts
developed in this chapter apply equally to all three. The CPUs can directly
address a maximum of 64K bytes of RAM (actually 2'° or 65,536 bytes).
Each byte of RAM is assigned an address from 0t065,535. CP/M divides
this memory into five regions. Beginning with the lowest memory address,
the regions are as follows:

® The system parameter area. This area contains key items of in-
formation such as the current disk and user number, peripheral
assignments, the addresses of the basic input/output system and
the basic disk-operating system, the restart locations, and the
default buffer.

® The transient program area (TPA). This is the working area of
memory. Executable programs and their data are located here.

8 The console command processor (CCP). This area contains the
programs for the built-in commands DIR, ERA, REN, SAVE,
TYPE, and USER.

® The basic disk-operating system (BDOS). This area contains the
general programs for the operation of peripherals.

® The basic input/output system (BIOS). This area contains the
customized routines that operate the actual peripherals.

The BDOS and BIOS regions are known collectively as the full disk-
operating system (FDOS). The five regions of RAM are summarized in
Figure 1.1.

The System Parameter Area

The system parameters, shown in Figure 1.2, begin at address 0. The
first three bytes (bytes 0 to 2) contain a jump into the BIOS warm-start
entry. When this instruction is executed, CP/M is restarted. This causes a

CP/M ORGANIZATION AND OPERATION

BIOS

BDOS

ccp

TPA

System parameters

High memory

100 hex

Low memory

Figure 1.1: Memory Partitions of the CP/M Operating System

High memory

Buffer

Default FCB

Restart area

Jump to BDOS

Current drive and
user number

IOBYTE

Jump to BIOS

Low memory

FF hex

80 hex

5C hex

8 hex

5 hex

4 hex

3 hex

0 hex

Figure 1.2: The System Parameter Area: 0 to FF Hex

4

MASTERING CP/M

fresh copy of the CCP and the BDOS to be copied into memory from the
system disk. The disks are also reset at this time.

The fourth byte of the system parameter area (address 3) is called the
IOBYTE. Itindicates the current memory assignments of the four logical
peripherals: console, reader, punch, and list (printer). The next location,
address 4, contains two items: the current disk drive and the current user
number. Beginning at address 5, the next three bytes contain a jump into
the BDOS. This instruction is executed when console, printer, and disk
operations are desired.

The region from address 0 to 38 includes eight locations referenced by
the 8080 instructions RST 0 through RST 7:

Instruction Hex address
RSTO 0
RST 1 8
RST2 10
RST3 18
RST 4 20
RSTS5 28
RST6 30
RST 7 38

Theseinstructions generate subroutine calls to the corresponding memory
locations. The instructions can be activated by hardware interrupts as well
as by normal subroutine calls. RST 6 and RST 7 are used by the debuggers
DDT and SID. Execution of an RST 0 instruction will perform a warm
start, because it causes a branch to address 0.

When a program is executed from the command level of CP/M, one or
two file names may be given on the command line. For example, along
with the command EDIT, the user might include two parameters:

EDIT FIRST.FIL B:SECOND.FIL

The region of memory beginning at SC hex is called the default file con-
trol block (DFCB) because the CCP automatically selects this region for
the file control block area. A file control block is a 32-byte block describing
each disk file. The CCP takes the first parameter, FIRST.FIL in this
example, for the first FCB. The CCP also initializes a second FCB starting
at 6C hex. The second parameter, B:SECOND.FIL in this example, is used
this time.

The region from 80 to FF hex is a general buffer area. The command
line tail, all characters typed after the command itself, is placed in this

CP/M ORGANIZATION AND OPERATION

5

region. In the above example, the command line tail is the two file names.
This region is also used as the default area for transferring data to and
from disks.

The system parameter area is described further in Chapter 3.

The TPA and the CCP

The transient program area usually contains the largest portion of the
memory. Beginning at 100 hex, it is the region where executable programs
reside.

The console command processor contains instructions for processing
commands typed from the console. The area of memory belonging to the
CCP is not needed after an executable program has begun operations.
Consequently, executable programs may enlarge the TPA to overlap this
region. A warm start at the conclusion of the program will reload the CCP
along with the BDOS.

The BDOS and the BIOS

The basic disk-operating system contains the device-independent
routines for interacting with the console, printer, and disk drives. This
region is generally the same for all CP/M computers. We will study its
operation in detail in Chapters 5, 6, and 7.

The basic input/output system contains instructions for operating the
peripheral devices: the console, printer, phone modem, disks, and so
forth. Each BIOS must be customized for the particular set of physical
devices actually attached to the computer. Therefore, the BIOS for two
identical computers will be different if different peripherals are used. We
will learn more about the BIOS in Chapters 2 and 3.

OPERATION OF CP/M

When CP/M is first started up (booted), the CCP, the BDOS, and the
BIOS are copied into memory from the system disk (usually drive A). This
operation is called a cold start. After loading the system into memory, the
cold-start loader transfers control to BIOS. BIOS then fills in the system
parameter area at addresses O to 7. This includes the jump to BIOS (ad-
dresses 0 to 2), the IOBYTE (address 3), the current disk drive and user
number (address 4), and the jump to BDOS (bytes 5 to 7).

MASTERING CP/M

At this point CP/M displays a prompt symbol to indicate that it is ready
to accept a command from the console:

A>

Built-in Commands

CP/M can control up to 16 separate disks. These are designated by the
first 16 letters of the alphabet (A — P). The letter A in the prompt indicates
that disk drive A is the current or default drive. The console commands
that are built into the CCP can be executed at this time. The following are
built-in commands:

Command Function

DIR List the disk directory

ERA Erase a disk file

REN Rename a disk file _

SAVE Create a new disk file from memory
" TYPE Display an ASCII file on console

USER Change the user number

These commands may not be preceded by a disk name, because they are
not associated with any particular disk drive. In other words, the command

A:DIR

is improper. Some of these commands, however, may take parameters
that are disk names. For example:

DIR A:

The command DIR is given to obtain a listing of the files on the default
disk. The listing is arranged across the screen in four columns. All of the
files are displayed if no parameter is given.

A whole class of files can be selected by using one of the ambiguous
symbols, % or ?. For example, the command

DIR *.ASM

will show the names of all files on the default disk that have the type ASM.
The asterisk refers to all possible combinations of characters, including
blanks. The double asterisk, %*.*, refers to all of the files on the disk. For
many CP/M commands, the asterisk can be used as an ambiguous file
name,

The question mark is used to indicate a single ambiguous character,

CP/M ORGANIZATION AND OPERATION 7

including a blank. Thus, the file name SORT?.BAS refers collectively to
the following files:

SORTI1.BAS
SORT2.BAS
SORT3.BAS
SORT.BAS

A file or group of files can be erased with the command ERA.
Ambiguous symbols may be used (carefully!) in the parameter of ERA.
For example:

ERA NEW.ASM
ERA * ASM
ERA #*

The third example erases all files. In this case, however, CP/M asks for
verification of the command before erasing all the files on a disk:

ALL (Y/N)?

You must enter a Y if you want to continue.

We can use the REN command to rename individual files. REN requires
two unambiguous file names; that is, the % and ? symbols must not be
used. The new file name is given first, followed by an equal sign and the
old file name. For example, the command

REN NEW.ASM=O0LD.ASM

changes the name of OLD.ASM to NEW.ASM.

The SAVE command makes a disk file from a memory image. SAVE
takes two parameters. The first parameter is the number of 256-byte
blocks to be saved. The second parameter is the file name. For example,
the command

SAVE 4 NEWFIL

creates a disk file called NEWFIL from the first 1K bytes of the transient
program area.

An ASCII disk file can be viewed on the console with the TYPE com-
mand. The single parameter must be an unambiguous filename. Scrolling
can be stopped by typing control-S. (The task is terminated if any other
key is pressed during scrolling.) Scrolling is resumed by pressing any key,
but it is wise to use control-S so that you do not unintentionally terminate
the command.

The user number can be changed with the USER command. The single

MASTERING CP/M

parameter is a decimal number from 0 to 15. CP/M can keep track of 16
different users, numbered from 0 to 15. User 0 is normally selected when
CP/M is initialized. Whenever a new disk file is created, it is coded with
the current user number. Therefore, each disk file is associated with a
particular user number. Only files belonging to the current user are nor-
mally accessible.

Control Characters

Several console keys have special meanings to CP/M; following are the
control-character commands:

Command Function

control-C Perform a warm start

control-E Move to next line

control-H Back up cursor to previous character

control-I Tab key

control-J Execute line (line feed)

control-M Execute line (carriage return)

control-P Engage or disengage printer (toggle)

control-R Reprint current line

control-S Freeze scrolling

control-U Cancel current line, start new line

control-X Cancel current line, restart line
Warm Start

A warm start is performed when control-C is typed and the cursor is in
the first position of a line. This action is similar to a cold start. The CCP
and BDOS are copied from disk drive A into memory. The jumps into
BIOS and BDOS at the beginning of memory are also reinitialized, but the
memory image of the BIOS is not altered. The current disk drive and drive
A are logged in at this time.

When CP/M first accesses a disk drive, it makes a copy of the disk
directory and certain characteristics of the disk. You can observe this
operation with floppy disks by accessing each one in turn. For example,
when you give the command

B:
the head of disk drive B will be loaded. This is usually indicated by a red

CP/M ORGANIZATION AND OPERATION

9

activity light on the front of the disk drive. The system prompt will change
to B>. If you have additional drives, you can go to each one in turn by giv-
ing its name followed by a colon. If you return to drive A with the command

A:

the system prompt will change back to A>. However, no disk activity will
be apparent because drive A has already been logged in. CP/M assumes
that the diskette has not been changed since the last time drive A was
accessed.

The disk directory is not reread on subsequent references to a disk.
Thus, if you remove a floppy diskette from a drive and replace it with
another diskette, you should perform a warm start with the control-C
command. This forces a reading of the directory of the new disk. If
you neglect to perform a warm start after changing diskettes, CP/M
may be able to read the disk. However, if you try to write on this disk,
CP/M will refuse to perform the write operation and will issue an error
message:

BDOS ERROR ON A: R/O

CP/M will wait until you type a carriage return. It then automatically per-
forms a warm start, even though you have not typed control-C. Because
the new disk is read at this time, it is now possible to write on it.

Transient Programs

The number of commands built into the CCP is limited. Consequently,
additional operations are provided by separate, executable programs that
are stored as COM files on one of the disk drives. We execute these pro-
grams by typing the disk drive and the file name (without the extension
COM). The drive name may be omitted if the program is on the default
drive. When the name of a transient program is entered, CP/M copies the
file from disk into memory and then branches to it.

Programs stored on disk are referenced by a file name. A CP/M file
name consists of a primary name and an extension. The primary name
contains from one to eight alphabetic or numeric (alphanumeric)
characters. Characters other than the letters A —Z and the digits 0—9 can
be used in certain cases, but it is better to avoid them if you are unsure. For
some applications a file type or file name extension is required. In other
cases it is not. If an extension is required, it contains from one to three
characters. The file type is usually a mnemonic suggesting the nature of

10

MASTERING CP/M

the file. For example:

Extension Meaning

ASM Assembly language file
COM Executable (command) file
HEX Hexadecimal file

BAK Backup file

BAS BASIC file

FOR FORTRAN file

PAS Pascal file

REL Relocatable binary file
ASC ASCII text file

LST ASCII listing file

Several transient programs are supplied with the CP/M operating
system. These are independent executable programs that have a file type

of COM:
File name Program function
ASM Assembler
DDT Debugger
DUMP Program to examine executable files
ED System editor
LOAD Convert HEX file to COM file
MOVCPM Change CP/M size
PIP Copy files
STAT View disk directory in detail
SYSGEN Copy system tracks to another disk
SUBMIT Process a collection of commands
XSUB Extension of SUBMIT

Following are other common executable programs that are available

commercially:
File name Program function
BADLIM Program to isolate bad disk sectors
COoPY Track-to-track copier
FILEFIX Disk utility program to undelete files
FORMAT Initialize a disk
MAC Digital Research macro assembler
MACRO-80 Microsoft macro assembler

MBASIC

Microsoft BASIC

CP/M ORGANIZATION AND OPERATION

11

SAVEUSER Lifeboat utility to save BIOS on disk
SID Digital Research symbolic debugger
WS WordStar text editor

Many other executable programs can be purchased or written. We will
write many useful programs in this book.

FIRST EXECUTABLE PROGRAM

Let us begin by creating a very simple executable program. Boot CP/M
if it is not already in place. When the process is complete there will be a
prompt of

A>

on the console. Give the built-in DIR command to see what programs are
available on drive A. If the executable program STAT.COM appears in
the listing, execute it with the command

STAT *.*

Like DIR, the STAT command produces a listing of all programs on the
disk. In addition, STAT arranges the files in alphabetical order.

If you have a printer, turn it on. Then type control-P (to send console
output to the printer) and give the STAT command again. The printer will
duplicate the output of the console. Type control-P again to disengage the
printer. Tear off the printer output and place this directory listing into the
diskette envelope for future reference.

STAT gives additional information about the files on the disk. Con-
sider, for example, the following lines:

58 8K 1 R/O A:PIP.COM
266 34K 3 R/W A:WSOVLY1.0OVR

The first line indicates that the file PIP.COM is located on drive A. This
file can only be read (indicated by R/O); that is, it is write protected.
Furthermore, the program consists of 58 (128-byte) records that are
stored in 8K bytes. The file is referenced by one physical extent.
Smaller files can be referenced by a single disk-directory entry called a
physical extent (a 16K block of space on the diskette). If more than one
extent is needed for a file, all the extents have the same file name.
However, only one of these entries is shown in the STAT and DIR listings.
The second file in the above example, WSOVLY.OVR, is also located
on drive A. This file can be both read and written over (indicated by

12

MASTERING CP/M

R/W); itis not write protected. It contains 266 records stored in 34K bytes
and requires three physical extents. At the end of the STAT listing, the
remaining space on the diskette is given.

Often it is convenient to have a method of returning to a previous com-
mand after a warm start has been performed. We will create such a
method now. Give the built-in command

SAVE 0 CONTIN.COM

This puts a new directory entry on the drive currently logged in. However,
because the file size is specified as zero, no actual data are saved. If you
execute STAT again, the remaining space on the disk should be the same
as before. The listing will indicate that the new entry, CONTIN.COM,
has zero bytes. We will find that this empty ‘“program’’ is actually very
valuable.

Whenever the command CONTIN is given, CP/M will attempt to load
the corresponding program, CONTIN.COM, then branch to the beginning
of the TPA at 100 hex. Because the program CONTIN has no data, this
command simply restarts the previous program. To see how this works,
give the command

PIP

This will direct CP/M to load PIP.COM into memory and branch to it at
100 hex. PIP responds with an asterisk. You will normally give PIP a
command at this point. But in this case, simply type a carriage return.
This action will terminate PIP, returning control back to CP/M. CP/M
performs a warm start and gives the system prompt, awaiting another
command. Now type

CONTIN

Because this dummy program has no data, the effect is simply to branch
to address 100 hex, the beginning of PIP. The memory image of PIP is still
intact, so the PIP star should appear again. You can verify this by giving
PIP a command. For example, type

PIP2.COM=PiP.COM[V]

PIP will make a copy of itself calling the new copy PIP2.COM. The param-
eter V enclosed in brackets causes PIP to verify that the new copy is correct.

This technique will work with many but not all executable programs.
For example, it will not work with STAT because data areas are not prop-
erly reinitialized when the program is restarted. It will, however, work
with MBASIC.

CP/M ORGANIZATION AND OPERATION

13

Let us investigate this phenomenon with Microsoft BASIC. Execute
BASIC by typing its name. Then write the following BASIC program:

10FOR| = 1TO?9
20 PRINT I; 11, 1/1, SQR()
30 NEXT |

40 END

Try out the program with the command RUN. This program only exists in
memory, so you will lose it if you leave BASIC. Therefore, you will nor-
mally want to make a permanent copy with the BASIC command

SAVE “FIRST”

But suppose that you inadvertently typed the BASIC command
SYSTEM beforesaving your program (try it). You will find that you are
back at the CP/M system level. Apparently you have lost your BASIC
program. Now give the command

CONTIN

and you will return to BASIC and the program you wrote with it. Give the
command LIST to see that the source program is still there. Then give the
RUN command to see that it still works. You can now issue the SAVE
command if you want to save your original BASIC program.

SUMMARY

In this chapter we briefly reviewed the fundamentals of CP/M
organization and operation. This included a discussion of the system
parameter area, the TPA, the CCP, the BDOS, and the BIOS. The built-
in commands, control characters, and some standard executable programs
were also considered. We then wrote a short executable program called
CONTIN that can be used to restart most executable programs.

In the next chapter we will learn how to copy and alter the disk version
of the CP/M system.

CHAPTER 2

li I i ﬂﬂ

DUPLICATING
AND
ALTERING
CP/M DISKS

INTRODUCTION

In Chapter 1 we studied the fundamental CP/M operations and learned
how the memory is organized. Because CP/M is a disk-operating system,
the disk plays an important role in the operation. Let us therefore focus
our attention in this chapter on the organization of the disk.

In this chapter we will learn how to duplicate CP/M disks by formatting
a new diskette, copying the data, and copying the system tracks. We then
learn how to alter the BIOS or USER routines of the CP/M system, how
to assemble and test the new version, and finally how to write a copy of the
new version to the disk.

16

MASTERING CP/M

FORMATTING AND DUPLICATING DISKS

Floppy disks are one of the most important devices used to store micro-
computer information. The surface of the disk is a magnetic material that
isread and altered by a read/write head. (The operation is similar to sound
recording with magnetic tape.) Physically, floppy disks are formatted with
concentric rings called tracks. Each track is divided into regions called
sectors.

It is common practice to place the CP/M system disk with the executable
programs in drive A, and a working disk in drive B. Information can be
safely stored on disks provided some precautions are observed. For example,
the disks should not be placed near magnetic fields or in a dusty environ-
ment. Even when you are careful, an electrical failure during a write
operation can result in lost data. Therefore, it is a good idea to make
backup copies of all important disks. Let us consider several methods for
duplicating the information on disks.

New disks must be formatted before they are used. There are two com-
mon floppy-disk sizes—8-inch diameter and 5-inch diameter. In addition,
there are disks that are hard or soft sectored, single or double density,
and single or double sided. The number of tracks per disk and sectors per
track also varies from one version to another.

When you buy floppy disks, you must select the correct diameter
(8-inch or 5-inch) and sectoring format (soft or hard). If you require hard-
sectored disks, you must also choose the correct number of sectors per
track. Many different floppy-disk formats are obtainable from a par-
ticular type of disk. Consequently, it will usually be necessary to formata
new diskette before it is used for the first time.

Formatting a New Diskette

Floppy disks are formatted by executing a program that is named
FORMAT.COM, FORMATS5.COM, or FORMATS.COM. This program
should be included on your original CP/M disk. Format programs have
to be specifically tailored to the type of disk you are using. Do not try to
format a disk with a program taken from a different computer, because it
is not likely to work.

When you use a floppy diskette for the first time, place it into drive B
for the formatting operation. In Chapter 1 we saw that a warm start must
be performed when changing disks. But this is an exception. Do not per-
form a warm start after inserting a new, unformatted diskette.

If drive A is not the default drive, give the command ‘A:’ so that drive A
will be the default drive. Be sure that the diskette in drive A contains your

DUPLICATING AND ALTERING CP/M DISKS

17

formatting program. Execute this program by typing its name. You may
have to answer several questions during program execution. These will
deal with whether the diskette should be formatted in single or double
density, and whether the drive is single sided or double sided. Some
systems can figure these things out automatically, so there may be no
questions.

If you open a new box of diskettes, it will be convenient to format all of
the disks at once. The FORMAT program is usually written with this in
mind. After the first disk has been formatted, change to a fresh disk and
press RETURN. The program will usually repeat the previous operation.
Remember, do not try to write on a new disk until it has been formatted,
or you might get a BDOS error. In the next section we will consider a
general technique for making copies of disks using SYSGEN and PIP.

Duplicating a Diskette with SYSGEN and PIP

CP/M disks are partitioned into two regions. These are known as the
system tracks and the data tracks. The system tracks contain the CP/M
operating system, including the CCP, the BDOS, and the BIOS. This
region of the diskette is not usually accessible. The data tracks are divided
into the directory area and the program-storage area.

Because the system tracks are not normally accessible to the user, the
built-in command

ERA *.*

will erase all of the regular user files stored on the data tracks of the disk,
but it will not alter the system tracks.

However, you will need to access the system tracks to make a backup of
your system diskette or to alter the BIOS. After a new diskette has been
formatted, all of the regular files can be copied from the original diskette
to the new one with the PIP program. If the original diskette is on drive A
and the new diskette is on drive B, give the command

PIP B:=A:*.*[V]

Now the new diskette contains all the files from the original diskette. The
new diskette can be used in drive B, but it cannot yet be used in drive A.
This is because the system tracks, which contain the CCP, BDOS, and
BIOS, have not yet been recorded on the new diskette.

A program called SYSGEN can be used to copy the system tracks from
one diskette to another. However, SYSGEN cannot do this task directly.
It must first copy the system tracks from the source disk into memory.

18

MASTERING CP/M

Then it can copy the memory image to the system tracks of another disk.
Let us see how this works.

Execute SYSGEN and follow its directions. There will be slight varia-
tions from one version of the program to another, but the general approach
is the same. When you execute SYSGEN it might respond with something
like this:

SYSGEN Version 3.0

Distributed by Lifeboat Associates

for CP/M2 on quad North Star.

Source drive NAME (or RETURN to skip)

Enter the name of the source drive but do not include the colon. Thisis the
drive where the original disk is located, normally drive A. SYSGEN
repeats your response and then asks for a second carriage return. For ex-
ample, if you respond with drive A, it will display the following line:

Place SOURCE disk on A, then type RETURN

When you enter a second carriage return, the response is as follows:

Function complete

CP/M image in RAM at 900H is ready to write
or reboot and ““SAVE 40 CPMxx.COM"
Destination drive NAME (or RETURN to reboot)

During this step SYSGEN copies the CP/M system tracks from the source
drive into memory. There are now two copies of CP/M in memory (see
Figure 2.1). The working version is at the top of memory and the
SYSGEN version is near the bottom, just above SYSGEN itself.

The next step is to write the SYSGEN version of CP/M to the system
tracks of a floppy disk. SYSGEN first must know where (on which drive)
to write the system. Give the drive name of the new diskette. This will
usually be drive B. Again, do not include the colon. SYSGEN responds
with the following:

Place destination disk on B, then type return

When you enter a carriage return SYSGEN copies the system from
memory to the system tracks of the new diskette. That completes the pro-
cess. SYSGEN then prints the following lines:

Function complete
Destination drive NAME (or RETURN to reboot)

At this point you can place copies of CP/M onto the system tracks of
additional formatted diskettes. Remove the new diskette and insert

DUPLICATING AND ALTERING CP/M DISKS

19

High memory
\
USER
BIOS
Working version
of CP/M
BDOS
cce
/
3\
USER
BIOS
SYSGEN version
of CP/M
BDOS
cce
/
SYSGEN
100 hex
Low memory

Figure 2.1: The SYSGEN Version and the Working Version of CP/M

another formatted diskette into drive B. Type the letter B and a carriage
return. SYSGEN will display the requested drive and ask for another carriage
return. SYSGEN will then copy the system from memory to the system
tracks of this diskette. In this way you can easily write the system tracks to
anumber of diskettes, one after the other. If you only want a single copy,
simply type a carriage return and the program will terminate. In the next
section we will consider another method for duplicating diskettes.

20 MASTERING CP/M

Duplicating a Diskette with Copy

We used PIP and SYSGEN in the previous section to make a duplicate
copy of a diskette. In this section we will consider a second method that is
simpler and quicker. However, this approach requires a nonstandard
program called COPY that may not be provided. Check whether you
have an executable program called COPY.COM, COPY5.COM, or
COPY8.COM. Usually such a program can perform the three tasks of
formatting a new diskette, copying the system tracks, and copying the
data tracks all in one operation.

Put the original diskette in drive A and a new, unformatted diskette in
drive B. Be careful not to perform a warm start. Execute the COPY program
and follow its instructions. Answer the questions about the name of the
source and destination drives. In this example, the source drive is A and
the destination drive is B. This may be the default option. Before giving
the final carriage return, you can change the source disk in drive A if you
want to copy a different disk.

If this operation is successful, you have discovered a convenient
method of duplicating diskettes. However, the operation may fail if your

~ version of COPY requires a formatted destination disk. Even so, thisisa
convenient way to copy a disk. Although you must format the new
diskette separately, you can copy both the system tracks and the data
tracks with the COPY program. We will now learn how to alter the infor-
mation stored on the system tracks of a disk.

GENERAL PROCEDURE FOR ALTERING THE BIOS

In the previous examples of this chapter we considered methods of
duplicating a diskette, including the system tracks. In the next chapter we
will want to be able to alter parts of the CP/M system stored on these
system tracks. This is an awkward procedure, because the system tracks
are not normally accessible. Therefore, in the remainder of this chapter
we will discuss three methods for accessing the CP/M system tracks so
they can be revised. (Be sure to make a duplicate copy of the system
diskette and alter the copy rather than the original.)

The revisions we will perform in the next chapter will be made to the
BIOS area of CP/M. The alterations will require an assembly language
source program named BIOS.ASM, BIOS.MAC, USER.ASM, or
USER.MAC. This program should be provided on your original CP/M
diskette. After altering the BIOS source program, we will assemble it,
then copy it over the original working version of BIOS. When we are
satisfied that the new version performs properly, we will need to save a
permanent copy on the system tracks of a floppy disk.

DUPLICATING AND ALTERING CP/M DISKS

21

Although we will not actually change BIOS in this chapter, we will
cover the necessary steps for moving the altered BIOS into the CP/M
system in memory, testing the new BIOS, and saving it on the system
tracks of a diskette. These steps are as follows:

1. Alter the BIOS.ASM or USER.ASM source program.

2. Create the corresponding HEX or REL file with the assembler.
3. Copy the HEX or REL file into place with DDT or SID.

4. Try out the new features to see if they work.

5. Copy the new version to the system tracks.

At this time we will assemble the original version of BIOS. Then we will
install it in memory to try it out. Finally, we will copy the ‘“new’’ version
to the system tracks of a floppy disk. Because we have not altered the
original BIOS, you should not notice any change in the operation of your
CP/M. The purpose of this step is to learn how to test an altered version of
BIOS and how to make a permanent copy of it on a system disk. First we
must determine the location of the working version of BIOS in memory.

LOCATING THE WORKING VERSION OF BIOS

Wesaw in Chapter 1 that the BIOS region of CP/M contains the tailor-
made routines needed to operate the particular peripherals connected to
the computer. These routines will be different from one computer to the
next. However, the remainder of CP/M, such as the BDOS and the CCP,
is universal—that is, it is independent of any particular computer. There
is therefore a series of jump instructions, called vectors, at the beginning
of the BIOS, which gives the addresses of the important routines within
the BIOS. Thus it is possible to change the BIOS instructions without
affecting the remainder of CP/M operations.

Sometimes these routines reside in a separate region of memory known
as the USER area, a subset of BIOS. In either case, a permanent copy of
these routines is present on the system tracks and a temporary working
copy is present in memory. We can make alterations to the memory image
of these routines to see whether a new version does what we want. Once we
are satisfied that the operation is correct, we must make a permanent copy
of the new version on the system tracks of drive A.

Let us now use the debugger to locate the working version of BIOS, that
is, the version at the top of memory. The jump instruction at the beginning
of memory references the BIOS warm-start address. Execute the debugger
and give the command

LO (the letter L followed by a zero)

The letter L is a mnemonic for list. This command is used to disassemble

22

MASTERING CP/M

8080 instructions, that is, to display them in mnemonic form. The param-
eter zero is the memory address. The first line of the response might be

JMP D303

The symbol JMP is the 8080 mnemonic for an unconditional branch instruc-
tion and D303 is the operand, the target of the branch. This instruction
refers to the BIOS warm-start entry. However, we want the previous cold-
start entry at location D300 hex in this example.

The next step will investigate the working BIOS region in memory. Being
careful to substitute 3 less than the value you found, give the command

LD300

The response will be a series of jumnp instructions. For example:

D300 JMP D380 (initial cold start)
D303 JMP D39F (warm-start reset)
D306 JMP DAO6 (console status)
D309 JMP DAO9 {console input)
D30C JMP D4E6 {console output)
D30F JMP DAOF (printer output)
D312 JMP DA12 (punch output)
D315 JMP DA15 (reader input)
D318 JMP D4CA (beginning of disk routines)
D318 JMP D499

D31E JMP D4CC

We must now determine whether there is a separate USER area in addi-
tion to the regular BIOS region. If there is only a BIOS region, then all of
the jump vectors will be pointing to nearby memory locations, that is,
within about 800 hex of each other. Notice that in the above list the first
two vectors branch to locations near the beginning of the BIOS (D380 and
D39F hex). However, several of the other vectors refer to an area that is
farther away (DA06, DA09, and so forth).

Let us examine this second area with the debugger. If we give the command

LDAOO

the response might be as follows:

DAOO JMP DAIB (initial cold start)
DAO3 JMP DA41 (warm-start reset)
DAO6 JMP DA7ZE {console status)
DAQ9 JMP DA9S (console input)
DAOC JMP DAB6 (console output)
DAOF JMP DACC (printer output)

DUPLICATING AND ALTERING CP/M DISKS

23

DA12 JMP DB8B (punch output)
DA15 JMP DBD6 (reader input)

We have found another set of vectors. In this case, all the vectors refer to
the immediate memory region. We have located the auxiliary region
known as the USER area, a subset of the BIOS routines.

Notice that there is a one-to-one correspondence between many of the
vectors for the BIOS region and the corresponding vectors for the USER
area. That is, some of the vectors in the BIOS area refer to the same
relative positions in a different memory area. For example, address D306
contains a jump to address DA06. One apparent exception in the above
list is the console output vector at address D30C. It references address
D4E6. However, if this reference is traced with the system debugger, it
will ultimately point to the corresponding address DAOC. Disk routines
are not usually placed in the USER area, so we do not expect USER jump
vectors beyond XX15 hex.

It is important to determine whether your system has a USER area. If
there is no USER area, we will make all the changes in the BIOS region
using a source program named BIOS.ASM or BIOS.MAC. But if the
USER area exists, we will perform the alterations in that area. The source
program will be named USER.ASM or USER.MAC.

ASSEMBLING THE BIOS OR USER
SOURCE PROGRAM

In this section we will assemble the original source program for the
BIOS or USER routines. (If you cannot find the source program, you will
not be able to make the revisions we discuss in Chapter 3.) We will then
compare the assembled code with the version used by CP/M. This will
ensure that your source program matches the version in use.

Assembling the BIOS or USER Source Program with
Digital Research MAC

Look on your original CP/M diskette for a program called BIOS.ASM
or USER.ASM, and copy it to a working disk. Look at the beginning of
this program with the command TYPE or with the system editor. Locate
the ORG instruction that establishes the address of BIOS or USER. Be
sure that it matches the value you found in the previous step. For our ex-
ample, the statement is as follows:

ORG ODAOOH ;beginning of USER

24

MASTERING CP/M

On the other hand, the operand of the ORG statement may be an expres-
sion such as

ORG MSIZE* 400H - 600H

In this case, the BIOS location is calculated by the assembler according to

the memory size (MSIZE). Locate the EQU statement that defines MSIZE

and see if it will give the correct value during assembly. Alternatively, you

can inspect the assembly listing to see what value the assembler assigned it.
Assemble the source program with the command

MAC BIOS
or
MAC USER

This step will generate three files with extensions HEX, SYM, and PRN.
The HEX file contains the assembled instructions coded in ASCII hex.
The SYM file lists the program symbols and their values. The PRN file
gives the original source program with the corresponding addresses and
assembled code.

Examine the resulting assembly listing with the TYPE command.
Find the jump vectors near the beginning of the listing. Compare the
addresses of the jump vectors with the values found by the debugger for
the actual working copy of BIOS. If these addresses are different, you
must change the operand of the ORG statement (or the value of MSIZE
in the operand expression) so that the assembled code matches the value
you found for the working version of BIOS.

Also compare the targets of the jump vectors to see if they have the
same values as the working version of BIOS. If the vector addresses are
correct but the target addresses are different, your source program does
not match the working version. It still may be possible to use this version,
however.

If the jump vectors in the assembly listing match the values you found
for the working version, we can try out the assembled version by copying
it into place over the working version of BIOS. Give the command

SID BIOS.HEX
or
DDT USER.HEX

This will execute the debugger and direct it to copy the HEX file of BIOS
or USER into place. CP/M is now using the ‘‘new’’ version of BIOS. You
may want to explore the new version with the L command of the debugger.
However, you will find that this command no longer works. The debugger

DUPLICATING AND ALTERING CP/M DISKS

25

has loaded BIOS into an address larger than itself. Whenever this happens,
the debugger L. command is automatically disabled. The solution is simple.
Return to CP/M with control-C. Then execute the debugger once again.

Assembling the BIOS or USER Source Program
with Microsoft MACRO-80

If you use the Microsoft assembler, it will be a bit more difficult to in-
stall the assembled BIOS. One method is to replace the ORG directive
with a PHASE directive such as

.PHASE ODAOOH ;absolute code

Here the operand ODAOOH is the beginning of BIOS or USER. Notice
that the symbol PHASE is preceded by a decimal point.

Be sure that the source file has a type of MAC rather than ASM.
Assemble the program with the command

M80 =BIOS/L

In this example, the L switch will direct the assembler to create a PRN file
in addition to the usual REL file.

Inspect the resulting PRN file as described in the previous section.
Compare the addresses for the jump vectors in the listing to the location
of the working version of BIOS. When they agree, you can install the
assembled version using the linking loader Link-80 and the debugger.
Start with the command

L8O BIOS/E

This command will convert the file BIOS.REL into an executable version
and placeit at the beginning of the TPA. The E switch causes the loader to
exit to the CP/M operating system after it has created the memory image.

The situation is now very unusual. The newly assembled BIOS is sitting
in low memory starting at 100 hex. However, the first instruction contains
a jump to the beginning of BIOS (DAQO hex in this case). The program we
want actually begins at address 103 hex.

Link-80 has displayed three numbers enclosed in brackets. For example:

[DACO 39F 3]

The first number (DAOO hex) is the address of the beginning of BIOS. The
second number is the location of the end of the TPA memory image of
BIOS. The third number, 3, is the program size, that is, the number of
256-byte blocks needed to save the program. Make a disk copy of the
memory image by giving the CP/M command

SAVE XX BIOS.COM

26

MASTERING CP/M

where XX is the number of blocks to save.
Load the new file back into memory with the debugger command

SiD BIOS.COM

Remember, the first three bytes starting at address 100 hex contain an un-
wanted jump instruction. The actual program begins at address 103 hex.
We found that the end of the image is at 39F hex.

Move the image into place with the debugger, being careful to start at
address 103 hex rather than address 100 hex. As an example, the move
command might look like this:

M103,39F,DAOO

The ““new’’ version of BIOS has now been installed in memory, overlaying
the original copy. Of course, we have not yet made any alterations to
BIOS or USER.

COPYING THE ALTERED BIOS TO DISK

In the previous example, we assembled the original version of BIOS or
USER and copied the assembled version over the working version. In the
next chapter, we will add features to the BIOS source program before
assembly. We can then test the new features after the assembled version
has been installed over the original working version. But if you now turn
off the computer, the original version will be loaded next time CP/M is
booted. It will be necessary to copy the revised working version of BIOS
from memory to the system tracks of a diskette so that you will have a per-
manent copy. In this example, we have not made any changes to the BIOS.
However, let us go through the process of copying the working version to
the system tracks to ensure that you understand the process.

There are three different ways to install a revised version of BIOS onto
the system tracks of a diskette. We will begin with the easiest method.

Copying BIOS to Disk with SAVEUSER

The simplest method of copying the working version of BIOS to the
CP/M system tracks is to run a program called SAVEUSER. However,
SAVEUSER is not a regular CP/M program, so you may not have a copy.
SAVEUSER directly copies the current working version of the USER
area of BIOS to the system tracks of the disk in drive A. To save the current
version of USER, type the name SAVEUSER and answer the questions.
If you cannot locate a copy of SAVEUSER, then you must use one of the
other methods for saving an altered copy of the system.

DUPLICATING AND ALTERING CP/M DISKS

27

Copying the Altered BIOS from a HEX File
to Disk Using SYSGEN

We saw previously in this chapter that SYSGEN can be used to copy the
system tracks from one disk to another. The operation is actually performed
in two steps. The system tracks are copied from the source disk into
memory, then the memory image is copied to the destination disk.

SYSGEN can also be used to revise the system tracks of a disk. How-
ever, in this case the process is stopped in the middle, after the system has
been copied from the source disk to the SYSGEN position of memory.
The revised copy of BIOS is placed over the SYSGEN position of the
original BIOS. Then the revised system is copied to the destination disk
with SYSGEN. Let us consider the first part of the SYSGEN operation.

When copying the system tracks from one disk to another, we saw that
SYSGEN produces the following message after the system is copied into
memory from drive A:

CP/M image in RAM at 900H is ready to write
or reboot and “SAVE 40 CPMxx.COM”
Destination drive NAME (or RETURN to reboot)

Previously, we gave the name of the destination disk. This time, however,
we terminate SYSGEN with a carriage return. Then we save the SYSGEN
image (along with SYSGEN itself) as a regular CP/M disk file. In this ex-
ample, SYSGEN tells us that 40 blocks of 256 bytes are needed to save the
system image, but this number may vary from one system to another.

After SYSGEN loads the image into memory, we can simply type a car-
riage return to go back to the system level. When the prompt symbol A>
appears, give the command

SAVE 40 CPM2.COM

to save the system image as a file named CPM2.COM. This file contains
the complete CP/M system and a boot loader if necessary. It also contains
a copy of SYSGEN at the beginning.

(Remember that file types are chosen to suggest the nature of a file.
CP/M uses the file type COM for executable programs. However, the
system image we just saved is not an executable program, because it con-
tains a copy of SYSGEN at the beginning and the remaining parts are in
the wrong place. Consequently, it would be more appropriate to choose a
file type of SYS. This is possible if you use SID, but DDT requires the
extension COM.)

We now have a regular CP/M disk file containing an image of the
original CP/M. We must now reload this system image back into memory

28

MASTERING CP/M

with the debugger DDT, so that we can alter it. We are going to load the
file into memory starting at 100 hex, because that is the normal working
area of memory. Of course, this is not where the system resides when we
are using it.

When the debugger is executed, it copies the system image into memory.
There are now two copies of the CP/M system in memory (see Figure 2.1).
The regular working version resides at the top of memory. The duplicate
version, generated by the SYSGEN operation, temporarily resides in the
TPA just above SYSGEN. We will refer to these two copies as the working
version and the SYSGEN version.

The next step is to place the revised copy of the BIOS over the original
copy of BIOS in the SYSGEN position. But we first have to determine the
address of the BIOS or USER area in the SYSGEN version. The debugger
can help find the location.

Execute the debugger with a parameter so it will load a copy of the
system image into memory. Give the command

DDT CPM2.COM

_ Be careful that CPM2.COM is on the default drive when using DDT.

That is, the command
A:DDT CPM2.COM

is acceptable but the following command is not:
DDT B:CPM2.COM

This is not a problem with SID.
When the debugger copies the system image into memory starting at
100 hex, it gives three numbers. For example:

NEXT PC END
2900 0100 ACFF

Record the number given under the word NEXT (2900 hex in this case).
This marks the location of the end of the system image.

The SYSGEN version of the CP/M system we loaded at address 100 hex
should be the same as the working version. We determined the location of
the working version of BIOS or USER in the previous section. Now we
must find the corresponding region for the SYSGEN version. We will use
the L command for this purpose.

When the memory image was loaded with the debugger, the NEXT
address was displayed on the screen. Because this address references the
end of BIOS, start at 100 hex less than this address. If you do not find the
vectors, try a smaller address. For example, if the NEXT address was

DUPLICATING AND ALTERING CP/M DISKS

29

given as 2900, give the command
L2800
The response might be as follows:

2800 UNZ DB35
2803 PUSH H
2804 PUSH B
2805 LXt H,DB18
2808 MvI B,16
280A MOV CM
280B CALL DAC4
280E INX H
280F DCR B
2810 JNZ DBOA
2813 POP B

We are looking for a set of jump vectors into BIOS or USER. Obviously,
this is not it. The jump addresses will be identical to the values we found
previously for the working version of BIOS. Repeat the operation withan
address that is 100 hex smaller. For example, if we try

L2700
we might find the following:

2700 JMP DA1B
2703 JMP DA41
2706 JMP DATZE
2709 JMP DA%6
270C JMP DAB6
270F JMP DACC
2712 JMP DBSB
2715 JMP DBDé6
2718 JMP DAFC

This is the set we are looking for. The addresses of the jump vectors match
the USER addrésses we found previously.

The next step is to calculate the offset (the difference) between the
SYSGEN location and the working location of BIOS or USER. We use
the H (for hexadecimal arithmetic) command of DDT or SID. This is an
undocumented DDT instruction. For this example, the command is

H2700,DA00
This command subtracts DAOO hex from 2700 hex. The debugger

30

MASTERING CP/M

responds with both the sum and the difference:
0100 4D00

It is the difference that we want, the second value of 4D00 hex. This is the
value we have to add to the address of the regular assembled code (DA0O
hex) to place the new BIOS or USER instructions into the proper
SYSGEN area (2700 hex).

After altering the BIOS.ASM or USER.ASM program, we assemble it
to produce a corresponding BIOS.HEX or USER.HEX file. We need to
install this new version in place of the original. The debugger automatically
loads the HEX file of instructions in its proper place (over the working
version) if the following two commands are given:

IUSER. HEX
R

(The I command initializes an FCB with the file name USER.HEX. The R
command reads the corresponding disk file into memory.)

However, in this case we want to load the file into the SYSGEN area
rather than the working area. We therefore give the R command with the
calculated offset:

IUSER. HEX
R4DOO

The debugger will now place the HEX file into the desired SYSGEN area
rather than the working area.

At this point we have a copy of the original CP/M system in the
SYSGEN position, except that a revised copy of BIOS has replaced the
original BIOS. Return to the CP/M system level by typing control-C. You
can now save the revised memory image with the command

SAVE 40 CPMREV.COM

(Be sure to choose a different name than last time so you can distinguish
the original version from the revised version.)

Alternatively, you can execute SYSGEN by typing its name. The
SYSGEN version of CP/M is already in memory. Therefore, just give a
carriage return to the first SYSGEN question:

Source drive NAME (or RETURN to'skip)

This will skip the first part of SYSGEN, which reads the system tracks into
memory. Put the desired diskette into drive B, for example, and type the
letter B in response to the next question:

Destination drive NAME {(or RETURN to reboot)

DUPLICATING AND ALTERING CP/M DISKS

31

SYSGEN then repeats your answer:
Place DESTINATION disk on B, then type RETURN

When you type another carriage return, the new system image will be written
onto the system tracks of the diskette in drive B. Of course, any other
drive can be used. Be sure that the disk has been formatted.

You can test whether your alteration of the system tracks has been suc-
cessful by turning off the computer and booting up using the new diskette.

Copying the Altered BIOS from the Working Version
to Disk Using SYSGEN

The third method of writing the system tracks of a diskette is similar to
the second method. In this case we do not use a BIOS or USER file directly.
Instead, we move a working copy of USER or BIOS down to the SYSGEN
position. For the above example, we would load the debugger and the
SYSGEN memory image as before with the command

DDT CPM2.COM

We must determine the BIOS or USER address of the SYSGEN version
as we did in the previous section. Then give the M (move) command:

MDAOO, DDFF, 2700

This operation will block move a copy of BIOS or USER from the regular
working position (DAO0O—DDFF) down to the SYSGEN location
(2700—2A00). We return to the CP/M system by typing control-C, and
then we execute SYSGEN. Proceed as in the previous section to save the
memory image of the system on the system tracks of a disk.

Now that you have a working copy of your BIOS or USER routines, we
can begin to add some new features. Be sure to keep a copy of the original.
Then if your current copy refuses to work, you can go back to the original
and begin again.

SUMMARY

In this chapter we have seen how to duplicate a diskette. The steps in-
cluded formatting a new diskette, copying the data regions onto it, and
copying the system tracks onto it. We also learned how to alter the BIOS
or USER area of CP/M and how to make the change permanent by writing
the new version onto the system tracks. We will now be able to add the
features discussed in the next chapter.

CHAPTER 3
T

ADDING
FEATURES
TO

BIOS

INTRODUCTION

In Chapter 1 we learned that the CP/M basic input/output system
(BIOS) contains the software needed to operate the peripherals, such as
the console, the printer, and the disks. In Chapter 2 we learned how to
access the BIOS or USER area so that it can be modified. In this chapter
we will study the BIOS in more detail, and we will modify it to incorporate
several useful features. These include the ability to direct the console out-
put to the printer and to check that the printer is turned on.

Because only a small amount of memory is allocated for BIOS routines,
it is necessary to write the programs in assembly language rather thanin a
higher-level language such as BASIC or Pascal. Let us therefore review
the operation of assemblers.

M MASTERING CP/M

ASSEMBLY LANGUAGE PROGRAMMING

Assembly language is a low-level computer language in which the in-
structions of a particular CPU are selected directly by a mnemonic opera-
tion code (opcode). The 8080 CPU has three general-purpose, 16-bit
registers. They are given the names HL, DE, and BC. The complete instruc-
tion sets for both the 8080 and the Z80 CPUs are given in the Appendices.

Consider, for example, the following operation code:

JMP D303

This instruction tells the CPU to branch to address D303 hex. The
assembler generates the corresponding binary code. Thus there is a one-
to-one correspondence between an assembly language instruction and the
CPU operation it generates.

By contrast, a single instruction in a high-level language, such as Pascal
or BASIC, usually generates more than one CPU instruction. Although
each compiler operates differently from the next, the line

I=I1+5

might be converted into the following CPU instructions:

LXI D, 5
LHID 1%
DAD D
SHID 1%

This sequence of instructions loads the DE register with the value of 5
and the HL register from the location of 1%. The values in DE and HL are
added together and the result is placed in HL. The result is then stored in
the memory location referenced by 1%.

Assembly language programs are written and altered with one of the
many CP/M editors, such as ED, WordStar, WordMaster, Magic Wand,
PMATE, or Benchmark, among others. The resulting source program is
assembled with an assembler program, then converted into executable
binary code. The CP/M operating system provides an assembler called
ASM. This assembler is not suitable for many of the programs in this
book, however, because it does not incorporate a macro processor. (We
will begin discussing macros and macro processors in Chapter 4.) There
are two common CP/M assemblers that do contain a macro processor.
These are the Microsoft MACRO-80 assembler and the Digital Research
MAC assembler. Both of these macro assemblers accept the standard Intel
8080 mnemonics. The Microsoft assembler can also use the Zilog Z80

ADDING FEATURES TO BIOS

35

mnemonics directly. The Digital Research assembler can only generate
the Z80 opcodes with macros.

A Simple Assembly Language Program

To ensure that you understand the operation of your assembler and the
associated programs, we will assemble and execute a very simple program
in 8080 assembly language. Use a CP/M editor to generate the source pro-
gram shown in Figure 3.1, and give it a file name of BELL. The file type
should be either ASM for the Digital Research assemblers or MAC for the
Microsoft assembler. If you are using the Microsoft assembler, omit the
ORG statement and the apostrophes enclosing the TITLE statement.
This is one of the few programs you can assemble with the Digital
Research ASM assembler. Use the file type of ASM, but omit the first line
beginning with the word TITLE.

Notice that there are generally four different columns of informationin
the listing of the source program. It is common practice to use the ASCII
tab character to align these four columns. The Digital Research and
Microsoft assemblers do not require such an alignment, but it makes the
source program easier to understand. For a regular operation code, the
four columns are as follows:

LABEL: MNEMONIC OPERAND ;comment

The label consists of alphanumeric characters and is terminated by a
colon. (The colon is optional for the Digital Research assemblers but re-
quired for the Microsoft assembler.) Program control can be transferred
to the label from any other part of the program. The mnemonic cor-
responds to the desired CPU instruction,; its spelling may differ from one
assembler to another. The operand is the parameter for the CPU instruc-
tion; it can refer to a CPU register, a constant, or a memory address. The
comment, which is preceded by a semicolon, documents the instruction.

Not all lines in the source program contain opcodes. Some lines contain
assembler directives or pseudo operation codes (pseudo ops) instead.
These lines do not generate CPU instructions; rather, they are used to
create constants, set aside memory locations, or give directions to the
assembler. For example, the first line,

TITLE ‘Ring the console bell’

directs the assembler to place the indicated title at the top of each page of
the assembly listing. The directive

ORG 100H

36 MASTERING CP/M

TITLE ‘Ring the console bell’
;(Put current date here)
ORG 100H ;Digital Research version
BEL EQU 7 ;ASCII bell char.
BDOS EQU 5 ;DOS entry point
TYPEF EQU 2 ;type char. on console
START:

LXI SP,100H

MVi C,TYPEF

MVI E,BEL

CALL BDOS

JMP 0

END START

Figure 3.1: Program BELL to Ring the Console Bell

sets the address of the assembled code to 100 hex. The next three lines are
called equates. They define the values of the symbols BEL, BDOS, and
TYPEF. For example,

BEL EQU 7

defines the value of BEL to be 7. We omit the colon at the end of a defini-
tion label because it does not represent a memory location.

Five lines of the source program in Figure 3.1 actually generate com-
puter instructions. The first instruction sets the stack pointer to 100 hex:

LXI SP,100H

(The stack pointer is a CPU register that refers to a particular region
of memory. In this example we are initializing the pointer to a value of
100 hex. However, its value is altered by instructions such as PUSH,
POP, CALL, and RET.) The second instruction places the value of 2
(TYPEF) in the C register:

MVl C,TYPEF
The third instruction loads the E register with the value of 7 (BEL):
MVI E,BEL

ADDING FEATURES TO BIOS

37

The fourth instruction generates a subroutine call to address 5 (BDOS).
The fifth instruction branches to address 0.

The final statement in the program declares the starting address to be
the label START.

Program Assembly

After you have created your source program with the editor, obtain a
listing and compare it to Figure 3.1. Correct any errors, then assemble the
program. If you are using the Digital Research MAC or ASM assemblers,
give the command

MAC BELL

or
ASM BELL

For the Microsoft assembler, type
M80 =BELL/L

An assembly listing file named BELL.PRN will be created at this step.
Compare your assembly listing to Figure 3.2 for the Digital Research
assembilers or Figure 3.3 for the Microsoft assembler.

The assembly listing gives the original source program along with the
corresponding instructions and the addresses where the instructions will
reside during execution. The instructions and addresses are given in hex-
adecimal notation. Instructions such as JMP and CALL, which refer to
memory locations, are three bytes long. The second and third bytes contain
the memory address. The low half of the address is stored in the second
byte and the high half is stored in the third byte. That is, the two bytes of
the address appear to be reversed. The Digital Research assembler gives
the address in this reversed order. For example, a call to BDOS at address
0005 looks like this:

CDO500 CALL BDOS ;Digital Research version

However, it is more natural to think of a two-byte address as the high byte
followed by the low byte. As a consequence, the Microsoft assembler
gives the address with the high byte shown first. Thus a call to BDOS
looks like this:

CDO0005 CALL BDOS ;Microsoft version

It must be remembered that the sequence of bytes in memory matches the
Digital Research order rather than the Microsoft order.

38 MASTERING CP/M

TITLE ‘Ring the console bell’
;(Current date)
0100 ORG 100H ;Digital Research version
0007 = BEL EQU 7 ;ASCl bell char.
0005 = BDOS EQU 5 ;DOS entry point
0002 = TYPEF EQU 2 ;type char. on console
START:
0100 310001 LXI SP,100H
0103 OE02 Mvi C,TYPEF
0105 1E07 Mvi E,BEL
0107 CDO500 CALL BDOS
010A C30000 JMP 0
010D END START

Figure 3.2: Digital Research Assembly Listing for Figure 3.1

The next step is to run the program. However, we cannot do this just
yet, because the assembler has not created an executable file. The Digital
Research assembler has generated an ASCII hexadecimal file called
BELL.HEX. This HEX file can be converted into an executable file named
BELL.COM by giving the command

LOAD BELL

(LOAD is a program that is included with the CP/M operating system.)
Now give the command

BELL

to execute the program. The console bell should sound, and control will
return to the CP/M operating system.

The Microsoft assembler, on the other hand, creates a REL file, which
must be processed differently. It is possible to create a HEX file from
a Microsoft REL file, but it is simpler to convert the REL file into an
executable file with the linking loader L80. For example, the program
BELL.REL can be executed with the command

L8O BELL/G

This command will generate a binary file, starting at memory location 100

ADDING FEATURES TO BIOS 39

TITLE Ring the console bell
;(Current date)

0007 BEL EQU 7 ;ASCl bell char.
0005 BDOS EQU 5 ;DOS entry point
0002 TYPEF EQU 2 ;type char. on console
0000’ START:
0000° 310100 i SP,100H
0003° OE 02 MvI C,TYPEF
0005" 1E07 Mmvi E,BEL
0007° CD 0005 CALL BDOS
000A” C3 0000 JMP O
END START

Figure 3.3: Microsoft Assembly Listing for Figure 3.1

hex, and execute it. After the program has finished execution and the
CP/M prompt is displayed, type

SAVE 1 BELL.COM

(We learned in Chapter 2 that L80 tells us the number of blocks to save.)
This will save the executable memory image. The program can be run
again by typing the name BELL. In Chapter 1 we created a program called
CONTIN, which we can execute to rerun BELL since the memory image
is still intact.

It is also possible to create a COM file with L80. For example, the
command

L80 BELL/N, BELL/E

will generate a disk file named BELL.COM and then exit to CP/M. The
program can be run by typing the name BELL.
We can now prepare to alter the BIOS.

BIOS ENTRY VECTORS

We learned in Chapter 2 that there is a series of vectors at the beginning
of the BIOS that gives the addresses of the corresponding routines within

40

MASTERING CP/M

the BIOS. We also learned that some versions of CP/M incorporate an
extension to the BIOS called USER. In those cases the BIOS contains the
disk operation routines and the USER area contains the remaining
routines. There is one set of vectors at the beginning of the BIOS and a
second set of vectors at the beginning of the USER area. The vectors at
the beginning of the BIOS that relate to disk operations will point into
BIOS. The remaining vectors, which refer to console and printer opera-
tion, will generally refer to a matched set of vectors at the beginning of
the USER area.

Vectors at the beginning of BIOS are shown in Figure 3.4. The first vec-
tor is called the cold-start entry. It is used during the initial startup of
CP/M. The second vector is used at the completion of major tasks; it is
called the warm-start vector. Vectors for the four logical devices, the con-
sole, reader, punch, and list, appear next. These four devices are referenced
by the following symbols:

CON: Console (input and output)
RDR: Reader (input)

PUN: Punch (output)

LST: List or printer (output)

Notice that the symbolic names for logical devices end in a colon. This is
consistent with the naming of disk drives as A:, B:, etc. By this means, a
device name can be distinguished from a disk file name. For example, the
name PUN refers to a disk file, whereas PUN: refers to the logical punch
device.

Exploring the BIOS Vectors with the Debugger

In Chapter 2 we located the BIOS jump vectors by using the debugger.
If you have not already performed this task, you should do so at this time.
Recall that we executed the debugger and gave the command

L0 (the letter L followed by a zero)
The expected response is something like this:

0000 JMP D303
0003 NOP
0004 NOP
0005 JMP ADOO

The branch at address 0 references the warm-start entry into BIOS.
Thus, for this system BIOS begins at address D300 hex. The branch at

ADDING FEATURES TO BIOS

41

BIOS JMP COLD ;initial cold start
BIOS+3 JMP WARM ;warm-start reset
BIOS+6 JMP CSTAT ;console status
BIOS+9 JMP CONIN ;console input
BIOS+12 JMP CONOUT ;console output
BIOS+15 JMP LIST ;printer output
BIOS+18 JMP PUNCH ;punch output
BIOS+21 JMP READER ;alternate input device

Figure 3.4: The First Eight CP/M BIOS Vectors

address 5 is usually the BDOS entry; we used this location to ring the con-
sole bell in the program BELL. Now, however, the address stored at loca-
tion 5 has been altered by the debugger. That is, the normal BDOS address
for this system is C506 hex, but in this example the debugger changed it to
ADOO hex.

When DDT (or SID) is executed, CP/M copies the program into
memory at the beginning of the TPA and branches to it. The debugger
then relocates itself into high memory. This allows another program (the
one to be debugged) to be loaded into the TPA and run under the control
of the debugger. However, the debugger needs to intercept BDOS calls
made by the program it is studying. Consequently, it changes the BDOS
address stored at location 5.

After finding the location of BIOS, we can disassemble the vectors at
the beginning of BIOS by giving (in this example) the debugger command
LD300. The response might be as follows:

D300 JMP D380 (initial cold start)

D303 JMP D39F (warm-start reset)

D306 JMP DAQD6 (console status)

D309 JMP DA0? (console input)

D30C JMP D4E6 (console output)

D30F JMP DAOF (printer output)

D312 JMP DAI12 (punch output)

D315 JMP DAIl15 (alternate input device)
D318 JMP D4CA (beginning of disk routines)
D31B JMP D499

D3IE JMP D4CC

We saw in Chapter 2 that there might be a second set of jump vectors in

42

MASTERING CP/M

a separate region of memory known as the USER area. For the above ex-
ample, the USER area starts at address DAOO hex. If we examine this area
with the debugger command LDAOQO, the following response might appear:

DAOO JMP DAIB (initial cold start)

DAO3 JMP DA41 (warm-start reset)
DAO6 JMP DA7ZE (console status)

DAO? JMP DA9%96 (console input)

DAOC JMP DAB6 (console output)

DAOF JMP DACC (printer output)

DA12 JMP DB8B (punch output)

DA15 JMP DBDé (alternate input device)

In the following sections we will be interested in the vectors at addresses
DAOC and DAOF, which branch to the routines that operate the console
and the printer.

ENGAGING THE PRINTER WITH THE DEBUGGER

Sometimes it is desirable to reproduce console output on the CP/M
printer (list device). This can be accomplished by typing control-P during
console input. However, an executing program cannot engage a printer in
this way. Nevertheless, it is sometimes desirable for a program to be able
to engage the printer. In the next section we will write a short program to
accomplish this task; but first we will perform the feat more directly, using
the debugger.

Notice that the vector pointing to the printer routine (at address DAOF
in the above list) immediately follows the vector for console output (at ad-
dress DAOC). By changing the console output jump instruction to a call
instruction, we can activate console and printer output simultaneously.
We will make this change with the debugger. This type of operation is
sometimes called a patch. You must be very careful with this step, because
you are actually changing the BIOS. You are only going to change one
byte, but you must not use the wrong value or change the wrong byte.
Otherwise, CP/M will not respond to your commands or it may do
strange things.

Use the debugger command A (for assemble) to change the location of
DAOQC (in this example):

ADAOC (you type this)
DAOC CALL DAB6 (you type CALL DAB6)
DAOF (you type a carriage return)

ADDING FEATURES TO BIOS

43

In this example, we used the debugger to engage the printer by changing a
jump instruction to a call instruction. Any executing program (except
Microsoft BASIC) can also use this technique.

Alternatively, we can use the debugger command S (for set) to change
the jump instruction (C3 hex) to a call instruction (CD hex). The com-
mands are as follows:

SDAQC (you type this)
DAOC C3CD (you type CD)
DAQD B6 . (you type a period)

From now on, the printer should display the same information as the con-
sole screen. We can return the BIOS to its original condition by changing
the call instruction back to a jump instruction. (If something has gone
wrong and CP/M no longer works, just perform a cold boot. You may
have to turn the computer off and on again to get it working.) Let us now
automate this patching operation.

A PROGRAM TO ENGAGE AND DISENGAGE
THE PRINTER

We can make the process of engaging and disengaging the printer under
computer control easier by using two programs to do the patching.
Because these programs are so short, we will create them with the debugger
rather than with the assembler. Load the debugger and give the command
A100 to assemble a program starting at 100 hex. Then type the following
instructions:

LHID

X1 D.9
DAD D
Mmvi M,CD
RET

Type an extra carriage return to terminate this step.
After this short program has been written, disassemble it by giving the
command L100. The result should look like this:

0100 LHLD 0001
0103 Xl D,0009
0106 DAD D

0107 MVl MCD
0109 RET

4

MASTERING CP/M

Return to CP/M by typing control-C. Save the program:
SAVE 1 LISTON.COM

Before you run this program, create the complementary program to restore
the BIOS vector to its original state. Load LISTON with the debugger:

DDT LISTON.COM

Change the call instruction at location 108 hex, the second operand of the
MVI instruction, to a jump instruction (C3 hex). (Use an S108 command
to deposit the value of C3 or enter the instruction ‘MVI M,C3’ with an
A107 command.) Return to CP/M and save the second program with the
command

SAVE 1 LISTOFF.COM

When LISTON is executed, the first instruction loads the BIOS warm-
start address into the HL register. (Recall that address 0 contains the jump
instruction and addresses 1 and 2 contain the warm-start address.) The
second instruction loads the DE register with the value of 9, the difference
between the warm-start entry and the console-output entry. The third in-
struction adds the HL and DE registers, placing the sum in HL. The HL
register now refers to the console-output vector. The fourth operation
places a call instruction (CD hex) over the console-output jump instruc-
tion. The final instruction returns to the system level of CP/M.

Because hexadecimal is the default mode of the debugger, we can enter
hex data without the suffix H. By contrast, decimal is usually the default
mode for an assembler.

To test these programs, turn on the printer and give the CP/M command

LISTON
followed by
DIR

The directory listing should appear at both the console and the printer.
Then give the commands

LISTOFF
DIR

The directory listing should appear only at the console.

These two short programs are more useful for the insight they give into
the workings of CP/M than for their actual operation. In fact, they will
not always work as expected. In particular, they will not operate with

ADDING FEATURES TO BIOS

45

Microsoft BASIC. We will now alter the BIOS so the printer can be
engaged by changing the value of the IOBYTE. (Refer to Chapter 2 for a
review of how to access and alter the BIOS or USER routines.)

ENGAGING THE PRINTER WITH THE CP/M IOBYTE

We learned that the BIOS provides vectors to the operation of the four
logical peripherals: console, reader, punch, and printer. CP/M provides
a mechanism for mapping these four logical devices to 16 physical
devices. That is, each of the four logical devices can be assigned to as
many as four different actual devices. At any time, the current
assignments for the four logical devices are coded in a single byte located
at address 3. The two low-order bits hold the console assignment, the next
two refer to the reader, the two after that refer to the punch, and the two
high-order bits hold the printer assignment.

While the IOBYTE feature can be used to map the four logical
peripherals to 16 actual devices, it is not necessary to implement all these
capabilities. Each part can be added as a single step, greatly simplifying
the process. The IOBYTE feature can be useful even if the console and the
printer are the only peripherals.

Let us begin with a simple implementation of the IOBYTE—engaging
and disengaging the printer. We will designate the low-order bit of the
IOBYTE at address 3 as a printer switch. If this bit has a value of 1, the
printer will display console output. Otherwise, the printer will not respond
to console output. Of course, the printer can still be engaged by typing
control-P in the usual way. Furthermore, the video screen will always
display the console output, whether or not the printer is engaged.

The first thing we have to do is ensure that the IOBYTE is properly ini-
tialized. Look at the BIOS assembly listing and locate the first jump vector.
This will be the first executable statement near the beginning of the pro-
gram. Now find the referenced address and follow the instructions until a
return statement is encountered. Somewhere in this section there may be
statements like the following:

COLD:
MVI A0
STA 3
or
COLD:
MVI A, INITAL
STA IOBYTE

46 MASTERING CP/M

In the second example the value of INITAL is defined as 0 and the
IOBYTE is set to a value of 3. If you cannot find such a passage, insert the
equivalent instructions with the system editor. Be sure to define the sym-
bols INITAL and IOBYTE if you use the second form. For example:

INITAL EQU O
IOBYTE EQU 3

The next step is to alter the console-output routine. Look at the BIOS
assembly listing and locate the console-output vector (XX0C hex) and the
list-output vector (XXOF hex). These are the fifth and sixth vectors in the
list. Note the labels used as the operands. They might be something like
this:

XX0C JMP CONOUT
XXOF JMP LIST

Go to the location of CONOUT and insert the following code at the very

beginning;:
CONOUT: ;console output
LDA IOBYTE ;getthe value
ANl 1 ;mask for bit 0
CNZ LISTT ;printer output
CONO2: ;regular console output
The first instruction loads the accumulator from memory address 3, the
location of the IOBYTE:
LDA IOBYTE

The second instruction performs a logical AND with the accumulator and
the value of 1:

ANl 1

This masking AND operation resets (zeros) all but the low-order bit
(bit 0) of the accumulator. The operation also alters the zero flag of the
CPU accordingly. That is, the zero flag is set if the low-order bit is zero. It
is reset otherwise.

The third instruction tells the CPU to call the printer subroutine at
LISTT if the zero flag is reset (the low-order bit is not zero):

CNZ LISTT

Be sure to include the label CONO2. We will need it for alater program
in this chapter. Also notice that the branch to the printer routine is called

ADDING FEATURES TO BIOS

47

LISTT. This is necessary to distinguish the logical list from the physical
list. Find the location of the label LIST. If an opcode also appears on this
line, split the line in two so that the label is on a line by itself. Add the label
LISTT: on the line immediately following the label LIST.

Put today’s date as a comment statement near the beginning of the
source program.

Changing the IOBYTE with the System Debugger

Assemble the new version and load it into memory with the debugger.
Check the IOBYTE at address 3 to see that it has a value of 0. Give the
debugger command S3. The response will be

0003 X

where Xis the value of the IOBYTE. If this value is 0, enter a period to ter-
minate this step. Otherwise, enter the value of 0. Turn on the printer, and
with the S command of the debugger, change memory address 3 to a value
of 1:

S3 (you type this)
000301 (typeal)
00040. (type a period)

Thelast line above should be displayed on the printer as well as on the con-
sole screen, because the IOBYTE is now 1. Try some other commands,
such as

Do

The printer should again follow the console screen. Change the IOBYTE
back to 0 with the S command. The printer should no longer repeat the
console output. You must now copy the new BIOS version to the system
tracks if you want to make it permanent. Of course, it should still be possi-
ble to turn on the printer with a control-P command.

Changing the IOBYTE in BASIC

Now we will try out this method with Microsoft BASIC. Load BASIC
and write a short program such as the one we used in Chapter 1:

IO FORK=1TO 9

20 PRINT K, 1/K, K*K
30 NEXT K

40 END

48 MASTERING CP/M

Then run the program. The results will appear on the console. Turn on the
printer and give the following commands:

POKE 3,1
RUN

The BASIC POKE command will change the IOBYTE to a value of 1.
When the program is run, output will appear at the printer as well as the
console.

We have already noted that Microsoft BASIC will not allow the printer
to be engaged with control-P or with the LISTON program. Now we have
a method of performing this task. The printer can be disengaged with the
BASIC command

POKE 3,0
Return to CP/M with a SYSTEM command.

Changing the IOBYTE with STAT

We have learned how to change the IOBYTE at address 3 with the
system debugger or in BASIC. It is also possible to change the IOBYTE
with STAT.

We have seen that the four logical devices CON:, RDR:, PUN:, and
LST: are each allocated two bits of the IOBYTE. Four separate physical
devices can be assigned to each of these logical devices through changesin
the IOBYTE. STAT has 16 names coded into it for this purpose. The 16
names are given in Table 3.1. You can get STAT to display this table by
giving the command

STAT VAL:

The IOBYTE can be changed from 0 to 1 by typing the command
STAT CON: =CRT:

STAT will change the IOBYTE back to 0 with the command
STAT CON: =TTY:

Changing the STAT Device Names The names for the four logical
devices were chosen years ago when teletypewriters (TTY) were common.
It might be more meaningful now to change them to something else. For
example, TTY: could be changed to CRT: and CRT: could be changed to
LST:. This change is easily accomplished with the system debugger.

ADDING FEATURES TO BIOS

49

Table 3.1: STAT’s Name for the Four Logical Devices

Bits
00 01 10 11
CON: TTY: CRT: BAT: UClI:
RDR: TTY: PTR: URI: UR2:
PUN: TTY: PTP: UP1: UP2:
LST: TTY CRT: LPT: UL1:

Copy STAT into memory with the command
DDT STAT.COM
Look at the first part of STAT with the command
D100

The ASCII representation of the data on the right side of the screen shows
the four logical device names, CON:, RDR:, PUN:, and LST:, starting at
address 139 hex. The 16 physical device names are encoded starting at ad-
dress 159 hex. You can change the names of the first two physical devices
with the SID command:

S159 (you type this)
159 54 “CRT:LST (you start typing with the quote)
160 3A . (you type a period)

If youare using DDT, you will have to enter the hexadecimal equivalent
of the ASCII characters with the S command. The ASCII characters and
their corresponding hexadecimal values are as follows:

ASCII C R T L S T
Hex 43 52 54 3A 4C 53 54

You type the command S159 as with SID. Then you type the seven hex
numbers in the following display:

159 54 43

15A 54 52

15B 59 54

15C 3A 3A

15D 43 4C

1SE 52 53

1SF 54 54 :
160 3A . (you finish with a period)

50 MASTERING CP/M

Return to CP/M and save the correct amount of memory with a new
name such as STAT2.COM. Try changing the IOBYTE from 0 to 1 by
giving the command

STAT2 CON:=LST:

Printer output should now duplicate the console. Disengage the printer
with the complementary command

STAT2 CON:=CRT:

We could use this method to change some of the other device names in

STAT.
We will now add some new features to the printer routine in BIOS.

ADDING A PRINTER-READY ROUTINE

Computers communicate with peripherals through input/output
registers or ports. A common arrangement uses a bidirectional data
register for transferring the information and a separate, bidirectional
status register to indicate the state of readiness. With this technique, the
status register is automatically reset to a not-ready condition each time the
CPU places a byte in the data register.

Sometimes the CPU incorporates a special signal line for servicing
peripherals. Using this line a peripheral can interrupt the CPU to request
service. A more common method for communicating with the peripherals
is called the looping method. With this technique, the computer checks
the status register to see if the device is ready. The status register is
repeatedly checked by looping through the necessary statements. When
the status register indicates that the peripheral is ready, the computer per-
forms the transfer and then goes on to something else.

Let us consider the looping method for a printer-output routine. The
instructions in BIOS might look like this:

LIST:

LISTT:
IN 5
ANI 1
JZ LISTT

In this example, the status register has an address of 5§ and the least
significant bit is used as the ready flag. The 8080 instruction IN 5 reads
the status port. The following instruction, ANI 1, performs a logical

ADDING FEATURES TO BIOS

51

operation on the accumulator. The result is zero if the peripheral is not
ready. Consequently, the third instruction, JZ LISTT, causes a branch to
the top of the three-instruction loop. Looping around the above three
instructions continues until the peripheral is ready. When the ready
bit indicates that the peripheral has finished its task, the instructions
following JZ LISTT are executed. The computer sends another byte to
the data port and then returns. The computer operates much faster than
the peripheral, so much of its time is spent looping around the above three
instructions.

The looping method works satisfactorily if the printer is actually turned
on. Unfortunately, if the printer is turned off, the data-ready flag will
usually tell the computer to send more data anyway. The computer then
sends the data to a printer that is not doing anything. Therefore, we must
consider two separate items—whether the printer is turned on and
whether the last byte has been printed. We have been considering the latter;
now we must consider the former.

There may be an easy solution to this problem. We have been looking at
only one of the eight bits of the status register, the one that indicates
whether the printer buffer is empty. Many computers use another bit of
the status register to indicate whether the peripheral is turned on. This is
called the data-terminal-ready (DTR) bit.

Locating the Bit for Data Terminal Ready

The assembly language program given in Figure 3.5 can be used to
determine whether your printer status port has a DTR bit. For the standard
RS-232 serial port, the DTR signal is usually assigned to pin 20. However,
pin 11 is sometimes used for this purpose. Consequently, you may have to
move one of the wires in the printer cable.

Create a source file with the program given in Figure 3.5. Check your
BIOS or USER listing to find the address of your printer’s status register,
and change the value of PORT to the address of your printer’s status port.
Assemble the program and execute it. Remember to omit the ORG state-
ment if you are using the Microsoft assembler. The program will read
the status port and display the value on the console in binary notation. If
your printer is off, turn it on; if it is on, turn it off. If any of the bits
change, the new value will be printed on the screen. For some printers, it
may take as long as one minute for the bit to change after the printer
switch is turned off.

Continue in this way, alternately turning the printer on and off. If you
find a bit changing, make a note of which bit changes and the sense of its

52 MASTERING CP/M

TITLE ‘Display /0 port in binary’
;(Put current date here)
ORG 100H
PORT EQU 5 ;status port
BDOS EQU 5
TYPEF EQU 2 ;console output
CSTATF EQU 1 ;console status
CR EQU 13 ;carriage return
LF EQU 10 ;line feed
START:
LXI SP,STACK
IN PORT ;read
MOV HA ;save
CALL BITS ;show binary
NEXT:
IN PORT ;next sampling
MOV LA ;save
CMP H different?
JNZ SHOW ;yes
PUSH H
MVI C,CSTATF ;console status
CALL BDOS
POP H
RRC ;check bit 0
JC 0 ;quit
JMP NEXT
SHOW:
CALL BITS ;show binary
MOV H,L ;switch
JMP NEXT
BITS: ;convert binary to ASCII
MOV C.A
MVI B,8 ;8 bits
BIT2:
MOV A,C

Figure 3.5: Program to Locate the Bit for Data Terminal Ready

ADDING FEATURES TO BIOS 53
ADD A ;shift left
MOV CA
MVI A0 ;zero
ACI o ;carry + ASCIl O
CALL ouTT
DCR B ;count
JNZ BIT2 ;8 times
CRLF: ;carriage return, line feed
MVI A,CR
CALL ouTT
MVI A LF
OUTT: ;console output
PUSH H
PUSH B
PUSH PSW
MVI C,TYPEF ;console print
MOV EA
CALL BDOS
POP PSW
POP B
POP H
RET
DS 12 ;stack space
STACK:
END START
Figure 3.5 (continued)

logic (0 or 1) when the printer is of f. For example, suppose that the result
is as follows:

10110111 (printer on)
00110111 (printer off)

In this example, bit 7 (the high-order bit) indicates that the printer is
ready (DTR) when itis set to 1. The bit is reset to 0 when the printer is off.
For this port, bit 0 indicates whether the printer buffer is empty. If the
printer is turned on but busy, the bit pattern is

10110110 (printer on)
When the printer is ready to receive another byte, the pattern is

10110111 (printer on)

S MASTERING CP/M

You can terminate the program by pressing any console key.

Let us see how this program works. We begin with the usual TITLE,
ORG, and EQU directives. The status register in this example has a value
of 5.

The actual instructions begin with the label START. The stack is placed
at the end of the program, rather than at 100 hex as in the program shown
in Figure 3.1. The status register is read into the accumulator and then
moved into the H register. The value is displayed on the console by calling
subroutine BITS.

The port is then read again, but this time the value is placed into the L
register. The two values are compared. If they are different, the new value
is displayed by calling subroutine BITS again. Then the new value is moved
into the H register. If the values are the same, nothing is displayed.
However, the console status is checked to see if the program is to be ter-
minated. If not, the program loops repeatedly.

Subroutine BITS converts a binary number in the accumulator to a string
of eight ASCII zeros and ones and then displays the result on the console.
The routine moves the byte into the C register and initializes register Btoa
value of 8, the number of characters to be displayed.

The loop beginning at BIT2 is then executed eight times. On each pass
through the loop, the current value of the byte is added to itself with the
ADD A instruction. This action performs a logical shift left. The bits of
the accumulator are each moved one position. The original high-order bit
moves into the carry flag. The low-order bit is zeroed. The new value is
saved in the C register for the next step.

At this point, the carry flag is set to 1 if the original high-order bit had a
value of 1. It is reset to O if the value was 0. We will display the value of 1 if
the carry flag is set; we will display a 0 otherwise. This is accomplished by
zeroing the accumulator. We then add an ASCII zero and the carry flag.
The instructions are as follows:

MVI A0 ;zero accumulator
ACl O ;carry + ASCII zero

Let us go through the first two loops of the algorithm with an example.
Consider the binary number 10101010 (AA hex). When this number is
added to itself, the result is 01010100 and the carry flag is set to 1.
Our algorithm will display a 1. The next addition will produce the
binary number 10101000 and reset the carry flag to 0. The routine displays
a 0 this time.

This algorithm can be used with both an 8080 and a Z80 CPU, but it can
be implemented more effectively on a Z80 computer by performing the
logical shift directly in the C register. All of the common algorithms for

ADDING FEATURES TO BIOS

55

base conversion can be found elsewhere.”
If you found a printer-ready bit, the next section will show you how to
incorporate a test for DTR into your BIOS.

Checking for Printer Ready

As noted above, not all computers incorporate a DTR bit. However, if
you have discovered a printer-ready bit, you can include a test in your
BIOS that will notify you when there is printer output but the printer is
turned off. This test checks the printer-ready flag. If it indicates that the
printer is off, the console bell will sound and an appropriate message will
be displayed. When the printer is turned on, the instruction following this
portion (the usual test that the printer buffer is empty) will be executed.

Suppose that the printer status port is given the name LSTATP, the
data-terminal-ready mask is given the name DTRMSK, and the regular
port-ready mask is called LMSK. The physical console-output routine is
referenced as CONQO2, because we want to distinguish physical console
output from logical console output. The original list routine might look
like that in Figure 3.6, while the new version will look like that in Figure 3.7.

The first three lines of the new version define the symbols CR (carriage
return), LF (line feed), and BEL (console bell). Then the executable code
begins. The printer status port (LSTATP) is read. All of the bits, except
for the DTR bit, are zeroed with the ANI DTRMSK instruction. If this
bit is set, the zero flag will be reset. The instruction

JNZ LIST2

branches to LIST2, the original printer-output routine.
But if the DTR bit is reset to 0, it indicates that the printer is turned off.
In this case the console bell sounds and the message

TURN PRINTER ON

is displayed on the console. The status port is monitored again starting
with the label LIST3. The program continually loops around the next
three instructions until the printer is turned on. At that time, the program
continues with the printer-output routine.

Incorporate the new passage into your BIOS. Assemble it and load it
with the debugger. Engage the printer with control-P and give the DIR
command. While the printer is working, turn it off. The console bell will

*A. R. Miller, 80807280 Assembly Language: Techniques for Improved Pro-
gramming, New York: Wiley, 1981.

56 MASTERING CP/M

LIST: ;logical list output
LISTT:
IN LSTATP :check status
ANI LMSK ;mask for output
Jz LISTT ;loop until ready
MOV AC
ouT LDATAP send
RET

Figure 3.6: Original Version of a Typical Printer Routine

sound and the message
TURN PRINTER ON

will appear on the console. When the printer is turned on again, the output
should take up where it left off. This routine will work correctly even
within programs such as WordStar and BASIC (except, of course, that
different commands are used to engage the printer).

DIRECTING LIST OUTPUT WITH THE IOBYTE

Earlier in this chapter we incorporated the IOBYTE into the console-
output routine. That feature used the two low-order bits of the IOBYTE.
We will now add several new features to the logical list output using the
two high-order bits of the IOBYTE.

One of the features we will add is relatively easy to install. Sometimes
called a ‘“bit bucket,’’ this routine is useful when a program with a long
output must be tested, but the output itself is not wanted. In addition to
this, we will be able to direct the list output to the printer, as is usually the
case, to the console, or to a separate memory area.

We reserve an IOBYTE value of 0 for the usual output to the printer.
The value of 40 hex sends list output to the console, and the value of 80 hex
discards the data-—that is, the data disappear. An IOBYTE value of CO
hex will be allocated at this time for storing list output in a separate
memory area called a cache. However, we will not actually add the routine
until later. The list assignments follow; they should be coded into the

ADDING FEATURES TO BIOS

57

CR
LF
BEL

LIST:
LISTT:

LLOOFP:

MESG:

AROUND:
LIST3:

LIST2:

EQU
EQU
EQU

iN
ANI
JNZ
PUSH
PUSH
LXi
Mmvi

MOV
CALL
INX
DCR
JNZ
POP
POP
JMP

DB
DB

IN
ANI
JZ

IN
ANI
Jz
MOV
ouT
RET

13
10

LSTATP

DTRMSK

LIST2

H

B

H,MESG
B,AROUND-MESG

CM
CONO2

AROUND

BEL,CR,LF

;carriage return
:line feed
;ASCII bell

;check status
;printer on?
;yes

;printer off

;location
;length

;send to console
;pointer

;count

;keep going

;the message

" TURN PRINTER ON ’,CR,LF

LSTATP
DTRMSK
LIST3

LSTATP
LMSK
LISTT
AC
LDATAP

;printer on?

;no

;check status
;mask for output

;loop until ready

;send

Figure 3.7: Revised Version of a Typical Printer Routine

S

58 MASTERING CP/M

BIOS source program as comments.

{OBYTE Action

00 Printer output

40 Console output
80 Bit bucket

Cco Memory cache

The list output routine begins with the following statements:

LIST: ;logical
LISTT: ;physical
IN LSTATP ;check status

LIST refers to the logical output and LISTT refers to the physical printer.
We will now insert instructions between these two labels.

We must include a test of the IOBYTE at the beginning of the list-
output routine, just as we did for the console-output routine. The new in-
structions will be placed between the labels LIST and LISTT. First we
read the IOBYTE. Then, because we are only interested in the two high-
order bits, we perform a masking AND with the value of CO hex. This
operation zeros the six low-order bits. If the result is 0, output is sent to
the printer. If the result is 40 hex, output is sent to the console. If the result
is 80 hex, the subroutine simply returns to the calling program—that is, no
action is performed. The last possibility, C0O hex, indicates that list output
is to be stored in a memory cache. We will not incorporate this feature
now, so we will simply return to the calling program. The source program
for this feature is shown in Figure 3.8.

Notice that when the value of the IOBYTE is 40 hex, the list output is
sent to the label CONO2 rather than to the logical console-output label of
CONOUT. This ensures that list output destined for the console will not
be diverted back to the printer if the low-order bit of the IOBYTE is set.

Assemble these instructions into your BIOS or USER area. Load the
new version into memory with the debugger and try it out. Change the
IOBYTE with the debugger, setting it to a value of 40 hex. Engage the list
output with control-P. Each character should now be displayed twice on
the console, because both the logical console and logical list are directed to
the physical console. Disengage the list with another control-P. If you are
satisfied with the new version, use SAVEUSER or SYSGEN to save a
copy on the system tracks of a diskette.

We will now add a routine to store the list output in a memory cache.

ADDING FEATURES TO BIOS 59

LIST: ;logical list output

LDA IOBYTE

ANI OCOH ;mask for bits 6,7

Jz LISTT ;printer output

CPi 40H

Jz CONO2 ;console output

CPi 80H

RZ ;bit bucket

;
;add memory cache routine here

’

RET ;(for now)

LISTT: ;physicatl list output

Figure 3.8: Incorporating the IOBYTE into Printer Output

STORING LIST OUTPUT IN A MEMORY CACHE

There are times when it is desirable to store the list output in a memory
buffer or cache rather than send it to the printer. The result can then be
saved as a disk file for editing or for incorporation into a report. In fact,
all of the computer outputs in this book were obtained in this manner.

The operation of the memory cache is managed with two pointers. The
first pointer indicates where the next byte is to be placed. This pointer is
initially set to the beginning of the buffer and is incremented each time a
byteis added to the buffer. At the conclusion of the task a 1A hex, end-of-
file mark is placed at the end of the text, the second pointer is set to theend
of the file, and the first pointer is reset to the beginning of the buffer. The
two pointers are stored immediately in front of the buffer; they are each
two-byte values.

We must choose a region for the buffer area that will never be used by
the CP/M operating system, Otherwise, the cache may be accidentally
overwritten. There are several ways to accomplish this. For example, a
North Star Horizon computer uses the region from E800 to EBFF hex for
the disk-controller memory. Because CP/M requires a contiguous block
of memory, the maximum CP/M address for this machine is E7FF hex.
Therefore, the memory region from F000 to FFFF hex is free. Another

60

MASTERING CP/M

possibility is to create a smaller CP/M system with MOVCPM. The
region of memory above CP/M can then be used for the memory cache.

In the previous section we allocated the IOBYTE value of CO hex toin-
dicate that list output will be stored in a memory buffer. We will now write
the routines necessary for this feature. We select the region FO00 to FFFF
(the top 4K bytes) as the memory block. The two pointers are stored at
F000 and F002 hex. The memory buffer itself begins at FO04 hex.

There is another complication we should consider. The buffer will
overflow if too many bytes are entered into it. The pointer will attempt to
go beyond the end of the buffer, address FFFF hex in this case. When
FFFF hex, the largest 16-bit number, is incremented, the result is 0. Thus,
the pointer now refers to the beginning of memory rather than the end.
(This phenomenon is known as wrap around.) As we saw in Chapter 1,
CP/M maintains several important items at the beginning of memory.
Consequently, we must ensure against wrap around and the consequent
alteration of important CP/M information.

We will reset the pointer to the beginning of the buffer and ring the con-
sole bell if wrap around is imminent. This action protects the CP/M
system. Of course, the information initially placed into the cache is then
lost, but this is not likely to be a problem. You will find that a 4K-byte
buffer will be sufficiently large for most purposes.

At the end of the task, we can use the system debugger to move the in-
formation from the memory cache down to the TPA at 100 hex. We then
return to CP/M with control-C and save the information in a disk file. In
Chapter 7 we will write a program that can automatically write a disk file
directly from the memory cache. This program uses the buffer pointers to
determine the file size.

We need two separate sets of instructions to implement the memory
cache. One portion initializes the pointers and sets the end-of-file marker.
These instructions are placed in the warm-start and cold-start areas of
BIOS or USER. Instructions for the second part place each byte into the
memory cache and increment the main pointer. This portion is located
with the list-output routines. We begin with the routines that initialize the
pointers.

Initializing the Memory Cache Pointers

In this section we alter the warm-start and cold-start areas of BIOS or
USER to insert the instructions for initializing the cache pointers and
adding the end-of-file marker. We first define four symbols—the names
of the two pointers, the name of the buffer, and the end-of-file reference.

ADDING FEATURES TO BIOS

61

Place the following four lines near the top of the source program:

MPOINT EQU OFOOOH ;pointer to beginning
MMAX EQU MPOINT+2 ;pointer to end
MBUFF EQU MMAXH2 ;buffer start

EOF EQU 1AH ;end-of-file mark

Locate the warm start vector of your BIOS or USER. Remember, this
can be found from the second jump vector. Follow the warm-start in-
structions until the final return statement is encountered. Place the
instructions shown in Figure 3.9 just before this return statement.

Let us see how this segment works. We begin by checking whether the
logical list output is being directed to the memory cache option. This in-
formation is coded into the two high-order bits of the IOBYTE. The first
new instruction copies the value of the IOBYTE into the accumulator:

LDA IOBYTE
All but the two high-order bits are zeroed with the instruction
ANI OCOH

If the result is not CO hex, then we complete the warm start with a return
instruction.

On the other hand, if the result is CO hex, the cache option has been
selected. The HL and DE registers are then saved with PUSH instruc-
tions. Then we determine if the pointer is already reset to the beginning of
the buffer. If so, the task is complete. The HL and DE registers are
restored by POP instructions and a return is executed.

If the pointer has not been reset, it points to the buffer end. An end-of-
file marker (1A hex) is placed at this point. The address of the buffer end is
saved in the second pointer (MMAX) and the main pointer (MPOINT) is
reset to the beginning of the buffer. The registers arerestored and areturn
is executed.

It will also be necessary to initialize the buffer pointer during the cold
start, so we must locate the cold-start entry. It is referenced by the first
vector at the beginning of the BIOS or USER. In an earlier section of this
chapter, we added two instructions to initialize the IOBYTE during a cold
start. Place the following two instructions immediately after these.

COLD:
LXI H,MBUFF
SHILD MPOINT
Now we will incorporate the remainder of the cache instructions.

62 MASTERING CP/M

WARM:
LDA IOBYTE
ANI OCOH ;mask for list
CPI OCOH ;memory?
RNZ ;no, leave alone
PUSH H ;save registers
PUSH D
LXI D,MBUFF ;buffer start
LHLD MPOINT ;pointer
MOV AL :check low
CMP E ;pointers reset?
JINZ MEM3 ;no
MOV AH ;check high
CMP D ;reset?
JZ MEM4 Jyes

MEMS3: ;reset pointers
MV M,EQF ;end of file mark
SHLD MMAX ;save last address
LXi H, MBUFF ;buffer start
SHLD MPOINT ;save pointer

MEM4;
POP D ;restore
POP H
RET ;original

Figure 3.9: Setting up the Memory Pointers

Instructions for Storing List Output in Memory

Now that we have added the instructions for initializing the memory
pointers, we can incorporate the code for actually storing the data in
memory. The new instructions, shown in Figure 3.10, are placed between
the RZ and RET instructions in the list-output region shown in Figure 3.8.

This section has two parts. The first part stores each byte in memory
and advances the memory pointer. The second part checks for wrap
around. We begin by saving the contents of the HL register with a PUSH
instruction. The main pointer is retrieved and used to deposit the byte in
memory. The pointer is incremented and then checked to ensure that it is
not wrapping around zero.

If wraparound did not occur, the pointer is updated and a return is
executed. On the other hand, if the pointer has a value of 0, it is reset to
the beginning of the buffer and the console bell sounds.

ADDING FEATURES TO BIOS

63

;
;send list output to a memory cache

’

PUSH H ;save

LHLD MPOINT ;pointer

MOV e ;put byte in memory
INX H ;increment pointer
MOV AH ;see if

ORA L ;passing zero

JNZ MEM2 ;ok to continue

:
;buffer is wrapping around zero; reset it
;and sound console bell as a warning

’

PUSH D
mvi C,BEL
CALL CONO2 ;ring bell
POP D
LXI H,MBUFF ;start
MEM2: ;update pointer
SHLD MPOINTER ;save it
POP H
RET

Figure 3.10: Storing List Output in Memory

Incorporate the remainder of the instructions for the memory cache into
the BIOS. Assemble the new version and test it. Load the program into
place with the debugger.

It is extremely important that the main pointer is correctly set before
you use the cache. Otherwise, CP/M will deposit bytes in the wrong place
with unpredictable results. The two instructions we added to the cold-
start section will initialize the main pointer each time you start up CP/M.
However, we want to test the routines before they are written to the
system tracks of the disk. Therefore, for this one time, we will have to
initialize the main pointer.

Use the debugger S command to set the main pointer to FO04 hex. The
instructions are as follows:

SFO00 (you type this line)
FOOQ XX 4 {(you type 4)

FOO1 XX FO (you type FO)

FOO02 XX . (you type a period)

64

MASTERING CP/M

Set the IOBYTE to a value of C0 hex, again using the S command:

S3 (you type this line)
0003 X CO (you type CO)
0004 X . (you type a period)

Perform a warm start by typing control-C. You are now at the CP/M
system level. Engage the list output by typing control-P, then give the
command DIR. No output should appear at the printer, because we are
diverting list output to ¢the memory cache. Perform another warm start by
typing control-C. This disengages the list output and resets the pointers.

Load the debugger and inspect the beginning of the buffer with the D
command:

DFOO0O0, FO3F

The ASCII representation of the previous DIR output should appear on
the right side of the screen. Look at the second pointer stored at FO02 and
F003. This pointer references the end of the text. The corresponding
memory location should contain a 1A hex end-of-file mark.

You can now use the debugger M command to move the information in
the cache down to 100 hex. Perform a warm start and save the informa-
tion on a disk file. You should now use SAVEUSER or SYSGEN to write
the current version of BIOS or USER to the system tracks of a floppy
diskette. Turn the computer off and on again; perform a cold boot with
the new version. Use the debugger to check the main cache pointer, to be
sure that it is properly initialized.

An assembly listing of a set of USER routines is shown in Figure 3.11.
This listing incorporates all the features described in this chapter. It
operates on a Lifeboat version 2.2 CP/M running on a 56K-byte North
Star system. Several key features will have to be changed if it is to be used
on other systems.

TITLE “Sample BIOS/USER program’
;(Current date)
DAOO ORG ODAOOH

0003 = IOBYTE EQU 3

Figure 3.11: USER Routines for a 56K-Byte Lifeboat Version 2.2
CP/M for North Star

ADDING FEATURES TO BIOS 65

CSTATP
CDATAP
COMSK
CIMSK
LSTATP
LDATAP
LMSK

= DTRMSK
MPOINT
MMAX
MBUFF

000D= CR
000A= LF
0007 = BEL
001A= EOF

START:
DAQQ C399DA
DAO3 C3A5DA
DA06 C3CDDA
DAO09 C3D5DA
DAOC C318DA
DAOF C32BDA
DA12 C3EODA
DA15 C3E1DA
CONOUT:
DA18 3A0300
DAI1B E6O1
DA1D C455DA
CONO2:
DA20 DBO3
DA22 E601
DA24 CA20DA
DA27 79
DA28 D302
DA2A C9

7

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

LDA
ANI
CNZ

IN
ANI
Jz
MOV
ouT
RET

3

CSTATP-1

1

2

5

LSTATP-1

1

80H
OFO0OH
MPOINT +2
MMAX +2

13
10
7
1AH

COoLD
WARM
CSTAT
CONIN
CONOUT
LIST
PUNCH
READER

IOBYTE
1
LISTT

CSTATP
COMSK
CONO2
AC
CDATAP

;console status
;console data
;console-output mask
;console-input mask
;list status

;list data

;list-output mask
;list-ready mask
;pointer to beginning
;pointer to end
;buffer start

;carriage return
;line feed

;ASCII bell
;end-of-file mark

;initial cold start
;warm-start reset
;console status
;console input
;console output
;printer output

;punch output
;alternate input device

;console output

;get the value

;mask for bit 0

;printer output

;regular console output
;read status

;mask for output

;loop until ready

;get byte

;send

Figure 3.11 (continued)

66 MASTERING CP/M

LIST: ;logical list output
DA2B 3A0300 LDA IOBYTE
DA2E E6CO AN OCOH ;mask for bits 6,7
DA30 CA55DA JZ LISTT ;printer output
DA33 FE40 CPI 40H
DA35 CA20DA JZ CONO2 ;console output
DA38 FESO CPI| 80H

DA3A C8 RZ ;bit bucket

’

;send list output to a memory cache

’

DA3B E5 PUSH H ;save

DA3C 2A00F0 LHLD MPOINT ;pointer

DA3F 71 MOV M,C ;put byte in memory
DA40 23 INX H ;increment pointer
DA417C MOV AH ;see if

DA42 B5 ORA L ;passing zero

DA43 C250DA JNZ MEM2 ;ok to continue

’
;buffer is wrapping around zero; reset it
;and sound console bell as a warning

2

DA46 D5 PUSH D
DA47 OEQ7 MVI C,BEL
DA49 CD20DA CALL CONO2 ;ring bell
DA4C D1 POP D
DA4D 2104F0 LXI H,MBUFF ;start

MEM2: ;update pointer
DA50 2200F0 SHLD MPOINT ;save it
DAS3 El POP H
DA54 C9 RET

LISTT: ;physical printer output
DA55 DBO5 IN LSTATP ;check status
DAS57 E680 ANI DTRMSK ;printer on?
DA59 C28EDA JNZ LIST2 yes
DA5CE5 PUSH H ;printer off
DASD C5 PUSH B
DASE 2171DA LXi H,MESG Jlocation

Figure 3.11 (continued)

ADDING FEATURES TO BIOS

67

DA61 0616
LLOOP:

DAG63 4E

DA64 CD20DA

DA67 23

DA68 05

DA69 C263DA

DA6C Ci

DA6D E1

DAGE C387DA
MESG:

DA71 070D0A

DA74 205455
AROUND:
LIST3:

DAS87 DB05

DAB89 E680

DASB CA87DA
LIST2:

DASE DBO5

DA%0 E601

DA92 CAS55DA

DA95 79

DA96 D304

DA98 C9?

COLD:
DA99 3EQO
DA9B 320300
DASE 2104F0
DAA1 2200F0
DAA4 C9

WARM:
DAAS5 3A0300
DAAS E6CO
DAAA FECO
DAAC CO
DAAD E5

Mvi

MOV
CALL
INX
DCR
JNZ
POP
POP
JMP

DB
DB

IN
ANl
Jz

IN
ANI
Jz
MOV
ouT
RET

MV
STA
LXI
SHLD
RET

LDA
ANI
CPl
RNZ
PUSH

B,AROUND-MESG ;length

CM

CONO2 ;send to console
H ;pointer

B ;count

LLOOP ;keep going

B

H

AROUND ;the message
BEL,CR,LF

“ TURN PRINTER ON “,CR,LF

LSTATP
DTRMSK ;printer on?
LIST3 ;no
LSTATP ;check status
LMSK ;mask for output
LISTT ;loop until ready
AC
LDATAP ;send
;cold-start entry
A0
IOBYTE ;reset
H,MBUFF
MPOINT ;reset
;warm-start entry
IOBYTE
OCOH :mask for list
OCOH ;memory?
;no, leave alone
H ;save registers

Figure 3.11 (continued)

68 MASTERING CP/M
DAAE D5 PUSH D
DAAF 1104F0 LXI D,MBUFF ;buffer start
DAB2 2A00F0 LHLD MPOINT ;pointer
DAB5 7D MOV AL ;check low
DAB6 BB CMP E ;pointers reset?
DAB7 C2BFDA JNZ MEM3 ;no
DABA 7C MOV AH ;check high
DABB BA CMP D ;reset?
DABC CACADA JZ MEM4 ;yes
MEM3: ;reset pointers
DABF 361A MV! M,EOF ;mark end of buffer
DAC1 2202F0 SHLD MMAX ;save last address
DAC4 2104F0 LXI H,MBUFF ;buffer start
DAC7 2200F0 SHLD MPOINT ;save pointer
MEM4:
DACA D1 POP D ;restore
DACB E1 POP H

DACC C9 RET ;original ret,

7

;necessary routines not discussed in text

CSTAT: ;console input status

DACD DBO3 IN CSTATP ;read status
DACF E&602 ANI CIMSK ;mask for input
DAD1 C8 RZ ;not ready
DAD2 3EFF MVI A,OFFH
DAD4 C9 RET ;ready
CONIN:
DAD5 CDCDDA CALL CSTAT
DAD8 CAD5DA Jz CONIN ;not ready
DADB DB02 IN CDATAP ;get byte
DADD E67F ANI 7FH ;mask parity
DADF C9 RET
PUNCH:
DAEO C9 RET
READER:
DAE1 C9 RET
DAE2 END

Figure 3.11 (continued)

ADDING FEATURES TO BIOS

69

SUMMARY

In this chapter, we have explored the CP/M BIOS and USER routines
in greater detail. We have developed and implemented several useful
features to increase the power of our CP/M operating system, including
routines to engage and disengage the printer, a printer-ready routine, and
aroutine to direct the list output to a memory cache. In addition to these,
you may consider incorporating other features such as sending logical
punch output to a telephone modem or taking console input from the
printer keyboard. These will be left as exercises.

CHAPTER 4

BEGINNING
A MACRO
LIBRARY

INTRODUCTION

In this chapter we will introduce the concept of macro instructions, also
called macros. We will develop several powerful macros that will be used
in the remainder of this book. We begin with housekeeping macros that
incorporate the version number and save and restore the stack pointer. We
will then write macros that move information, fill memory with a constant,
compare information, convert lowercase letters to uppercase, perform
16-bit subtraction, and convert an ambiguous file name to an unam-
biguous name.

MACROS

A macro instruction, or macro, is an assembler directive that defines a
collection of other commands, instructions, or macros. A macro actually
consists of two parts—the definition and one or more implementations or

72

MASTERING CP/M

expansions. The name of the macro is associated with the set of instructions
it defines. Whenever the macro name appears in a computer program, the
macro assembler substitutes the corresponding instructions. This is called
the macro expansion. For example, the following sequence of instruc-
tions can be defined by a macro named SAVE:

PUSH H
PUSH D
PUSH B
PUSH PSW

Then, whenever the name SAVE appears in the computer program, the
corresponding four instructions will be substituted. A complementary
macro named UNSAVE can perform the inverse operations:

POP PSW
POP B
POP D
POP H

The macro definition is placed near the top of the program or in a
separate disk file called a macro library. The first line of the macro defines
the macro name. The middle portion, which contains the instructions, is
usually called the macro body. The last line terminates the macro with the
statement ENDM. You must always remember to include the ENDM
statement at the conclusion of the macro definition. If ENDM is omitted,
the remainder of the program is incorrectly interpreted as part of a very
large macro. Most macro assemblers are confused by this omission and
issue cryptic error statements.

Macro definitions for the above examples would look like this:

SAVE MACRO
PUSH H
PUSH D
PUSH B
PUSH PSW
ENDM
UNSAVE MACRO

POP PSW
POP B
POP D
POP H

ENDM

BEGINNING A MACRO LIBRARY 73

Macro Parameters

Macros become more versatile with the addition of parameters. For ex-
ample, suppose we want to interchange the contents of the H and L
registers using the accumulator as a working register. A macro to perform
this task might appear as follows:

INTER MACRO

PUSH PSW
MOV AH
MOV H,L
MOV LA
POP PSW
ENDM

Now whenever the macro name INTER appears in the program, the
assembler substitutes the corresponding five instructions:

PUSH PSW
MOV AH
MOV H,L
MOV LA
POP PSW

Notice that this macro will always generate instructions to interchange
the H and L registers. However, if we change the macro slightly by adding
two parameters, the macro becomes more versatile. For example, the
following macro is similar to INTER except that the dummy parameters*
REGI1? and REG2? are given on the first line. (The question marks in the
parameters are considered to be regular characters.)

INTER2 MACRO REGI1?,REG2?

PUSH PSW

MOV A,REG1?
MOV REG17?,REG2?
MOV REG2?,A

POP PSW

ENDM

The assembler substitutes the actual parameters for the dummy

*Dummy parameters are sometimes called formal parameters. However, there appears to be
some confusion in this usage, as the actual parameters are also sometimes referred to as formal
parameters.

74

MASTERING CP/M

parameters. For example, the statement
INTER2 H,L

is assembled into the same five statements we got with the previous macro.
However, the expression

INTER2 D,E

will generate the following instructions:

PUSH PSW
MOV AD
MOV D,E
MOV E.A
POP PSW

Macros and Conditional Assembly

Conditional assembly statements further increase the power of macros.
For example, the following pair of statements can be used to test for the
presence of an optional parameter corresponding to the dummy
parameter PARAM?:

IF NUL PARAM?

ENDIF
The expression NUL PARAM? is true if a parameter is not provided; it is
false otherwise. Of course, the complementary expression

IF NOT NUL PARAM?

can be used to reverse the sense of the expression; that is, the expression is
true if a parameter is provided.
The Microsoft assembler also accepts the alternate forms

IFDEF PARAM?
ENDIF
and

IFNDEF PARAM?

ENDIF

BEGINNING A MACRO LIBRARY

75

for IF NOT NUL and IF NUL. The expressions IFDEF and IFNDEF
respectively mean *‘if defined’’ and ‘if not defined.”

For some programs we will want to execute a return statement when we
are finished. On other occasions, however, we will branch to a specific
address. For example, consider the following fragments of macro EXIT,
which we will develop shortly:

EXIT MACRO WHERE?

IF NUL WHERE?
RET

ELSE

JMP WHERE?
ENDIF

ENDM
Parameter WHERE? is optional in this example. Suppose that macro
EXIT is used without this parameter:
EXIT

A simple return statement will be created in this case, because the expression
IF NUL WHERE? is true. However, if a parameter is included, then a
branch to the parameter is generated. Thus the macro reference

EXIT BOOT
will generate the instruction
JMP BOOT

Before we begin our macro library, let us first consider the generation
of Z80 intructions by using macros and an 8080 macro assembler.

GENERATING Z80 INSTRUCTIONS
WITH AN 8080 ASSEMBLER

The Z80 CPU can execute all of the 8080 instructions; consequently, an
8080 assembler is commonly used for generating assembly language pro-
grams to run on a Z80 computer. The Digital Research macro assembler,

76

MASTERING CP/M

called MAC, uses the Intel 8080 mnemonic instructions. The Microsoft
macro assembler, MACRO-80, can assemble either the Intel 8080 or the
Zilog Z80 mnemonics. Throughout this book we will use primarily the
8080 mnemonics. Consequently, either of these macro assemblers will be
suitable.

However, there are several powerful Z80 instructions that are
sometimes useful when writing assembly language programs. An 8080
assembler can generate these instructions with macros. In fact, the Digital
Research macro assembler is supplied with a set of macros for this purpose.

For example, suppose that we must subtract one number from another.
This operation can be performed by taking the two’s complement of the
first number and then adding the result to the second number. Thereis a
Z80 instruction that can perform this operation; the mnemonic is NEG.

The 8080 instruction set does not explicitly incorporate this operation,
but it can be performed by combining two 8080 instructions. The two’s
complement can be obtained by incrementing the one’s complement.
Because there is an 8080 mnemonic for performing a one’s complement
and another for incrementing the result, we can combine these two opera-
tions into a macro. The macro definition is as follows:

NEG MACRO ;two’s complement
CMA ;;one’s complement
INR A
ENDM
Whenever the two’s complement is needed, the macro
NEG

is placed into the source program. The 8080 assembler will substitute the
corresponding instructions:

CMA
INR A

Notice that the comment in the first statement begins with two
semicolons rather than the usual one:

CMA ;;one’s complement

This has a special meaning in macro definitions. When a comment begin-
ning with a single semicolon appears in a macro definition, the comment is
reproduced at each expansion of the macro. However, if a comment
begins with a double semicolon, it is not written at each expansion.
Because the first and last lines of the macro are not reproduced at each

BEGINNING A MACRO LIBRARY

77

expansion, the comments on these lines can be written with one semicolon.

Again, notice how the above macro becomes more versatile with the
addition of a parameter. Suppose that we change the definition of the
previous macro to look like this:

NEG MACRO REG? ;two’s complement
IF NOT NUL REG?
PUSH PSW ;isave A
MOV A, REG? ;;get register
ENDIF
CMA ;;one’s complement
INR A
IF NOT NUL REG?
MOV REG?,A ;:return value
POP PSW ;;restore A
ENDIF
ENDM

The macro reference NEG will generate the same two instructions as the
previous version did, because no parameter was included in the macro
reference. However, if a parameter is included in the expression, the result
is different. For example, the expression

NEG C

contains the parameter C. This time the resulting assembly code will be as
follows:

PUSH PSW
MOV AC
CMA

INR A
MOV C.A
POP PSW

That is, the single macro statement NEG C produces six lines of instruc-
tions rather than two. During the macro expansion, the dummy parameter
REG? is replaced with the parameter C. The conditional passage

IF NOT NUL REG?

ENDIF
will generate instructions only if a parameter is included in the calling
statement. Otherwise, the section between IF and ENDIF will be omitted.

78

MASTERING CP/M

THE 8080/Z80 SWITCH

Even though the Z80 computer is very popular, there are many 8080
and 8085 computers in use. There is also a combination CPU card that
contains both an 8085 and an 8088 CPU. (The 8085 CPU can execute all
of the 8080 instructions but none of the Z80 instructions that are not com-
mon to the 8080.) Consequently, it may be necessary to use 8080 code on
one occasion, while the more efficient Z80 code can be used at other times.
This is easily accomplished with macros and conditional statements.

A Z80 flag can be defined at the beginning of the program. For example,
the statement

Z80M EQU TRUE ;Z80 mode flag
is used to indicate that Z80 code is desired. Otherwise, the statement
Z80M EQU FALSE ;Z80 mode flag

is used. (Of course, the symbols TRUE and FALSE must be defined
separately.) The macro will generate either Z80 or 8080 code, depending
on the definition of the Z8OM flag.

As an example, let us consider the unconditional relative jump.
Sometimes we need to transfer control (branch) to a different portion of a
program. In this case we use an unconditional jump instruction. With the
Z80 we have a choice of either a relative unconditional branch to a location
a certain distance away from the present position or an absolute uncondi-
tional branch to a fixed address. The relative jump is usually preferred
because the instruction is shorter than the absolute jump. However, the
8080 CPU cannot perform the relative jump. Thus we might wish to use
the relative jump with a Z80 but an absolute jump with an 8080.

We can write a dual macro using conditional assembly statements so
that we can generate the Z80-compatible instruction for one application
and the 8080-compatible instruction on other occasions. For example, we
can define a relative jump macro as follows:

JR MACRO ADDR?

IF Z80M

DB 18H, ADDR? -$ -1
ELSE

JMP ADDR?

ENDIF

ENDM

If the Z80 flag is true, then the macro reference
JR DONE

BEGINNING A MACRO LIBRARY

79

will generate the two bytes corresponding to the desired Z80 code:
DB 18H, DONE -$ -1

Otherwise, the three-byte 8080 instruction
JMP DONE

will be generated.

As another example, consider the Z80 mnemonic DJNZ. This instruc-
tion decrements the B register, then jumps relative to the operand if the
zero flag is reset.* The dual macro might look like this:

DJNZ MACRO ADDR?

IF Z80M

DB 10H, ADDR? -$ -1
ELSE

DCR B

JINZ ADDR?

ENDIF

ENDM

The Z80 version of the macro reference
DJNZ LOOP

will assemble into
DB 10H, LOOP -$ -1

for the corresponding Z80 instruction. On the other hand, the 8080 mode
produces the lines

DCR B
JNZ LOOP

The resulting assembled code is fixed. It will perform the same way each
time it is executed. This is a very different concept from a Pascal or
BASIC expression such as

IFA=BTHEN. ..

With this BASIC statement, one set of instructions might be executed if
the statement is true. However, another set could be executed if the statement
is false.

Before beginning the macro library, let us briefly summarize the concept

*Remember that a flag is reset or false when zero and set or true otherwise.

80

MASTERING CP/M

of macros. A macro assembler will analyze the source program by reading
it several times. Each reading is called a pass. On one pass, the part of the
assembler that processes the macros converts the macro references into
the desired instructions. For example, we saw that the macro NEG
generates the following two instructions:

CMA
INR A

On the next pass, the assembler analyzes the instructions created by the
macro processor as though the instructions had been included in the
original source program. The resulting binary code will be the same
whether or not macros were used.

STARTING THE MACRO LIBRARY

In this chapter and those that follow we are going to create a disk file of
useful macros. This macro ‘‘library’’ will be used in many of the programs
we will develop. If we place a copy of each macro in each program, there
will be much duplication. Therefore, we will find it more convenient to
place all the macros in a separate macro library. We can then simply refer
to them from each program.

Another advantage of the macro library is that it can greatly simplify
program revision. Suppose you have to change a macro that is used in
many different programs. If the macro were coded into each program,
you would have to change each occurrence. However, if the macro appears
only once in the macro library, only that one copy has to be changed.

Let us begin our macro library with a heading and some useful symbols.

Commonly Used Constants

There are several values we will need in almost all our programs. These
include the characters such as carriage return, line feed, and blank. It will
be more convenient to refer to these values symbolically rather than
through the corresponding decimal or hexadecimal value. We could
give a set of symbolic constants at the beginning of each program, but it
will be more convenient to place the definitions in the macro library. If
you are using the Digital Research assembler, use your system editor to
create a disk file with the name

CPMMAC.LIB

BEGINNING A MACRO LIBRARY

81

If you are using the Microsoft assembler, name the file
CPMMAC.MAC

We will add each new macro to this disk file. Each assembly language pro-
gram that references this file will contain the following statement near the
beginning:

MACLIB CPMMAC

The MACLIB statement instructs the macro assembler to search the disk
file named CPMMAC for the required macro definitions.

Notice that the Digital Research assembler requires an extension of
ASM for the assembly language program and an extension of LIB for the
macro library. On the other hand, the Microsoft assembler expects an ex-
tension of MAC for both.

Enter the information given in Figure 4.1 into the disk file
CPMMAC.LIB (or CPMMAC.MAC if you use the Microsoft
assembler). Notice that the library begins with a brief description on the
first line, and the current date is placed on the second line. Change this
date whenever aiterations are made to the file. The thirditem in the library
is a directory listing of the macros defined in the file. Of course, there are
no macros at this time. However, this library will contain about 40 macros
by the time we have completed this book, so we should document the con-
tents carefully. The symbolic constants are added next.

We will now place our first macro in the library. This macro will code
the version number into each program we write.

A Macro to Code the Version Number

In Figure 3.11 we placed a creation date near the beginning of the
source program so we could distinguish the new version from previous
versions. However, this date is not actually coded into the binary form of
the program. After a program is assembled into binary code, it is difficult
to determine exactly when it was created. If there are two programs with
similar names, it may not be possible to choose the more recent version.
For this reason we will code a version number into each program we write
from now on. We will write the information in ASCII so that it will be easy
to decipher. To make matters simple, we will code the date and the program
name. Then we can easily identify the name of the program and the most
recent date. To accomplish this we will use an inline macro called VERSN.

The lines of a computer program are normally executed in sequence,
one after the other. Therefore, one programming technique is to place the

82 MASTERING CP/M

main part of the program at the beginning and the subroutines at the end.

For example:
MAIN:
CALL SUBI
CALL SuUB2
SUBI:
RET
SUB2:
RET

With this method, the main program with its subroutine calls can be written
first. The subroutines then follow the main program.

An alternate technique is to place the subroutines directly in the path of
the main program. In this case we must use a branch to get around the
obstruction. For example:

MAIN:
CALL SuBl
JMP AROUND
SUB1:
RET
AROUND:
CALL SuB2
JMP OVER
SuUB2:
RET
OVER:

While this approach appears to be less organized than the previous
method, it has animportant advantage—the subroutineis written into the
main program (inline) where it is needed. Furthermore, this method can
be implemented easily with macros. Within this book we shall refer to a
macro of this type as an inline macro.

Our first macro, shown in Figure 4.2, is called VERSN (for version
number). This inline macro is placed near the beginning of the program.

BEGINNING A MACRO LIBRARY 83

;:Macro library for CP/M system routines
;:(Put current date here)

;:Macros in this library:
;:(List each macro name at this point)

’

EOF EQU 1AH ;endoffile

ESC EQU 1BH ;escape

CR EQU 13 ;carriage return
LF EQU 10 Jline feed

TAB EQU ¢ ;control-I
BLANK EQU 32 ;space

PERIOD EQU 46 ;decimal point

COMMA EQU 44
;:(place macros here)

Figure 4.1: The Beginning of a Macro Library: Frequently Used Symbols

VERSN MACRO NUM

;:(Put current date here)

:;Inline macro to embed version number.
;;NUM is enclosed in quotes.

rr

;;Usage: VERSN XX XX XX.NAME’

e

LOCAL AROUND

JMP AROUND

DB Ver ,NUM
AROUND: ;iVERSN

ENDM

Figure 4.2: Macro VERSN to Code the Version Number

84

MASTERING CP/M

The macro reference
VERSN ’9.23.82.FIRST’
will generate three statements:

JMP 7720001
DB ‘Ver ’,'9.23.82.FIRST’
?70001:

This macro can be used to embed information, such as the date and
program name, directly into the binary code. The data statement ‘‘Ver
9.23.82.FIRST”’ is embedded in the program and a jump instruction is used
to get around the expression. The label AROUND is declared to be alocal
variable in the macro definition. This means that it has meaning only
within the macro definition. The Digital Research assembler assigns the
symbol 7?0001 to the first use of a local variable (AROUND in this
case). Other macro assemblers may use a different symbol.

If this macro is used more than once in the same program, a different
label will be generated each time. Thus the word AROUND does not actually
appear in the assembly listing. The label AROUND can be used elsewhere
in the program, or as a variable in another macro, without producing a
duplicate-name error. Notice that the symbol NUM is a dummy param-
eter. It too can be used outside the macro without producing a conflict.

The second statement generated by macro VERSN defines the data to
be embedded in the program. (The assembler directive DB stands for
““define byte.”’) The operand in this example consists of a string of
alphanumeric characters enclosed in apostrophes. However, byte-sized
symbols can also be used. The third statement generated by macro
VERSN is the label 7?0001, which is the target of the jump instruction.

Now create another file called TESTVER.ASM. We will use this program
to test our first macro. Type in the information shown in Figure 4.3.
Notice that this program references our macro library. Put today’s date at
the beginning of the program and also in the parameter to macro VERSN.

If you are using the Microsoft assembler, you have to make a few
changes. First, remove the apostrophes enclosing the title on the first line.
Second, be sure that the MACLIB statement is written in uppercase
letters.* Third, remove the ORG statement. Fourth, placea .XLIST state-
ment just before the MACLIB statement and a .LIST afterward. This

*Uppercase letters are not necessary in the Digital Research version, but they are shown
here to clearly differentiate program lines from comment lines. To highlight the macro
references, we set them in boldface type in this book.

BEGINNING A MACRO LIBRARY

85

TITLE ‘TESTVER to test macro VERSN’

;Mar. 3, 82
BOOT EQU 0 ;warm boot
TPA EQU 100H ;where programs go
MACLIB CPMMAC
ORG TPA ;omit for Microsoft version
START:
VERSN ’3.3.82.FIRST’
JMP BOOT
END START

Figure 4.3: Program to Test Macro VERSN

tells the Microsoft assembler not to print out the macro library.

Assemble the program and compare your assembly listing to the one
given in Figure 4.4. (Assemblers consider lowercase and uppercase letters
to be equivalent. However, if you use lowercase letters, the Digital
Research assembler converts them to uppercase.) The first instruction
shown in the assembly listing follows the label START. It is a jump
around the coding of the program name and date. Notice that the first two
lines of code contain plus symbols between the address and the corre-
sponding code. This is the method Digital Research uses to indicate lines
that are generated by macros.

Load the assembled file into memory and examine it with the debugger.
For the Digital Research version, this is done with the command

SID TESTVER.HEX

Display the first part of memory with the D command:
D100,11F

The result will be as follows:

0100: €3 13 01 56 65 72 20 33 26 33 2E 38 32 2E 46 49 ...Ver 3.3.82.F1
0110: 52 53 54 C3 00 00 00 00 00 0O 00 00 0C 00 00 00 RSTeussncunecnss

86

MASTERING CP/M

TITLE ‘TESTVER to test macro VERSN’

;Mar. 3, 82
= BOOT EQU 0 ;warm boot
0100 = TPA EQU 100H ;where programs go
MACLIB CPMMAC
0100 ORG TPA ;omit for Microsoft version
START:
VERSN ’3.3.82.FIRST”
01004 C31301 JMP 2?0001
0103 +566572 DB "Ver ‘,’3.3.82.FIRST’
0113 C30000 JMP BOOT
0116 END START

Figure 4.4: Assembly Listing for Figure 4.3

There are three parts to this display. The first number on each line is the
address (100 hex for the first line in this example.) The second part of the
line gives the contents of 16 bytes of memory expressed in hexadecimal.
The third part shows the ASCII representation of the same 16 bytes. If the
bytes are not printable ASCII characters, they are shown as decimal
points. You can branch to this program with the command G100.
However, this simple program does not actually do anything; we only
wrote it test the assembler operation.

Macros to Save and Restore the Incoming Stack

When a program is executed from the CP/M operating system, it is
loaded from disk into the transient program area (TPA) starting at address
100 hex. CP/M then branches to 100 hex. At the conclusion of the pro-
gram, it is possible to return to CP/M by one of two different methods.
The simplest approach is to perform a warm start with a jump to address
0, as we did in Figure 4.3.

Another method of returning to CP/M is to save the incoming stack
pointer and set up a new stack for the program to use. At the conclusion of
the program, the original stack pointer is restored and a return instruction

BEGINNING A MACRO LIBRARY

87

is executed. This method of termination is faster and therefore preferable
to the previous method, because it does not reload the CCP and BDOS
from disk. We will use this approach for most of the programs in this
book.

Sometimes, however, a program is so large that it destroys the CCP. In
this case the program must terminate with a warm start. A new copy of the
CCP and BDOS is then loaded from the system disk.

Saving and restoring the stack pointer is easily accomplished with a Z80
CPU. The Z80 mnemonics are as follows:

START:
LD (OLDSTK),SP
LD SP,STACK

DONE:
LD SP,(OLDSTK)
RET

The first two instructions are placed at the beginning of the program.
The stack pointer is saved in a memory location called OLDSTK. The new
stack is placed at the location defined by STACK. Two other instructions
are placed at the end of the program. The first instruction restores the
original stack pointer from the memory location OLDSTK. The final
instruction returns to CP/M.

The 8080 CPU does not have instructions for directly saving and restoring
the stack pointer. Consequently, the 8080 version is more complicated.
The usual method is to copy the incoming stack pointer into the HL
register pair and save this directly in memory. The instructions are as
follows:

START:
LXI H,0 clear
DAD SP ;add pointer
SHLD OLDSTK ;save
LXI SP,STACK ;new one

At the conclusion of the program, the original stack pointer is loaded
from memory into the HL register and then transferred into the stack
pointer register. A return is then executed. The instructions look like this:

DONE:
LHLD OLDSTK ;orig stack
SPHL
RET

88

MASTERING CP/M

With either the Z80 or 8080 version, we also have to allocate the storage
place for the original stack pointer and the new stack area. Thus we in-
clude the following lines:

OLDSTK: DS 2 ;incoming stack
DS 34
STACK:

For most of the programs in this book we will want to save the incoming
stack pointer and restore it at the end. Consequently, it will be convenient
to perform these operations with two macros. The macro at the beginning
of the program will be called ENTER and the one at the end will be called
EXIT. (Wemust be careful that the symbols we choose are not reserved by
the assembler. For example, we cannot select the symbol END.)

Add the macros shown in Figure 4.5 to the macro library (CPMMAC).
If you place them before macro VERSN, the three macros will be in
alphabetical order. Be sure to place the names ENTER and EXIT in the
directory near the beginning of the macro library.

The ENTER macro generally will be placed immediately after the label
START; the EXIT macro is placed at the end of the program. Notice that
macro ENTER has no parameters, but macro EXIT has two dummy pa-
rameters. There are also two conditional assembly blocks within macro
EXIT. With this arrangement, it is possible to generate many different
sets of instructions from the same macro definition.

If no parameters are included in the reference to macro EXIT, the two
dummy parameters WHERE? and SPACE? will be defined as NUL. The
conditional expressions

IF NUL WHERE?
and
IF NUL SPACE?

will be true and the first part of the conditional block, down to the ELSE
statement, will be assembled. The instruction between the ELSE and the
ENDIF statements will not be assembled. The resulting code will include
a return instruction after the incoming stack pointer is restored, and 34
bytes of stack space will be provided.

Notice that the stack is placed at the end of the program. It might seem
more logical to place the stack at the beginning. However, the resulting
program will then be much larger, because the stack space must be included
with the program. The stack need not be saved when it is placed at the end.

Make a copy of the test program given in Figure 4.3 and alter it to look

BEGINNING A MACRO LIBRARY 89

ENTER MACRO
;:(Put current date here)
;;inline macro to save the incoming stack

rr

LXI H,0 ;clear
DAD SP ;add pointer
SHLD OLDSTK ;save
LXI SP,STACK
5 ENTER
ENDM
EXIT MACRO WHERE?,SPACE?

;:Inline macro to restore the incoming stack

;;and branch to location WHERE?

1:1f WHERE? is omitted, execute a return instruction.
;:SPACE? sefs stack space; default is 34.

12

LHLD OLDSTK
SPHL
IF NUL WHERE?
RET
ELSE
JMP WHERE?
ENDIF
OLDSTK: DS 2 ;incoming stack
IF NUL SPACE?
DS 34
ELSE
DS SPACE? 3
ENDIF
STACK: EQU $;omit EQU $ for Microsoft
LEXIT
ENDM

Figure 4.5: Macros ENTER and EXIT to Save and Restore the Incorning
Stack Pointer

9% MASTERING CP/M

TITLE ‘TESENT to test macros ENTER and EXIT

;Mar. 3, 82
BOOT EQU 0 ;warm boot

TPA EQU 100H ;where programs go

;Digital Research version
MACLIB CPMMAC

ORG TPA
START:
ENTER
VERSN ’3.3.82.SECOND’
EXIT
END START

Figure 4.6: Program to Test Macros ENTER and EXIT

like the program shown in Figure 4.6. If you are using the Microsoft
assembler, make the same changes you made in Figure 4.3. In addition,
you must remove the expression EQU § foilowing the label STACK in
macro EXIT. For the Microsoft version, the end of macro EXIT looks
like this:
STACK:
HEXIT
ENDM
Notice that the reference to macro EXIT has no parameters. Assemble

the program and compare the assembly listing to Figure 4.7. This program
can be executed, but it will not do anything.

Using Parameters in Macro EXIT

In the previous program, the reference to macro EXIT did not contain
parameters. But consider the program fragment shown in Figure 4.8. In

BEGINNING A MACRO LIBRARY 91

’

0125+

’

0147

;Mar. 3, 82
= BOOT EQU

0100 = TPA EQU

MACLIB

0100 ORG TPA
START:

ENTER
0100+ 210000 LXI
0103439 DAD
0104+ 222301 SHLD
0107 + 314701 LXI

VERSN
010A+C31EO1 JMP
010D+ 566572 DB

EXIT
O011E+2A2301 LHLD
0121 +F9 SPHL
0122+C9 RET

0123+ OLDSTK: DS

DS

01474+= STACK: EQU

END

TITLE ‘TESENT to test macros ENTER and EXIT’

0 ;warm boot
100H ;where programs go

;Digital Research version

CPMMAC

H,0 ;clear

SP ;add pointer
OLDSTK ;save
SP,STACK
’3.3.82.SECOND’

2?7?0001

Ver *,3.3.82.SECOND’

OLDSTK

2 ;incoming stack

34

$;omit EQU $ for Microsoft
START

Figure 4.7: Assembly Listing for Figure 4.6

this example, the reference to macro EXIT contains two parameters:

EXIT

B8OOT, 20

During assembly, the dummy parameter WHERE? is defined as the label
BOOT and the dummy parameter SPACE? takes on the value of 20.

92 MASTERING CP/M
EXIT BOOT, 20
011E+2A2501 LHLD OLDSTK
01214+F9 SPHL
0122+C30000 JMP BOOT
0125+ OLDSTK: DS 2 ;incoming stack
0127+ DS 20
013B+= STACK: EQU §

Figure 4.8: Using Parameters in Macro EXIT

Thus the expressions

IF NUL WHERE?
and

IF NULSPACE?

are false. The assembled code includes a jump to BOOT and provides 20
bytes of stack space.

Of course, other combinations of parameters are possible. For example,
the statement

EXIT ,20

contains only the second parameter. The comma in front of the 20 in-
dicates that the first parameter is omitted and is therefore defined as
NUL. This statement will generate a return instruction and provide 20
bytes of stack space.

A MACRO TO MOVE INFORMATION

From time to time we will find it necessary to move information from
one part of the computer’s memory to another. This is called a block
move. We will now write a macro to perform this task. Both the 8080 and
the Z80 CPUs incorporate 16-bit registers that can be used as pointers
during the move, The Z80 also contains instructions for directly performing
block moves. The block move can be greatly simplified, therefore, if a
program is designed to run on a Z80 CPU. However, we will only consider
the 8080 version at this time.

Add the MOVE macro given in Figure 4.9 to your macro library. Place

BEGINNING A MACRO LIBRARY

93

MOVE MACRO
;;(Put current date here)
;;inline macro to move text

124

LOCAL AROUND
PUSH H
PUSH D
PUSH B
LXi H,FROM
LXi D, 10
LXI B,BYTES
CALL MOVE2?
POP B
POP D
POP H
JMP AROUND
MOVE2?:
MOV AM
STAX D
INX H
INX D
DCX B
MOV AC
ORA B
JINZ MOVE2?
RET
AROUND:
ENDM

FROM, TO, BYTES

;get it

;put it
;from

;o

;byte count

;not done

;;MOVE

Figure 4.9: Macro MOVE, Version 1

it between macros EXIT and VERSN to maintain alphabetic order. Be
sure to add the name MOVE to the directory at the beginning of the macro
library. The MACLIB directory should now list the following macros:

ENTER
EXIT

MOVE
VERSN

94

MASTERING CP/M

The organization of macro MOVE is typical of many of the macros we
will write in this book. There will be an initialization section, a subroutine
call, a jump around the subroutine, and the subroutine itself.

Let us examine the details of macro MOVE. There are three dummy
parameters: FROM, TO, and BYTES. As the names imply, FROM refers
to the address of the source block, TO refers to the destination block, and
BYTES gives the number of bytes to be moved. The macro begins by saving
the CPU registers with PUSH instructions. Then the HL register is loaded
with the source address, the DE register is loaded with the destination ad-
dress, and the BCregister is loaded with the number of bytes to be moved.
(Remember that the X in the mnemonic refers to the extended or double
register. Thus, the operand H means HL, and so forth.)

The main part of the macro calls subroutine MOVE2? to perform the
actual move. A byte is moved from the original memory location to the
accumulator with a MOV A,M instruction. The byte is then moved to the
destination with a STAX D instruction. The HL and DE pointers are
incremented and the byte count in register BC is decremented. The
subroutine continues in this way until the byte count in register BC
reaches zero.

Testing a double register for zero is more complicated than testing a
single register, because the CPU flags are not affected by double-register
increment or decrement instructions. Thus, the instructions

DCX B
Jz MOVE2?

will not work. The macro performs the test for zero by moving one half of
the register to the accumulator and executing a logical OR with the other
half. At the conclusion of the block move, control returns to the main part
of the macro.

For the first expansion of macro MOVE, subroutine MOVE2? is coded
inline, immediately after the main part of the macro. Consequently, there
is a jump instruction to skip over this subroutine. The local label
AROUND is used for this purpose. Notice that the name of subroutine
MOVE2? has not been declared as a local variable; rather, it is a global
variable. It can therefore be called from other parts of the main program.

Create a disk file named MOVE1.ASM and enter the program shown in
Figure 4.10. We will use this program to test the operation of macro
MOVE.

Our test program begins with macro VERSN and continues with macro
MOVE. The instructions terminate with a jump to BOOT followed by an
arrow that points to this jump. The source string begins at the label TEXT

BEGINNING A MACRO LIBRARY

95

TITLE ‘TESTMOVE to test macro MOVE’

;Dec. 16, 81

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point

TPA EQU 100H ;fransient program area

’

MACLIB CPMMAC
ORG TPA
START:

VERSN '12.16.81.TESTMOVE. 1’
MOVE TEXT, NEWTEX, TEXEND-TEXT

JMP BOOT
DB Lem===="
TEXT:
DB ‘A test of macro MOVE’
TEXEND:
ORG 400H
NEWTEX: DS 1
END START

Figure 4.10: Program to Test Version 1 of Macro MOVE

and continues to the label TEXEND. The destination address is
NEWTEX.

Assemble the program and compare the assembly listing to Figure4.11.
Take note of the final jump instruction at address 13 A hex. (The address
in your program may be different, depending on how you coded the date.)

96 MASTERING CP/M

TITLE 'TESTMOVE to test macro MOVE’

;Dec. 16, 81
= FALSE EQU 0
FFFF = TRUE EQU NOT FALSE
= BOOT EQU 0 ;system reboot
0005 = BDOS EQU 5 ;BDOS entry point
0100 = TPA EQU 100H ;fransient program areo

’

MACLIB CPMMAC

0100 ORG TPA
START:

VERSN ‘12.16.81. TESTMOVE. 1’
0100+ C31A01 JMP 2?0001
0103+ 566572 DB “Ver ’,"12.16.81. TESTMOVE. 1’

MOVE TEXT, NEXTEX, TEXEND-TEXT
O11A+E5 PUSH H
011B+D5 PUSH D
011C+C5 PUSH B
011D +214201 LXI H,TEXT
0120+ 110004 LXI D,NEWTEX
01234011400 LXI B, TEXEND-TEXT
0126+ CD2F01 CALL MOVE2?
0129+C1 POP B
012A+D1 POP D
012B+-E1 POP H
012C+C33A01 JMP ??70002
012F+7E MOV AM ;get it
0130+12 STAX D ;put it
0131423 INX H ;from
0132+13 INX D o
0133+0B DCX B ;byte count
0134+79 MOV AC
0135+B0 ORA B

Figure 4.11: Assembly Listing for Figure 4.10

BEGINNING A MACRO LIBRARY

97

0136+ C22F01 JNZ MOVE2? ;notdone

0139+4-C9 RET

013A C30000 JMP BOOT

013D 3C3D3D DB L===="'
TEXT:

0142 412074 DB ‘A test of macro MOVE’
TEXEND:

0400 ORG 400H

0400 NEWTEX: DS 1

0401 END START

Figure 4.11 (continued)

We will need this location in our next step. Load the hex file into memory
with the debugger command

SID MOVEI.HEX

Display the first part of memory with the command D100,15F. The result
will be as follows:

0100: €3 1A 01 56 65 72 20 31 32 2E 31 36 2 38 31 2 ...Ver 12.16.81%,
0110: 5S4 45 S3 54 4D 4F 56 45 2E 31 ES D5 C5 21 42 01 TESTMOVE.1...!B.
0120: 11 00 04 01 14 00 ¢d 2F 01 C1 D1 E1 €3 3A 01 7E leeaan o
0130: 12 23 13 08 79 BO €2 2F 01 €9 €3 00 00 3C 30 30 .H..y../ueuou<==
0140: 3D 3D 41 20 74 65 73 74 20 6F 66 20 6D 61 63 72 ==A test of macr
0150: 6F 20 4D 4F 56 45 00 00 00 OO 00 00 00 00 00 00 o MOVE..........

The text that was coded with macro VERSN (near the beginning of the
program) is plainly visible in the ASCII representation. On the fourth
line, the left-pointing arrow indicates the location of the final jump in-
struction at 13A hex. Run the program by giving the command

G100,13A

This command begins execution of the program at address 100 and ter-
minates it with a return to the debugger at address 13A hex. The debugger
sets a breakpoint (an automatic return toitself) at address 13A. It does this

98

MASTERING CP/M

by changing the jump instruction at 13A hex to restart 7. The debugger
will respond with the statement

*013A

indicating that it stopped execution at address 13A.
Give the debugger command D400,41F to display the destination
block. The result will be as follows:

0400: 41 20 74 65 73 74 20 6F 66 20 6D 61 63 72 6F 20 A test of macro
0410: 4b 4F 56 45 00 00 00 00 0O 0O 00 00 00 00 00 00 MOVE.....euuneee

The program has moved the text ‘‘A test of macro MOVE’’ from the
source block to the destination block.

If you want to repeat this test, zero the destination memory with the
debugger fill command:

F400,41F,0
Then repeat the original command G100,13A.

Macro MOVE, Version 2

For our second version of macro MOVE, we will introduce a technique
that is applicable to many of the macros we will be writing in this book.
We saw previously that our inline macros contain four parts—an initial-
ization section, a subroutine call, a jump around the subroutine, and the
subroutine itself. This arrangement is used for the first expansion of the
macro. However, on subsequent macro expansions, only the first two
parts of the macro are needed. The subroutine generated during the first
expansion of the macro is referenced by the other expansions.

We will use a special symbol to indicate whether the macro has been
referenced more than once in a program. There are some important
reasons for this feature. On the first reference to macro MOVE, a copy of
subroutine MOVE2? will be generated. The second reference to macro
MOVE will generate another copy of the MOVE2? subroutine. That is, a
separate copy of subroutine MOVE2? will be generated for each call to
macro MOVE. This is an unnecessary duplication of code. Furthermore,
the label MOVE2? is a global variable. When it appears more than once,
your assembler will report a phase error, meaning that a symbol has been
assigned two different values.

We need a method for generating a copy of the MOVE2? subroutine
the first time macro MOVE is referenced in a program, but not on

BEGINNING A MACRO LIBRARY

99

subsequent references. There are several ways to do this, but we will
choose the one that can be used by all assemblers.

We will define the symbol MVFLAG to indicate whether a copy of
subroutine MOVE2? has been generated. The symbol will have one of
two values: true or false. This kind of symbol is called a flag. This flag is
initially defined as FALSE by the statement

MVFLAG SET FALSE

The flag must be defined with a SET statement rather than the usual EQU
statement so that it can be changed during assembly. (EQU expressions
cannot be changed.) The ideal location for this flag is at the beginning of
the macro library. However, the Digital Research assembler does not
allow this construction. Consequently, we will place the flag at the beginning
of each program that references the macro.

Alter macro MOVE to look like the version shown in Figure 4.12.
Notice that just before the JMP AROUND statement there is a condi-
tional expression for testing the state of MVFLAG. On the first reference
to macro MOVE, the flag will be false and the expression NOT MVFLAG
will be true. Consequently, the next instructions down to the ENDIF
statement will be assembled. These instructions generate a copy of
subroutine MOVE2?. There is also a very important statement just prior
to the ENDIF statement. This is the expression that changes the state of
the flag:

MVFLAG SET TRUE

The next time macro MOVE is referenced within the same program, the
flag will be true and the expression NOT MVFLAG will be false. There-
fore, the assembler will not create another copy of the MOVE2? subrou-
tine. The jump around the subroutine will not be necessary, either.

Make a copy of the source program given in Figure 4.10 and alter it to
look like Figure 4.13. Give the new version the name MOVE2.ASM.

Assemble the new test program and compare the last portion of the
listing to the one shown in Figure 4.14. Notice that the first call to macro
MOVE, at address 11A hex, generates a copy of subroutine MOVE2? at
address 12F hex. The JIMP AROUND becomes JMP 2?0002 (when the
Digital Research assembler is used) because it is a local variable. The
second reference to macro MOVE, at address 13A hex, does not gener-
ate another copy of subroutine MOVE2?, but calls the copy generated by
the first reference.

Load the program into memory with the debugger command

SID MOVE2.HEX

100

MASTERING CP/M

Display the program with the command D100,17F to give the following:

0100: €3 1A 01 56 65 72 20 31 32 2 31 36 2E 38 31 26 ...Ver 12.16.81.
0110: 54 45 53 54 4D 4F 56 45 2E 32 E5 D5 €S 21 54 01 TESTMOVE.2...!T.

0120: 11 00 04 01 14 00 €p 2F 01 €1 D1 E1 €3 3A 01 7E Jeeenate

0130: 12 23 13 0B 79 BO €2 2F 01 C9 E5 D5 €5 21 68 01 .H..y../.....'h.
0140: 11 14 04 01 10 00 €D 2F 01 €1 D1 E1 €3 00 00 3C leveenne <
0150: 3D 3D 3D 3D 41 20 74 65 73 74 20 6F 66 20 6D 61 ====A test of ma
0160: 63 72 6F 20 4D 4F 56 45 2E 20 41 20 73 65 63 6F cro MOVE. A seco
0170: 6E 64 20 4D 4F 56 45 2E 00 00 00 00 00 00 00 00 nd MOVE.........

As with the previous version, we can see the ASCII characters at the
beginning of the program. The left-pointing arrow is also visible,
although now it is pointing to the jump instruction at address 14C hex.
Zero the destination block with the command

F400,42F,0
and execute the program with the statement
G100,14C

This sets a breakpoint at location 14C hex, the new location of the final
instruction. The debugger responds with

*014C

Display the destination area with the debugger command D400,42F.
Verify that the two separate calls to macro MOVE generated the following
composite string:

0400: 41 20 74 65 73 74 20 6F 66 20 6D 61 63 72 6F 20 A test of macro
0610: 4D 4F 56 45 2B 20 41 20 73 65 63 6F 6E 64 20 4D MOVE. A second M
0420: 4F 56 45 26 00 00 00 00 00 00 00 00 00 00 00 00 OVE..eevosoacnee

MOVE MACRO FROM, TO, BYTES
;:(Put current date here)
;;inline macro to move text

rr

LOCAL AROUND

PUSH H
PUSH D
PUSH B
LXI H,FROM

Figure 4,12: Macro MOVE, Version 2

BEGINNING A MACRO LIBRARY

101

LXi D,TO
LXI B,BYTES
CALL MOVE2?
POP B
POP D
POP H
IF NOT MVFLAG
JMP AROUND

MOVE2?:
MOV A M ;get byte
STAX D ;new place
INX H ;from
INX D Ao
DCX B ;byte count
MOV A,C
ORA B
INZ MOVE2? :not done
RET

MVFLAG SET TRUE ;;one copy
ENDIF ;;not MVFLAG

AROUND: ;:MOVE
ENDM

Figure 4.12 (continued)

TITLE ‘TESTMOVE to test macro MOVE’
;Dec.16, 81

FALSE EQU 0
TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point

TPA EQU 100H ;fransient program area

’

Figure 4.13: Program to Test Version 2 of Macro MOVE

102 MASTERING CP/M
MVFLAG SET FALSE ;block move
MACLIB CPMMAC
ORG TPA
START:
VERSN 12.16.81.TESTMOVE.2’
MOVE TEXT, NEWTEX, TEXT2-TEXT
MOVE TEXT2, NEWTEX + TEXT2-TEXT, TEXEND-TEXT2
JMP BOOT
DB Lm===
TEXT:
DB ‘A test of macro MOVE’
TEXT2:
DB ‘. A second MOVE.’
TEXEND:
ORG 400H
NEWTEX: DS 1
END START
Figure 4.13 (continued)
MOVE TEXT, NEWTEX, TEXT2-TEXT
O11A+E5 PUSH H
011B+D5 PUSH D
011C+C5 PUSH B
011D+ 215401 LXI H, TEXT
0120+ 110004 LXI D,NEWTEX
01234011400 LXI B, TEXT2-TEXT
0126+ CD2FO1 CALL MOVE2?

Figure 4.14: Partial Assembly Listing of Figure 4.13

BEGINNING A MACRO LIBRARY

103

0129+Ci
012A+D1
012B+E1
012C+C33A01
012F+7E
0130+12
0131+23
0132+13
0133+0B
0134479
0135+B0
0136+ C22F01
0139+C9

013A+E5
013B+D5
013C+C5
013D +216801
01404111404
0143+011000
0146+ CD2FO1
0149+C1
014A+D1
014B+E1
014C C30000

014F 3C3D3D

TEXT:
0154 412074

TEXT2:
0168 2E2041

TEXEND:

0400 ORG

0400 NEWTEX:

’

0401

POP
POP
POP
JMP
MOV
STAX
INX
INX
DCX
MOV
ORA
JINZ
RET
MOVE
PUSH
PUSH
PUSH
LXi
LXi
LXi
CALL
POP
POP
POP
JMP

DB

DB

DB

400H

DS

END

B

D

H

7?0002

AM ;get byte

D ;new place
H from

D ;to

B ;byte count
AC

B

MOVE2? ;not done

TEXT2, NEWTEX + TEXT2-TEXT, TEXEND-TEXT2
H

D

B

H, TEXT2

D, NEWTEX +TEXT2-TEXT
B, TEXEND-TEXT2
MOVE2?

B

D

H

BOOT

Le===’
‘A test of macro MOVE’

‘. A second MOVE.’

START

Figure 4. 14 (continued)

104

MASTERING CP/M

Macro MOVE, Version 3

Sometimes we will find it necessary to move a particular string of
characters into a memory location. Because the string will not exist prior
to the move, the two previous versions of the MOVE macro will not be
suitable. Therefore, for our third version we will add a new feature. This
version will accept a string, rather than the usual memory pointer, as the
first parameter to the macro reference. Thus we can write

MOVE “THIRD”, FCB2+1

if we want to write the string ““THIRD”’ into the memory location that is
one byte beyond the beginning of FCB2. Notice that the third parameter
(the number of bytes) and the second comma are omitted in this example.
The assembler will automatically calculate the length we need. We will use
this method to signal to the macro that the first parameter is a literal
variable rather than an address pointer.

The literal parameter is not limited to a quoted string of characters.
Variables and constants can also be included if the entire parameter is
enclosed in angle brackets. For example, the expression

MOVE <2,”FIFTH">, FCBI1

will place six bytes in memory starting at the location FCB1 (5C hex). The
first byte is the binary number 2; the ASCII string ““FIFTH"’ is placed im-
mediately following it. Of course, symbols such as EOF (end of file), CR
(carriage return), and LF (line feed) can be included as well. Notice that
there is a comma separating the constant 2 from the string *‘FIFTH”’.
Alter macro MOVE so that it looks like Figure 4.15. This third version
of macro MOVE begins as before by saving the registers. We then en-
counter a new feature. When the assembler finds the expression

IF NOT NUL TO
XI D,TO
ENDIF

it checks to seeif the second parameter, the destination address, is actually
supplied in the macro reference. If this parameter is omitted, it is assumed
that the program has loaded the DE register with the destination address
prior to the macro reference. The expression IF NOT NUL TO is false.
On the other hand, if the second parameter is provided, the expression IF
NOT NUL TO is true. The instruction LXI D,TO is then included.
With the previous versions, the destination address always had to be in-
cluded in the macro reference as a parameter. But sometimes the destina-
tion address is not known at assembly time. This new version of macro

BEGINNING A MACRO LIBRARY 105

MOVE allows us to obtain the destination address from a memory loca-
tion or from the result of a calculation performed during execution of the
program. Suppose, for example, that the destination address is stored at
location DEST. The following instructions will move 20 bytes starting at
address FROM into the memory area whose address is stored at location
DEST:

PUSH H ;save
LHLD DEST ;get it
XCHG ;into DE
POP H ;restore

MOVE FROM,,20

The next portion of macro MOVE checks to see whether the third
parameter, the number of bytes to move, is present. If this parameter is
omitted, a literal move is indicated. The instructions between IF NUL
BYTES and the ELSE statement are then included. With this version, the
assembler generates code to copy the literal first parameter into mem-
ory at the location referenced by the symbol MESG. This label is located
near the end of the macro. Note that MESG is defined as a local variable.
Thus there can be one copy in each expansion of the macro.

The alternate passage between ELSE and ENDIF is assembled when
the third parameter is supplied in the macro reference. The first parameter
can be omitted in this case as well. Thus the command

MOVE .20
will move 20 bytes from the address referenced by HL to the address
referenced by DE.

The macro continues with the usual call to subroutine MOVE2? and
then restores the registers, The JMP AROUND instruction is embedded
in a conditional block that checks for two things: the state of MVFLAG
and whether the third parameter, BYTES, is present.

IF NOT MVFLAG OR NUL BYTES
JMP AROUND
ENDIF

If NOT MVFLAG is true, subroutine MOVE2? will be needed and so will
the jump instruction. Also, whenever a string move is indicated by a
missing third parameter, we need a jump around the string. Otherwise,
subroutine MOVE2? and the jump instruction are omitted.

It is important to notice that the two expressions on either side of the
logical OR operation, NOT MVFLAG and NUL BYTES, must appear in the

106

MASTERING CP/M

MOVE MACRO
;;(Put current date here)

FROM, TO, BYTES

;;inline macro to move text

1

LOCAL
PUSH
PUSH
PUSH
IF
Xl
ENDIF
IF
LXI
X1
ELSE
IF
LXI
ENDIF
LXi
ENDIF
CALL
POP
POP
POP
IF
JMP
ENDIF
IF
MOVE2?:
MOV
STAX
INX
INX
DCX
MOV
ORA
JNZ
RET

AROUND, MESG
H

D

B

NOT NULTO
D,TO

NUL BYTES
H,MESG
B,AROUND-MESG

NOT NUL FROM
H, FROM

B,BYTES

MOVE2?
B
D
H

;;string move
s test

;;not string move

;;string/not string

NOT MVFLAG OR NUL BYTES

AROUND

NOT MVFLAG

AM

D

H

D

B

AC

B
MOVE2?

;0et byte
;new place
Hfrom

;to

;byte count

;not done

Figure 4.15: Macro MOVE, Version 3

BEGINNING A MACRO LIBRARY

107

MVFLAG
MESG:

AROUND:

SET
ENDIF
IF

DB
ENDIF

ENDM

TRUE

NUL BYTES

FROM

;;one copy
1:not MVFLAG

stext

;;MOVE

Figure 4.15 (continued)

order shown. They cannot be interchanged or the assembler will interpret
the combination differently. This is due to the order of evaluation of the
NUL and OR operators. The expression

NUL BYTES OR NOT MVFLAG

is interpreted as

NUL (BYTES OR NOT MVFLAG)

This is not the same as

(NUL BYTES) OR NOT MVFLAG

which is the desired result.
To test this third version of macro MOVE, create a new file named
MOVE3.ASM and copy file MOVE2.ASM into it. Alter MOVE3.ASM
to look like Figure 4.16. Assemble the program and load it into memory
with the debugger. Display the first part of the program with the command
D100,1AF. Notice that the final jump is located at address 17C hex:

0100:
0110:
0120:
0130:
0140:
0150:
0160:
0170:
0180:
0190:
01A0:

c3
54
21
12
11
58
01
21
3»
63
6E

1A
45
3A
23
5C
01
0
98
30
7
64

01
53
n
13
00
02
14
01
30
6F
20

56
54
01
oe
21
46
00
01
30
20
4D

65
4D
03

72
4F
00

79 80

52
49
cd
10
41
4b
4F

01
46
2F
00
20
4F
56

20
56
co
c2
01
54
01
4]
74
56
45

3
45
2F
2F
06
48
€1
2F
65
45
2E

32
2E
01
01
00
E5
D1
01
3
2E
00

2E
33
¢1
c9
co
b5
E1
¢1
74
20
00

3
ES
D1
24
2F
€5
ES
D1
20
41
00

36
D5
E1
24
01
11
D5
E1
6F
20
00

2E
c5
c3
24
c1
00
c5
c3
66
73
00

38
"
30
€5
D1
04
1
00
20
65
00

31 2E ...Ver 12.16.82.
75 00 TESTMOVE.3....u.
01 76 ':1.cica/ennns ="
D5 C5 .H#..y../..$88...
E1 €3 .\.!R..... leeees
21 84 X..FIFTH...... .
14 04 /eeonnnnans
00 3C 'eeunae leeovans <
6D 61 ====A test of ma
63 6F cro MOVE. A seco
00 00 nd MOVE....cvu..

108

MASTERING CP/M

;Dec. 16, 81
FALSE EQU
TRUE EQU
BOOT EQU
BDOS EQU
TPA EQU
FCB1 EQU
FCB2 EQU
MVFLAG SET
MACLIB
ORG TPA
START:
VERSN
MOVE
MOVE
MOVE
MOVE
JMP
DB
TEXT:
DB
TEXT2:
DB
TEXEND:
ORG 400H
NEWTEX: DS
END

TITLE ‘TESTMOVE to test macro MOVE’

0

NOT FALSE

0 ;system reboot

5 ;BDOS entry point

100H ;fransient program area
5CH ;input FCB

6CH ;2nd parameter

FALSE ;block move

CPMMAC

‘12.16.81.TESTMOVE. 3’

‘$$$°, FCB2+9

<2,’FIFTH">,FCB1

TEXT, NEWTEX, TEXT2-TEXT

TEXT2, NEWTEX +TEXT2-TEXT, TEXEND-TEXT2
BOOT

’

L=m=m==
‘A test of macro MOVE’

‘. A second MOVE.’

1

START

Figure 4.16: Program to Test Version 3 of Macro MOVE

BEGINNING A MACRO LIBRARY 109

Execute the third version with the command G100,17C. Display the
region from 50 to 7F hex with the command D50,7F. The result shows
that the three dollar signs were moved to address 75 hex, a binary 2 was
placed at SC hex, and the string ‘‘FIFTH”’ was deposited immediately
afterward:

0050: 00 00 00 00 00 00 00 00 00 00 00 00 02 46 49 46 v.cceecennn.. FIF
0060: 54 48 00 00 00 0D 00 00 00 G0 0D 00 00 00 00 00 THewweeannanannn
N070: 00 00 00 OO 00 24 24 24 00 00 0O 0O 0O 00 00 00 $38.cinienn

A check can also be made of the region starting at 400 hex to see that the
other two parts worked properly. All three versions of the MOVE macro
are coded inline; that is, the macro statement is placed wherever it is needed.
The macro includes the JMP AROUND statement to skip over sub-
routine MOVE2? at the first reference.

A MACRO TO FILL MEMORY WITH A CONSTANT

The MOVE macro we just developed can be used to deposit a string of
characters in memory. As an example, we placed three dollar signs in the
second file control block with the macro statement

MOVE ‘$$$’, FCB2+-9

However, the MOVE macro is not convenient if we want to fill a large
number of locations with a particular value. So we will now develop a
companion macro named FILL. With this macro we can fill any portion
of memory with a particular constant. This macro is coded directly inline,
just as the MOVE macro was.

Incorporate macro FILL, shown in Figure 4.17, into your macro
library. Also add the name FILL to the directory at the beginning of the
macro library. This is the second macro in the library to use a flag. Many
of the macros we will add to the library will use flags, so we will add a new
column to the directory listing to identify the associated flag. The direc-
tory should now look like this:

;;Macros in this library Flags
;;ENTER MACRO (none)
LEXIT MACRO SPACE? (none)
oFILL MACRO ADDR, BYTES, CHAR FLFLAG
;iMOVE MACRO FROM, TO, BYTES MVFLAG

;3 VERSN MACRO NUM (none)

110

MASTERING CP/M

FILL MACRO ADDR, BYTES, CHAR
;;(Put current date here)

::Inline macro to fill byte memory

;:locations with CHAR starting at ADDR
;;Usage: FILL FCB+1, BLANK, 8

5 FILL FCB+9, 7, 3

r
rr

LOCAL AROUND

PUSH H
PUSH B
IF NOT NUL ADDR
LXi H,ADDR
ENDIF
MVI C,BYTES
Mmvi A,CHAR
CALL FILL2?
POP B
POP H
IF NOT FLFLAG
JMP AROUND
FILL2?:
MOV MA ;put into memory
INX H ;pointer
DCR C ;count
JNZ FILL2? ;keep going
RET
FLFLAG SET TRUE
ENDIF
AROUND: 5:FILL
ENDM

Figure 4.17: Macro FILL to Fill a Block of Memory with a Byte

Notice that the address of the area to be filled is the first parameter to
macro FILL. Because of the conditional expression

IF NOT NUL ADDR
XI H,ADDR
ENDIF

the first parameter in the macro reference may be omitted. The second

BEGINNING A MACRO LIBRARY 111

parameter, the number of bytes in the block, is loaded into the C register.
Because this is an 8-bit register, the block size is limited to 256 bytes. (A
value of O fills a block of 256 bytes.) If a larger block is needed, the macro
can be referenced more than once. Alternatively, the macro could be
rewritten to use the BC double register rather than the C register. We will
do this in Chapter 8.

Make a copy of the test program in Figure 4.16 and give it the name
TESTFILL.ASM. Alter the program so it looks like the version shown in
Figure 4.18. Notice that FLFLAG is set to FALSE near the beginning of
the source program. This flag serves the same purpose as MVFLAG did in
the previous macro. The flag is initially set to FALSE so that a copy of
subroutine FILL2? is generated when the macro is first referenced. The
flag is then set to TRUE in the macro so that no additional copies of
FILL2? are made on subsequent references.

Assemble the program and load it into memory with the debugger.
Display the program with the command

D100, 16F

The resulting output contains the familiar arrow pointing to an important
jump instruction at 156 hex. Notice that macros ENTER and EXIT are in-
cluded in this version. The FILL macro is used three times in this program.
On the first reference, macro FILL deposits dollar signs in the second file
control block. This performs the same task as the first reference to macro
MOVE in the previous program. The next reference to macro FILL sets
40 hex bytes to blanks and the final reference sets the next 40 hex bytes to
binary zeros.

0100: 21 00 00 39 22 63 01 31 87 01 €3 22 01 56 65 72 !..9"c.1...".Ver
0110: 20 31 32 26 32 34 2E 38 31 2E S4 45 53 54 46 49 12.24.81.TESTFI
0120: 4C 4C ES €5 21 75 00 OE 03 3E 24 €D 33 01 €1 €1 LL..'u...>$.3...
0130: €3 3A 01 77 23 0D C2 33 01 €9 ES €5 21 00 08 OE .:.wh..3....!...
0140: 40 3E 20 €D 33 01 €1 E1 €5 €5 21 40 08 OE 40 3€ a> .3..... 13..a>
0150: 00 €D 33 01 C1 E1 €3 5E 01 3C 3D 30 3D 3D 2A 63 ..3.... .<====%¢
0160: 01 F9 ¢9 00 00 00 00 00 00 00 00 00 00 00 00 00 veveceneenvennns

Fill the 800 hex block with the constant A5 using the debugger command
F800,8FF,AS. Execute the new program with the debugger command
G100,156. Then display the file control blocks with the command D50,7F
and verify that the three dollar signs are present:

0050: 00 00 00 00 00 00 OO 00 00 00 00 28 00 20 20 20 .ecuvucu.... [
0060: 20 20 20 20 20 20 20 20 00 00 00 00 16 00 00 00
0070: 0C 00 0C 00 00 24 24 24 00 00 00 00 00 00 00 OO $$8........

112 MASTERING CP/M

TITLE ‘TESTFILL to test macro FILL’

;Dec. 24, 81

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot

BDOS EQU 5 ;BDOS entry point

TPA EQU 100H ;fransient program area
FCB1 EQU 5CH ;input FCB

FCB2 EQU 6CH ;2nd parameter

FLFLAG SET FALSE ;FILL flag

’

MACLIB CPMMAC

ORG TPA
START:
ENTER
VERSN “12.24.81.TESTFILL
FILL FCB2+9, 3, ‘%’
FILL 800H, 40H, BLANK
FILL 800H +40H, 40H, O
JMP DONE
DB L===='
DONE:
EXIT
END START

Figure 4.18: Program to Test Macro FILL

A final display of the 800 hex block will show the results of the second
and third macro references. Give the command D800,88F. The results
should look like this:

0800: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0810: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0820: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0830: 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
0840: 00 00 00 00 00 00 OO 00 00 OO0 00 00 00 00 00 00 ..c.vccvvennnanne

BEGINNING A MACRO LIBRARY 113

0850: 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 00 vuucceveevevans.
0860: 00 00 00 00 00 00 OO 00 00 00 00 00 00 00 00 00 sncccuvcnceeanas
0870: 00 00 00 00 0O GO 00 00 OO0 00 00 00 00 00 00 00 veeuecvenecceane-
0880: A5 A5 A5 AS A5 A5 A5 A5 A5 AS AS A5 A5 A5 A5 A5 +evrveennncannnn

Return to CP/M by typing control-C. Now we will develop a pair of
macros for comparing one region of memory to another.

A MACRO TO COMPARE TWO BLOCKS
OF INFORMATION

We will often need to determine whether a particular memory area
matches another memory area or string of characters. For example, in
Chapter 6 we will write a program to display an ASCII disk file on the
video screen. A binary COM file cannot be displayed in this way, so we
will want to compare the file type the user has entered to the string COM.
The program can be terminated when a COM file is given.

Asasecond example, suppose a program needs a file name, but the user
enters an ambiguous file name such as

SORT. *

The CCP converts the asterisk to three question marks. The program is
looking for a single file name but the CCP gives

SORT.???

In this case the program may have to deal with many different files rather
than a single file. To be prepared for this possibility, we must compare the
input file name to a string of question marks.

The inline macro COMPAR, shown in Figure 4.19, can be used to
make general comparisons of blocks up to 256 bytes in length. If you want
to compare two memory regions, give the addresses of each block as the
first and second parameters. The number of bytes in each block is given as
the third parameter. The maximum block size is 256 bytes, because the C
register counts the block size. Copy this macro into your macro library,
placing it in alphabetic order.

The conditional blocks

IF NOT NUL FIRST
and
IF NOT NUL SECOND

allow either or both of the first two parameters to be omitted. If the

114 MASTERING CP/M

COMPAR MACRO FIRST, SECOND, BYTES
;;(Put current date here)

;;Inline macro to compare 2 memory areas.
;;Zero flag is set if both are the same,

:+first and second may be addresses,

;;third parameter is number of bytes.

;;First parameter may be a quoted string,
;:in which case there is no third parameter.
;;Any of the parameters may be omitted.
;;Register A is altered.

s

;;Usage: COMPAR FCBI, FCB2, 12

B COMPAR ’?7?7’, FCB1+9
5 COMPAR ,,5
LOCAL MESG, AROUND
PUSH H
PUSH D
PUSH B
IF NUL BYTES
LXI H,MESG ;quoted text
MV C,AROUND-MESG ;length
ELSE
IF NOT NUL FIRST
LXI H,FIRST
ENDIF
IF NOT NUL BYTES
MV C,BYTES
ENDIF
ENDIF ;nul bytes
IF NOT NUL SECOND
LXI D,SECOND
ENDIF
CALL COMP2?
POP B
POP D
POP H
IF NOT CMFLAG OR NUL BYTES
JMP AROUND

Figure 4.19: Macro COMPAR to Perform a Binary Comparison

BEGINNING A MACRO LIBRARY 115

ENDIF
IF NOT CMFLAG ;one copy

COMP27?: ;compare routine
LDAX D ;get char
CMP M ;same?
RNZ ;no
INX H
INX D ;pointers
DCR C ;and count
INZ COMP2? ;keep going
RET

CMFLAG SET TRUE ;only one
ENDIF
IF NUL BYTES

MESG: DB FIRST ;ext
ENDIF

AROUND: ;;COMPAR
ENDM

Figure 4.19 (continued)

parameters are missing, the registers must be loaded prior to referencing
the macro. The macro call might look like this:

COMPAR ,,8

If you want to determine whether the first and second parameters of a
CP/M command line are identical, use the following macro reference:

COMPAR FCB1, FCB2, 12

This will compare the 12 bytes starting at the first file control block to the
12 bytes in the second. The macro will set the zero flag if the two blocks are
identical. The zero flag will be reset otherwise.

If you want to compare a memory block to a particular string of text,
you can omit the third parameter. The first parameter then contains the
text itself. The assembler finds the length of the block from the length of
the first parameter. For example, the macro reference

COMPAR “???’, FCB1+9

will set the zero flag if the three characters starting at FCB1 49 are ali
question marks. (FCB1 +9 contains the file type of the first parameter of
a CP/M command line.)

116

MASTERING CP/M

An ASCII Comparison

Although each byte contains eight bits, the ASCII character set uses only
the lower seven bits (0 —6). Since the high-order bit, bit 7, is not needed in
this case, it can be used to convey other information. Thus one 8-bit byte
can be divided into a 1-bit flag followed by a 7-bit ASCII character. The
byte does double duty. The CP/M system uses this method to denote file
protection and thus reduce the likelihood of accidentally erasing important
files. For example, CP/M file names consist of a primary name and an ex-
tension of up to three characters. The extension often suggests the kind of
information contained in the file (FOR for FORTRAN, BAS for BASIC,
and so on). If the high-order bit of the first character of the extension is
set, CP/M considers the file to be write protected. On the other hand, if

.this bit is reset, the file can be deleted or altered. The remaining seven bits

contain the ASCII character.
Suppose we want to ensure that a given file has the extension COM. It
appears that we could use the macro reference

COMPAR ‘COM’, FCB1+9

for this purpose. However, this approach will fail whenever the given file
is write protected. For example, the ASCII representation of the letter Cis

100 0011
which we can write as
01000011

when the high-order bit is zeroed. However, if the file is write protected,
the high-order bit is set. The pattern is as follows:

1100 0011

We therefore need a different version of the comparison macro, so that
we can compare only the lower seven bits of each byte. The macro givenin
Figure 4.20 can be used for this purpose. Enter this macro into your library.

COMPRA MACRO FIRST, SECOND, BYTES
;:{Put current date here)

;;ASCII version (high bit is zeroed).

;;Inline macro to compare two memory areas.
:;Zero flag is set if both are the same,

Figure 4.20: Macro COMPRA to Perform an ASCII Comparison

BEGINNING A MACRO LIBRARY

117

;:first and second may be addresses,

;;third parameter is number of bytes.

;;First parameter may be a quoted string,
;;in which case there is no third parameter.
;;All three parameters may be omitted.

;;Register A is altered.
;;Usage: COMPRA
5 COMPRA
n COMPRA
LOCAL
PUSH
PUSH
PUSH
IF
LXI
MVI
ELSE
IF
X
ENDIF
IF
Mvi
ENDIF
ENDIF
IF
LXI
ENDIF
CALL
POP
POP
POP
IF
JMP
ENDIF
IF
COMP2?:
LDAX

FCB1, FCB2, 11
‘COM’, FCB1+9
, FCB1+1, N

MESG, AROUND

H

D

B

NUL BYTES

H, MESG ;quoted text
C,AROUND-MESG ;length

NOT NUL FIRST
H,FIRST

NOTNULC
C,BYTES

;nul bytes
NOT NUL SECOND
D,SECOND

COMP2?

B

D

H

NOT CMFLAG OR NUL BYTES
AROUND

NOT CMFLAG ;one copy
,compare routine
D ;get char

Figure 4.20 (continued)

118 MASTERING CP/M

ANI 7FH :mask bit 7
PUSH B
MOV CA
MOV AM
AN 7FH
CMP C ;same?
POP B
RNZ ,no
INX H
INX D ;pointers
DCR C ;and count
INZ COMP2? ;keep going
RET

CMFLAG SET TRUE ;only one
ENDIF
IF NUL BYTES

MESG: DB FIRST stext
ENDIF

AROUND: JCOMPRA
ENDM

Figure 4.20 (continued)

A MACRO TO RAISE LOWERCASE LETTERS
TO UPPERCASE

Any lowercase letters given on a CP/M command line are automatically
raised to uppercase. However, if the user inputs information while a program
is executing, uppercase and lowercase letters remain distinctly different.
For example, suppose that a program displays the statement

DELETE ALL FILES?
It is not sufficient to test the user response with the statement

cPl Y
because the input might be either uppercase or lowercase. Of course, it is
possible to consider both possibilities with additional instructions. For

example:
CPi Y
Jz ...
cPl 'y

JZ

BEGINNING A MACRO LIBRARY

119

A more efficient approach, however, is to use the macro given in Figure
4.21 to raise a lowercase letter to uppercase. The macro is referenced just
before the comparison is made:

UCASE

CPI

JZ

IYI

We can understand the operation of this macro by considering the
ASCII coding of alphabetic characters. For example, the uppercase letter
Y and the lowercase letter y differ by only one bit. The lower seven bits of
each are as follows:

Y 1011001 (uppercase)
y 111 1001 (lowercase)
UCASE MACRO REG

Iz

1’

12

;;Usage:

NOTUP?:

UCASE
UCASE

LOCAL
IF
PUSH
MOV
ENDIF
CPI

JC
ANI

IF
MOV
POP
ENDIF

ENDM

;;(Put current date here)

:;inline macro to convert a character in any
;;register to uppercase.

;;Omit parameter for register A.

C

NOTUP?

NOT NUL REG

PSW ;save
A,REG ;get value
7’+7 ;uppercase?
NOTUP? ;no

5FH ;make uppercase
NOT NUL REG

REG,A ;put back
PSW ;restore

;;UCASE

Figure 4.21: Macro UCASE to Convert Lowercase Letters to Uppercase

120

MASTERING CP/M

The patterns for the other alphabetic characters are similar. The example
shows that we can convert a lowercase letter to uppercase by resetting bit
5. The operation we want is a logical AND with the value of 5F hex.

y 111 1001 (lowercase)
AND S5F 1011111

Y 101 1001 (uppercase)

This approach works properly for lowercase letters. It also gives the
desired answer when applied to uppercase letters:

Y 101 1001 (uppercase)
AND S5F 1011111

Y 1011001 (uppercase)

That is, we can use the same operation on either uppercase or lowercase
letters and we will get uppercase letters. Remember that this technique is
designed to work only for letters.

Consider, for example, what would happen if we performed a logical
AND with the value 5F hex and the ASCII number 8. The bit patterns are
as follows: :

8 011 1000 (number 8)
AND S5F 1011111

001 1000 (control-X)

We have converted the number 8 into the character control-X. We must
therefore be careful to apply the conversion routine only to letters. (There
are several special characters, such as the braces, that are located with the
lowercase letters. However, this is not likely to be a problem.)
The macro contains the following instructions:
CPl ‘747
Jc

The CPI instruction determines whether the character is lowercase. The
value of the lowercase letter ‘a’ is seven greater than the value of an upper-
case letter Z. So if the character has a value less than a lowercase letter ‘a’,
the JC instruction causes a branch around the logical AND operation. (If
we consider it important enough, we could add a second test to the program
for characters that have values greater than z. This would ensure that the
program would only try to convert characters from ‘a’ to ‘z’, However,
this is a minor point, because there are only a few characters in the ASCII
range beyond z.)

A second feature of UCASE is the optional parameter. If the parameter

BEGINNING A MACRO LIBRARY 121

is omitted, the character is expected to be in the accumulator. However, if
a register is given as a parameter, the assembler will insert additional in-
structions to operate on the character in the given register. For example,
the macro reference

UCASE C
will generate the additional instructions
PUSH PSW
MOV AC
at the beginning of the macro expansion and the instructions
MOV CA
POP PSW
at the end.

We will usually include macro UCASE in programs that require input
from the operator.

A MACRO TO CONVERT AN AMBIGUOUS FILE
NAME TO AN UNAMBIGUOUS FILE NAME

In Chapter 7 we will write a program for renaming disk files. The pro-
gram will allow ambiguous file names, and the original file name will be
given before the new file name.

If we give the command

RENAME SORT.PAS *.BAK
we want the result to be the same as if we had given the command
RENAME SORT.PAS SORT.BAK

That is, the file name *.BAK must be changed into SORT.BAK. This
conversion occurs in two steps.

The CP/M system will convert the first parameter to a slightly different
form and place it in the file control block at 5C hex. This location is given
the symbolic name FCB1 (or sometimes simply FCB) in this book. CP/M
removes the decimal point separating the primary name from the exten-
sion. It then fills out the four characters of the primary name to eight
characters by using blanks, and it places them in memory starting at 5D
hex. The extension name is placed immediately after the primary name.

The second parameter is placed into memory starting at 6C hex. The
symbolic name FCB2 refers to this location. CP/M converts the asterisk
into eight question marks and puts them into memory starting at 6D hex.

122

MASTERING CP/M

The extension name is placed after the primary name. The second param-

At some point, the question marks in the second file name will have to
be converted by our program into the four letters ‘SORT’ and four blanks
corresponding to the first file name.

Macro AMBIG, given in Figure 4.22, can be used to convert an ambiguous

AMBIG MACRO OLD, NEW

;:(Put current date here)

;:Inline macro to change ambiguous file name
:;at FCB NEW to match FCB OLD.

rr

Usage: AMBIG FCB1, FCB2

e

PUSH H

PUSH D

PUSH B

LXI H,NEW+1

LXI D,OLD+1

MVI C, 11 ;number of char
AMB2?:

MV A7

CMP M ;question mark?

IJNZ AMB3? ;no

;
;copy one char from original to new

’

LDAX D ;get old char

MOV M, A ;put into new
AMB37?:

INX H ;new

INX D ;orig

DCR C ;count

INZ AMB2?

POP B

POP D

POP H

;:AMBIG
ENDM

Figure 4.22: Macro AMBIG to Convert an Ambiguous File Name to an
Unambiguous File Name

BEGINNING A MACRO LIBRARY 123

file name located at one address to an unambiguous file name located at
another address. In this example, the address of the unambiguous file
name is the first parameter (OLD) and the address of the ambiguous file
name is the second parameter (NEW). Each character is examined, one at
atime. Whenever a question mark is found in the ambiguous file name, it
is replaced by the corresponding character of the unambiguous file name.
For example, the first question mark is replaced by S, the second by O,
and so forth. Copy this macro into your macro library.

Macro AMBIG begins by saving the original contents of the HL, DE,
and BC registers. Then HL and DE are given the addresses corresponding
to the parameters NEW and OLD. Register C is loaded with the value of
11, the file name length (8 + 3).

The accumulator is loaded with a question mark. Then each character
in the new name is compared to the question mark in the accumulator.
The instruction is

CMP M

If a question mark is discovered, the corresponding character is copied
from the old name. The instructions are as follows:

LDAX D
MOV MA

After each comparison, the count in register C is decremented. When the
value reaches zero, the routine is finished. The original contents of the
registers are restored by POP statements.

A MACRO TO MOVE THE UPPER FOUR BITS
TO THE LOWER POSITION

The three methods of representing numbers in a computer are ASCII,
binary, and binary-coded decimal (BCD). ASCII numbers require seven
bits, so each byte can store a maximum of one ASCII character (digit).
With binary representation, we can code values from 0 to 255 decimal
(one less than 2%) in a single byte. With BCD mode, each digit iscoded with
four bits. Thus, a byte can represent BCD numbers from 0 to 99.

The BCD method is nothing more than a hexadecimal coding, except
that the hex digits A —F are not used. Therefore, a routine that convertsa
binary number to hexadecimal can also be used to decodeaBCD number.
In the next chapter we will write a macro for converting a binary number
to two hexadecimal characters.

There will be occasions, however, when we are only interested in the left

124

MASTERING CP/M

character (or nibble) of a BCD or hexadecimal number (for example, in
macro OUTHEX in Chapter 5). Therefore, we will now write a macro for
obtaining this upper half of the byte. Macro UPPER, shown in Figure
4,23, first rotates the upper four bits down to the lower four bits (by per-
forming the RAR instruction four times), and then zeros the new upper
four bits by performing a logical AND with the value OF hex. If the op-
tional parameter is provided, the operation is performed on the register
name (including memory) given as the parameter. Incorporate this macro
into your library and enter the name in the directory.

UPPER MACRO REG

;:(Put current date here)

;;Macro to move the upper 4 bits of the
;;accumulator to the lower 4 bits. The
;;new upper 4 bits are zeroed.

::Use this macro to isolate the left
;;character of packed BCD numbers.

1

;;Usage: UPPER ;rotate down
s OUTHEX ;print
IF NOT NUL REG
PUSH PSW ;save A
MOV A,REG ;move to A
ENDIF
RAR ;move to
RAR ;low half
RAR
RAR
ANI OFH ;mask upper
IF NOT NUL REG
MOV REG,A ;put back
POP PSW srestore A
ENDIF
;;UPPER
ENDM

Figure 4.23: Macro UPPER to Move the Upper Four Bits of a Byte to the Lower
Four Bits

BEGINNING A MACRO LIBRARY 125

A MACRO TO PERFORM 16-BIT SUBTRACTION

Both the 8080 and Z80 CPUs can perform 8-bit addition and 8-bit sub-
traction with and without considering the carry flag. In addition, the Z80
can perform 16-bit subtraction with carry. It is important to note,
however, that the Z80 double-register subtraction always includes the
carry in the subtraction. Therefore, we must reset the carry flag before we
do the subtraction. Of course, the carry flag reflects the result of the
subtraction.

The final macro in this chapter is given in Figure 4.24. It can be used to
perform 16-bit subtraction without considering the carry flag. We will
need to use macro SBC in several programs to calculate the distance from
one memory location to another.

This 8080 version of a double-register subtraction calculates the differ-
ence between the value in HL and the value in DE. The result is placed in
HL. The state of the carry flag at the beginning of the calculation is not
used, but the carry flag at the end of the process correctly reflects the
result. That is, if the original value in DE is larger than that in HL, the
carry flag will be set at the conclusion of the calculation. This macro is

SBC MACRO

;;(Put current date here)

::Inline macro to subtract DE from HL.
::The result is in HL. This is almost
;:the 780 SBC HL,DE opcode.

rr

;; Usage: SBC
SBC HL,DE
MOV AL
SuB E
MOV LA
MOV AH
SBB D
MOV H,A
;;SBC
ENDM

Figure 4.24: Macro SBC to Perform 16-Bit Subtraction without Carry

126

MASTERING CP/M

equivalent to the two Z80 instructions

OR A
SBC HLDE
SUMMARY

In this chapter, we have explored the importance of macro processing
and we have developed several elementary macros. We will incorporate
these macros in the programs we write in later chapters. It should be noted
that these macros all have a common feature—they do not perform
BDOS calls. In the next three chapters we will consider macros that use
BDOS calls, and we will write programs that incorporate these macros.

The directory of your macro library should now look like this:

;;Macros in this library

;AMBIG

;i COMPAR
;;COMPRA
;;ENTER
LEXIT
5;FILL
;sMOVE
;:SBC
;;UCASE
;;UPPER
;;VERSN

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

OLD, NEW
FIRST, SECOND, BYTES
FIRST, SECOND, BYTES

SPACE?
ADDR, BYTES, CHAR
FROM, TO, BYTES

REG
REG
NUM

Flags
(none)
CMFLAG
CMFLAG
(none)
(none)
FLFLAG
MVFLAG
(none)
(none)
(none)
(none)

CHAPTER S
l

USING BDOS
FOR
NONDISK
OPERATIONS

INTRODUCTION

In this chapter we will learn how to perform console input, console out-
put, and list output by using the CP/M basic disk-operating system
(BDOS). We will develop a number of useful macros to make these tasks
easier. Along the way, we will write macros that convert binary numbers
to decimal and hexadecimal characters, and hexadecimal characters to
binary numbers. Finally, we will incorporate these macros into four exe-
cutable programs that show us more about CP/ M’s organization. The
program CPU determines whether an 8080 or a 780 CPU is being used;
IOBYTE displays and alters the CP/M IOBYTE feature we designed in
Chapter 3; GO branches to an absolute address in memory; PAGE ejects
one or more pages on the printer.

130

MASTERING CP/M

BDOS CALLS

As we saw in Chapter 1, the CP/M operating system divides the com-
puter memory into several distinct regions. The upper portion of memory
is called the full disk-operating system (FDOS) and is further divided into
two regions. The basic input-output system (BIOS) occupies the upper
part of FDOS, and the basic disk-operating system (BDOS) occupies the
lower part of FDOS. In Chapter 3 we studied the organization of the
BIOS and added several new features. We will now consider the BDOS.

The BIOS contains the primitive routines for operating the console, the
printer, and the disks. These routines must be specifically programmed
for the actual physical devices that are attached to the computer. Dif-
ferent computers will have different versions of BIOS. It is possible for
CP/M executable programs to perform input and output operations by
communicating directly with the BIOS. However, it is easier to use the
BDOS as an intermediate to BIOS. All console, printer, and disk opera-
tions can be performed through the BDOS by using a special location in
memory. Because BDOS is device independent, programs that operate on
one CP/M computer will also operate on any other CP/M computer,
even though the hardware and BIOS routines may be different.

Using BDOS to perform peripheral operations is not only more ver-
satile, it is also more convenient. Recall that the first three bytes in
memory, starting at address 0, contain a jump instruction to the warm-
start vector of the BIOS. The next byte, at address 3, contains the
IOBYTE. The following byte, address 4, indicates two things: the current
disk drive and the current user number. The next three bytes, starting at
address S, contain a jump into the BDOS. This is the location that can
always be called when console, printer, and disk operations are needed.
Contrast this single jump address into BDOS to the multiple jump vectors
at the beginning of the BIOS. The BIOS uses a separate entry point for
each different operation.

We will now consider some simple BDOS operations.

Nondisk BDOS Function Numbers

When an executable program interacts with the peripherals through the
BDOS, it calls the BDOS entry point at address 5. At this time, the C
register of the 8080 or Z80 CPU contains a function number indicating the
desired operation. The information sent by the program is placed in the E
register if the value is byte size, or in the DE register pair if it is two bytes.
Information is usually sent back to the calling program in the accumu-
lator if byte size or in HL if it is two bytes.

USING BDOS FOR NONDISK OPERATIONS 131

Table 5.1: The Nondisk BDOS Functions

Function
number
(in C) Operation Value sent Value returned
1 Read console character in A
2 Write console characterin E
3 Read reader character in A
4 Write punch characterin E
5 Write list character in E
6 Direct console 1/0 FF (input) 0 = not ready or
character (output) character in A
7 Determine IOBYTE byte in A
8 Set IOBYTE inE
9 Print buffer address in DE
10 Read buffer address in DE
11 Return console status bytein A
12 Return CP/M version bytein Aand L

We can perform many different operations with BDOS calls. We can
divide the functions into two groups. One group deals with the console,
reader, punch, and list devices. The other group performs disk opera-
tions, which will be considered in the next chapter. Here we willlook at the
nondisk functions. Table 5.1 summarizes the first 12 BDOS functions.
These functions deal with the four logical devices—the console, the
printer, the list, and the punch—as well as operations involving the
IOBYTE and the CP/M version number. We will be explaining these
operations as the chapter proceeds. Let us now consider a macro for per-
forming general BDOS calls.

A MACRO TO PERFORM BDOS CALLS

The BDOS functions all work in the same way. Address 5 is called with
the function number in register C. Information is sent in the E or DE
register and returned in the accumulator or HL. Because the contents of
the CPU registers change during the BDOS operations, it is usually
necessary to save the registers on the stack before calling the BDOS. The
registers are then restored after the return from BDOS. One note of cau-
tion, however: if we save the accumulator and flag register with a PUSH
PSW instruction and then restore them with POP PSW, we will lose any

132

MASTERING CP/M

information that was returned from BDOS in the accumulator.
Therefore, the accumulator should not be saved during input operations.

The macro shown in Figure 5.1 will be referenced by several other
macros we will write. Add it to your macro library in alphabetic order. Be
sure to enter the name into the directory at the beginning of the library.

Our macros are usually designed for direct, inline use. If a subroutine
or a line of text must be included, there is a branch to get around the
obstruction. Macro SYSF, however, is always referenced as a subroutine.
We do not have to include a branch around the routine, because macro
SYSF will generally be called by another macro that already includes the
branch. However, if you use macro SYSF directly in the line of instruc-
tions, you must provide a branch around the routine.

Macro SYSF has two dummy parameters. The first parameter is the
function number, which is loaded into register C. The second parameter
is optional. It will be used only when we must transfer a byte from the
accumulator to register E prior to calling BDOS for output (see macro
PCHAR in Figure 5.3).

The macro begins by saving the HL, DE, and BC registers on the stack
and loading the function number (the first parameter) into register C. If
the optional second parameter is provided, the value in the accumulator is
moved into register E and the accumulator is saved with PUSH PSW. The
BDOS address is called to perform the desired function. After returning
from BDOS, the accumulator is restored with POP PSW if it was
previously saved. The other registers are restored and control returns to
the calling program.

A MACRO TO READ A SINGLE
CONSOLE CHARACTER

The first two BDOS functions are very important. Function 1 is used to
read a single character from the console, and function 2 is used to write a
single character on the console. Actually, these two functions are not
complementary. When a console character is read with function 1, it is
also displayed on the terminal at that time. Function 3 is similar to func-
tion 1 except that the character is obtained from the logical reader rather
than from the console.

We can obtain a single character from the console by placing the func-
tion number 1 in register C and calling address 5. The 8080 instructions
are as follows:

Mvi Ci1
CALL 5

USING BDOS FOR NONDISK OPERATIONS

133

rr

;;Usage: OPEN:

PUSH
PUSH
PUSH
Mvi
IF
MOV
PUSH
CALL
POP
ELSE
CALL
ENDIF
POP
POP
POP
RET

ENDM

SYSF MACRO
;;(Put current date here)

;:Macro to generate BDOS calls.
::FUNC is BDOS function number for C.
+:THIS IS NOT AN INLINE MACRO.
::Move A to E if there is a second parameter.

b PCHAR:

FUNC, AE

SYSF 15
SYSF 2,AE

H

D

B

C,FUNC
NOT NUL AE
EA

PSW

BDOS

PSW

BDOS
B

D
H

;console and list
save A

;SYSF

Figure 5.1: Macro S YSI;‘ to Generate a BDOS Call

We can generate these instructions by using macro SYSF with the ap-
propriate parameter. When the instructions are executed, BDOS calls the
BIOS vector that performs console input. The next character entered
from the console is read by the BIOS. Control then returns to the calling

program through BDOS. The character is available in the accumulator.

Occasionally we will need to check the console status to determine
whether the user has pressed a console key. We will then place function
number 11 in register C and call the BDOS address. On return from
BDOS, the accumulator contains a vatue of FF hex if a console character

134

MASTERING CP/M

has been typed. The accumulator contains a value of 0 otherwise.

When console input is performed with the BDOS function 1, the system
waits until the console is ready. Because this function automatically per-
forms a status check, it is not necessary to determine the console status by
first making a call to BDOS function 11. On the other hand, if no
character is typed, program execution ceases until a character is typed.

When BDOS function 1 is used, printable ASCII characters, such as the
letters and digits, are displayed on the video screen as they are entered.
Control characters such as the carriage return, line feed, tab (control-I),
backspace (control-H), and control-C can also be read in this way, but
they are not displayed on the screen.

Macro READCH is given in Figure 5.2. Add it to your macrolibrary. If
no parameter is given, this macro generates instructions to read one
character from the console and then return the character in the accu-
mulator. However, if a parameter is provided, the character is returned in
the register given by the parameter.

READCH MACRO REG

;:(Put current date here)

;;inline macro to read one character from
;;the console; character is returned in register
;A unless a second parameter is given,
;;Macro needed: SYSF

123

;;Usage: READCH

iy READCH C
LOCAL AROUND
CALL RDCH?
IF NOT NUL REG
MOV REG, A
ENDIF
IF NOT CIFLAG
JMP AROUND
RDCH?: SYSF 1
CIFLAG SET TRUE ;only one copy
ENDIF
AROUND: ;;READCH
ENDM

Figure 5.2: Macro READCH to Read One Console Character

USING BDOS FOR NONDISK OPERATIONS 135

A MACRO TO WRITE A SINGLE
CONSOLE CHARACTER

A program can perform console output by putting the character into
register E, the value of 2 in register C, and calling the BDOS entry at
address 5. Functions 4 and 5 are similar to function 2, the only difference
being where the output is sent. If the function number in register C is4, the
byte in register E is sent to the punch device. If the function number is 5,
the value is sent to the list device.

Macro PCHAR, shown in Figure 5.3, performs the BDOS function 2.
We will use it frequently to send individual characters to the console,
referencing it from other macros we write. Incorporate this macro into
your library. Notice that macro SYSF is required.

Macro PCHAR can be used to display the byte that is present in the accu-
mulator. The macro name is placed in the source program as though it were
an operation code. This macro can also be used to display a particular
constant that is known at assembly time. The constant is given as a

PCHAR MACRO PAR

;1(Put current date here)

;;Inline macro to print one console char.
;;Parameter, if present, is loaded into A.
::Macro needed: SYSF

;;Usage: PCHAR

s PCHAR “*

LOCAL AROUND

IF NOT NUL PAR
Mmvi A, PAR
ENDIF
CALL PCH2?
IF NOT COFLAG
JMP AROUND
PCH27?: SYSF 2,AE
COFLAG SET TRUE ;only one copy
ENDIF
AROUND: ;;PCHAR
ENDM

Figure 5.3: Macro PCHAR to Display Single Characters on the Console

136

MASTERING CP/M

parameter to the macro reference. For example, if we want to print an
asterisk, we can use the expression

PCHAR el

When the assembler encounters the parameter, it generates an additional
instruction to move the parameter into the accumulator. It thus generates
the same instructions as the two lines

MvI A
PCHAR

If two identical characters are needed, it is not necessary to give the
parameter the second time:

PCHAR ‘9 ;print dollar sign
PCHAR ;second dollar sign

These instructions will display two dollar signs. There is a potential prob-
lem, however, because the original value in the accumulator is lost. For
example, suppose you want to print a particular character, then display
the original value in the accumulator. You will first need to save the value
that was originally in the accumulator. The program might look like this:

PUSH PSW

PCHAR el ;print asterisk

POP PSW

PCHAR ;original character

A MACRO TO DISPLAY A CARRIAGE RETURN
AND LINE FEED

PCHAR can be used to display single characters, but frequently we will
find it necessary to display a carriage return followed by a line feed.
Because this combination requires two references to PCHAR, we will
write a very short macro called CRLF to make the task easier. Copy the
macro shown in Figure 5.4 into your macro library.

Macro CRLF uses no parameters. It is referenced in a program
wherever a carriage return and line feed are needed. The beginning of the
macro calls the global subroutine CRLF2? to perform the desired opera-
tion. The subroutine first saves the accumulator on the stack, then
references macro PCHAR twice. The accumulator is restored and control
is returned to the beginning of the macro. A jump instruction allows the
subroutine to be coded inline.

Two flags are needed with macro CRLF—COFLAG for macroPCHAR

USING BDOS FOR NONDISK OPERATIONS 137

CRLF MACRO
;;(Put current date here)
;:Inline macro to send a
;;carriage return, line feed to console.
;;All registers saved including A.
;;Macro needed: PCHAR
LOCAL AROUND
CALL CRLF2?

IF NOT CRFLAG ;just one
JMP AROUND

CRLF27?:
PUSH PSW
PCHAR CR
PCHAR LF
POP PSW
RET

CRFLAG SET TRUE ;only one copy
ENDIF

AROUND: ;;CRLF
ENDM

Figure 5.4: Macro CRLF to Generate a Carriage Return and Line Feed

and CRFLAG for this macro. The latter flag ensures that there will only
be one copy of subroutine CRLF2? and the corresponding jump instruc-
tion. Each additional reference to macro CRLF will only generate a call to
subroutine CRLF2?.

A PROGRAM TO TEST MACROS SYSF, READCH,
PCHAR, AND CRLF

The program shown in Figure 5.5 can be used to test macros SYSF,
READCH, PCHAR, and CRLF. Type in the program, assemble it, and
run it. The program begins with the usual macros ENTER and VERSN.
Then macro CRLF is used to begin a new line. Macro PCHAR prints a
colon for a prompt symbol and macro READCH waits for user input.

As soon as a single console character is typed, the program continues.
An ASCII zero is subtracted from the user input. This operation converts
the ASCII digits 0—9 to the corresponding binary digits. Of course, all

138 MASTERING CP/M

TITLE ‘TEST PCHAR’

’

;(Put current date here)

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point
TPA EQU 100H ;program start
CIFLAG SET FALSE ;for READCH
CRFLAG SET FALSE ;for CRLF

COFLAG SET FALSE ;for PCHAR

’

MACLIB CPMMAC

ORG TPA
START:
ENTER
VERSN ’(current date)’
NEXT:
CRLF
PCHAR ;prompt
READCH :number of char
SuUI 0 ;make binary
JZ DONE ;quit on zero
MOV CA
PCHAR BLANK
LOOP:
PCHAR ¥
DCR C
JNZ LOOP
JMP NEXT
DONE:
EXIT
END START

Figure 5.5: Program to Test Macros SYSF, READCH, PCHAR, and CRLF

USING BDOS FOR NONDISK OPERATIONS 139

other input characters are altered also. If the user inputs a value of 0, the
program is terminated; otherwise, the value is saved in the C register. A
blank is printed and the number of asterisks corresponding to the user input
is displayed. The program then starts again.

An input in the range of 1—9 will produce as many asterisks. The
uppercase letter A will give 17 asterisks and the lowercase letter ‘a’ will
give 49 asterisks. Characters such as the dollar sign and percent symbol
have ASCII values less than the digits, but because they are altered by the
subtraction of an ASCII zero, they will produce several lines of asterisks.

PRINTING A STRING OF CHARACTERS

In the previous section, we used BDOS function 2 to display individual
characters on the console, one at a time. However, frequently we will need
to display a string of characters such as the expression

?FILE NOT FOUND

This is easily accomplished with BDOS function 9. The string is placed into
memory and terminated with a dollar sign. The address of the beginning
of the string is loaded into the DE register and the value of 9 is placed into
register C. When BDOS is called, the string is displayed on the console.
The dollar sign, of course, is not included in the display.

The program shown in Figure 5.6 demonstrates the use of BDOS func-
tion 9 to print a string of characters on the console. The program uses
macro SYSF. Type in the program, assemble it, and execute it. The
resulting console output should be as follows:

A test of BDOS function

In this program, the desired string begins with a carriage return and line
feed. These two characters are embedded in the console buffer in this exam-
ple. Previously we used macro CRLF for this purpose.

The remaining text, including the terminal dollar sign, is enclosed by
apostrophes. The assembler places the text in memory immediately after
macro SYSF, which is implemented as a subroutine. The JMP DONE
statement provides a branch around both the subroutine and the string of
characters.

A Macro to Print a String of Characters

Using function 9 to display a string of characters is more efficient than
displaying individual characters with function 2. Nevertheless, we still

140

MASTERING CP/M

TITLE ’Print console buffer’

’

;(Put current date here)

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point

TPA EQU 100H ;fransient program area

7

MACLIB CPMMAC

ORG TPA
START:
ENTER
VERSN ‘(current date). CONSOLE BUFFER’
LXI D, TEXT
CALL SEND
JMP DONE
SEND:
SYSF 9
TEXT:
DB CR,LF,’A test of BDOS’
DB ’ function 9%’
DONE:
EXIT BOOT swarm start
END START

Figure 5.6: Printing the Console Buffer

have to provide a branch around the string and a call to subroutine SEND.
In this section we will write a new macro to further simplify the printing of
strings. Our goal will be a macro called PRINT. Its use will be as simple as
the following instruction:

PRINT ‘A test of BDOS function 9’

That is, the parameter to the macro will be the string enclosed in
apostrophes.

Make a copy of the program shown in Figure 5.6 and alter it to look like
Figure 5.8. We will use this program to test macro PRINT shown in

USING BDOS FOR NONDISK OPERATIONS 141

PRINT MACRO TEXT

;;(Put current date here)

;;Inline macro to print a literal string.
;;Macro needed: SYSF

;;Usage: PRINT ‘message’

3 PRINT <CR,LF, ‘message’>

LOCAL MESG, AROUND

PUSH D

LXI D,MESG

CALL PBUF? ;print message
POP D

JMP AROUND

IF NOT PRFLAG ;need subroutine

’

;print message on console up to $

PBUF?:

SYSF 9
PRFLAG SET TRUE ;N0 more copies
ENDIF
MESG: DB TEXT,'$’
ARQUND:
;;PRINT
ENDM

Figure 5.7: Macro PRINT, Version 1

Figure 5.7. You can incorporate this macro into your macro library now,
but we will be writing a more general version in the next section. Conse-
quently, you may want to temporarily insert this version into Figure 5.8,
the program to test the macro, rather than into your macro library. In that
case, place it directly after the MACLIB CPMMAC statement.

When the assembler encounters the PRINT macro, it places the desired
string into memory starting at the location MESG. A dollar sign is
automatically placed at the end of the string so that CP/M will know
where the buffer terminates. The original value in the DE register is saved
on the stack with a push statement, then the DE register is loaded with the

142

MASTERING CP/M

0

NOT FALSE

0 ;system reboot

5 ,BDOS entry point

100H ;fransient program area
FALSE ;print console buffer
CPMMAC

’(current date)
<CR,LF,’A test of BDOS function 9>

BOOT swarm start

TITLE ‘Print console buffer’
;(Put current date here)
FALSE EQU
TRUE EQU
BOOT EQU
BDOS EQU
TPA EQU
PRFLAG SET
MACLIB
ORG TPA
START:
ENTER
VERSN
PRINT
DONE:
EXIT
END

START

Figure 5.8: Program to Test Macro PRINT

address of MESG, the start of the string. Subroutine PBUF? is called to
print the string. The DE register is restored with a POP command; a
branch around both the subroutine and the string concludes the PRINT

macro.

Several features should be noticed in this example. The symbol
PRFLAG is initially set to FALSE so that only one copy of subroutine
PBUF? is generated. PBUF? is a global variable, while the labels MESG
and AROUND are local variables. They will appear in each expansion of
the macro, but they will be different symbols. Finally, in the main program
we have surrounded the parameter to macro PRINT with angle brackets:

< CR,LF,’A test of BDOS function 9>

USING BDOS FOR NONDISK OPERATIONS 143

This step tells the assembler that the carriage return and line feed are to be
included in the text.

Assemble the new program and execute it. The result should be the
same as before.

Macro Print, Version 2

The macro we wrote in the previous section can be used to print strings
of characters embedded in the source program, but we cannot print a
dollar sign in this way. There will also be cases where we want to print a
string stored at a particular memory location. We might not even know
the location until execution time. We could adapt the previous macro for
this purpose if we place a dollar sign at the end of the string, but this may
not always be convenient. We will now rewrite macro PRINT so it can
display a string located anywhere in memory or given as the macro
parameter.

We will abandon the previous reference to BDOS function 9, which
prints a string of characters, and we will use function 2 instead. We will
print the characters one at a time using macro PCHAR. Macro PRINT
calculates the string length and then determines the number of times to
call the subroutine created by PCHAR. This may seem to be a step
backward, but it is not really. This version has the ability to print strings
from any memory location, and dollar signs can be embedded in the strings
as well.

Incorporate the second version of macro PRINT, shown in Figure 5.9,
into your macro library. Alter the test program in Figure 5.8 to look like
Figure 5.10, using the file name PRN2. Notice that two flags, COFLAG
and PRFLAG, are required. Also notice that no regular 8080 operation
codes are shown in this example. There are only macro references. Assemble
this program and execute it. Give the following CP/M command line:

PRN2 TEST OF PRINT
The program will respond with the following two lines:

The first 12 characters of the command line tail are:
TEST OF PRIN

This program contains three references to macro PRINT. The first two
are similar to the previous uses. The desired string is printed on the console:

The first 12 characters of the command line tail are:

The third reference, however, is different. The presence of the second
parameter in the macro reference is a signal to the assembler that the first

144 MASTERING CP/M

parameter contains the address of the string rather than the string itself.
The first parameter references the beginning of the string at DBUFF +2.
When any program is executed, CP/M places the command line tail in
memory starting at 82 hex. The HL register is therefore loaded with the
address of 82 hex (DBUFF +2).

Let us see how macro PRINT works by writing an executable program.

PRINT MACRO TEXT, BYTES

;;(Put current date here)

;;Inline macro to print string on console.
;:TEXT is address of string, BYTES is length.
;;TEXT may be in quotes if BYTES is omitted.
:;Macro needed: PCHAR

;;Usage: PRINT FCB1+1, 11

N PRINT ‘end of file’

5 PRINT <CR,LF, ‘message”™>
3 PRINT ,12

LOCAL AROUND, MESG

PUSH H

PUSH B

IF NUL BYTES

Xl H,MESG

MvI B,AROUND-MESG
ELSE

IF NOT NUL TEXT

LXI H,TEXT

ENDIF

Mvi B,BYTES

ENDIF

CALL PBUF?

POP B

POP H

IF NOT PRFLAG OR NUL BYTES
JMP AROUND

ENDIF

IF NOT PRFLAG

Figure 5.9: Macro PRINT, Version 2

USING BDOS FOR NONDISK OPERATIONS 145

PBUF?: MOV AM
PCHAR
INX H
DCR B
JNZ PBUF?
RET
PRFLAG SET TRUE
ENDIF
IF NUL BYTES
MESG: DB TEXT
ENDIF ;;PRINT
AROUND:
ENDM
Figure 5.9 (continued)

TITLE ’Print console buffer’

1

;(Put current date here)

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot

BDOS EQU 5 ;BDOS entry point

TPA EQU 100H ;transient program area
DBUFF EQU 80H ;default buffer

COFLAG SET FALSE ;console output

PRFLAG SET FALSE ;print console buffer

MACLIB CPMMAC
ORG TPA

START:
ENTER

Figure 5.10: Program to Test Version 2 of Macro PRINT

146 MASTERING CP/M

VERSN ‘(current date)’
PRINT <CR,LF,'The first 12 characters of ">
PRINT <’the command line tail are: ,CR,LF>
PRINT DBUFF+2, 12

DONE:
EXIT BOOT ;warm start

END START

Figure 5.10 (continued)

A PROGRAM TO DISCOVER WHICH CPU
IS BEING USED

The 8080 (and 8085) instruction set is incorporated into the much larger
set of instructions used by the Z80 CPU. Consequently, 8080 executable
programs can usually be run on a Z80 computer. However, computer
programs that use the special features of the Z80, such as block moves and
relative jumps, will not run on an 8080 computer.

Because of this difference, it may be necessary for a computer program
to determine which CPU is being used. For example, if a program requires
the special Z80 instructions, it could terminate execution when itis runon
an 8080. Alternatively, two different sets of algorithms could be provided.
The more efficient version could be used when the program is run on a
Z80. Otherwise, the 8080 version could be selected.

Because the 8080 and Z80 CPUs respond differently to arithmetic
operations, they can be distinguished easily. The difference lies in the
behavior of the parity flag. The flag correctly reflects the result of logical
operations for both the 8080 and the Z80 CPUs. However, for arithmetic
operations the results are different. For the 8080, the flag reflects the parity
of the result, just as for logical operations. The Z80, however, sets the
parity flag only if there is overflow (from bit 6 to 7) during an arithmetic
operation. For this reason, the parity flag on the Z80 is called a parity/
overflow flag.

We can distinguish the 8080 and Z80 CPUs by using the following three

instructions:
XRA A
DCR A

JPE NOTZ80

USING BDOS FOR NONDISK OPERATIONS 147

The first of these instructions performs an exclusive OR on the accumu-
lator with itself. This logical operation zeros the accumulator. It also sets
the parity flag (meaning parity is even) on both the 8080 and the Z80
CPUs, because there is an even number of ones (zero) in the result.

The next instruction decrements the accumulator, giving a value of FF
hex. This arithmetic operation will leave the 8080 parity flag set, because
there is an even number of ones (eight). However, the Z80 parity/overflow
flag is reset by the decrement operation because there is no overflow. The
8080 CPU will branch at the JPE instruction because the 8080 parity flag
is set. The Z80 CPU, however, will not branch because the parity/overflow
flag is reset.

The above three lines could be incorporated into a Z80-only program
to detect when it was run on an 8080 CPU. Let us see how this works
by writing a short assembly language program.

The program given in Figure 5.11 will print the expression

CPU is Z80
when run on a Z80 computer. Otherwise the expression
CPU is 8080

will be displayed. Create a disk file named CPU. Type in the program,
assemble it, and execute it.

The program begins with the usual ENTER and VERSN macros. The
PRINT macro displays the beginning of the message. The CPU type is de-
termined by the next three lines. If the CPU is 8080, the program branches
to the label NOTZ80 and prints the message ‘8080°. Otherwise the program
continues and prints the message ‘Z80’.

Before we write our next executable program we will need to add two
macros to our library. The first macro converts binary numbers to hexa-
decimal characters and displays them on the console. The second macro
determines the CP/M version number.

TITLE "CPU tells if 8080 or Z80

’

;(Put current date here)

;Usage:\ CPU

Figure 5.11: Program CPU to Determine whether CPU Is 8080 or Z80

148 MASTERING CP/M
FALSE EQU 0
TRUE EQU NOT FALSE
BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point
FCB1 EQU 5CH ;input FCB
FCB2 EQU 6CH ;2nd parameter
DBUFF EQU 80H ;default buffer

TPA EQU T100H ;transient program area
;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before MACLIB call.

COFLAG SET FALSE ;console output
PRFLAG SET FALSE ;print console buffer
;end of flags

’

MACLIB CPMMAC
ORG TPA

START:
ENTER
VERSN ’(current date).CPU’
PRINT ‘CPU is’

XRA A ;zero
DCR A
JPE NOTZ80
PRINT * 2807
JMP DONE
NOTZ80:
PRINT ‘ 8080
DONE:
EXIT
END START

Figure 5.11 (continued)

USING BDOS FOR NONDISK OPERATIONS 149

A MACRO TO CONVERT BINARY
TO HEXADECIMAL

A binary-to-hexadecimal conversion is needed in many of the programs
in this book. Any eight-bit binary value can be represented as two hexa-
decimal characters; the resulting hex number is in the range 0 —FF hex.

As you know, information is stored in a computer as a sequence of
binary digits (0 or 1), with each digit being called a bit, and a group of eight
bits being called a byte. Sometimes we need to determine the value of a
particular byte. However, we cannot simply transfer the byte to the con-
sole, because the console uses ASCII, a seven-bit code. For example, the
binary number

0100 10N

has a hexadecimal value of 4B. However, this bit pattern corresponds to
the ASCII letter K. So if this byte were sent to the console, we would see
the letter K. We need a routine to transmit the ASCII numeral 4 and then
the ASCII letter B. This is called a binary-to-hexadecimal routine.

Notice that for the above binary number, the upper four bits correspond
to the left hex character (4) and the lower four bits correspond to theright
hex character (B):

Nibble ASCII pattern Character

0100 0011 0100 4
1011 0100 0010 B

Notice that we need to display the left character before the right
character. Consequently, we must rotate the upper four bits to the lower
position. The new upper bits are then zeroed. When this happens, the pattern

01001101
becomes

1101 0100
and then

0000 0100

We must be careful to save the original byte prior to the rotation and zeroing,
or the right nibble will be lost.

Copy macro OUTHEX, shown in Figure 5.12, into your macro library.
This macro is used to convert a binary number to two hex characters that
are printed on the console screen. If the optional parameter is omitted, the

150

MASTERING CP/M

OUTHEX MACRO REG

;;(Put current date here)

;;Inline macro to convert binary number in
::REG to two hex characters and print them.
;;Byte initially in A if REG omitted.

:;Macro needed: PCHAR

LOCAL ~ AROUND,HEX1?,HEX2?

IF NOT NUL REG
MOV A,REG
ENDIF
CALL QUTHX?
IF NOT CXFLAG
JMP AROUND
OUTHX?: PUSH B
MOV CA ;save
RAR
RAR
RAR
RAR
CALL HEX17? ;high byte
MOV A,C
CALL HEX1? ;low byte
MOV A,C ;restore
POP B
RET
HEX1?: ANI OFH ;output hex byte
ADI (o ;make ASCII
CPI 9 +1 ;0-9?
JC HEX2? ;yes
ADI A9 ;make A-F
HEX27?:
PCHAR ;to console
RET
CXFLAG SET TRUE
ENDIF
AROUND: ;;OUTHEX
ENDM

Figure 5.12: Macro OUTHEX to Display a Binary Byte in Hexadecimal

USING BDOS FOR NONDISK OPERATIONS 151

binary number in the accumnulator is converted. If the binary number is
located in another register or in memory, the parameter references the
location.

Two different algorithms can be used to convert a four-bit nibble to an
ASCII character. The basic problem is to convert binary numbers from
0—15 to the ASCII digits 0—9 and the ASCII letters A—F. We need to
convert the binary numbers to their ASCII equivalent expressed in hexa-
decimal notation, that is, to the base 16.

Let us study the bit patterns for the first ten numbers. The following list
gives the values in decimal, binary, ASCII, and hex:

Decimal Binary ASCII Hex

0000 0011 0000
0001 0011 0001
0010 0011 0010
0011 0011 0011
0100 0011 0100
0101 0011 0101
0110 0011 0110
o111 0011 0111
1000 0011 1000
9 1001 0011 1001

You can see from this list that there is a constant difference between these
binary numbers and their ASCII counterparts. The ASCII zero has a
hexadecimal value of 30 and the binary zero is 0, leaving a difference of
30 hex. We call this difference the ASCII bigs. Thus a binary number in
the range 0—9 can be converted to its ASCII equivalent by adding the
ASCII bias. If the number is in the accumulator, the following instruc-
tion makes the conversion:

ADI O
If the nibble has a value greater than 9, the binary-to-hex conversion is
different. The patterns for this group are as follows:

IR - NE VA QY)
COJAULEAWN—=O

Decimal Binary ASCcHl Hex
10 1010 0100 0001 A
11 1011 0100 0010 B
12 1100 0100 0011 C
13 1101 0100 0100 D
14 1110 0100 0101 E
15 1111 01000110 F

152

MASTERING CP/M

By studying this list, we can see that the offset between the binary and
ASCII values is 37 hex. Thus, we can make the conversion by adding the
offset of 37 hex to this second group of numbers.

We perform the binary-to-hex conversion by first adding the ASCII
bias of 30 hex. We use the ADI ‘0’ instruction for this. If the original nibble
was in the range 0—9, the result is the corresponding ASCII value from
0—9. However, if the original nibble was in the range 10—15, we add an
additional 7, the remainder of the larger bias. This produces the corre-
sponding ASCII characters A —F. This additional amount is one less than
the difference between an ASCII A and an ASCII 9. Therefore we use the
following instruction:

ADI ‘A"—9"—1 ;make A—F

The assembler determines that the operand has a value of 7. In this way, a
binary two (0010) becomes the ASCII numeral 2. However, a binary ten
(1010) becomes the ASCII letter A.

A shorter and faster algorithm is sometimes used for the binary-to-
ASCII conversion, but it is more difficult to follow. The instructions
from ADI ‘0’ to ADI ‘A’ —‘9’ —1 are replaced by the following:

ADI 90H
DAA
AC 40H
DAA

This approach uses the decimal adjust accumulator (DAA) operation.
The DAA command is designed for BCD arithmetic. After each add
instruction, the DAA command is given. This operation adds 6 to each
nibble if the value is greater than 9.

Let us consider this method of binary-to-ASCII hex conversion for a
binary two and a binary ten (hexadecimal A):

Binary Two Binary Ten
Original value 0000 0010 0000 1010
90 hex 1001 0000 1001 0000
ADI 1001 0010 1001 1010
DAA 1001 0010 0000 0000
40 hex 0100 0000 0100 0000
ACI 1101 0010 0100 0001
DAA 0011 0010 0100 0001
ASCII value 2 A

For the binary two, the first DAA operation does not change the value.

USING BDOS FOR NONDISK OPERATIONS 153

The second DAA instruction converts the 1101 of the left nibble to a
0011 by adding the value of 6. The result is 32 hex, the ASCII numeral 2.
In the case of the binary ten, the first DAA operation converts 1001 1010
to 0000 0000 and sets the carry flag. The second DAA instruction does
nothing. The result is 41 hex, the ASCII letter A.

We will now develop a macro to determine the CP/M version number.

A MACRO TO FIND THE CP/M VERSION NUMBER

The original CP/M was given the version number 1.3. Subsequent ver-
sions are labeled 1.4, 2.0, 2.1, 2.2, and so forth. Many CP/M programs
will run on all versions. However, several powerful features were in-
troduced with version 2, and any program that uses these new features
cannot be executed on version 1. In fact, we will write a program in
Chapter 8 that uses the built-in disk-parameter tables, and it will not run
on version 1 for this reason. Programs that use the features of version 2
should determine the version number of the CP/M they are running on
and terminate if it is less than 2.

The CP/M version number is obtained with BDOS function 12. For
version 2 and above, the version number is multiplied by 10 and returned
in both the accumulator and register L as a packed BCD number. For
example, version 2.2 is represented by the number 22 hex. A value of
0 is returned for versions prior to 2.0.

Macro CPMVER can be used to determine whether version 2.0 or later
is being used. The macro is shown in Figure 5.13. Add it to your macro
library.

A PROGRAM TO DISPLAY THE IOBYTE VALUE

In Chapter 3 we learned how to map the four logical devices—console,
reader, punch, and list—into 16 physical devices. Then we incorporated
the IOBYTE feature into several BIOS routines. For example, by changing
the IOBYTE to 1 we can send console output to the printer.

We learned that it is possible to change the IOBYTE with the debugger,
with STAT, or with BASIC. However, it will be more convenient to
dedicate an executable program to reading and changing the IOBYTE.
We will develop the program in two parts.

We begin with a program to determine the current IOBYTE value and
display it in hexadecimal. As an added feature, the program will also
display the CP/M version number. Several of the macros we have written
are required.

154

MASTERING CP/M

CPMVER MACRO

;;(Put current date here)

::Inline macro to determine the CP/M version.
::Accumulator has version in BCD times 10.
;A = 22 for version 2.2, A = 0 for ver 1.4.

r

PUSH H
PUSH D
PUSH B
Mmvi C12
CALL BDOS
MOV Al ;;not necessary
POP B
POP D
POP H
;JCPMVER
ENDM

Figure 5.13: Macro CPMVER to Determine the CP/M Version Number

Make a copy of the program shown in Figure 5.14, giving it the name
IOBYTE. Assemble it and execute it. The program will give the current
hex value of the IOBYTE and the CP/M version number. The program
obtains the CP/M version number with macro CPMVER. The version
number is obtained as a packed BCD numter. However, we use macro
OUTHEX, our binary-to-hexadecimal converter, to display the results.

The original value is saved in the C register. Macro UPPER moves the
upper character to the lower position and zeros the upper four bits. A
logical OR with an ASCII zero converts the binary digit to ASCII soit can
be printed by macro PCHAR. A decimal point is printed with PCHAR.
Then the original byte is retrieved from the C register and the lower
character is similarly converted to ASCII and printed.

Before completing our IOBYTE program we must add two more
macros.

A Macro to Read the Console Buffer

Earlier in this chapter we considered two kinds of output routines. One
type, using BDOS function 2, displays individual characters one at a time.
An alternative approach, using BDOS function 9, prints an entire buffer

USING BDOS FOR NONDISK OPERATIONS

155

TITLE ‘Show IOBYTE and Version’
;also show CP/M version

’

;(Put current date here)

;Usage: IOBYTE

FALSE EQU 0

TRUE EQU NOT FALSE

IOBYTE EQU 3

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point
FCB1 EQU 5CH ;input FCB

TPA EQU 100H ;transient program area

;Set flags in main program so only one
;copy of certain subroutines will be generated.
:Place set lines before MACLIB call.

COFLAG SET FALSE ;console output
CXFLAG SET FALSE ;binary to hex
HXFLAG SET FALSE ;hex to binary in HL
PRFLAG SET FALSE ;print console buffer
RCFLAG SET FALSE :read console buffer

;end of flags

7

MACLIB CPMMAC

ORG TPA
START:
ENTER

VERSN ’(current date). IOBYTET’
PRINT " IOBYTE is *

Mmvi c7 ;get IOBYTE
CALL BDOS
OUTHEX

Figure 5.14: Program to Display the IOBYTE Value and the CP/M
Version Number

156 MASTERING CP/M

PRINT " hex’
DONE:

PRINT ’ for CP/M version ’
CPMVER
MOV CA ;save
UPPER ;move down
ORI] ;convert to decimal
PCHAR ;left digit
PCHAR PERIOD
MOV AC
ANI OFH
ORI 0 ;convert to decimal
PCHAR ;right digit
EXIT
END START

Figure 5.14 (continued)

of characters at one time. Similarly, we can input console characters one
at a time by using BDOS function 1, or we can read an entire line of
characters with BDOS function 10.

Macro READCH can be used to read single characters. We will now
use BDOS function 10 to develop a macro to input an entire line of
characters from the console.

When console characters are read with function 10, they are placed into
a memory region known as the console buffer. This buffer area must be
established prior to making the BDOS call. Two auxiliary bytes, located
immediately in front of the buffer, are associated with the buffer. The
first of these two bytes defines the buffer length, the maximum number
of characters it can hold. The second byte gives the actual number
of characters present in the buffer.

To use BDOS function 10, the DE register is loaded with the address of
.the first auxiliary byte, register C gets the value of 10, and BDOS is called.
As each character is typed, CP/M places it in the buffer and also displays
it on the console screen. The function terminates when a carriage return is
entered or when the number of characters equals the maximum number
specified by the first auxiliary byte. CP/M also sets the second auxiliary
byte to the number of characters that were read. The following CP/M

USING BDOS FOR NONDISK OPERATIONS 157

control characters also can be used with this mode of data entry:

Character Meaning

Begin new line

Backspace

Tab

Engage/disengage printer
Reprint line

Cancel line

Cancel line

H$CRT— I

We will now develop macro READB, shown in Figure 5.15, to read the
console buffer. The instructions at the beginning of the macro implement
the BDOS call to fill the console buffer. The buffer itself is located at the
end of the macro; it is given the label RBUF. The auxiliary bytes are called
RBUFM and RBUFC.

RBUFM: DB RBUFE-RBUF ;maximum count

RBUFC: DS 1 ;actual count
RBUF: DS 16 :buffer start
RBUFE: ;buffer end

The DE register is loaded with the address of RBUFM, the location of
the maximum buffer length. Notice that the assembler calculates this
length by subtracting the address of the buffer beginning (RBUF) from
the address of the buffer end (RBUFE). When the buffer operation is
completed and control returns to the calling program, the location RBUFC

READB MACRO

;;(Put current date here)

;:Inline macro to input a line from console.

::Buffer is located at end of macro.

;;Get characters from buffer by calling

;;global subroutine GETCH in this macro.

;;Buffer pointer RBUFP is also global.
LOCAL AROUND,RBUFM, RBUF, RBUFC, RBUFE
CALL RDB2?
IF NOT RCFLAG

Figure 5.15: Macro READB to Read the Console Buffer

158

MASTERING CP/M

JMP
RDB2?:
PUSH
PUSH
PUSH
LXI
MVI
CALL
LXI
SHLD
POP
POP
POP
RET

AROUND

H

D

B
D,RBUFM
c10

BDOS
H,RBUFM +2
RBUFM—2
B

D

H

;global routine to get char from buffer

GETCH:
LDA
SUI
RC
STA
PUSH
LHLD
MOV
INX
SHLD
POP
RET

RCFLAG SET

RBUFP: DW
;console buffer address
RBUFM: DB
RBUFC: DS
RBUF: DS
RBUFE:

ENDIF
AROUND:

ENDM

RBUFC
1

RBUFC
H
RBUFP
AM

H
RBUFP
H

TRUE
RBUF
RBUFE—RBUF

1
16

;get count
;decr with carry
;no more char

;get char
;next

;only one copy
;buffer pointer
;max length
;actual length
;buffer start

;buffer end

;;READB

Figure 5.15 (continued)

USING BDOS FOR NONDISK OPERATIONS 159

contains the actual number of characters read during the input step.

After a line of characters has been placed in the console buffer with
BDOS function 10, it is necessary to get the characters from the buffer.
The middle portion of macro READB contains a separate global sub-
routine called GETCH for this purpose. Each time subroutine GETCH is
called, it returns with the next character in the accumulator.

When subroutine GETCH takes a character from the buffer, it decre-
ments the count of remaining characters stored at location RBUFC. To
make this task easier, a buffer pointer, RBUFP, is used. This pointer is set
to the first character when the buffer is initially filled. Each time GETCH
removes a character, it increments the pointer.

The carry flag is reset each time GETCH returns a valid character.
However, if there are no remaining characters when GETCH is called, the
carry flag is set. Thus, it is important to check the carry flag immediately
after a return from subroutine GETCH. The buffer pointer, RBUFP, isa
global symbol. It can therefore be accessed by any other part of the pro-
gram. Incorporate macro READB into your macro library.

A Macro to Convert Hexadecimal to Binary

Earlier in this chapter we considered a macro to convert a binary
number to a hexadecimal number; we will now consider a complementary
program to convert a hexadecimal number to a binary number. Macro
HEXHL, shown in Figure 5.16, reads ASCII characters from the console
buffer and converts them to a 16-bit binary number in the HL register.
The characters must first be read, so macro READB must be referenced
before macro HEXHL. This macro also requires macro UCASE.

Macro HEXHL operates on a series of valid ASCII-coded hex numbers.
A blank character or the end of the buffer normally terminates the opera-
tion. If a nonhexadecimal character is encountered, the carry flag is set.
Thus, you should check the state of the carry flag at the end of this step.
Copy macro HEXHL into your macro library.

HEXHL MACRO

;;(Put current date here)

::Inline macro to convert ASCIl hex characters
;:in buffer to a 16-bit binary number in HL.

Figure 5.16: Macro HEXHL to Convert a String of ASCII Hex Characters to a
16-Bit Binary Number

160

MASTERING CP/M

;;Character string is addressed by POINTR.
;:Carry flag set if invalid hex character found.
:;Macros needed: READB, UCASE

12

LOCAL AROUND, RDHL2, NIB?

CALL RDHL?
IF NOT HXFLAG ;one copy only
JMP AROUND
RDHL?:
LXI H,0 ;start with 0
RDHL2:

;get character from console buffer
CALL GETCH

CMC
RNC ;end of line
UCASE ;make uppercase
CALL NIB? ;to binary
RC ;error
DAD H ;times 2
DAD H times 4
DAD H ;times 8
DAD H ;times 16
ORA L ;combine new
MOV LA ;put back
JMP RDHL2 ;next
;convert ASCH to binary
NiB?: Sul o ;ASCII bias

' RC ;< 0
CPI ‘F—-"0"+1
CMC
RC ;> F
CPI 10
CMC
RNC ;a0 number 0-9
Sut A —'9—1

Figure 5. 16 (continued)

USING BDOS FOR NONDISK OPERATIONS 161

CPI 10
RET
HXFLAG SET TRUE ;only one copy
ENDIF
AROUND: ;HEXHL
ENDM
Figure 5.16 (continued)
IOBYTE, Version 2

The program we wrote previously can be used to display the current
value of the IOBYTE at address 3. We will now add a new feature to this
program—the ability to alter the value of the IOBYTE.

Make a copy of the first IOBYTE program (Figure 5.14) and alter it to
look like Figure 5.17. Assemble the new version and execute it. If the pro-
gram is executed as before, without a parameter on the command line, the

TITLE ‘IOBYTE: show or change’
;also show CP/M version

;(Put current date here)

;Usage: IOBYTE
; IOBYTE CO

;performs warm start to reset memory pointer

FALSE EQU 0

TRUE EQU NOT FALSE

IOBYTE EQU 3 ;memory location
BOOT EQU 0 ;system reboot
BDOS EQU v 5 ;BDOS entry point
FCB1 EQU 5CH ;input FCB

FCB2 EQU 6CH ;2nd parameter

Figure 5.17: Program IOBYTE to Display and Change the IOBYTE

162

MASTERING CP/M

DBUFF
TPA

’

EQU
EQU

:Place set lines before

COFLAG
CXFLAG
HXFLAG
PRFLAG SET
RCFLAG SET
;end of flags

SET
SET
SET

’

MACLIB

ORG TPA
START:
ENTER
VERSN
LXI
MOV
CPI
Jz
;use FCB as buffer
SHLD
LDA
DCR
STA

AGAIN:
HEXHL
JC
MOV
MvI
CALL
JMP

80H
100H

;Set flags in main program so only one
;copy of certain subroutines will be generated.

MACLIB call.

FALSE
FALSE
FALSE
FALSE
FALSE

CPMMAC

;default buffer
;iransient program area

;console output
;binary to hex

;hex to binary in HL
;print console buffer
;read console buffer

’(current date).IOBYTE *

H,FCB1+1
AM
BLANK
NOPAR

. RBUFP

80H
A
RBUFP+3

BADPAR
E.L

Cc.8
BDOS
DONE

;parameter if any
;first byte
;anything?

;no

;buffer length + 1
;skip the blank
;save the count

;hex to binary
;input error

;set IOBYTE

Figure 5.17 (continued)

USING BDOS FOR NONDISK OPERATIONS 163

BADPAR:
PRINT ‘Enter the hex value: *
READB ;iry again
JMP AGAIN

NOPAR:
PRINT “IOBYTE is *
MVI C,7 ;get IOBYTE
CALL BDOS
OUTHEX
PRINT " hex’

DONE:
PRINT ’ for CP/M version ’
CPMVER
MOV CA ;save
UPPER ;move down
ORI 0 ;convert to binary
PCHAR ;left digit
PCHAR PERIOD
MOV AC
ANI OFH
ORI ('} :convert to decimal
PCHAR ;right digit
EXIT BOOT ;warm start
END START

Figure 5.17 (continued)

current value of the IOBYTE and the CP/M version will be displayed.
Alternatively, if a valid hexadecimal character is given as a parameter, the
IOBYTE is changed to the desired value. Finally, if an invalid hexa-
decimal number is entered, the value is requested again.

If your BIOS incorporates the IOBYTE feature, you can test the new
version of this program. (Adding the IOBYTE feature to BIOS is described
in Chapter 3.) Suppose, for example, that the current value of the
IOBYTE is 0 and a value of 1 sends console output to the printer. Change
the IOBYTE to 1 with the command

IOBYTE 1

Console output should now appear at the printer. To return to the

164

MASTERING CP/M

previous state, give the command
IOBYTE O

The program begins with macros ENTER and VERSN. Then a check is
made to see if a parameter was included on the command line. CP/M
places the first parameter, if present, in the first file control block (FCB1)
starting at 5C hex. If there is no disk-drive parameter, as in the present
application, the byte at 5C hex is automatically zeroed. The parameter
then begins at the next location, 5D hex. If no parameter was entered on
the command line, there will be a blank at location 5D hex (FCB1 +1).
The program then prints the current value of the IOBYTE and the CP/M
version.

If a parameter was entered on the command line, then the byte at
FCBI1+1 will not be blank. The next step is to convert the one or two
ASCII characters to a binary number and store the result in the IOBYTE
location at address 3. Macro HEXHL is used for this purpose. Re-
member, however, that this macro was written to obtain its characters
from the console buffer. Therefore, we set the console buffer pointer
(RBUFP) to the beginning of the file control block (FCB1+1).

We also need to set the number of characters in the buffer. This is ob-
tained from the default console buffer at 80 hex. The first parameter
begins at address 82 hex, and the number of characters that was entered
appears at address 80 hex. This count is actually one character too large,
because it includes the space in front of the parameter. Consequently, the
following instructions get the character count, decrease it by one to account
for the blank, and store the value in our console buffer at location RBUFC:

tDA 80H ;buffer length 41
DCR A ;skip the blank
STA RBUFP+3 ;save the count

Macro HEXHL is now executed to convert the parameter to a binary
number. If an invalid hexadecimal character is encountered, a new value
is requested from the user. In this case, macro READB is called to get the
desired value. We will now use macro HEXHL in another program to
branch to an arbitrary memory location.

A PROGRAM TO GO TO ANY ADDRESS IN MEMORY

A program can be executed under CP/M by typing its name and any
parameters. The CP/M system copies the executable image from disk into
memory starting at the TPA (address 100 hex). CP/M then branches to

USING BDOS FOR NONDISK OPERATIONS 165

address 100 hex to start the program. Sometimes, however, we may need
to go to an address other than 100 hex. For example, there may be a boot-
strap loader or a monitor at a high memory location. Suppose that we
have two different versions of BIOS, each one saved on a different system
disk. We could change from one system to another simply by changing the
diskette and branching to the bootstrap loader. We can execute the
debugger DDT or SID in this case, using the debugger G command to
force a branch to the desired address.

Alternatively, the program shown in Figure 5.18 can be used to branch

’
’

’
’

’

FALSE
TRUE

BOOT
BDOS
FCB1
FCB2
DBUFF
TPA

’

TITLE ‘GO anywhere in memory’
;(Put current date here)

;Usage:
; GO

;macro library for CP/M system calls

;Set flags in main program so only one

GO (address)

*(address)

EQU 0

EQU NOT FALSE

EQU 0 ;system reboot

EQU 5 ;BDOS entry point

EQU 5CH ;input FCB

EQU 6CH ;2nd parameter

EQU 80H ;default buffer

EQU 100H ;fransient program area

;copy of certain subroutines will be generated.
:Place set lines before MACLIB call.

COFLAG SET FALSE ;console output

HXFLAG SET FALSE ;hex to binary in HL
PRFLAG SET FALSE ;print console buffer

Figure 5.18: Program GO to Branch Anywhere in Memory

166 MASTERING CP/M

RCFLAG SET FALSE ;read console buffer
;end of flags

’

MACLIB CPMMAC

ORG TPA
START:
VERSN ‘(current date).GO *
LXI H,FCB1 +1 ;parameter if any
MOV A M sfirst byte
CPI BLANK ;anything?
JZ NOPAR ;no
;use FCB as buffer
SHLD RBUFP ;save pointer
LDA 80H ;console buffer length + 1
DCR A ;skip the blank
STA RBUFP+3 ;save the count
AGAIN:
HEXHL ;hex to binary
JC NOPAR ;input error
PCHL ;go to address

7

;improper parameter, try again

NOPAR:

PRINT ‘Enter the hex address: ’
READB ;input console line
JMP AGAIN ;try again
END START
Figure 5. 18 (continued)

to any memory address. The desired hexadecimal address can be given on
the command line, or it can be given after the program has started. For
example, the command

GO E800

will cause a branch to the address E800 hex.

USING BDOS FOR NONDISK OPERATIONS 167

This program is very similar to IOBYTE version 2. Macros VERSN,
HEXHL, READB, and PRINT are required. Notice that we did not save
the incoming stack pointer in this program.

Create a file named GO. Type in the program, assembleit, and run it. If
you have a monitor in memory, branch to it with the GO command. Even
if you have nowhere else to go, you can test the program. Give the com-
mand of GO without a parameter. When the program requests an address,
give a value of 0. This will cause CP/M to perform a warm start.

A PROGRAM TO EJECT PAGES ON THE PRINTER

The last program in this chapter will allow us to eject one or more pages
on the printer. We will need a new macro, called LCHAR, for this program.
Macro LCHAR performs the same task on the printer that macro PCHAR
does on the console. In fact, it would be relatively easy to combine the two
macros into one, but referencing the combination macro would then be
more complicated. Consequently, we will keep the two separate.

Place a copy of macro LCHAR (Figure 5.19) in your macro library.
The easiest way to do this may be to make a duplicate of macro PCHAR.
Then change every occurrence of the three letters PCH to LCH on the
copy. Also, change the first parameter in the reference to macro SYSF
from the value of 2 to the value of 5.

Create a file named PAGE. Type in the program shown in Figure 5.20
and assemble it. The program begins with macros ENTER and VERSN.
Then the file control block is tested to see if a parameter was entered on
the command line. This time, however, we use the command

LDA FCB1+1

for this purpose. If this location is blank, no parameter was entered and
one page will be ejected. If a parameter was included in the command, it is
used to determine how many pages are ejected. To avoid getting too many
pages, only the lower three bits of the input value are used. This allows a
maximum of seven pages to be ejected.

There are two loops in the main part of the program. The outer loop
counts the number of pages. The inner loop counts the number of lines.
Macro LCHAR is used to send line feeds to the printer. This program is
very simple, but it demonstrates several important features. For example,
in previous programs we checked the location 5D hex (FCB+ 1) to see
whether a file name was given as a parameter on the command line. In this
program, however, we expect the parameter to be a decimal number.

168

MASTERING CP/M

LCHAR MACRO PAR

;:(Put current date here)

:;Inline macro to send one char to list.
;;Optional PAR is loaded into A.
;;Macro needed: SYSF

1

;;Usage: LCHAR il
5 LCHAR CR
5 LCHAR
LOCAL AROUND
IF NOT NUL PAR
MV A,PAR
ENDIF
CALL LCH2?
IF NOT LOFLAG
JMP AROUND
LCH27: SYSF 5, AE ;list char
LOFLAG SET TRUE
ENDIF
AROUND: ;;LCHAR
ENDM

Figure 5.19: Macro LCHAR to Print Characters on the Printer

TITLE ‘PAGE: eject pages on printer’

;(Put current date here)

;Usage: PAGE

; PAGE 3
FALSE EQU 0
TRUE EQU NOT FALSE

Figure 5.20: Program PAGE to Eject Pages on the Printer

USING BDOS FOR NONDISK OPERATIONS 169

BDOS EQU 5 ;BDOS entry point

TPA EQU 100H ;transient program area
FCB1 EQU 5CH ;parameter

LPAG EQU 66 ;lines per page
;Set flags in main program so only one

;copy of cerfain subroutines will be generated.
:Place set lines before MACLIB call.

LOFLAG SET FALSE ;list output
;end of flags

’

MACLIB CPMMAC

ORG TPA

START:
ENTER
VERSN ’(current date).PAGE *
MVI C1 ;set for one page
LDA FCB1+1 ;parameter?
CPI BLANK
Jz NPAGE ;no
ANI 3 ;maximum number
MOV C.A

NPAGE:
Mvi B,LPAG

LINES:
LCHAR LF
DCR B
JNZ LINES
DCR C ;more pages?
JNZ NPAGE ;yes

DONE:
EXIT
END START

Figure 5.20 (continued)

170

MASTERING CP/M

SUMMARY

We began our macro library in Chapter 4 with several general-purpose
routines. In this chapter we have added macros that interact with the
peripherals through the CP/M BDOS. These include macros to write
characters on the console, read characters from the console, read and
write the console buffer, and make base conversions. We wrote four ex-
ecutable programs, primarily to learn more about how CP/M is organized.
Of course, these programs are useful in their own right.

The directory of your macro library should now look like this:

;:Macros in this library Flags
;AMBIG MACRO OLD, NEW (none)
;;:COMPAR MACRO FIRST, SECOND, BYTES CMFLAG
;;COMPRA MACRO FIRST, SECOND, BYTES CMFLAG

;;:CPMVER MACRO (none)

;;CRLF MACRO CRFLAG, COFLAG
;;ENTER MACRO (none)

LEXIT MACRO SPACE? (none)

5FILL MACRO ADDR, BYTES, CHAR FLFLAG

;s HEXHL MACRO POINTR HXFLAG, RCFLAG
;LCHAR MACRO PAR LOFLAG

;;MOVE MACRO FROM, TO, BYTES MVFLAG
;;OUTHEX MACRO REG CXFLAG, COFLAG
;;PCHAR MACRO PAR COFLAG

;;PRINT MACRO TEXT, BYTES PRFLAG, COFLAG
;;READB MACRO BUFFR RCFLAG
;;READCH MACRO REG CIFLAG, COFLAG
;:SBC MACRO (none)

;;SYSF MACRO FUNC, AE (none)

;;UCASE MACRO REG (none)

1;UPPER MACRO REG (none)

;;VERSN MACRO NUM (none)

CHAPTER 6
T

Il

READING
DISK

FILES

WITH BDOS

INTRODUCTION

In Chapter 5§ we developed macros and programs for performing
CP/M operations using BDOS calls. However, we did not consider disk
operations. In this chapter we will expand our capabilities to include
reading disk files. We will learn how to write disk files in Chapter 7. We
begin by summarizing the organization of the disk and the way CP/M
stores information on it. Then we will develop several important macros
for disk operations. To demonstrate the use of these macros, we will write
several executable programs: SHOW to display ASCII files on the console,
DUMP to display a COM disk filein ASCII and hexadecimal, ADDRESS
to address an envelope from an existing letter file, and PAIR to count
pairs of control characters.

THE FILE CONTROL BLOCK

The disk surface is partitioned into concentric tracks, which are further
subdivided into sectors. The disk hardware is able to address these sectors

174

MASTERING CP/M

individually. However, CP/M accesses a larger unit called a block. A
single-density disk has a block size of 1024 (1K) or 2048 (2K) bytes.
Double-density disks have a block size of 2K, 4K, 8K, or 16K bytes. There
are 128 bytes of information on each sector. Therefore, a 1K block con-
tains 8 sectors and a 2K block contains 16 sectors.

Each file on a CP/M disk is described by a 32-byte file control block
(FCB) that is written into the disk directory. The first 16 bytes of the FCB
give the name of the file, its length, and other characteristics. The remain-
ing 16 bytes of the FCB specify the disk location of each block contained
in the file.

Before a disk file can be accessed, a second copy of the FCB must be
created in memory. As the disk file is altered, the memory version of the
FCB changes. At the end of a write operation, the disk version of the FCB
will be updated from the memory version. We must be able to distinguish
the two versions of the FCB, because they are sometimes different.
Unfortunately, there is no standard terminology for this distinction.
However, in this book we will use the expressions memory FCB and disk
FCB when this distinction is necessary. We will use the unqualified ex-
pression FCB when both versions are the same.

Before we look at the details of the FCB, let us review binary coding.
Data are written onto the disk as a sequence of binary digits (0 or 1),
just as in memory. As we saw in Chapter 5, information is represented
sometimes in regular binary form and other times in ASCII. For example,
the bit patterns for a binary five and an ASCII five are as follows:

Binary Five ASCII Five
0000 0101 0011 0101

Some of the bytes of the FCB are coded in regular binary; other bytes
are in ASCII. We generally express regular binary numbers in hexa-
decimal form. Thus a binary three would be shown as 03. We could also
express the ASCII characters in hexadecimal form, but it is more useful to
show them in ASCII. Therefore, an ASCII three is shown as 3 rather than
its hexadecimal value of 33.

We now turn to the details of the FCB. The first byte of the disk FCB
contains the user number. This is a binary number from 0 — F hex. By con-
trast, the first byte of the memory FCB specifies the disk drive. This is a
binary number from 0— 10 hex. Drives A, B, and C correspond to values
of 1, 2, and 3. The maximum allowable value is 10 hex, corresponding to
drive P. A value of 0in this first position refers to the default or currently
logged-in drive. The next eight bytes of the FCB (bytes 1 —8) contain the
file name in ASCII. This field is filled out with blanks if necessary. The

READING DISK FILES WITH BDOS 175

file name extension is stored in the next three bytes (bytes 9—11). This is
an optional field that is used to describe the nature of the file. We have
seen that the extension BAS is used for BASIC files, FOR for FORTRAN
files, BAK for backup files, and so forth. This field is also filled with
blanks if necessary.

Large files require more than one FCB for the complete specification of
all the blocks. In this case there will be more than one FCB with the same
file name. The next byte (12) distinguishes FCBs with the same file name.
The number in this position is called the extent. It will be zero for small
files. The next two bytes need not concern us. The last byte in this half of
the FCB (15) gives the number of records (128-byte sectors) in the FCB.
The remaining 16 bytes of the FCB give the location of each block of sec-
tors on the disk.

Five sample disk FCBs are shown in Figure 6.1. Remember, theinforma-
tion is actually present as a sequence of bits. However, in this figure the
file names are shown in ASCII, while the other information is given in
hexadecimal notation. Three columns of space have also been added for
clarity.

00 CPMIO ASM 00000055 02030405060708090A080¢0000000000
00 CPMIO HEX 0000000C Op000000000000000000000000000000
00 SORT COM 00000080 12131415161718191A1B1C1D1E1F2021
00 SORT COM 01000080 22232425262728292A2B2C202E2F3031
00 SORT cOM 0200000A 32330000000000000000000000000000

Figure 6.1: Five File Control Blocks for Three Files

The initial byte of each entry is zero, indicating that all of these files
were saved by user zero. The first file, CPMIO.ASM, contains 55 (85
decimal) records and is found on blocks 02—0C. The next file,
CPMIO.HEX, contains OC records and is located entirely in block 0D.

The third, fourth, and fifth entries in the figure are named
SORT.COM; they all refer to the same file. Each of these entries has the
same file name but a different extent number. The file is so large that one
FCB is not sufficient to describe it. The first 80 records (blocks 12—21)
are referenced by the first extent (0). Blocks 22 —31 are referenced by the
second extent (1). The remaining OA records (blocks 32 and 33) are
referenced by the third extent (2).

Later in this chapter we will write macros to activate and read disk files.
However, we must consider the possibility of a misspelled file name. We
will therefore add a macro to handle error messages.

176

MASTERING CP/M

A MACRO TO DISPLAY AN ERROR MESSAGE
AND ABORT THE PROGRAM

Each time a program requests data from the console, a check should be
made to see that the information is meaningful. An error message should
be given if it is not. For example, suppose that an alphabetic character is
given when a decimal number is needed. The operator should be informed
of the problem.

There is a second matter we must consider. The statements of a com-
puter program are normally executed in order. However, when an error is
discovered, we will want to execute an alternate set of instructions and
perhaps terminate the program. Let us combine these two ideas—displaying
an error message and branching to an alternate location—into a macro
called ERRORM.

We previously wrote macro PRINT to send messages to the console.
We will reference macro PRINT to display the error message. (We have
seen that one macro can reference another.) Then we will branch to our
alternate location. Macro ERRORM is given in Figure 6.2. Add it to your
macro library. Macros PRINT and CRLF are referenced within it.

This macro has two parameters. The first parameter is the text of the error
message. The second parameter is the branch address after the error
message is printed. If this parameter is omitted from the macro reference,
a warm start is performed by a branch to the address of BOOT.

Notice that the parameter in the reference to macro PRINT is enclosed
in angle brackets. This construction is necessary if the first parameter to
ERRORM is enclosed in angle brackets. The macro assembler removes
one set of angle brackets each time a macro is expanded. Thus, one pair of
brackets is removed when macro ERRORM is expanded and a second pair
of brackets is removed when macro PRINT is expanded. The angle
brackets are necessary because commas are sometimes used in the text of
the parameter as well as in separating one parameter from another. The
assembler interprets commas as parameter separators unless they are
within angle brackets. For example, the expression

ERRORM <CR,LF,’?File exists™
contains only one parameter. However, the expression
ERRORM CR,LF,’?File exists’

contains three parameters.

Now that we have reviewed the fundamentals of CP/M file organization
and written a macro to display error messages, we can learn how to access
an existing disk file.

READING DISK FILES WITH BDOS 177

ERRORM MACRO TEXT, WHERE

;:(Put current date here)

;:Macro to print message on console.

;:Message is enclosed in apostrophes.

;:Optional second parameter has branch address.
;;1f no second parameter, go to BOOT.

;;Macros needed: PRINT, CRLF

;i/Usage: ERRORM ‘Message’

12

CRLF

PRINT <TEXT>

IF NUL WHERE

JMP BOOT ;quit

ELSE

JMP WHERE

ENDIF ;;ERRORM
ENDM

Figure 6.2: Macro ERRORM to Display an Error Message
and Abort the Program

OPENING AN EXISTING DISK FILE

An existing disk file must be opened with BDOS function 15 before it
can be referenced. A memory FCB must be allocated and partially filled
out prior to the function call. The open operation fills out the remainder
of the memory FCB from the disk FCB. The necessary information is as
follows:

Byte Data

0 Disk drive number

1—8 File name

9—11 File name extension

12 Extent (set to zero)

32 Record number (set to zero)

We saw earlier in this chapter that the memory FCB contains the drive
number at position 0. The value is set to O for the default drive, 1 for drive
A, 2 for drive B, and so on. The file name and extension are placed in the

178

MASTERING CP/M

next 11 bytes; they have the usual ASCII form. The extent byte at position
12 is set to zero. If the usual sequential access is desired, the record
number byte at position 32 must be zeroed as well.

It will usually be necessary to provide all of the above information each
time we open an existing disk file. Consequently, we will want to write a
macro to make this task easier. But before we do this, let us see how
CP/M can help us construct the memory FCB.

Constructing a Memory FCB with CP/M

When a program is executed from the command level of CP/M, there
may be one or more parameters. The parameters given on the command
line are known collectively as the tail. They are automatically placed in the
console buffer starting at address 82 hex. CP/M also begins a memory
FCB for the first parameter, including the disk drive, file name, and file
type (bytes 0—11). The FCB is located at address 5C hex. If a second
parameter is given on the command line, CP/M also begins a second FCB
at address 6C hex.

We can use DDT or SID to see how CP/M sets up the memory FCB. We
will execute the debugger with a single parameter. Then we can display the
appropriate regions of memory to see what CP/M has done. When the
debugger is executed with a parameter, it will attempt to access the re-
quested file. However, if the debugger finds the requested file, it will be
loaded into memory and the FCB will be deleted. Therefore, you must use
a nonexistent disk file for this example.

Suppose that DDT is located on drive A. Go to drive B and give the
command

A:DDT FIRST.EXT
or
A:SID FIRST.EXT

(Remember that there must be no file named FIRST.EXT on drive B.)
The command may be entered in either uppercase or lowercase letters.
This command instructs CP/M to load DDT into memory and execute it.
CP/M also begins a memory FCB for the file named FIRST.EXT, starting
at address SC hex. When DDT gets control, it will attempt to copy
FIRST.EXT into memory. A question mark will appear because the file
does not exist.

At this point, CP/M has started an FCB at 5C hex and placed the com-
mand line tail in the console buffer at 82 hex. Examine this region of

READING DISK FILES WITH BDOS 179

memory with the command
D50, 8F
The following display should appear:

0050 00 00 00 0D 00 00 00 00 00 00 00 00 00 46 49 52 .ecvvecnncn.n FIR
0060 53 S4 20 20 20 45 58 54 00 00 00 26 00 20 20 20 ST EXT...8.

0070 20 20 20 20 20 20 20 20 00 00 00 00 OO 00 00 OO
0080 OA 20 46 49 52 53 54 2€ 45 58 54 00 00 00 00 00 . FIRST.EXT.....

Remember, the debugger display has three parts. The first number on
each line is the address in hexadecimal. The next 16 bytes are the contents
of the corresponding memory expressed in hexadecimal. The ASCII rep-
resentation of these same bytes is then given if it is printable. A dot is
shown if a character is not printable.

Look at the last line in the display. From the ASCII representation, we
can see that the command tail, FIRST.EXT, has been placed in the console
buffer at 82 hex. The length of the command tail (OA hex in this case) is
placed at location 80 hex. There will always be a blank (20 hex) at location
81 hex. If you type the command line in lowercase letters, CP/M will convert
the characters to uppercase. The result will be the same.

Now consider the FCB at 5C hex. The first byte designates the disk
drive. It has a value of 0 in this example, indicating that the default drive
has been selected. The file name, FIRST, appears next. Because it contains
less than eight characters, the remainder of the field is filled out with
blanks. The decimal point separating the file name from the file typeis ap-
parent in the console buffer, but it does not appear in the FCB. The file
type is in its proper place starting at position 9 of the FCB. If less than
three characters are given for the file type, the field is filled with blanks.

Let us try a slight variation of the previous example. Return to CP/M
with control-C and give the command

A:DDT B:FIRST.EXT
or
A:SID B:FIRST.EXT

This command is functionally equivalent to the previous one, except that
drive Bis specifically included. Examine the memory region from 50 to 8F
hex again with the command

' D50, 8F

In the resulting display, the command tail starting at address 82 hex shows

180

MASTERING CP/M

that drive B was specifically requested:

0050 00 00 00 00 00 00 00 00 00 00 00 00 02 46 49 52 c.ccucuvsness FIR
0060 53 S4 20 20 20 45 58 54 00 00 00 26 00 20 20 20 ST EXT...&.

0070 20 20 20 20 20 20 20 20 00 00 00 00 00 00 GO OO
0080 OC 20 42 3A 46 49 52 53 54 2E 45 58 54 00 00 06 . B:FIRST.EXT...

In the previous example the drive was omitted, so the memory FCB
began with the value of 0. In this example, specifying drive B causes the
first byte of the memory FCB at address 5C hex to have a value of 2.

A Macro to Open a Disk File

The previous examples demonstrate that CP/M can construct a
memory FCB if the file name is given as a parameter on the command line.
In order to access the file, we must still zero the extent byte and the record
number byte, and then we must open the file with BDOS function 15.

After the return from BDOS, the accumulator contains the value of FF
hex if the requested file could not be found. We must be ready to either
continue with the program or display an error message and terminate the
program.

We will now write a macro to construct a memory FCB and call BDOS
function 15. Add macro OPEN (shown in Figure 6.3) to your library and
place the name in the directory at the beginning.

Let us look at the details of macro OPEN. The first opcode loads DE
with the FCB address:

IXI D,POINTR

The symbol POINTR is a dummy parameter. The corresponding
parameter in the macro reference is required. The next three instructions
store a 0 at positions 12 and 32 of the memory FCB. The global subroutine
OPEN?2? is then called to perform BDOS function 15. After returning
from BDOS, the accumulator contains FF hex if the file could not be
opened. The next instruction increments the accumulator. This will reset
the zero flag if the file was opened. The program then branches to the local
label AROUND and continues. However, if the file could not be found,
the remaining code is executed.

The macro reference to OPEN will normalily omit the second parameter
corresponding to WHERE, because we want to ensure that the file name
in question actually exists. In this case, the expression IF NUL WHERE
will be true and macro ERRORM will be referenced. It will generate the
€ITOr message

?No source file

READING DISK FILES WITH BDOS 181

OPEN MACRO POINTR, WHERE
;;(Put current date here)
::Inline macro to open an existing disk file.
;:POINTR refers to file control block.
::Extent and current record number are zeroed.
;:Branch to location WHERE if file not found or
;;print error message and branch to DONE otherwise.
;;Macros needed: SYSF, ERRORM
LOCAL AROUND
LXi D,POINTR
XRA A ;zero
STA POINTR+12 ;extent
STA POINTR+32 ;current record
CALL OPEN2?
INR A ;0=o0k, FF means error
JNZ AROUND
IF NUL WHERE
ERRORM ’No source file’, DONE
ELSE
JMP WHERE
ENDIF
IF NOT OPFLAG
OPEN2?: SYSF 15 ;open disk file
OPFLAG SET TRUE ;only one copy
ENDIF
AROUND: 1;OPEN
ENDM

Figure 6.3: Macro OPEN to Open a Disk File

and then terminate the program with a branch to the global label DONE.

Sometimes, however, we will want to ensure that a particular file does
not exist. Then we include a second parameter in the reference. For example,
consider the following macro references:

OPEN FCB1, CONT2
ERRORM ‘?File name exists’
CONT2:

In this case, FCBI1 refers to the memory FCB. However, the expression IF

182

MASTERING CP/M

NUL WHERE is false, so macro ERRORM is omitted from the expansion
of macro OPEN. The program branches to the label CONT?2 if the file is
not found. If the file islocated, an error message is printed and the program
is terminated.

We need to create three additional macros to facilitate disk operation
before we can write the next program. One will set the location of the
memory buffer for reading a disk file, the second will actually read the
file, and the third will request a file name and then create a memory FCB.
We begin with macro SETDMA.

A MACRO TO SET THE DMA ADDRESS

BDOS function 20 is used to read a sector (128 bytes) from disk to
memory. We saw previously that a 1K or larger block of sectors is the
smallest amount of information that CP/M can read from a disk. How-
ever, when a sector is requested, CP/M finds the block in which it is
located and copies the desired sector to a 128-byte sector buffer. The
memory location of the sector buffer is called the DMA (disk memory ac-
cess) address.

Each time a warm start occurs, the DMA address is automatically reset
to 80 hex. However, this will not always be a convenient location. We saw
earlier in this chapter that CP/M places the console buffer at 80 hex, and
the debugger initially places its stack in this region as well. Furthermore,
we will sometimes want to read an entire disk file into memory starting at
100 hex. In that case we will want the DMA address to be 100 hex for the
first sector, 180 hex for the second sector, 200 hex for the third sector, and
so forth. Therefore, we must be able to alter the DMA address. We may
also want to reset the DMA address to 80 hex, in case the previous program
set it somewhere else.

Macro SETDMA, given in Figure 6.4, uses BDOS function 26 to set the
DMA address. The macro reference will usually give the DMA address as
a parameter, in which case the assembler loads the DE register with the
parameter. However, sometimes it will be more convenient to load the DE
register from a memory location prior to the macro reference, in which
case the parameter will be omitted. Copy the macro into your library.

Let us now construct a macro to read a disk sector.

A MACRO TO READ ONE DISK SECTOR

Before a disk file can be read, it is necessary to construct amemory FCB
containing the file name and open the file with BDOS function 15. It may

READING DISK FILES WITH BDOS 183

SETDMA MACRO POINTR

;;(Put current dote here)

;:Inline macro to set the DMA address where
::next sector will be read or written.

;;Macro needed: SYSF

rr

LOCAL AROUND

iF NOT NUL POINTR
LXi D,POINTR
ENDIF
CALL DMA2?
IF NOT DMFLAG
JMP AROUND
DMA27?:
SYSF 26 ;set DMA address
DMFLAG SET TRUE ;only one copy
ENDIF
AROUND: 1;SETDMA
ENDM

Figure 6.4: Macro SETDMA to Set the DMA Address

also be necessary to set the DMA address with BDOS function 26. At this
point, a 128-byte sector can be read from the disk using BDOS function 20.
The information is placed into memory starting at the current DMA address.

We will use macro READS, shown in Figure 6.5, whenever we need to
read a disk sector. Copy the macro into your library. There are two
parameters for this macro. The first parameter is the address of the
memory FCB. The assembler loads this address into the DE register if the
parameter is present. In this book the first parameter will usually be given
the symbol FCBI. If the parameter is omitted from the macro, it is assumed
that DE has been previously loaded.

The second parameter, if present, is printed after each sector is read.
This will aliow us to watch the action during the loading of a large file, but
it also greatly slows the process.

Our next macro will request a file name and set up a memory FCB after
a program has begun operation.

184

MASTERING CP/M

READS MACRO POINTR, STAR
;;(Put current date here)

;;Inline macro to read a disk sector.
:;POINTR refers to file control block.
;;Optional second parameter is symbol
;;to be printed after sector is read.
;:Zero flag is reset if end of file.
;;Macros needed: SYSF, PCHAR

”

;: Usage: READS FCB1
5 READS FCBS, "**
LOCAL AROUND
IF NOT NUL STAR
PCHAR STAR ;to console
ENDIF
IF NOT NUL POINTR
LXi D,POINTR
ENDIF
CALL READ2?
ORA A ;set flags
IF NOT RDFLAG
JMP AROUND
READ27?: SYSF 20 ;read disk sector
RDFLAG SET TRUE ;only one copy
ENDIF
AROUND: ;;READS
ENDM

Figure 6.5: Macro READS to Read a Disk File into Memory

A MACRO TO INPUT A FILE NAME

We saw at the beginning of this chapter that a file name entered as a
parameter on the command line is placed in the default console buffer at
82 hex. The parameter is also converted into a memory FCB at address 5C
hex. The first byte of this FCB refers to the requested drive. For example,
avalue of 0 at this location refers to the default drive, drive A is referenced
by 1, drive B is 2, and so on. CP/M also raises any lowercase letters to

READING DISK FILES WITH BDOS 185

uppercase, fills out the file name and file type with blanks, and removes
the decimal point in the file name.

However, once a program has begun execution, CP/M cannot convert
a file name into an FCB. Many of the programs we will write in this book
expect a file name to be entered. If the parameter is given on the command
line, CP/M creates the necessary memory FCB. However, if the file name
was not given on the command line, the program must request one. The
program itself must now process the characters that are entered. That is,
byte 0 of the FCB must be set to 0 if no drive was specified, or set to 1 if
drive A was specified. Lowercase letters must be converted to uppercase,
and so forth.

The macro GFNAME, shown in Figure 6.6, asks for a file name and
then sets up a memory FCB. The instructions it generates will only be used
after a program has begun execution. Copy the macro into your library.
The memory FCB is referenced through the parameter. This will usually
be 5C hex, but we will sometimes use another address. The file name may
be entered in either uppercase or lowercase letters. A disk drive also may
be specified if desired.

We will now use the macros we have created to write a program to
display ASCII files on the console.

GFNAME MACRO FCB

;;(Put current date here)

;;Inline macro to get file name from console

;;and place in FCB. Lowercase raised to uppercase.
;;Macros needed: READB, FILL, UCASE, PRINT, CRLF
;;Subroutine GETCH is part of macro READB.

r

LOCAL AROUND, PNAME, ENAME, EXTEN, GNAM2

PUSH H

PUSH D

PUSH B

Xi H,FCB
SHLD FCBS?
CALL GNAM?
POP B

Figure 6.6: Macro GFNAME to Input a File Name after a Program
Has Begun Executing

186 MASTERING CP/M

POP D
POP H
IF NOT FNFLAG
JMP AROUND
FCBS?: DS 2 ;save orig pointer
GNAM?:
CRLF
GNAM2:
PRINT < ’,CR>
PRINT ’Enter file name: *
LHLD FCBS?
XRA A ;zero
MOV MA ;default drive
INX H
FILL , 11, BLANK
XCHG
READB ;console buffer
CALL GETCH sfirst char
JC GNAM2 ;try again
CPI BLANK
Jz GNAM2 ;iry again
UCASE
STAX D ;maybe first
CALL GETCH ;second char
RC ;short name
CPI BLANK
RZ ;ditto
Mmvi B,7 ;name length-1
UCASE
CPI PERIOD
JZ ENAME
CPI e’ ;drive?
JNZ PNAME ;no
LDAX D ;get drive
SUI ‘A-1 ;make binary
STAX D ;put it
CALL GETCH ;start file name
JC GNAM2 ;drive only

Figure 6.6 (continued)

READING DISK FILES WITH BDOS 187

UCASE
INR B
DCX D
PNAME: ;primary name
INX D
STAX D
CALL GETCH
RC
CPI BLANK
RZ
UCASE
CPI PERIOD
Jz ENAME
DCR B
INZ PNAME ;ok
JMP GNAM2 :if 9 char
ENAME:
LHLD FCBS? ;get FCB
LXI D,9 ;ext offset
DAD D
XCHG
Mvi B,3
EXTEN: ;file name extension
CALL GETCH
RC
CPI BLANK
RZ
UCASE
STAX D
INX D
DCR B
JNZ EXTEN-
RET ;done
FNFLAG SET TRUE
ENDIF
AROUND: 1;GFNAME
ENDM

Figure 6.6 (continued)

188

MASTERING CP/M

DISPLAYING AN ASCII FILE ON THE CONSOLE

We have seen that information is stored on disk and in memory as a se-
quence of bits. However, there are several different coding schemes.
Source files are coded entirely in ASCII. Executable files are primarily
binary with messages in ASCII. The distinction is important if we want to
look at a file. An ASCII file can be sent directly to the console or printer,
because these are ASCII devices. However, if we transmit a binary file to
the console, it will be largely unintelligible.

An ASCII file can be viewed on the console screen by giving the CP/M
command TYPE followed by the file name. But there are several disad-
vantages to this command. First, the file may scroll so quickly that the
desired location is missed. Control-S can be pressed to freeze the screen,
and any key can be pressed to resume scrolling. Control-S can be pressed
again to freeze the screen. If any key other than control-S is pressed during
scrolling, the command is terminated and we must start over.

Another disadvantage is that TYPE is a built-in CCP command. It can-
not be given from the no-file level of a word processor such as WordStar.
Program SHOW, given in Figure 6.7, solves both of these problems.

SHOW displays an ASCII file on the console one screenful at a time.
Each time the space bar is pressed, the next screen is displayed. Pressing the
carriage return key will display the next line. The program is terminated
by pressing any other key.

SHOW is an executable program. Consequently, it can be run from the
no-file level of WordStar. For example, to display the source program for
SHOW, give the command

SHOW SHOW.ASM

Disk drive names can be used as needed. If the executable fileis on drive A
and the source file is on drive B, you can give the command

A:SHOW B:SHOW.ASM

SHOW can also be executed without a parameter. The program will
then request the file name. If an error is made in entering the file name (too
many characters or no characters), the request will be repeated. If the re-
quested file name does not exist or if an attempt is made to display a COM
file, the appropriate error message is printed and the program is terminated.

SHOW is designed for the usual video screen of 24 lines. If your video
screen has a different number of lines, change the definition of the symbol
LMAX from 24 to the proper number.

Type in the program given in Figure 6.7, assemble it, and execute it by
displaying the source program of SHOW. If only the command SHOW is

READING DISK FILES WITH BDOS

189

’

FALSE
TRUE
BOOT
BDOS
FCB1
DBUFF
TPA
LMAX

’

CIFLAG

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

SET
CMFLAG SET
COFLAG SET
CRFLAG SET
DMFLAG SET
FLFLAG SET
FNFLAG SET
OPFLAG SET
PRFLAG SET
RCFLAG SET
RDFLAG SET
;end of flags

MACLIB

TITLE “SHOW ASCIi file on console”
;(Put current date here)

;Usage: SHOW DISKFILE.EXT

;Press space bar to display next screen.
;Carriage return to scroll up one line
;performs same function as TYPE, but
:SHOW can be executed from WordStar.

0

NOT FALSE

0 ;system reboot

5 ;BDOS entry point

5CH ;input FCB

80H ;default buffer

100H ;transient program area
24 ;lines per screen

;Set flags in main program so only one
;copy of certain subroutines will be generated.
:Place set lines before MACLIB call.

FALSE ;input console char
FALSE ;ASCIl compare
FALSE ;output console char
FALSE ;carr-ret/line-feed
FALSE ;set DMA

FALSE «fill characters
FALSE ;read file name
FALSE ;open disk file
FALSE ;print console buffer
FALSE ;read console buffer
FALSE ;read disk file
CPMMAC

Figure 6.7: Program SHOW to Display an ASCII File on the Console

190 MASTERING CP/M
ORG TPA
START:
ENTER
VERSN ’(current date).SHOW *
LDA FCB1+1
CPi BLANK JHile name?
INZ OPEND ;yes
GFNAME FCB1 ;get file name
OPEND:
COMPRA 'COM’, FCB1+9 ;COM file?
JZ NOCOM ;yes
OPEN FCB1 ;source file
SETDMA DBUFF ;use default
LXI H, 100H ;set pointer
NEXTSC:
CALL SCREEN ;next screen
FREE2:
READCH ;wait for input
CPI BLANK ;space?
JZ NEXTSC ;next screen
CPI CR
JNZ DONE ;abort
PCHAR CR
MVI B,1 ;set one line
CALL LINE ;one line
JMP FREE2
;routine to fill console screen
SCREEN:
Mvi B,LMAX :line count
PCHAR CR
NEXTLN:
CALL LINE
DCR B scount
JNZ NEXTLN ;keep going
RET

Figure 6.7 (continued)

READING DISK FILES WITH BDOS

191

’

;routine to display one line

LINE:
MOV
ORA
Jz
READS
INZ
LXI
JMP
LINS:
MOV
INX
ANI
CPI
Jz
MOV
CPI
JNZ
MOV
CPI
RZ
MOV
LIN2:
PCHAR
MOV
CPI
JNZ
RET
NOCOM:
ERRORM
EOFILE:
READCH
DONE:
EXIT

END

AH

A

LIN3
FCBI1
EOFILE
H,DBUFF
LINE

AM

H

7FH
EOF
EOFILE
DA
CR
LIN2
A,B

1

AD
A,D

CR
LINE

;check pointer
;still 80-FF?
;yes

;read a sector
;end of file
;reset pointer

;mask parity
;file end

;yes

;save

;line end?

;no

;check position
;last line?
;yes, skip CR
;retrieve CR

;send to console
srestore

;line end?

;no

‘Use DUMP for a COM file’,DONE

START

;last page

Figure 6.7 (continued)

192

MASTERING CP/M

given, the program will request the file name. Press the space bar to view
the next screen or the carriage return key to see the next line. Press any
other key to terminate the program.

When SHOW begins execution, it checks the second byte of FCBI1 (the
first character of the file name) to see if a file name was entered on the
command line. A blank in this position indicates that no file name was
given. In that case, a file name is requested. Macro GFNAME is used for
this purpose.

Then the file type is checked to ensure that it is not a COM file. If
everything is all right, the requested file is opened. The default buffer at 80
hex is used to read the disk sectors, but we specifically set the DMA address
to this address just in case it was set to some other location by the previous
program.

We need to add one more macro to our library before we are ready to
write the next program.

A MACRO TO ABORT THE PROGRAM
FROM THE CONSOLE

Sometimes it is necessary to prematurely terminate a program for one
reason or another—perhaps a number was entered incorrectly from the
console, or perhaps the program provided enough information at the
beginning that the remainder of the program is not needed. For these
reasons, many operating systems allow an executing program to be
prematurely terminated. Unfortunately, the CP/M operating system
does not provide this feature. Let us therefore write macro ABORT to
prematurely terminate a program. Enter the macro shown in Figure 6.8
into your macro library.

Let us see how macro ABORT works. The macro reference is placed in
a program where you would like to check for termination. The console
status is determined with BDOS function 11. On return from this function,
the accumulator has a value of FF hex if a console key was pressed; the ac-
cumulator is zero otherwise. The macro then generates instructions to
rotate the accumulator into the carry flag and check the carry flag. If the
status indicates that no console key was pressed, the program branches
around the remainder of the macro.

If the carry flag is set, then a console key has been pressed. If the
parameter was omitted from the macro reference, then the program will
terminate. However, if a parameter was included in the macro reference,
then the character typed at the console is compared to this parameter. If
they match, the program is terminated by a branch to the label DONE.

READING DISK FILES WITH BDOS 193

ABORT MACRO CHAR
;;(Put current date here)
;;Inline macro to abort program when
;;console key given by CHAR is pressed.
;;Any key will do if CHAR omitted.
;;Branch to DONE on abort.
;;Usage: ABORT ESC
;;:Macro needed: READCH
LOCAL AROUND
PUSH H
PUSH D
PUSH B
MVI c1n ;console status
CALL BDOS
POP B
POP D
POP H
RRC
JNC AROUND ;no character
READCH ;get char
IF NUL CHAR
JMP DONE
ELSE
CPI CHAR
JZ DONE
ENDIF
AROUND: ;;ABORT
ENDM

Figure 6.8: Macro ABORT to Terminate a Program from the Console

Let us use an example to clarify this. We will always use the macro
reference

ABORT ESC

for the programs in this book. The macro will then generate instructions
to terminate the program only if the escape key has been pressed. Any
other key will be ignored.

We are now ready to write our next program.

194

MASTERING CP/M

DISPLAYING A BINARY FILE ON THE CONSOLE

The program in Figure 6.7 will display an ASCII file on the video
screen, but it cannot be used for a binary file. Sometimes, however, it is
necessary to study a binary executable (COM) file. This can be accom-
plished with the program given in Figure 6.9. Of course, this program can
also display an ASCII file, but the output is not as readable as the output
from SHOW. Type the program using the file name DUMP. Assemble it
and execute it. The command line is the same as that used for SHOW.

The output from DUMP is similar to that from DDT. Each line begins
with the corresponding memory location (starting at the beginning of the
TPA). Then 16 bytes are given in hexadecimal. The ASCII equivalents of
the characters are also given if they are printable; a decimal point is shown
otherwise. The display freezes after the screen is filled. Pressing the space
bar displays the next screen, while a carriage return shows the next line.
Press the escape key to terminate the program. (We check for termination
at the end of each line.)

The remaining two programs in this chapter further demonstrate the
use of our disk-related macros. Both programs use our new macro to read
existing disk files.

TITLE ‘DUMP binary file to console’

r

;(Put current date here)

;Usage: DUMP (file name)
;space bar = next screen
;<CR> = next line
;<ESC> = abort

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point
FCB1 EQU 5CH ;input FCB

DBUFF EQU 80H ;default buffer

TPA EQU 100H ;program start here
LMAX EQU 23 ;maximum lines

Figure 6.9: Program DUMP to View a Binary File

READING DISK FILES WITH BDOS

195

;Place set lines before MACLIB call.

CIFLAG SET

FALSE

COFLAG SET FALSE
CRFLAG SET FALSE
CXFLAG SET FALSE
DMFLAG SET FALSE
FLFLAG SET FALSE
FNFLAG SET FALSE
GTFLAG SET FALSE
OPFLAG SET FALSE
PRFLAG SET FALSE
RCFLAG SET FALSE
RDFLAG SET FALSE
;end of flags

MACLIB CPMMAC
ORG 100H
START:

ENTER

VERSN

LDA FCB1+1

CPI BLANK

JNZ OoP3

GFNAME FCB!
OP3:

OPEN FCB1

SETDMA DBUFF

LXI H,TPA

SHLD PNTR

PRINT

PRINT
NEWLN:

;Set flags in main program so only one
;copy of certain subroutines will be generated.

;input console char
;output console char
;carr-ret/line-feed
;binary in C 1o hex
;set DMA

;fill characters

;read file name

;get char from buffer
;open disk file

;print console buffer
:read console buffer
;read disk sector

’(current date).DUMP *

file name?
;yes
;get file name

;input disk file
;sector location
;display pointer

‘Space bar for next screen, ’
‘<CR> next line, <ESC> to abort’

:start new line

Figure 6.9 (continued)

196 MASTERING CP/M

CRLF
PUSH
LHLD
OUTHEX
OUTHEX
LXI
DAD
SHLD
POP
PCHAR
NEXT:
MOV
ORA
Jz
READS
INZ
LXI
NEXT2:
OUTHEX
INX
MOV
ANI
Jz
AN
JNZ
PCHAR
JMP
PASC:
PRINT
PUSH
LXI
DAD
PAS2:
MOV
INX
CPI
JNC
CPI

H
PNTR
H

L
D,10H
D
PNTR
H
BLANK

AH

A

NEXT2
FCBT
DONE
H,DBUFF

AM

7FH
PAS3
BLANK

;buffer pointer
;display pointer
;show address

;next line

;save
;buffer pointer

;check pointer
;still 80-FF hex?
;yes

;read a sector
;end of file

;line end?
;yes
;space
;no

;ASCI dump

;buffer pointer

;back up pointer

;high bit on?
iyes
;control char?

Figure 6.9 (continued)

READING DISK FILES WITH BDOS

197

JNC
PAS3:
MVI
PAS4:
PCHAR
MOV
ANI
JINZ
POP
ABORT
LDA
DCR
STA
JNZ
AY!
STA

’

Afreeze line until space bar pressed

FREEZ:

READCH

CPI

JZ

ANI

CPI

JNZ

MVI

STA

JMP
LINE:

DB
FREZ2:

CPi

JNZ
DONE:

EXIT

PNTR: DS
END

PAS4

A,PERIOD

AL
OFH
PAS2

H

ESC
LINE

A

LINE
NEWLN
A,LMAX
LINE

BLANK
NEWLN
1FH

CR
FREZ2
Al
LINE
NEWLN

LMAX

ESC
FREEZ

START

;no
;change
;print it
sline end?
;no

;buffer pointer
;quit?

;wait for input
;space bar?
;convert to control
;next line?

;no

;one line

;line count

;abort?
;no

;display pointer

Figure 6.9 (continued)

198

MASTERING CP/M

AUTOMATIC ENVELOPE ADDRESSING

If you use a word processor such as WordStar to write letters, you can
print the letter on the computer list device. However, you will still need a
typewriter to address the envelope. With the program given in Figure 6.10,
you can automatically print the envelope after you have printed the letter.

A WordStar-compatible file for the beginning of a letter might look
like this:

..Name of sender

.0op (omit page numbers)
(blank line)

Today’s date

(blank line)

Name of addressee

Street address

City, State Zip code
(blank line)

Salutation

Word processors typically interpret a special character in column 1 as
the beginning of a command line. This character is frequently a period,
because a period will not otherwise appear in the first column. The first
line of this file begins with two periods, the WordStar symbol for a com-
ment line.

The program given in Figure 6.10 can extract the recipient’s name and
address and print it onto an envelope. If the originator’s name is included
at the beginning of the file as a comment, it will be printed in the return-
address area. Create a file named ADDRESS and enter the text shown in
Figure 6.10. Assemble the program and run it.

The ADDRESS program is executed by typing its name and the name
of the letter file. Alternatively, the file name can be given after the program
has started. This program has an additional feature. The originator’s
name is normally placed in the upper left corner of the envelope. If,
however, a separate letter L is given after the file name, then the sender’s
name is aligned with the recipient’s name and address. This form is more
suitable for addressing labels.

CHECKING FOR PAIRED CONTROL CHARACTERS

Our final program will check for paired control characters in disk files.
We use macro GFNAME to input a file name from the console, macro

READING DISK FILES WITH BDOS

199

TITLE ‘ADDRESS envelope from letter’
;(Put current date here)

;Usage:
: ADDRESS DISKFILE.EXT (for envelope)
: ADDRESS DISKFILE.EXT L (for label)

:Letter file has the form:

;..Author (for return address)

;.op and other dot commands (optional)
;blank line {optional)

;Date (one line)

;blank line (one or more)

;Address

:blank line

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot

BDOS EQU 5 ;BDOS entry point

FCB1 EQU 5CH ;first parameter

FCB2 EQU 6CH ;second parameter
DBUFF EQU 80H :default buffer

TPA EQU 100H ;fransient program area

BEL EQU 7

:Set flags in main program so only one
;copy of certain subroutines will be generated.
;Place set lines before MACLIB call.

CMFLAG SET FALSE ;ASCIll compare
COFLAG SET FALSE ;output console char
CRFLAG SET FALSE ;carr-ret/line-feed
FLFLAG SET FALSE sfill characters
FNFLAG SET FALSE ;get file name
LOFLAG SET FALSE ;list output

OPFLAG SET FALSE ;open disk file

Figure 6.10: Program ADDRESS to Automatically Address an Envelope

MASTERING CP/M

PRFLAG SET FALSE ;printer output
RCFLAG SET FALSE ;read console
RDFLAG SET FALSE ;read disk file

;end of flags

’

MACLIB CPMMAC

ORG TPA
START:

ENTER

VERSN ’(current date). ADDRESS *

LDA FCB1+1

CPI BLANK ;file name?

JNZ OPEND jyes

GFNAME FCB!1 ;get file name
OPEND:

COMPRA ‘COM’, FCB1+9 ;COM file?

JZ NOCOM yes

MVI A,35 ;envelope indentation

STA INDNC ;save count

LDA FCB241 ;2nd parameter?

CPI BLANK

JZ NOPAR ;no

MVI A4

STA INDNC ;label indentation
NOPAR:

OPEN FCB1 ;source file

READS FCB1 ;first sector

D ¢ H,DBUFF stext buffer

;find period with author

MOV AM

CPI PERIOD

JNZ NOPER ;no author

INX H

MOV AM

CPI PERIOD ;second dot?

JNZ FPER ;no

INX H ;skip dots

MVI B,14 ;indentation

Figure 6. 10 (continued)

READING DISK FILES WITH BDOS

201

CALL
FPER2:

MOV

CPI

JNZ

CALL

JMP

’

FPER:

PLINE :for author
;find other periods
AM
PERIOD
FBLNK
LINE
FPER2

;:no author, process other dot commands

CALL LINE ;next line
CPl PERIOD
JZ FPER
NOPER:
MVI B,1
CALL LINEFD ;skip author
FBLNK: ;find blank
MOV AM
CPI BLANK +1
JNC FDATE ;not blank or CR
CALL LINE
JMP FBLNK
FDATE: find date
CALL LINE ;skip to blank
MOV AM
CPI BLANK +1
JC FDATE :additional blanks
;space down to address
Mmvi B,9
CALL LINEFD
;print address
ADDR2:
MOV AM
CPI BLANK+1 ;additional
JC DONE
LDA INDNC ;indentation
MOV B,A ;for address

Figure 6.10 (continued)

202 MASTERING CP/M
CALL PLINE
JMP ADDR2

;send line feeds to printer, B has number

LINEFD:

PLINE:

’

LINE:

LCHAR LF

DCR B

JINZ LINEFD
RET

;output line to printer and console

;move to beginning of next line, after LF

CALL INDEN
MOV AM ;first character
PCHAR
LCHAR

PLINE2:
CALL CPOINT ;check pointer
MOV AM ;next character
PCHAR
LCHAR
ANI 7FH ;mask parity
CPI LF
INZ PLINE2 ;yes
INX H
RET

CALL CPOINT ;check pointer
MOV AM ;next character
ANI 7FH ;mask parity
CPI LF

JNZ LINE ;yes

INX H

RET

;Increment HL pointer, see if past 80+ 80 hex.
;Read another sector if so.

Figure 6.10 (continued)

READING DISK FILES WITH BDOS 203

CPOINT:
INX H ;pointer
MOV AH ;check pointer
ORA A ;<100H?
RZ ;yes, ok
READS FCB1 ;next sector
JNZ DONE ;end of file
LXI H,DBUFF ;reset pointer
RET

INDEN:
MVI A,BLANK

INDEN2:
PCHAR
LCHAR
DCR B
JNZ INDEN2
RET

NOCOM: ERRORM "?COM file’,DONE

DONE:
EXIT

INDNC: DS 1 ;indentation
END START

Figure 6. 10; (continued)

OPEN to open a disk file, and macro ERRORM to print an error message
and terminate the program. We also introduce the inline macros REPT,
IRP, and IRPC.

Some word processors use paired control characters to indicate special
operations during printing. For example, in WordStar files, a passage to
be underlined is enclosed in control-S characters. Other control
characters are used for boldface, superscript, and subscript indicators. If
the second member of the pair is inadvertently omitted, the resulting
document will be unusual. For example, if the second underline character

"is omitted, all of the remaining words will be underlined.

The program given in Figure 6.11 can be used to check a document for
paired control characters. The program is designed for use with WordStar,
but it can be altered easily for use with other word processing programs.

204

MASTERING CP/M

TITLE ‘PAIR checks pairs of control char’

::(Pui current date here)

::Uscge: PAIR DISKFILE.EXT

::Checks that control-B, -D, -§, -T, -V, and -X are paired

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point
FCBI1 EQU 5CH ;input FCB

DBUFF EQU 80H ;default buffer

TPA EQU 100H ;transient program area
;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before MACLIB call.

CIFLAG SET FALSE ;input console char
CMFLAG SET FALSE ;ASCll compare
COFLAG SET FALSE ;output console char
CRFLAG SET FALSE ;carr-ret/line-feed
DMFLAG SET FALSE ;set DMA

FLFLAG SET FALSE Aill characters
FNFLAG SET FALSE ;read file name
OPFLAG SET FALSE ;open disk file
PRFLAG SET FALSE ;print console buffer
RCFLAG SET FALSE ;read console buffer
RDFLAG SET FALSE ;read disk file

;end of flags
MACLIB CPMMAC
ORG TPA

START:

Figure 6.11: Program PAIR to Count Pairs of Control Characters

READING DISK FILES WITH BDOS

205

ENTER
VERSN
LDA
CPI
JNZ
GFNAME
OPEND:
COMPRA
Jz
PRINT
PRINT
OPEN
SETDMA
LXI
LINE:
MOV
ORA
JZ
READS
JNZ
LXI
JMP
LINS:
MOV
INX
ANI
CPI
JZ

’

“(current date).PAIR *

FCB1+1

BLANK file name?
OPEND ;yes

FCB1 ;get file name

‘COM’, FCB1+9 ;COM file?
NOCOM ;yes
<CR,LF,’Looking for unbalanced ">
IAB, AD, AS, ATI AVI Axl

FCB1 ;source file
DBUFF ;use default
H,100H ;set pointer
AH ;check pointer
A sstill 80—FF?
LIN3 ;Jyes

FCB1 ;read a sector
EOFILE ;end of file
H,DBUFF ;reset pointer
LINE

AM

H

7FH ;mask parity
EOF sfile end
EOFILE ;yes

:;inline macro to count occurrences of control char

IRPC
LOCAL
EQU
CPI
JNZ
LDA
INR
STA
JMP

CTR&X?

X?, BDSTVX
AROUND
&X7 - z@/
CTR&X?
AROUND
CNT&X?

A

CNTE&X?
LINE

Figure 6.11 (continued)

206

MASTERING CP/M

CNT&X?: DB 0
AROUND:
ENDM
JMP LINE ;no
NOCOM:
ERRORM 'COM file?’,DONE
UFLAG: DB 0
EOFILE:
;;inline macro to show unbalanced control char
IRPC X?, BDSTVX
LOCAL AROUND
LDA CNT&X?
RAR ;;0odd?
JNC AROUND ;;no

PRINT <CR,LF,’"Unbalanced *">
PCHAR ‘&X?’

LDA UFLAG
INR A
STA UFLAG
AROUND:
ENDM
LDA UFLAG
ORA A ;ok
JNZ DONE ;no
PRINT <CR,LF,’"No unbalanced pairs™>
DONE:
EXIT
END START
Figure 6.11 (continued)

In particular, the program counts the number of control-B, -D, -S, -T, -V,
and -X characters. If there is an odd number of any of these, an error is
reported. If the count is even, the message ‘No unbalanced pairs’ is given.
Of course, if two terminal control characters of the same type are omitted,
the program will not notice it.

This program, like the others in this chapter, is executed by giving its
name and the name of the file to be read. The instructions are similar, but

READING DISK FILES WITH BDOS 207

we introduce a new feature. Two indefinite repeat macros, IRPC, are used.
These macros make it easy to program sets of instruction that differ only
in one letter.

The macros we have used previously are defined at the beginning of the
program or in a separate macro library. Then the macro name and any
parameters are placed in the program wherever they are needed. The
repeat macros are different. They are defined directly within the program
as they are needed.

The inline macros begin with the name REPEAT, IRP, or IRPC and end
with the usual ENDM statement. There is no other name associated with
this type of macro. Following is the first of the two repeat macros:

;:inline macro to count occurrences of control char
IRPC X?, BDSTVX
LOCAL AROUND
CTR&X? EQU ‘8X? -'@’
CPI CTR&X?
JNZ AROUND
LDA CNT&X?

INR A

STA CNT&X?

JMP LINE
CNT&X?: DB 0
AROUND:

ENDM

This macro generates six slightly different sets of instructions. The first
parameter, X?, is a dummy variable. The second parameter contains the
reference parameters—six characters, the letters B, D, S, T, V, and X.
The macro is therefore expanded six times. For the first copy, the param-
eter B replaces the X? symbol. The ampersand is a linking character. Its
occurrence next to the original dummy parameter indicates that the
reference parameter is to be joined with the adjacent text. For example,
the first expansion will produce the following passage:

0002+ = CTRB EQU ‘B -‘@’
0396+ FEO2 CPI CTRB
0398+ C2A603 JNZ 7?0037
0398+ 3AA503 LDA CNTB
039E+3C INN A

039F +32A503 STA CNTB
03A2+C36903 JMP LINE

03A5+00 CNTB: DB 0

208 MASTERING CP/M

There will be five similar sections following this one. At each macro ex-
pansion, the ampersand characters are removed by the assembler after
joining the actual parameter. Some macro assemblers leave the ampersand
character in the final listing. The JNZ ??0037 instruction causes a branch
to theend of this passage, address 3A6. Notice that control-B, binary two,
is obtained by subtracting the at-sign from the letter B. The other control
characters are created similarly.

SUMMARY

In this chapter we have learned how the file control block describes and
manages files on the disk, and we have learned how to read a disk file. We
wrote a macro to print an error message, one to open an existing disk file,
one to set the DMA address, one to read a disk sector, one to input a file
name after a program has begun executing, and another to abort a program
from the console. We also looked briefly at the inline repeat macro IRPC.

We wrote several executable programs that demonstrate uses for these
macros. SHOW prints an ASCII file on the console; DUMP displays a
binary file in hex and ASCII; ADDRESS copies the address from a letter
file onto an envelope; and PAIR checks a text file for balanced control
characters. In the next chapter we will develop macros and programs that
deal with writing disk files.

Your macro library directory should now look like this:

;:Macros in this library Flags
;;ABORT MACRO CHAR CIFLAG, COFLAG
L AMBIG MACRO OLD, NEW (none)

;;COMPAR MACRO FIRST, SECOND, BYTES CMFLAG
;iCOMPRA MACRO FIRST, SECOND, BYTES CMFLAG

;;CPMVER MACRO {none)

1;CRLF MACRO CRFLAG, COFLAG

;;ENTER MACRO (none)

JERRORM MACRO TEXT, WHERE COFLAG, CRFLAG, PRFLAG
LHEXIT MACRO SPACE? (none)

5HFILL MACRO ADDR, BYTES, CHAR FLFLAG

LHGFNAME MACRO FCB FNFLAG, FLFLAG, REFLAG
I COFLAG, CRFLAG, PRFLAG
;sHEXHL MACRO POINTR HXFLAG, RCFLAG

;LCHAR MACRO PAR LOFLAG

1;MOVE MACRO FROM, TO, BYTES MVFLAG

;OPEN MACRO POINTR, WHERE OPFLAG, COFLAG, PRFLAG

READING DISK FILES WITH BDOS

209

;;OUTHEX
;;PCHAR
;;PRINT
.;READB
.;READCH
;;READS
;:9BC
:SETDMA
1:SYSF
;;UCASE
;;UPPER
;;VERSN

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

REG

PAR

TEXT, BYTES
BUFFR

REG

POINTR, STAR

POINTR
FUNC, AE
REG

REG

NUM

CXFLAG, COFLAG
COFLAG

PRFLAG, COFLAG
RCFLAG

CIFLAG, COFLAG
RDFLAG, COFLAG
(none)

DMFLAG

(none)

(none)
(none)
(none)

none

CHAPTER 7/

WRITING
DISK

FILES

WITH BDOS

INTRODUCTION

The programs we have written so far have not changed the disk itself.
We have developed programs for reading disk files, but not for writing
them. In this chapter we will write macros MAKE, UNPROT, PFNAME,
DELETE, SETUP2, RENAME, CLOSE, and WRITES for creating
and altering disk files. We will also write several executable programs:
COPY for duplicating an existing disk file, CRYPT for encrypting a file,
RENAME for renaming files, and DELETE for deleting files. Notice that
we use RENAME and DELETE both as program names and macro
names. CP/M uses the program name and the assembler uses the macro
name, so there is no conflict. Let us begin with macro MAKE.

A MACRO TO CREATE A NEW DISK FILE

We ssaw in Chapter 6 that it is necessary to open an existing disk file with
BDOS function 15 before it can be read. To create a new disk file, we must
use BDOS function 22. The first part of a file control block (FCB) is

212

MASTERING CP/M

created in memory, just as it is when opening an existing disk file. The first
byte of the memory FCB designates the disk drive. A value of 0 indicates
the default drive, 1 isdrive A, 2 is drive B, and so on. The file name and file
type are placed in the next 11 bytes. The DE register is loaded with the
FCB address, and register C is given the value of 22. A call to address 5
completes the operation.

Macro MAKE, shown in Figure 7.1, can be used to create a new disk
file by allocating an FCB in the disk directory. The parameter POINTR
references the location of the memory FCB. Add macro MAKE to your
macro library.

One or more blocks of sectors on each disk are allocated to the disk
directory. The exact number is fixed, but it will differ from one disk format
to another. The number of directory entries is also fixed, because there
are four disk FCBs for each 128-byte sector. At some point, all of the
allocated directory space may be in use. Consequently, when BDOS func-
tion 22 is used to create a new disk file, it determines whether there is
room for another FCB.

On return from BDOS function 22, the accumulator is set to a value of
FF hex if the directory is filled. Macro MAKE therefore checks the ac-
cumulator after return from BDOS. If the directory is full, an error
message is printed and the program branches to location DONE. The flag
MKFLAG ensures that only one copy of subroutine MAKE2? is created.
Macro SYSF performs the BDOS call, and macro ERRORM prints the
appropriate error message if there is no directory space.

Our next macro changes the read-only attribute of a disk file to
read/write.

UNPROTECTING A DISK FILE

CP/M disk files can be protected against accidental erasure by setting
the read-only feature. If we want to alter or erase a file, we must make sure
that it is set to read/write. This feature is implemented in CP/M version 2
by coding the first character of the file type. If the high-order bit of this
character is set to 1, then the file is considered to be write protected. If this
bit is reset to 0, the file can be altered or erased.

Let us observe this phenomenon with DDT or SID. Go to drive A and
determine the attributes of the executable files with the command

STAT *.COM

This will list all COM files in alphabetical order. The symbol R/O will ap-
pear in front of those files that are protected (read only). If the symbol

WRITING DISK FILES WITH BDOS

213

MAKE MACRO POINTR
;:{Put current date here)

::POINTR refers to file control block.
;;Macros needed: SYSF, ERRORM

rr

LOCAL AROUND

::Inline macro to create a new disk file.

::Extent and current record number are zeroed.

;current record

;0=o0k, FF means error

;make new disk file
;only one copy

LXi D,POINTR
XRA A
STA POINTR+12
STA POINTR 432
CALL MAKE2?
INR A
JNZ AROUND
ERRORM ‘No directory space’, DONE
IF NOT MKFLAG
MAKE2?: SYSF 22
MKFLAG SET TRUE
ENDIF
AROUND:
ENDM

Figure 7.1: Macro MAKE to Create a New Disk File

R/W (read/write) is shown instead, the file is not protected. The listing

might look like this:
Recs Bytes Ext Acc

6 2k 1 R/OA:SAVEUSER.COM
6 2k 1 R/WA:SHOW.COM
42 6k 1 R/OA:ISTAT.COM
10 2k 1 R/O A:SUBMIT.COM
12 2k 1 R/OA:SYSGEN.COM

Bytes Remaining On A: 6k

We will need a protected file for the next step. If all of the files are un-
protected, use STAT to change the protection of one of them—STAT

itself, for example. Give the command
STAT STAT.COM $R/O

214

MASTERING CP/M

Be sure to place a space in front of the dollar sign but not afterward. Give
the STAT command again to ensure that STAT is protected.

Execute the debugger DDT or SID by typing its name, but do not give
any parameters at this time. We will now write a small program in
memory starting at 4000 hex, using the A command:

A4000

4000 LX! D,5C
4003 MvVI C,0F
4005 CAIL 5
4008 RST 7

(Type an extra carriage return to finish the program.) Do not execute this
program just yet. When it is executed, it will open the disk file named in
the FCB at address 5C hex, the value in register DE. Register C is loaded
with the value OF hex (15 decimal), the BDOS open function. After
returning from the BDOS call, the routine branches to restart 7 at address
37 hex, the normal return to the debugger.

We will now create the first part of an FCB at location 5C hex. The
debugger is used for this step. Give the command

ISTAT.COM

The I command initializes a memory FCB for file name STAT.COM on
the default disk. Observe the results by displaying the FCB region with the
command D50,6F:

0050: 00 00 00 00 GO 0O 00 00 00 00 00 00 00 53 54 41 cvvevunsunans, STA
0060: 54 20 20 20 20 43 4F 40 00 00 00 00 00 20 20 20 7T COM.....

Notice that the four remaining characters in the file name STAT are
blanks. Now give the debugger command G4000. This will execute the
program we wrote at 4000 hex. The default drive will start up, and then
control will return to the debugger. Examine memory again with the
debugger command D50,6F:

0050: 00 00 00 00 0O 0O 00 0O 00 00 00 00 00 53 54 41 .eveennnaennn STA
0060: 54 20 20 20 20 C3 4F 4D 00 00 80 2A 06 07 08 00 7T SOML k...

In this example we see that the ASCII representation of the file name has
been changed from

STAT COM
to

STAT .OM

WRITING DISK FILES WITH BDOS 215

When the BDOS open function (15) was executed, CP/M changed the
file type of the memory FCB to match the file type of the disk FCB. The
first character of the file type, the letter C, has been changed. Now look at
the hexadecimal representation of this character (address 65 hex). The
original value of 43 hex has been changed to C3 hex. The hexadecimal and
corresponding ASCII values are as follows:

43 4F 4D COM
C3 4F 4D .OM

Comparing the two, we see that they differ in the high-order bit used to
indicate write protection:

Hex Binary
43 0100 0011
C3 1100 0011

You can return to the system level of CP/M, change the protection at-
tribute of STAT, and repeat the above steps. In this case, the file extension
will remain COM after the open function is executed.

We will now write macro UNPROT (shown in Figure 7.2) to unprotect
a disk file with BDOS function 30. This BDOS function can set the four
file attributes—read only (R/0), read/write (R/W), system (SYS), and
directory (DIR). We will only use it to unprotect a file. This macro resets
the high-order bit of the memory FCB referenced by the parameter
POINTR. The accumulator is loaded with the first character of the file
typein position 9. The high-order bit is reset by performing alogical AND
with the value of 7F hex (0111 1111). The result is put back into place.
Macro SYSF is used to perform BDOS function 30, which changes the
extension of the disk FCB to match the memory FCB.

Add macro UNPROT to your library. The flag UNFLAG ensures that
only one copy of subroutine UNPR2? will be created. Our next macro
displays the file name of a memory FCB on the console screen.

A MACRO TO PRINT AN FCB FILE NAME

We have seen that the first part of a memory FCB specifies the disk
drive in position 0 and the file name in positions 1 — 8. Names shorter than
eight characters are filled out with blanks. Positions 9 — 11 contain the file
type. Thus the file name LONGNAME.EXT is actually stored as
LONGNAMEEXT. A shorter name, such as A.TYP, will be coded as
A______ TYP (the underline characters represent blanks). Because
we will occasionally need to display the file name associated with an FCB,
let us now write a macro for this purpose.

216

MASTERING CP/M

UNPROT MACRO POINTR

;;(Put current date here)

;;Inline macro 1o convert R/O file to R/W.
;;POINTR refers to file control block.
;;Macro needed: SYSF

17}

LOCAL AROUND

LXI D,POINTR
LDA POINTR+9 ;load from file type
AN 7FH ;set for R/W

STA POINTR+9 ;store at beginning of file type
CALL UNPR2?

IF NOT UNFLAG

JMP AROUND

UNPR2?:
SYSF 30 ;set file attributes
UNFLAG SET TRUE ;only one copy
ENDIF
AROUND: 51 JUNPROT
ENDM

Figure 7.2: Macro UNPROT to Unprotect a Disk File

Macro PFNAME, shown in Figure 7.3, displays the referenced file
name in its usual CP/M form rather than the way it is stored in the FCB.
Blank characters are removed and a period is placed between the primary
name and the extension. Macros PRINT and PCHAR are used. Add macro
PFNAME to your library.

A MACRO TO DELETE A DISK FILE

We have seen that the first byte of the memory FCB begins with the
drive type, while the first byte of the disk FCB contains the user number.
To delete a file, the initial byte of the disk FCB must be changed to a value
of ES hex. The remainder of the FCB and the actual file are not altered.
This new value allows the disk space allotted for that file to be written
over. Only when this happens is the file actually changed.

BDOS function 19 is used to delete a disk file. We will perform this
operation with macro DELETE, shown in Figure 7.4. The macro begins

WRITING DISK FILES WITH BDOS

217

PFNAME MACRO
;:(Put current date here)

:; FIRST.EXT

rr

LOCAL

PUSH

PUSH

MVi

LXI
PFNA3?:

MOV

CPI

JZ

PCHAR

INX

DCR

JNZ
PFNA2?:

POP

POP

PCHAR

PRINT

ENDM

FCB

;;Inline macro to print file name as

:;FCB is file control block.
;:Macros needed: PCHAR, PRINT

PFNA27?, PENA3?

H

B

B,8 ;name length
H,FCB + 1 ;start

A M ;get char

BLANK

PFNA2? ;end
;print

H

B

PFNA3?

“Tw

’

FCB+9, 3 ;exten
;;PFNAME

Figure 7.3: Macro PFNAME to Print the File Name Associated with an FCB

DELETE MACRO
;;(Put current date here)
;;Inline macro to delete

r

;:Macros needed: SYSF,

POINTR, WHERE

an existing disk file.

;;POINTR refers to file control block.
;;if file is protected, branch to WHERE or DONE.

UNPROT, READCH,

Figure 7.4: Macro DELETE to Delete a Disk File

218 MASTERING CP/M

;; PFENAME, PRINT, UCASE, CRLF !

r

LOCAL AROUND, DEL3?

LXI D,POINTR

LDA POINTR+9)
ANI 80H ;protected?
JZ DEL3? ;no

CRLF

PFNAME POINTR
PRINT ’is READ ONLY. Delete? ’

READCH
UCASE
CPI Y’
IF NOT NUL WHERE
INZ WHERE
ELSE
JNZ DONE ;quit
ENDIF
UNPROT POINTR
DEL37?:
CALL DEL2?
IF NOT DEFLAG
JMP AROUND
DEL2?:
SYSF 19 ;delete disk file
DEFLAG SET TRUE ;only one copy
ENDIF
AROUND: ;;DELETE
ENDM

Figure 7.4 (continued)

by loading the DE register with the FCB address. Then the first character
of the file type (at FCB1 +9) is inspected to see whether the file is write
protected. If it is, the file name is displayed on the console and permission
to delete it is requested. If the user enters a Y, the file is unprotected with
macro UNPROT. If any other character is entered, the macro terminates
with a branch to the second parameter WHERE if it has been provided.
Otherwise, the program branches to DONE. Notice that macro DELETE

WRITING DISK FILES WITH BDOS 219

references several other macros in our library. Add this macro to the
library.

There is a further complication if the file is protected. An unprotected
file can be deleted without first performing an open function, but a protected
file cannot. We saw previously in this chapter that the first character of
the file type is altered if the file is protected. It is very important that a
CP/M open command be issued prior to executing the delete function, or
BDOS will not be able to find the file. For example, if you want to deletea
protected file called FIRST.COM, you must search for a file that looks
like FIRST..OM. The open function will convert the requested file name
to the form needed by BDOS. The open function is not incorporated into
macro DELETE, but in our programs we will always be careful to opena
file prior to using macro DELETE.

INVESTIGATING TWO FILE CONTROL BLOCKS
WITH THE DEBUGGER

We have already learned how CP/M can help us construct a memory
FCB from a parameter given on the command line. We used the debugger
DDT or SID in this investigation. Let us continue this study by using two
parameters on the command line. Be sure to choose file names that do not
exist, or the debugger will load the requested files and delete the memory
FCBs. Give the command

A:DDT FIRST.EXT SECOND.TYP
or

A:SID FIRST.EXT SECOND.TYP
Look at the results with the command

D50,9F

The console screen should look like this:

0050 00 00 00 00 00 00 00 00 OO0 00 00 00 00 46 49 52 .c.nvnnecne... FIR
0060 53 54 20 20 20 45 58 54 00 00 00 00 00 53 45 43 ST EXT..... SEC
0070 4F 4E 44 20 20 54 59 S0 00 00 00 00 00 FF 00 BF OND TYP........
0080 15 20 46 49 52 53 54 2E 45 58 54 20 53 45 43 4F . FIRST.EXT SECO
0090 4E 44 2E 54 59 50 0D 00 00 00 00 00 00 0O OO 00 ND.TYP..........

Notice that the first parameter, FIRST.EXT, appears as an FCB starting
at 5C hex. The first byte is a binary zero, specifying the default drive,
because no disk drive was included in the file name. The primary name

220

MASTERING CP/M

FIRST appears next in uppercase letters. Three blanks fill out the eight-
character field. The three letters of the extension appear next.

The second parameter, SECOND.TYP, has been treated similarly. The
first part of another FCB begins at 6C hex. The command line tail con-
taining both parameters begins at location 82 hex. The length of this tail,
15 hex, is stored at location 80 hex.

Return to CP/M by typing control-C; then type the command

A:DDT B:FIRST.EXT B:SECOND.TYP
or
A:SID B:FIRST.EXT B:SECOND.TYP

Again, examine the beginning of memory with the debugger. The result
should look like this:

0050 00 00 00 00 00 GO 00 OO OO OO0 00 00 02 46 49 52 ceveeecccnses FIR
0060 53 54 20 20 20 45 58 54 00 00 00 00 02 53 45 43 ST EXT..... SEC
0070 4F 4E 44 20 20 54 59 50 00 00 00 0C 00 FF 00 BF OND TYP........
0080 19 20 42 3A 46 49 52 53 54 2E 45 58 54 20 42 3A . B:FIRST.EXT B:
0090 53 45 43 4F 4E 44 2E 54 59 50 00 0O 00 00 00 00 SECOND.TYP......

Notice that the command line tail shows that drive B was specifically
requested. Furthermore, the drive types at addresses 5C and 6C hex con-
tain a value of 2, indicating that drive B was requested.

Return to CP/M with control-C, and for the third test give the command

DDT FIRST.EXT *.TYP
or
SID FIRST.EXT *.TYP

Examine memory from 50 to 9F hex:

0080 10 20 46 49 52 53 54 2E 45 58 54 20 2A 2E 54 59 . FIRST.EXT *.TY
0090 50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Peveeercrennnaas

In this example the first FCB, starting at address 5C hex, looks as it did in
the previous tests. However, the first part of the second FCB, starting at
address 6C hex, is filled with question marks. When an asterisk appearsin
a file name, CP/M expands the field in the FCB with question marks, the
wild-card character. However, the command tail starting at 82 hex still
shows the asterisk.

WRITING DISK FILES WITH BDOS 221

OPENING A FILE WHEN TWO
FILE NAMES ARE GIVEN

Later in this chapter we will write a program to create a new file that
is a duplicate of an existing file. When the command line

COPY FIRST SECOND

is typed, CP/M will automatically set up the beginnings of two FCBs starting
at 5C and 6C hex. Another program we will write compares two files. The
command line will be as follows:

VERIFY FIRST SECOND

The programs we have written up to now require a single parameter. We
have used an FCB at 5C hex for the file. However, when there are two
parameters the situation is more complicated.

CP/M has created the beginning of two FCBs starting at 5C hex and
6C hex. However, if our program opens the first file at this point, the sec-
ond file name will be destroyed. Remember, a complete FCB is 32 bytes
long. The programmer constructs the first part of the FCB, and CP/M
fills in the remainder when the file is actually opened. Thus, if the first
FCB begins at address 5C hex, it will extend to address 7B hex after the
open function is executed. The second half of the first FCB will overwrite
the first part of the second FCB.

You can investigate this problem with the debugger. Execute DDT or
SID but do not provide a parameter. Then give the command

ISTAT.COM

as we did previously in this chapter. This command will initialize an FCB
for STAT.COM at address 5C hex. The second FCB at address 6C hex is
automatically filled with blanks because a second parameter was not
given. Fill the second FCB area with the value of 40 hex, an ASCII @, by
giving the command

F&6C,7F,40
Observe the results with the command
D50,7F

The results should look like this:

0050: EO D9 00 FF 00 FF 00 FF 00 FF 00 00 00 53 54 41 ccveeecnnncne STA
0060: 54 20 20 20 20 43 4F 4D 00 00 00 00 40 40 40 40 7 COM....2339
0070: 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 333333232222323a

Notice that the at-signs coincide with the second FCB starting at 6C hex.

222

MASTERING CP/M

Using the debugger A command, write the following short program:

A4000

4000 LXI D,5C
4003 Mvi C,0F
4005 CALL 5
4008 RST 7

Execute this program with the command G4000. The program calls
BDOS function 15 to open a disk file. After control returns to the debugger,
display memory with the command

D50,7F

Notice that the asterisks in the second FCB are gone. The open operation
destroyed the information in the second FCB.

The solution to this problem is to relocate the second FCB before the
first file name is opened. Macro SETUP2, given in Figure 7.5, is designed
for this purpose.

Macro SETUP?2 expects to find two parameters in the program command
line—one will be found at 5C hex and the other at 6C hex. For example,
suppose we want to alter a file in some way. The first parameter gives the
name of the existing file. The second parameter is the name of the new file.
Macro SETUP2 will open the first file and create a directory entry for the
second file.

For some applications, it will be convenient for the user to enter only
one parameter. For example, suppose we want to encrypt a file named
PAYROLL.AUG. The encrypted file will be given the name of the original
file and the original file will be named PAYROLL.BAK.

Macro SETUP?2 begins by setting flag S2FLAG true. Macro CLOSE,
which we will write later in the chapter, uses this flag. The flag signals the
assembler when generating macro CLOSE to look for the DUPL flag.

Macro SETUP2 then checks to be sure that a second parameter was
entered. If not, the first file name is duplicated into the second FCB at
location 6C hex. Macro SETUP?2 then checks for question marks in the
second file name. Remember, question marks are used for ambiguous
characters in the file name. If an asterisk is typed in a parameter, CP/M
fills out the remainder of the field with question marks. Macro SETUP2
uses macro AMBIG to replace question marks in the second parameter
with the corresponding characters of the first parameter.

The next step is to see whether the source and destination file names are
identical. This of course includes the case where only one file name was
originally given. In this case, the file type for the destination file is changed
to $$8, the standard CP/M temporary file type. A duplicate-name flag,
DUPL, is also set at this time.

WRITING DISK FILES WITH BDOS 223

SETUP2 MACRO

;:(Put current date here)

::Inline macro to open two disk files.

;;Input file is the first parameter of command
::line. The file control block is FCB1 at 5C hex.
;;The output file is the second parameter.

;:The file control block is initially FCB2 at

::6C hex. The destination file name is moved into
;;the macro area.

;;If only one file is entered or both are the same,
;;the second file is typed $$$. Macro CLOSE

;:will rename original file BAK and give original
:;name 1o the destination file when S2FLAG is true.

::Other macros needed: MOVE, OPEN, MAKE, DELETE,
:; ERRORM, AMBIG, COMPAR

’

LOCAL AROUND, SET2?, SET3?, SET4?

S2FLAG SET TRUE ;used by macro CLOSE
LDA FCB2+1 ;second parameter
CPI BLANK ;anything?
JNZ SET4?

;duplicate file name and type, keep disk name
MOVE FCB1+1, FCB2+1, 11 ;keep disk

SET4?:
AMBIG FCBI1, FCB2 fix ??? in name?
COMPAR FCB1, FCB2, 12 ;both same?
Jz DUPNM? ;yes
SET27?:
MOVE FCB2, DFCB, 16 ;new destination
OPEN FCBI1 ;source file
OPEN DFCB, SET3? ;destination
SET3?:
DELETE DFCB ;existing file name
MAKE DFCB ;new one
JMP AROUND ;error messages

Figure 7.5: Macro SETUP2 to Handle Two Disk Files

224 MASTERING CP/M
DUPNM?:
MVi A, TRUE
STA DUPL ;set dup flag
MOVE '$$%’, FCB2+9 ;source file
JMP SET2? ;continue
DUPL: DB FALSE ;duplicate-name flag

’

;file control block for destination file

DFCB: DS 33 ;file 2 FCB
AROUND: ;continue main code
;SETUP2
ENDM
Figure 7.5 (continued)

Macro CLOSE will check the DUPL flag to see if only one file name
was given or if identical names were given. In this case, macro CLOSE
changes the file type of the first name to BAK. It also changes the file type
of the second name from $$$ to the type of the first name.

The second parameter is now moved from location 6C hex to a default
file control block named DFCB, which is located within macro SETUP2.
The directive DS (define storage) 33 sets aside 33 bytes for the FCB. Now
that the way is clear, the first file name can be opened safely. Macro
OPEN, which we wrote in the previous chapter, is used for this purpose. It
will terminate the program and give the appropriate error message if the
source file cannot be found.

The next stepis also very important. When we save a file with the CP/M
command SAVE, any existing file with the same name is automatically
erased. However, we are going to create a disk FCB from a memory FCB
using BDOS function 22. In this case CP/M will allow us to create a disk
file name that duplicates an existing file name. There would then be two
identical names in the directory. So before you create a new disk FCB, you
must ensure that another file with the same name does not exist. This is
most easily accomplished by using the BDOS delete function. This step
will delete the file name if it exists. If the name does not exist, no harm is
done. (The delete command does not alter the memory FCB.) Macro
SETUP2, therefore, deletes the file name given as the second parameter.

WRITING DISK FILES WITH BDOS 225

A MACRO TO RENAME A DISK FILE

Each CP/M file is referenced by one or more FCB entries in the disk
directory. We can change the name of a file by changing the FCB. BDOS
function 23 is used for this purpose. This operation does not alter the file
itself. It only changes the disk FCB. The programmer sets up the first 12
bytes of a memory FCB for the original file name and then opens the file
with BDOS function 15. A memory FCB for the new filenameis placed 16
bytes beyond the original name. The drive code for the original file name
is the usual value, O for default, 1 for drive A, and so on, but the drivecode
for the new name is set to 0. If the FCB for the original file name is located
at address 5C hex, the FCB for the new name is located at address 6C hex.

The macro shown in Figure 7.6 can be used to rename a disk file. Add
macro RENAME to your library. The parameter POINTR refers to the
memory FCB for the original file name. The programmer must open the
original file and then place a memory FCB for the new name 16 bytes
beyond the original name. At this point, macro RENAME can bereferenced.
Notice that the new name must not be in place before the original file
name is opened, or the new name will be destroyed by the open function.

BDOS function 23 locates a disk FCB that matches the memory FCB
referenced by POINTR. It then changes the disk FCB to match the memory
FCB referenced by POINTR +16.

Macro RENAME first checks to see whether the original file is pro-
tected. If so, the file is unprotected with macro UNPROT. BDOS is then
called to rename the file. Macro RENAME displays both file names on
the console. A right-pointing arrow indicates that the original name was
changed to the new name. For example, if SORT.ASM is renamed to
SORT.BAK you will see the following statement on the console:

SORT ASM ==2> SORT BAK

A MACRO TO WRITE A DISK SECTOR

In Chapter 6 we wrote macro READS to read a sector from disk into
memory. The sector is placed in the default buffer area starting at address
80 hex, unless the DMA address has been redefined by BDOS function 26.
The complementary operation, writing a disk sector from the console
buffer, is similar. It is performed with BDOS function 21. The default
memory location is again 80 hex unless it is changed by BDOS function 26.

Add macro WRITES, given in Figure 7.7, to your macro library. There
are two parameters to this macro, both of which are optional. The first
parameter, POINTR, references the FCB where the file name is given. If
this parameter is omitted, the macro assumes that DE has been previously

226

MASTERING CP/M

RENAME MACRO POINTR

;;(Put current date here)

;;Inline macro to rename an existing disk file.
;;POINTR refers to original name.

;;New name is at POINTR + 10H.

;iMacros needed: SYSF, PRINT, UNPROT, CRLF

rr

LOCAL AROUND, REN2?

LXI D,POINTR
LDA POINTR+9
ORI 80H ;:file R7O?
Jz REN2? ;o
UNPROT POINTR ;;make R/W
REN27?:
CALL RENAM?
CRLF
PRINT POINTR+1, 11
PRINT f==>
PRINT POINTR+11H, 11
IF NOT RNFLAG
JMP AROUND
RENAM?: SYSF 23 ;rename file
RNFLAG SET TRUE ;only one copy
ENDIF
AROUND: ;;RENAME
ENDM

Figure 7.6: Macro RENAME to Rename a Disk File

loaded with the FCB address.

The second parameter, STAR, is the ASCII character to be printed on
the console after each sector is written. This allows the user to follow the
operation when several sectors are written. (As we learned from the op-
eration of macro READS, printing a symbol after each sector is written
greatly slows the process.) If there is no room on the disk, macro ERRORM
prints the appropriate error message.

A MACRO TO CLOSE A DISK FILE

When a disk file is created, it is written sector by sector from the
memory image. As each sector is written to the disk, the memory FCB is

WRITING DISK FILES WITH BDOS 227

WRITES MACRO POINTR, STAR
;;(Put current date here)

;;Inline macro to write a disk sector.
::POINTR refers to file control block.
;;STAR is symbol to print for each sector.
:;Macros needed: SYSF, PCHAR, ERRORM

r

LOCAL AROUND

IF NOT NUL STAR

PCHAR STAR

ENDIF

IF NOT NUL POINTR

LXI D,POINTR

ENDIF

CALL WRIT2?

ORA A ;set flag

{F WRFLAG

JNZ NROOM?

ELSE ;first time

JZ AROUND ;ok
NROOM?:

ERRORM ‘No disk space’, DONE
WRIT2?: SYSF 21 ;write disk sector
WRFLAG SET TRUE ;only one copy

ENDIF :;WRFLAG
AROUND: i WRITES

ENDM

Figure 7.7: Macro WRITES to Write a Disk Sector

updated to show where the sector is located. The disk FCB, however, is
not altered at this time. After the final sector has been written, you must
close the file with BDOS function 16. This action will update the disk FCB
from the memory FCB.

Macro CLOSE, shown in Figure 7.8, can be used to close a disk file.
While this macro can be used by itself, it is also used in conjunction with
macro SETUP2. In particular, if a source file name but no destination file
name is given in the original command, macro CLOSE will take care of all
the necessary details. For example, if the original file name is

COPY.ASM

228 MASTERING CP/M

then macro SETUP2 creates the temporary file COPY.$$$. Macro
CLOSE will delete the file COPY.BAK if it exists. Then it will rename
COPY.ASM to COPY.BAK. Finally, COPY.$$$ will be renamed to
COPY.ASM.

Add macro CLOSE to your library. This macro references seven other
macros: SYSF, ERRORM, OPEN, PRINT, MOVE, DELETE, and
RENAME.

CLOSE MACRO POINTR

;;(Put current date here)

;;Inline macro to close a new file.

;;POINTR refers to file control block.

;I file is not found, branch to DONE.

;;If S2FLAG from SETUP2 is true, check if
;:duplicate file name flag DUPL is set. Change
;;source file to BAK and new file to orig name.
;;5et S2FLAG false at beginning.

;;Usage: CLOSE DFCB

;;Macros needed: SYSF, ERRORM, OPEN,

;; PRINT, MOVE, DELETE, RENAME

23

LOCAL AROUND, CLOSE3

IF NOT NUL POINTR

LXI D,POINTR

ENDIF

CALL CLOS2?

INR A ;FF hex is error
IF NOT S2FLAG ;SETUP2 macro
JNZ AROUND ;ok

ELSE

JZ CLOS3?

LDA DUPL ;duplicate name?
ORA A

JZ AROUND ;no

MOVE ‘BAK’, FCB1+10H+9
MOVE FCB1+9, DFCB+10H+9, 3
MOVE FCB1, FCB1410H, 9

Figure 7.8: Macro CLOSE to Close a Disk File

WRITING DISK FILES WITH BDOS 229

MOVE DFCB, DFCB+10H, 9

DELETE FCB1+10H :BAK name if any

RENAME FCBI ;orig to BAK

RENAME DFCB ;$$$ to orig

MOVE ‘BAK’, FCB1+9 ;restore

OPEN FCB1

JMP AROUND

ENDIF ;S2FLAG

IF NOT CLFLAG ;one copy
CLOS3?: ERRORM ’?File not found?’, DONE
CLOS2?: SYSF 16 ;close disk file
CLFLAG SET TRUE ;only one copy

ENDIF ;CLFLAG
AROUND: ;;CLOSE

ENDM

Figure 7.8 (continued)

DUPLICATING A DISK FILE

We are ready to write a program for copying disk files. We have created
an extensive macro library to make this task easier. This program is not in
itself very useful, because the CP/M program PIP can be used for this
purpose. Nevertheless, such a program will be a starting point for other
useful programs, such as a program to encrypt a file.

Our COPY program will expect two parameters on the command line—a
source file and a destination file. For example, the command line might
look like this:

COPY FIRST SECOND

Program COPY will then generate a new disk file called SECOND that is
an exact copy of an existing file called FIRST. Notice that the command
line is more natural than the one used by PIP. The source file name is
given first, followed by the destination file name. Furthermore, there is
no equal sign between the two file names.

In Chapter 6 we saw that it is necessary to open an existing disk file
before it can be accessed. We therefore will need an instruction to open
the source file called FIRST.

The destination file is handled differently from the source file. The pro-
grammer must ensure that the file with the name SECOND does not exist
on the disk. If it does exist, it must be erased.

230

MASTERING CP/M

If we look ahead to possible variations of our copy program, we will
want to consider the possibility of a single parameter such as

COPY FIRST.EXT

In this example, the given file name is both the source file and the destina-
tion file. A temporary destination file will be created to receive the result.
At the conclusion of the program, the file type of the source file will be
changed to BAK, and the temporary name given to the destination file
will be changed to the original file name.

Make a copy of the source program given in Figure 7.9. Give it the file
name COPYS.ASM or COPYS.MAC, depending on your assembler
(COPYS stands for copy sector). You might want to start with a copy of
one of the programs from the last chapter, altering it to match Figure 7.9.

Most of this program consists of definitions of symbols and flags. The
actual instructions and macros occupy only the last dozen or so lines of the
program. Assemble the program and try it out. Use COPY to duplicate its
own source program, using STAT first to ensure that there is sufficient
space on the diskette. Give the command

COPYS COPYS.ASM CRYPT.*

Look at the new copy by using SHOW, which we wrote in Chapter 6, or
use the CP/M command TYPE. Do not erase this copy; we will use it in
the next section.

When COPYS is executed, it reads one sector (128 bytes) into memory
and prints an * symbol. It then writes that sector to the new disk file and
prints a # symbol. These two symbols will be printed alternately across the
console, giving you a report on the progress. Alternately reading and
writing a single sector is an inefficient way to make a copy, but it does have
one advantage—the size of the file is not limited by the available memory
space. It would be faster to read the entire source file, then write the entire
new file. We will consider this method shortly.

We have incorporated the macro ABORT, so you can interrupt the copy-
ing process at any point by pressing the escape key. The new file will not be
created in this case. There will be a directory entry, but it will be empty
because the program did not perform the close function.

ENCRYPTING AN ASCII FILE

With a few modifications to the copy program we just wrote, we can
convert it to an encrypting (coding) program. Such a program can be very
useful. For example, if you have a computer in a public place, you may

WRITING DISK FILES WITH BDOS

231

’

FALSE
TRUE

BOOT
BDOS
TPA
FCB1
FCB2
DBUFF

’

CIFLAG

’

EQU
EQU

EQU
EQU
EQU

EQU
EQU
EQU

SET
CLFLAG SET
CMFLAG SET
COFLAG SET
CRFLAG SET
DEFLAG SET
MKFLAG SET
MVFLAG SET
OPFLAG SET
PRFLAG SET
RDFLAG SETV
RNFLAG SET
S2FLAG SET
UNFLAG SET
WRFLAG SET

;end of flags

TITLE ‘Copy file sector by sector’
;(Put current date here)

;Usage: COPYS SOURCE DESTINATION

0

NOT FALSE

0

5 ,BDOS entry point
100H

5CH ;first file name
6CH ;second file name
80H :default buffer

;Set flags in main program so only one
;copy of certain subroutines will be generated.
:Place set lines before MACLIB call.

FALSE ;input console char
FALSE ;close disk file
FALSE ;compare

FALSE ;output console char
FALSE ;carr-ret/line-feed
FALSE :delete disk file
FALSE :create new disk file
FALSE :block move

FALSE ;open disk file
FALSE ;print console

FALSE :read disk sector
FALSE ;rename disk file
FALSE ;SETUP2 macro
FALSE ;unprotect

FALSE ;write disk sector

Figure 7.9: Program COPYS to Duplicate a Disk File

232 MASTERING CP/M

MACLIB CPMMAC
ORG TPA
START:
ENTER
VERSN ‘(current date).COPYS *
SETUP2 ;input and output files
COPY: file 1 to file 2
READS FCB1,’* ;read a sector
JNZ EOFILE ;done
ABORT ESC ;quit?
WRITES DFCB,’# ;write new sector
JMP COPY ;yes, next sector
EOFILE:
CLOSE DFCB ;destination file
DONE:
EXIT
END START

Figure 7.9 (continued)

want to ensure the privacy of certain files (such as those dealing with
payroll or other personnel matters). If these files are coded, they cannot
be inspected by someone who does not know how to decode them.

Use the copy of the source program we made in the previous section,
and give the new copy the file name CRYPT.ASM or CRYPT.MAC. Alter
the program to look like that in Figure 7.10.

Near the beginning of the instructions we add a reference to macro
GFNAME. This will ask the user for a file name if none was entered on the
command line. Macro SETUP2 prepares two memory FCBs using the pa-
rameters given on the command line. Then macros PRINT and READCH
are used to request the encrypting key. This can be any keyboard character.

One sector of the source fileis read into memory. Then each byte of the
sector is coded by performing an exclusive OR with the desired key. This
converts the file into an unreadable form. The advantage of the exclusive
OR operation is the ease of decoding. A second exclusive OR operation,
using the same coding key, returns the byte to its original form. Thus the
encrypting program is also the decrypting program.

After each byte of a sector is coded (or decoded), the sector is written

WRITING DISK FILES WITH BDOS

233

FALSE
TRUE
BOOT
BDOS
TPA
FCBI1

FCB2
DBUFF

’

CIFLAG
CLFLAG
CMFLAG
COFLAG
CRFLAG
DEFLAG
FLFLAG
FNFLAG
MKFLAG
MVFLAG
OPFLAG
PRFLAG
RCFLAG
RDFLAG
RNFLAG
S2FLAG
UNFLAG
WRFLAG

;Feb 8.0, 1982

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET

TITLE ‘Encrypt file with XOR’

;Usage: CRYPT SOURCE DESTINATION

0

NOT FALSE

0

5 ;BDOS entry point
100H

5CH sfirst file name
6CH ;second file name
80H ;default buffer

;Set flags in main program so only one
;copy of certain subroutines will be generated.
;Place set lines before MACLIB call.

FALSE ;input console char
FALSE ;close disk file
FALSE ;compare

FALSE ;output console char
FALSE ;carr-ret/line-feed
FALSE ;delete disk file
FALSE Jfill characters
FALSE ;read file name
FALSE ;create new disk file
FALSE ;block move

FALSE ;open disk file
FALSE ;print console

FALSE ;read console

FALSE ;read disk sector
FALSE ;rename disk file
FALSE ;SETUP2 macro
FALSE ;set file attributes
FALSE ;write disk sector

Figure 7.10: Program CRYPT to Encrypt a File with the XOR Operation

234

MASTERING CP/M

;end of flags

’

MACLIB
- ORG TPA

START:
ENTER
VERSN
LDA
CPI
JNZ
GFNAME
FIRN:
SETUP2

’

’

PRINT

PRINT

READCH

ANI

CPI

JZ

STA

CRLF
COPY:

READS

JNZ

ABORT

’

PUSH
LXI
LDA
MOV

CPMMAC

’2.08.82.CRYPT’

FCB1+1

BLANK Jfirst file name?
FIRN yes

FCB1 ;get file name

;input and output files

;get encrypting character from console

<CR,LF,” Press ESC to abort’,CR,LF,LF>
‘Input one letter for encoding key: *
;console char

7FH ;strip parity
ESC
DONE
KEY ;save

sfile 1 to file 2
FCB1,"* ;read a sector
EOFILE ;done
ESC ;quit?

;perform XOR with key for each byte
;HL is pointer to sector buffer

H ,save pointer
H,DBUFF ;disk buffer
KEY ;get it

B,A ;save in B

Figure 7.10 (continued)

WRITING DISK FILES WITH BDOS 235

MvI C.80H ;sector length
CODE:
MOV AM ;get byte
XRA B ;XOR with key
MOV MA ;put byte back
INX H ;increment pointer
DCR C ;count
JINZ CODE ;keep going
POP H ;restore
WRITES DFCB,’# swrite new sector
JMP COPY ;next sector
EOFILE:
CLOSE DFCB ;destination file
PRINT <CR,LF,’ Delete original file? >
READCH
UCASE
CPI Y’
JNZ DONE
DELETE FCB1 ;gone
DONE:
EXIT
KEY: DS 1 ;encrypting key
END START
Figure 7.10 (continued)

to the destination file. Another sector is then read from the source file.
The program continues in this way until the entire file has been coded or
until the escape key is pressed, aborting the program.

If only one file name was entered at the beginning of the program, the
new file is given the original file name and the file type of the source file is
changed to BAK. At the conclusion of the program, the user is given the
option of deleting the original file.

Encrypt a copy of the source file using the letter M. Give the coded
copy the file name CRYPT.COD. The execution will be faster if the new
copy is on a different drive. For example:

CRYPT CRYPT.ASM B:*.COD

236

MASTERING CP/M

Be careful not to delete the original file, although if you do, you can
regenerate it by running CRYPT again and giving the same encrypting
character:

CRYPT B:CRYPT.COD *.ASM

If you examine the coded file with SHOW or the CP/M TYPE command,
the console screen will be filled with meaningless information. However,
you can use the program DUMP, which we wrote in Chapter 6, to study
the result. For example, the command DUMP B:CRYPT.COD will give
you something like this:

Space bar for next screen, <CR> next line, <ESC> to abort

0100 39243921 28446A08 232E3F34 3D396D2B 9%9!'(Dj.H#.?24=9m+
0110 24212860 3A243925 6D15021F 6A404776 $!(m:$9%m...jaGv
0120 4D47766D 0B282F6D 6D75637D 61607C74 @Gvm.(/mmuclam|t
0130 7S57F4047 76404776 6D183E2C 2A28776D u.dGvaGvm,>,*(wm
0140 08030€1F 14101960 6D1£0218 1FOED86D MMeeanns m
0150 6D09081€ 1904030C 19040203 40677640 mM.i.eceeeaan. aGva
0160 472B2C21 3E284428 3C38447D 4047393F G+,!>(D(<8D}aG9?
0170 38284428 3C384423 22396028 2C213c28 8(D(<8DH"9m+,!>(
0180 40477640 472F2222 3944283C 38447040 AGvaG/""9D(<8D}a

On the other hand, if you examine the original file with the command
DUMP CRYPT.ASM, you will see the following:

Space bar for next screen, <CR> next line, <ESC> to abort

0100 5449544C 45092745 6E637279 70742066 TITLE.'Encrypt f
0110 6966520 77697468 20584F52 270D0A3B ile with XOR'..;
0120 0D0A3B20 46656220 20382E30 2¢203139 ..; Feb 8.0, 19
0130 38320p0A 3B0DOA3B 20557361 67653A20 82 ..;..; Usage:
0140 454E4352 59505420 20534F55 52434520 ENCRYPT SOURCE
0150 20444553 S54494E41 S4494F4E ODOA3BOD DESTINATION..;.
0160 0A46414C 53450945 51550930 ODOAS452 .FALSE.EQU.0..TR
0170 55450945 5155094E 4F542046 414C5345 UE.EQU.NOT FALSE
0180 ODOA3BOD OA424F4F 54094551 55093000 ..;..BOOT.EQU.O.

Examining the ASCII representation of the coded file, you can see that
the lowercase letter m appears frequently. Remember that the uppercase
letter M was used as the encrypting key. Obviously, it would not be too
difficult to discover the encrypting character by studying the coded file.

If a more secure encryptation is desired, the process can be repeated
using a different key. For example, encrypt the coded file a second time
with the uppercase letter A. Give the command CRYPT CRYPT.COD.
Look at the result with the command

A:DUMP CRYPT.COD

WRITING DISK FILES WITH BDOS 237

The result now will be as follows:

Space bar for next screen, <CR> next line, <ESC> to abort

0100 78657860 69052849 626F7E7S 7C782C6A xex i.+Ibo"ulx,]
0110 6560692C 78657864 20544358 2B010637 e’ i,{exd,TC"+..7
0120 0106372C 4A696E2C 2C34223C 202C¢3035 ..7,Jin,,4"< =5
0130 343E0106 37010637 2CS97F6D 6B69362C 4>..7..7,Y.mki6,
0140 49424FSE 555C582C 2C5F4359 SE4F492C IBO"UNX,, CYTOI,
0150 2C4B8495F 5845424D 58454342 01063701 ,HI_XEBMXECB..7.
0160 066A6D60 7F690569 7D79053C 0106787E gmtLilidy.<iax

0170 79690569 70790562 63782C6A 6D607F69 yi.ity.bex,jm’.d
0180 01063701 066E6363 78056970 79053C01 ..7..nccx.idy.<.

This file was first coded with the letter M, then it was coded a second time
with the letter A. Neither of these characters is prominent in the ASCII
representation. This file must be decoded twice, once with theletter M and
once with the letter A. However, it does not matter which key is given first.

When you encrypt a file by giving only the source file name, for example,
CRYPT.COD, the program fully demonstrates its operation. At the end
of the process there will still be only one file with this name. During opera-
tion the console will display the following lines:

Press ESC to abort .
Input one letter for encoding key: M
R R S K K K K
CRYPT COD ==> CRYPT BAK
CRYPT $$$ = => CRYPT COD

Delete original file? y

Both CRYPT from this section and COPY from the previous section
print an interlaced sequence of * and # symbols as the file sectors are being
read or written. Because the printing of these characters is very time con-
suming for larger files, you may want to remove the second parameter
from macro READS and WRITES after you become familiar with the
operation of these programs. That is, change

READS FCB1,’*” ;read asector

to

READS FCB1 ;read a sector
and change

WRITES DFCB,’# ;write new sector
to

WRITES DFCB ;write new sector

We will now consider a more efficient way to read a disk file.

238

MASTERING CP/M

COPYING A FILE BY BUFFERING INTO MEMORY

The COPY and CRYPT programs we just wrote use macro READS to
read one disk sector and macro WRITES to write one disk sector. Alter-
nately reading and writing one sector at a time is an easy way to program
disk operations, and it does not require a large amount of memory.
However, a disk file can be copied more rapidly if the entire file is read into
memory at one time. A new file is then written from memory all at once.
The disadvantage of this technique is that very large files cannot be loaded
into memory, at least not all at once. However, this limitation is not
serious. Most commercial executable programs are small enough to fit into
amoderately sized memory. Furthermore, it is better to limit text filestoa
size that will fit into memory, as this will speed up the editing process.

To enable us to copy files more efficiently, we must add two macros to
our library. One will read an entire disk file into memory at once, and the
other will perform the complementary operation—it will write an entire
disk file from a memory image.

Reading an Entire File into Memory

Macro LDFILE, shown in Figure 7.11, is used to read a disk file into
memory. Add it to your macro library. This macro has three parameters.
The first parameter gives the location of the memory FCB for the file
to be read. The second parameter is the pointer to the memory image of
the file itself. The third parameter is the character to be displayed on the
console as each sector is read.

It appears that the first parameter, FCB, isrequired, but in fact it is not.
This parameter is simply passed along to macro READS. If the actual
parameter is omitted, macro READS will assume that the DE register is
already loaded with the address of the FCB.

The second parameter to macro LDFILE is required, but you can rewrite
the macro to make it optional. The optional third parameter is also passed
along to macro READS. If it is omitted, no character is displayed while
the sectors are being read.

LDFILE MACRO FCB, POINTR, CHAR
;;(Put current date here)

:;Inline macro to load a disk file into
;;memory starting at POINTR.

Figure 7.11: Macro LDFILE to Read an Entire File into Memory

WRITING DISK FILES WITH BDOS

239

;;POINTR initially points to memory buffer.
;;Place buffer at end of program.

;;HL points to end of loaded program.
;;Optional 3rd parameter is printed after
;;each sector is read.

;;CCP area may be overlaid but

;;FDOS is protected.

;:Carry flag is set if file is too big.

;:DMA address is reset to 80H on exit.
;;Macros needed: SETDMA, READS

124

;;Usage: LDFILE FCB1, DBUFFP, "**

5 LDFILE FCB1, BUFFP

LOAD2?:
LHLD POINTR
XCHG ;move to DE
SETDMA ;set next sector
READS FCB, CHAR
JNZ LOAD3? :done if nonzero
LHLD POINTR
LXI D,80H ;one sector
DAD D ;DE has pointer
SHLD POINTR ;save pointer

;see if file is entering CCP area

’

LDA 7 ;FDOS

SuUl 2 ;2 blocks down

CMP H ;file too big?

JNC LOAD2? ;no keep going
LOAD3?: ;done

PUSH PSW

SETDMA 80H sreset

POP PSW

;;LDFILE
ENDM

Figure 7.11 (continued)

240

MASTERING CP/M

Macros SETDMA and READS are needed by macro LDFILE. We have
learned that CP/M reads disk sectors into a memory region designated by
the DMA address, and that this location is automatically reset to the value
of 80 hex each time a warm start is performed. We used this location in the
two previous programs. We also learned that the DMA address can be set
to any desired memory location with BDOS function 26.

A program that uses macro LDFILE will set up the memory buffer at
the end of the program. Macro LDFILE initially sets the DMA address to
the beginning of this buffer. After each sector is read into memory, macro
LDFILE advances the DMA address by 80 hex, the length of a sector. In
this way, the entire file will be read sequentially into memory. At the end
of the load step, macro LDFILE resets the DMA address to the usual
value of 80 hex.

Most of the executable programs we have written save the incoming
stack pointer and set up a new one. At the conclusion of the program, the
original stack pointer is restored and a return instruction is executed. This
approach is faster than performing a warm start when the program is
finished. However, a different method must be used for larger programs.
Large executable programs can use the memory space occupied by the
console command processor (CCP). In this case, however, a warm start
must be performed when the program is finished. This will reload the
CCP and the BDOS. We use this technique whenever we need macro
LDFILE, because it may have to overlay the CCP.

The address for the beginning of BDOS is coded at memory locations 6
and 7. For example, BDOS begins at the address 3C00 hex for a 20K-byte
system; for a 64K system BDOS starts at FAOO hex. Thus, any executable
program can determine the size of the CP/M that is currently being used.
Macro LDFILE reads the high-order byte of the BDOS address at location 7.
This value is compared to the high-order byte of the pointer as each sector
of the file is read into memory. Macro LDFILE will allow the CCP to be
overwritten, but it will protect the remainder of the CP/M system.

If a file is so large that is begins to overiay the BDOS, macro LDFILE
will stop reading the file and set the carry flag. No error message is
printed, however, so the programmer must test the state of the carry flag
after the file has been loaded to see if the file is too large. We will now con-
sider the complementary macro WRFILE.

Writing an Entire File from Memory

Macro WRFILE, shown in Figure 7.12, is similar to macro LDFILE.
The three parameters are the same as those for macro LDFILE. Add this
macro to your library.

WRITING DISK FILES WITH BDOS

241

WRFILE MACRO

1

LOCAL
LHLD
XCHG
LXI
SHLD
XCHG
SBC
MOV
MOV
MVI
DAD
ORA
JZ
INX
EVEN?:
PUSH
MOV
MOV
WRFIL?:
LHLD
XCHG
SETDMA
WRITES
LHLD
X
DAD
SHLD
DCX
MOV

FCB, POINTR, STAR

;;(Put current date here)

;:Inline macro to write a disk file from

;;a memory image. Buffer starts at POINTR 42,
;;POINTR marks end of file.

;;Optional star symbol is printed for each sector.
;;Macros needed: WRITES, SBC, SETDMA, ERRORM

WRFIL? EVEN?

POINTR ;end
;to DE
H,POINTR+2 ;start
POINTR ;reset
HL,DE ;program length
AL
LH ;just upper part
H,0
H ;double =# sectors
A ;odd # of sectors?
EVEN? ;no
H
B
B,H
ClL
POINTR
;move to DE
,next sector
FCB,STAR
POINTR
D,80H ;one sector
D ;next location
POINTR
B ;number of sectors
AC

Figure 7.12: Macro WRFILE to Write an Entire File from Memory

242 MASTERING CP/M
ORA B
JNZ WREFIL?
POP B
;) WRFILE
ENDM
Figure 7.12 (continued)

After macro LDFILE has loaded a file into memory, the pointer will
reference the end of the memory image of the file. Macro WRFILE begins
by copying this pointer to the DE register. The pointer is then reset to the
beginning of the memoryimage. The length of the file is computed by sub-
tracting the address of the beginning of the file from the address at the
end. Macro SBC is used for the 16-bit subtraction.

The Copy Program, Version 2

The program shown in Figure 7.13 uses macros LDFILE and WRFILE
to copy disk files more rapidly. Duplicate the copy program in Figure 7.9
(COPYS), giving the new version the file name COPYB (for buffered
copy). The command is as follows:

COPYS COPYS.ASM COPYB.*

Alter the new version to look like Figure 7.13. Assemble the program and
execute it. Test COPYB by using it to make a copy of itself.

You will find that this version runs much faster than the previous one,
which copies one sector at a time. A further increase in speed will occur if
you remove the * and # symbols from macros

LDFILE FCB1,BUFFP," *”
and
WRFILE DFCB,BUFFP,’#

Macro LDFILE is programmed to terminate reading if a disk file is too
large. You can test this feature in the following way. Create a very large
file by giving the command

SAVE 220 DUMMY

(The information we are saving is simply the contents of memory.) Be sure
that there is enough room on the disk (about 55K bytes). Try to copy this

WRITING DISK FILES WITH BDOS 243

file with the command
COPYB DUMMY

The copy program will begin to read the file, but it should terminate with
the error message

?File too big

TITLE ‘Copy file with buffer’
;(Put current date here)
;Usage: COPYB SOURCE DESTINATION

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0

BDOS EQU 5 ;BDOS entry point
TPA EQU 100H

FCB1 EQU 5CH ;first file name
FCB2 EQU 6CH ;second file name

DBUFF EQU 80H ;default buffer
;Set flags in main program so only one

;copy of certain subroutines will be generated.

:Place set lines before MACLIB call.

CIFLAG SET FALSE ;input console char
CLFLAG SET FALSE ;close disk file
CMFLAG SET FALSE ;compare

COFLAG SET FALSE ;output console char
CRFLAG SET FALSE ;carr-ret/line-feed
DEFLAG SET FALSE ;delete disk file
DMFLAG SET FALSE ;set DMA address
MKFLAG SET FALSE :create new disk file

Figure 7.13: Program COPYB to Copy a Disk File by Buffering in Memory

MASTERING CP/M

MVFLAG SET
OPFLAG SET
PRFLAG SET
RDFLAG SET
RNFLAG SET
S2FLAG SET
UNFLAG SET
WRFLAG SET
;end of flags
MACLIB
ORG TPA
START:
ENTER
VERSN
SETUP2
LDFILE
INC
ERRORM
EOFILE:
LHLD
MVI
ABORT
WRFILE
CLOSE
DONE:
JMP
OLDSTK: DS
DS
STACK:
BUFFP: DW
BUFFER: DS
END

FALSE ;block move
FALSE ;open disk file
FALSE ;print console
FALSE ;read disk sector
FALSE ;rename disk file
FALSE ;SETUP2 macro
FALSE ;unprotect

FALSE ;write disk sector
CPMMAC

’(current date). COPYB ‘

;input and output files
FCB1,BUFFP,"*’
EOFILE ;file ok
<CR,LF,"?File too big™>

BUFFP
M,EOF

ESC

DFCB, BUFFP, #
DFCB

;pointer
;just in case

;destination file
BOOT

2
34

swarm start

BUFFER
1

START

Figure 7.13 (continued)

WRITING DISK FILES WITH BDOS

245

A BUFFERED COPY PROGRAM
WITH VERIFICATION

Our copy program needs two more features before we can begin to use
it seriously. After we make a copy of a file, we should read back the new
file to verify that it was written correctly. We should also be able to

designate that the new file is write protected if the original file was.

Comparing Two Disk Files

Before we add the verification feature to the copy program, we will
write another executable program. Make a duplicate of the previous program
and give it the name VERIFY. Alter the text to look like Figure 7.14.

’

FALSE EQU

TRUE EQU
BOOT EQU
BDOS EQU
TPA EQU
FCB1 EQU
FCB2 EQU

DBUFF EQU

CIFLAG SET
CMFLAG SET
COFLAG SET
CRFLAG SET

TITLE ‘VERIFY two files’
;(Put current date here)

;Usage: VERIFY SOURCE DESTINATION

0]

NOT FALSE

0

5 ;BDOS entry point
100H

5CH sfirst file name
6CH ;second file name
80H ;default buffer

;Set flags in main program so only one
;copy of certain subroutines will be generated.
;Place set lines before MACLIB call.

FALSE ;input console char
FALSE ;compare

FALSE ;output console char
FALSE ;carr-ret/line-feed

Figure 7.14: Program VERIFY to Verify That Two Disk Files Are Identical

MASTERING CP/M

DMFLAG SET FALSE ;set DMA address
MVFLAG SET FALSE ;block move
OPFLAG SET FALSE ;open disk file
PRFLAG SET FALSE ;print console
RDFLAG SET FALSE ;read disk sector
;end of flags

MACLIB CPMMAC
ORG TPA
START:

ENTER

VERSN “(current date). VERIFY *

LDA FCB2+1 ;second parameter

CPI BLANK

Jz NOSEC

AMBIG FCB1,FCB2
MOVE FCB2,DFCB, 16 ;destination

OPEN FCB1
OPEN DFCB
LDFILE FCB1,BUFFP
JNC EOFILE file ok
ERRORM <CR,LF,’?File too big™>
EOFILE:
LHLD BUFFP ;pointer
Mmvi M, EOF ;just in case
LXI H,BUFFER
NSECT:
ABORT ESC
READS DFCB
ORA A ;Zero means more
JNZ DONE2
COMPAR ,DBUFF,128 ;one sector
JNZ DIFFER
LXI D,80H
DAD D ;next sector
JMP NSECT
DONE2:
PRINT <CR,LF,Files are identical >

Figure 7.14 (continued)

WRITING DISK FILES WITH BDOS 247

DONE:

JMP BOOT ;warm start
NOSEC:

ERRORM <CR,LF,’?Second file omitted™
DIFFER:

ERRORM <CR,LF,"?Files are different>
OLDSTK: DS 2

DS 34
STACK:
DFCB: DS 33 :;second file
BUFFP: oW BUFFER
BUFFER: DS 1

END START

Figure 7.14 (continued)

Assemble the program and try it out. The command line looks like the one
for the copy program except that both parameters are source files. For
this program the order of the parameters is immaterial. Give a command
in which both parameters are the same:

VERIFY VERIFY.ASM VERIFY.ASM
You should get the statement

Files are identical
Then give file names for files that are different:

VERIFY VERIFY.ASM VERIFY.COM
You will get the message

?Files are different

When this program is executed, the first file is read into memory. The
second file is then read into the default buffer at 80 hex, one sector at a
time. The program then compares this sector with the corresponding sector
of the first file. Thus the TPA is used only by the first file.

The asterisk and question mark symbols can be used as ambiguous
characters in the second file name. For example, the following command
is valid:

VERIFY VERIFY.ASM *.BAK

248

MASTERING CP/M

A Macro to Protect Disk Files

You may have noticed that if our copy program is used to duplicate a
write-protected file, the copy is not write protected. That is, the new fileis
not designated as read only. We are going to fix this problem for the next
version, so that the new file will have the same protection attribute as the
original file.

Macro PROTEC, given in Figure 7.15, can be used to protect a disk file
using BDOS function 30. We previously wrote macro UNPROT to un-
protect a disk file using the same BDOS function 30. Recall that the high-
order bit of the first character of the file type specifies the protection
attribute. If this bit is set, the file is protected. If this bit is reset, the file
can be altered or erased. Add macro PROTEC to your library.

The Copy Program, Version 3

Our final version of the copy program will read the entire source file into
memory. It will then write the new file from this memory image. The new
copy is verified by reading the new file sector by sector and comparing
each sector to the memory image. If a difference is found, the program

PROTEC MACRO POINTR

;1(Put current date here)

;;Inline macro to protect FCB at POINTR.
;;Macro needed: SYSF

7"

LOCAL AROUND,PROT2?

LXI D,POINTR
LDA POINTR+9 ;;extension
ORI 80H ;:set for R7O
STA POINTR+9
CALL PROT2?
JMP AROUND

PROT2?:
SYSF 30

AROUND: ;;PROTEC
ENDM

Figure 7.15: Macro PROTEC to Protect a Disk File

WRITING DISK FILES WITH BDOS 249

terminates and the error message
?Files are different

is displayed on the console. The console bell also sounds.

This version of the copy program also transfers the protection attribute
of the source file to the destination file. The memory FCB of the source
file is checked to see whether the file is protected. If it is, instructions
created by macro PROTEC set the protection attribute of the new file.

Make a copy of program COPYB. Give it the name COPYV (copy with
verification). Use program VERIFY to ensure that the copy is correct.
Alter COPYYV to look like Figure 7.16. Assemble the program and try it out.

TITLE "COPY and verify file’

’

;(Put current date here)

;Usage: COPYV SOURCE DESTINATION

FALSE EQU 0

TRUE EQU NOT FALSE

BOOT EQU 0

BDOS EQU 5 ;BDOS entry point
TPA EQU 100H

FCB1 EQU 5CH sfirst file name
FCB2 EQU 6CH ;second file name
DBUFF EQU 80H ;defauit buffer

BEL EQU 7

;Set flags in main program so only one
;copy of ceriain subroutines will be generated.
;Place set lines before MACLIB call.

CIFLAG SET FALSE ;input console char
CLFLAG SET FALSE :close disk file

Figure 7.16: Program COPYYV to Copy Disk Files with Verification

250 MASTERING CP/M
CMFLAG SET FALSE ;compare
COFLAG SET FALSE ;output console char
CRFLAG SET FALSE ;carr-ret/line-feed
DEFLAG SET FALSE ;delete disk file
DMFLAG SET FALSE ;set DMA address
MKFLAG SET FALSE ;create new disk file
MVFLAG SET FALSE :block move
OPFLAG SET FALSE ;open disk file
PRFLAG SET FALSE ;print console
RDFLAG SET FALSE ;read disk sector
RNFLAG SET FALSE ;rename disk file
S2FLAG SET FALSE ;SETUP2 macro
UNFLAG SET FALSE ;unprotect
WRFLAG SET FALSE ;write disk sector

;end of flags

7

MACLIB CPMMAC

ORG TPA
START:
ENTER
VERSN ‘(current date).COPYV ’
SETUP2 ;input and output files
LDA FCB14-9
ANI 80H ;protected
STA PROTFL ;protection flag
LDFILE FCB1,BUFFP
JNC EOFILE ;file ok
ERRORM <CR,LF,’?File too big™>
EOFILE:
LHLD BUFFP ;pointer
MvI M, EOF ;just in case
ABORT ESC
WRFILE DFCB,BUFFP
CLOSE DFCB ;destination file
;verify that file is identical with original
OPEN DFCB
LXI H,BUFFER

Figure 7.16 (continued)

WRITING DISK FILES WITH BDOS

251

SETDMA DBUFF
NSECT:
ABORT ESC
READS DFCB
ORA A ;zero means more
JINZ DONE2
COMPAR ,DBUFF,128 ;one sector
JNZ DIFFER
LXI D,80H
DAD D ;next sector
JMP NSECT
DONE2:
LDA PROTFL ;protected?
ORA A
JZ DONE ;no
PROTEC DFCB
DONE:
JMP BOOT ;warm start
DIFFER:
ERRORM <BEL,’?Files are different>
PROTFL: DS 1 ;protection flag
OLDSTK:
DS 2
DS 34
STACK:
BUFFP: DW BUFFER
BUFFER: DS 1
END START
Figure 7.16 (continued)

A PROGRAM TO RENAME DISK FILES

Disk files can be renamed with the CP/M built-in command REN.
However, ambiguous file names are not allowed in this command. Thus,
if you want to change all BASIC files to backup status, that is, if you want
to change the extension from BAS to BAK, you must specifically rename
each separate file.

The program shown in Figure 7.17 can be used to rename CP/M disk

252

MASTERING CP/M

files, either individually or in groups. The command line is similar to the
other programs in this chapter. For example, the command

RENAME OLDNAME NEWNAME

changes the name of OLDNAME to NEWNAME. If a file with the new
name already exists, the program asks for permission to delete it. Further-
more, if this file is write protected, additional permission is requested to
unprotect it before deletion.

The usefulness of this program lies in its ability to rename several files
with a single command. For example, the command

RENAME *.BAS *.BAK

will change the file type of all BASIC files to BAK. If you discover an error
in the command, you can terminate the operation by pressing the escape key.

A single RENAME command can combine a delete operation with a
renaming step. For example, if you want to delete the backup copy and
rename the main copy as the backup copy, you can give the following two
CP/M commands:

ERA MAIN.BAK
REN MAIN.BAK=MAIN.ASM

However, the same result can be obtained with a single command using
our RENAME program. Give the command

RENAME MAIN.ASM * BAK

Of course, RENAME will request permission to delete the program
MAIN.BAK.

Because macro RENAME is used by this program, each renaming step
is indicated graphically by right-pointing arrows. An open operation is
performed on the original file name to ensure that the name exists. Then
an open operation is performed on the new file name to see whether that
name is in use. After each file is renamed, an open operation is performed
to locate the next occurrence of the requested file name. This method
generally works very well. However, it will fail if you decide not to rename
one of a group of files. Each succeeding open command will locate the
same file. As a consequence, RENAME is programmed to terminate if
you decide not to delete a particular file.

A PROGRAM TO DELETE DISK FILES

The program shown in Figure 7.18 can be used to delete disk files. Files
that are not write protected can be deleted with the CPM built-in command

WRITING DISK FILES WITH BDOS 253

ERA, but protected files cannot be deleted this way. DELETE can be used
to delete protected files, although permission is requested for deletion.
Also, the requested file name can contain asterisks and question marks,
the CP/M ambiguous reference characters.

TITLE ‘RENAME disk file with ambiguous reference’
;(Put current date here)

;Abort program with ESC.

;Program quits when a system file is found.

;Usage: RENAME OLD NEW

; RENAME OLD.EXT *.BAK

; RENAME OLD.EXT NEW.*

; RENAME OLD.* NEW.*

; RENAME * EXT *.BAK

FALSE EQU o

TRUE EQU NOT FALSE

BOOT EQU 0

BDOS EQU 5 ;BDOS entry point
TPA EQU 100H

FCB EQU 5CH :file control block
FCB1 EQU 5CH Airst file name
FCB2 EQU 6CH ;second file name

DBUFF EQU 80H ;default buffer
;Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before MACLIB call.

CIFLAG SET FALSE ;input console char
CMFLAG SET FALSE ;compare

CRFLAG SET FALSE scarr-ret/line-feed
COFLAG SET FALSE ;output console char
DEFLAG SET FALSE ;delete disk file

Figure 7.17: Program RENAME to Rename Disk Files

254 MASTERING CP/M

MVFLAG SET FALSE ;block move
OPFLAG SET FALSE ;open disk file
PRFLAG SET FALSE ;print console
RNFLAG SET FALSE ;rename disk file
UNFLAG SET FALSE ;set file attributes

;end of flags

’

MACLIB CPMMAC

ORG TPA
START:
ENTER
VERSN “(current date). RENAME *
LDA FCB1+1
CPI BLANK
Jz NOSOUR
LDA FCB2+1
CPi BLANK
Jz NODEST
COMPAR FCB1+1, FCB2+1,11
Jz SAMEN
COMPAR ‘77777772227, FCB1 +1
Jz IMPROP
COMPAR '???????7??7, FCB2+1
Jz IMPROP
XRA A ;zero
STA FIRSTF ;sreset flag

PRINT <LF,’Press ESC to abort’,CR,LF>
;save original parameters

MOVE FCB1, FCOPY, 20H

MOVE FCB1, OFCB, 20H

NEXTN: ;next name
OPEN FCB1, FPASS ;source file
ABORT ESC ;quit?

MV A,OFFH

Figure 7.17 (continued)

WRITING DISK FILES WITH BDOS 255

STA FIRSTF ;multiple pass
LDA FCB1+10 ;system file
ANI 80H bit7

INZ SYSFIL ;skip
UNPROT FCBI

MOVE FCB1, OFCB, 12 ;original

LDA FCB1 ;drive code
STA DFCB

;
;check for ambiguous original file name
’

COMPAR FCB1+1, FCOPY+1, 8

JZ NOQ1 no

MOVE FCB1+1, OFCB+1, 11 ;actual name
MOVE FCB1+1, DFCB+1, 8 ;new primary
MOVE F2COPY +9, DFCB+9, 3 sext

JMP CHEK2

NOQ1:
;check for ambiguous original extension

7

COMPAR FCB1+9, FCOPY+9, 3

JZ NOQ3 ;no

MOVE FCB1+1, OFCB+1, 11 ;actual name
MOVE FCB1+9, DFCB+9, 3 ;new ext
MOVE F2COPY+1, DFCB+1, 8 ;primary
JMP CHEK2

’

;check for ambiguous new name

NOQ3:
AMBIG FCB1, DFCB
CHEK2:
OPEN DFCB, RENAM
CRLF
PFNAME DFCB
PRINT ’ exists. Delete? ’
READCH

Figure 7.17 (continued)

256 MASTERING CP/M

UCASE
CPI Y’
JNZ DONE
LDA FCB1 ;drive code
STA DFCB
DELETE DFCB
RENAM:
RENAME OFCB
MOVE FCOPY+1, FCB+1, 11 ;reset
JMP NEXTN
FPASS:
LDA FIRSTF ;get pass flag
ORA A ;first pass?
INZ DONE ;no
ERRORM ‘File not found’, DONE
NOSOUR:
ERRORM ‘No source file’, DONE
NODEST:
ERRORM ’‘No destination file’, DONE
SAMEN:
ERRORM ‘Same name’, DONE
IMPROP:
ERRORM ‘Improper name’, DONE
FIRSTF: DB 0 ;first pass
SYSFIL: ;found system file
CRLF
PFNAME FCB
: PRINT " is a system file’
DONE:
EXIT
FCOPY: DS 10H ;original command
F2COPY: DS 10H ;with second name
OFCB: DS 10H ;original name
DFCB: DS 10H ;new name
END START

Figure 7.17 (continued)

WRITING DISK FILES WITH BDOS

257

TITLE ‘DELETE disk file with ambiguous reference’

’

;(Put current date here)

;Usage: DELETE NAME

; DELETE NAME.EXT
; DELETE NAME. *

; DELETE *.EXT
FALSE EQU
TRUE EQU
BOOT EQU
BDOS EQU
TPA EQU
FCB1 EQU
FCB2 EQU

EQU

DBUFF

’

0

NOT FALSE

0

5 ;BDOS entry point
100H

5CH sfirst file name
6CH ;second file name
80H ;default buffer

;Set flags in main program so only one
;copy of certain subroutines will be generated.
;Place set lines before MACLIB call.

CIFLAG
CMFLAG
CRFLAG
COFLAG
DEFLAG
MVFLAG
OPFLAG
PRFLAG
UNFLAG

SET
SET
SET
SET
SET
SET
SET
SET
SET

;end of flags

’

ORG

’

MACLIB

TPA

FALSE ;input console char
FALSE ;compare

FALSE :carr-ret/line-feed
FALSE ;output console char
FALSE :delete disk file
FALSE ;block move

FALSE ;open disk file
FALSE ;print console

FALSE ;unprotect file
CPMMAC

Figure 7.18: Program DELETE to Delete Disk Files

258 MASTERING CP/M

START:
ENTER
VERSN
LDA
CP!
JZ
PRINT
LDA
STA
COMPAR
JNZ
PRINT
READCH
UCASE
CPI
JNZ
ALLNAM:
LX!
MVI
CALL
CPI
Jz
CALL
NNAME:
LXI
MVI
CALL
CPl
JZ
CALL
JMP
NNAM2:
LXi
SHLD
NEXTN:
LHLD
LXI
DAD
SHLD
MOV

"(current date). DELETE *

FCB1 41

BLANK

NOSOUR

<LF,” Press ESC to abort’,CR,LF>
FCB2+41

QUERY ;ask about delete
‘P292?7?72777, FCB1+1
ALLNAM

‘Delete all? (Y/N)’

IYI

DONE
;get first file name
D,FCB1
c7 ;search for file name
BDOS
OFFH ;found?
NOSOUR ;no
GETNAM
;get next file name
D,FCB1
cC, 18
BDOS
OFFH ;more?
NNAM2 ;no
GETNAM
NNAME
H,FNAMES —12
FPNTR
;next name
FPNTR ;pointer
D,12
D
FPNTR ;save
AM

Figure 7.18 (continued)

WRITING DISK FILES WITH BDOS

259

CPI
JZ
MOVE
OPEN
ABORT
LDA
CPi
JNZ
PRINT
PFNAME
PCHAR
PCHAR
READCH
UCASE
CPI
JNZ
NOASK:
DELETE
CRLF
PFNAME
PRINT
JMP
GETNAM:
RRC
RRC
RRC
ANI
MOV
MVI
LXI
DAD
XCHG
LHLD
XCHG
MOVE
LXi
DAD
SHLD
MVI
RET

BLANK

DONE

, FCB1, 12

FCB1 ;source file

ESC ;quit?

QUERY ;ask

Q

NOASK

<CR,LF,’ Delete ">

FCB1

‘o

BLANK

y

NEXTN

FCB1, NEXTN

FCB1

‘ deleted’

NEXTN
;copy name to work area
;3 bits right = 5 left
;0=0,1=20H
;2 = 40H, 3 = 60H

60H ;mask

EA

D,0

H,DBUFF

D

FPNTR ;destination
;to DE

,, 12

H,12

D

FPNTR ;next name

M, BLANK :mark end

Figure 7.18 (continued)

260 MASTERING CP/M

NOSOUR:
ERRORM ’No source file’, DONE

I,=PNTR: DW FNAMES ;name pointer

QUERY: DS 1 ;if Q, ask before delete

DONE:
EXIT

!,=NAMES: DS 1 ;stack of file names
END START

Figure 7.18 (continued)

Iftheletter Q (for query) is given as a second parameter, DELETE requests
permission to delete each file name, whether or not it is write protected.
This is particularly useful in deleting improper directory entries.
Sometimes, for example, a file name contains a nonprinting character or
a lowercase character. In this case, the file cannot be specifically deleted
with the CP/M command ERA. The troublesome file can be deleted by
giving the command

DELETE *.* Q

This is a command to delete all files on the disk, but only with permission.
You will then be presented every file on the disk, one at a time, whether
write protected or not. If you answer each case with any character besides
aY, the particular file will not be deleted. The next file name will then appear.
If you answer Y and the file is protected, you will be asked permission to
unprotect the file.

In this program we use BDOS function 17 to find the first file and
BDOS function 18 to find subsequent files. When using function 18, all of
the file names must be copied initially into a buffer area. Then the program
can work with each file name, one at a time.

SAVING THE MEMORY CACHE ON DISK

In Chapter 3 we altered the BIOS so that printer output could be saved
inamemory cache. We then moved the resulting information downto the
TPA and created a disk file with the built-in SAVE command. We will
now write a program to make this task easier. The program shown in
Figure 7.19 can write the information contained in the memory cache

WRITING DISK FILES WITH BDOS 261

directly to a disk file. The main part of the source program s very short. It
uses the macros ENTER, VERSN, and EXIT in the usual way. In addi-
tion, macro GFNAME is supplied so that a file name can be entered after
program execution has begun.

Recall that we set up two pointers at the beginning of the memory
cache. The first points to the beginning of the text and the second refers to
the end of the text. The first pointer is FO00 hex. Macro WRFILE directly
writes the disk file from the memory buffer. The command

CACHE (file name)

will create a disk file with the requested file name using the information
contained in the memory cache.

TITLE ‘CACHE to save memory on disk’
;(Put current date here)

;Usage: CACHE DISKFILE

’

FALSE EQU 0

TRUE EQU NOT FALSE

MPOINT EQU OFOOOH ;main pointer
MMAX EQU MPOINT + 2 ;end of text
MBUFF EQU MPOINT 42 ;buffer

BOOT EQU 0 ;system reboot
BDOS EQU 5 ;BDOS entry point
FCB1 EQU 5CH ;input FCB

DBUFF EQU 80H ;default buffer

TPA EQU 100H ;fransient program area
:Set flags in main program so only one

;copy of certain subroutines will be generated.

;Place set lines before MACLIB call.

CIFLAG SET FALSE ;input console char
CLFLAG SET FALSE ;close disk file

Figure 7.19: Progam CACHE to Create a Disk File from the Memory Cache

262 MASTERING CP/M

COFLAG SET FALSE ;output console char
CRFLAG SET FALSE ;carr-ret/line-feed
DEFLAG SET FALSE ;delete disk file
DMFLAG SET FALSE ;set DMA

FLFLAG SET FALSE ;fill characters
FNFLAG SET FALSE ;get file name
MKFLAG SET FALSE ;create new disk file
MVFLAG SET FALSE ;block move
OPFLAG SET FALSE ;open disk file
PRFLAG SET FALSE ;print console buffer
RCFLAG SET FALSE ;read console buffer
RNFLAG SET FALSE ;rename disk file
S2FLAG SET FALSE ;SETUP2 macro not used
UNFLAG SET FALSE ;unprotect

WRFLAG SET FALSE ;write disk file

;end of flags

’

MACLIB CPMMAC

ORG TPA
START:
ENTER
VERSN “(current date). CACHE *
LDA FCB1+41
CPI BLANK Aile name?
INZ OP3 ;yes
GFNAME FCB!1 ;get file name
OP3:
DELETE FCB1 ;existing name
MAKE FCB1 ;new one

;make disk file starting at MMAX
WRFILE FCB1, MMAX
CLOSE FCB1

DONE:
EXIT

END START

Figure 7.19 (continued)

WRITING DISK FILES WITH BDOS

263

SUMMARY

In this chapter we added several significant macros to our library:
MAKE, UNPROTECT, PFNAME, DELETE, SETUP2, RENAME,
CLOSE, WRITES, LDFILE, WRFILE, and PROTEC. We then wrote
several executable programs to copy, code, verify, rename, and delete

disk files.

Your macro library directory should now look like this:

;;Macros in this library

1;ABORT MACRO
;AMBIG MACRO
;;CLOSE MACRO
;;COMPAR MACRO
;;COMPRA MACRO
;;CPMVER MACRO
1:CRLF MACRO
;;DELETE MACRO
;;ENTER MACRO
:ERRORM MACRO
#EXIT MACRO
:;FiLL MACRO
i GFNAME MACRO
;;HEXHL MACRO
;;LCHAR MACRO
;;LDFILE MACRO
:iMAKE MACRO
;;MOVE MACRO
11OPEN MACRO
;;OUTHEX MACRO
;;PCHAR MACRO
PFNAME MACRO
;;PRINT MACRO
:;PROTEC MACRO
;;READB MACRO

CHAR
OLD, NEW
POINTR

FIRST, SECOND, BYTES
FIRST, SECOND, BYTES

POINTR, WHERE

TEXT, WHERE
SPACE?

ADDR, BYTES, CHAR
FCB

POINTR
PAR
FCB, POINTR, CHAR

POINTR

FROM, TO, BYTES
POINTR, WHERE

REG

PAR

FCB

TEXT, BYTES
POINTR
BUFFR

Flags

CIFLAG, COFLAG

(none)

CLFLAG, COFLAG, CRFLAG
PRFLAG, OPFLAG, MVFLAG,
DEFLAG, CIFLAG, UNFLAG,
RNFLAG, S2FLAG

CMFLAG

CMFLAG

{none)

CRFLAG, COFLAG

DEFLAG, CIFLAG

COFLAG, PRFLAG, UNFLAG
(none)

COFLAG, CRFLAG, PRFLAG
(none)

FLFLAG

FNFLAG, FLFLAG, RCFLAG
COFLAG, CRFLAG, PRFLAG
HXFLAG, RCFLAG

LOFLAG

COFALG, DMFLAG
RDFLAG

MKFLAG, COFLAG, CRFLAG,
PRFLAG

MVFLAG

OPFLAG, COFLAG, PRFLAG
CRFLAG

CXFLAG, COFLAG

COFLAG

COFLAG, PRFLAG

PRFLAG, COFLAG

(none)

RCFLAG

264

MASTERING CP/M

;;READCH MACRO REG

;;READS MACRO POINTR, STAR
RENAME MACRO POINTR

;:SBC MACRO

;;SETDMA MACRO POINTR
;:SETUP2 MACRO

;;SYSF MACRO FUNC, AE
;;UCASE MACRO REG
H#UNPROT MACRO POINTR
;:UPPER MACRO REG

;;VERSN MACRO NUM

;s WRITES MACRO POINTR, STAR

X

;;WRFILE MACRO FCB, POINTR

1y

CIFLAG, COFLAG

RDFLAG, COFLAG

RNFLAG, COFLAG

PRFLAG, CRFLAG

(none)

DMFLAG

S2FLAG, CIFLAG, COFLAG,
CRFLAG, CMFLAG, DEFLAG,
MKFLAG, MVFLAG, OPFLAG,
PRFLAG, UNFLAG

(none)

(none)

UNFLAG

(none)

(none)

WRFLAG, COFLAG

PRFLAG

COFLAG, CRFLAG
DMFLAG, WRFLAG

CHAPTER 8

THE CP/M
DISK
DIRECTORY

INTRODUCTION

In Chapter 6 we briefly looked at the organization of the CP/M disk
directory. We will now study the directory in more detail by developing a
program that displays several directory functions. These include a display
of the disk parameters, an extended listing of the directory with its block
numbers, and the block allocation map.

268

MASTERING CP/M

THE DISK PARAMETERS

CP/M was originally written for use with the standard IBM 8-inch
floppy disk. This disk’s format is single density, single sided, and soft sec-
tored. There are 77 tracks with 26 sectors per track. Each sector contains
128 data bytes. The block size, the smallest amount of data that can be
allocated on the disk, is 1024 (1K) bytes. These disk parameters are coded
into the BDOS area of CP/M version 1.4. Consequently, it is difficult to
alter this version of CP/M toincorporate disks with different parameters.

CP/M version 2 is organized differently. The disk parameters are written
into the BIOS rather than the BDOS. Consequently, it is relatively easy to
alter this version of CP/M to accommodate any type of disk. The charac-
teristics for each different disk drive are located in an area of memory
known as the disk parameter block (DPB). This region can be located
with BDOS function 31. Let us investigate this area.

Go to disk A and reset the disk drives by typing control-C. Execute the
debugger DDT (or SID) and write the following short program with the A
command:

A100

0100 MVI C,1F
0102 CALL 5
0105 RST 7

The first instruction of this program loads the C register with 31 (1F hex).
This is the BDOS function that locates the disk parameters. The second
instruction calls BDOS and the third instruction returns to the debugger.
Execute this program with the command G100. Now display the registers
with the debugger X command. The result might look like this:

—Z—E— A=8A B=D400 D=0000 H=D48A S=0100 P=0105 RST 07

The first part of this line gives the state of the CPU flags. In this example,
the zero flag (Z) and the parity flag (E for even parity) are set. The three
minus signs indicate that the other flags (carry, half-carry, and sign) are
reset. The next six items give the state of the CPU registers, including the
stack pointer (S) and program counter (P). The final item is the last in-
struction that was executed prior to returning to the debugger.

We are interested in the value contained in the HL register, because it
contains a pointer to the beginning of the disk parameter block. In this ex-
ample, the disk parameters begin at address D48A hex for the currently
logged-in drive. However, before we look at these parameters, let us consider

THE CP/M DISK DIRECTORY 269

other disk formats. You may have more than one kind of disk drive. For ex-
ample, one drive might be single sided and another might be double sided.
Another possibility is that a double-density drive might be able to read
single-density format as well as double-density format. In either of these
cases, there will be a different set of disk parameters for each disk format.

Let us assume that drive A reads double-density format and drive Bcan
read either double-density or single-density format. Put a single-density
diskette into drive B. Write the following program at 200 hex with the A
command:

A200

0200 MVI E1
0202 MVI CE
0204 CALL 5

0207 RST 7

This program performs BDOS function 14 (OE hex), which changes the
default drive. Register E refers to the new drive. A value of 0 indicates
drive A, 1 refers to drive B, and so on. In this case we load register E with
the value of 1 because we are going to change the default drive to B.
Register C is given the value of OE hex. The third instruction calls BDOS,
and the final instruction returns to the debugger.

Execute this program with the command G200. The head of disk drive
B should load and the activity light on the front of the drive should turn
on. Rerun the first program with the command G100. Then display the
registers with the X command. The result might look like this:

—Z—E— A=7B B=D43F D=003F H=D47B S=0100 P=0105 RST 07

This time, the HL register refers to a different memory location. That
is, a different set of disk parametersis referenced this time. Notice that the
address of the first DPB is exactly 15 bytes larger than the second DPB.
The DPBs can be placed anywhere in BIOS, but it is logical to group them
together. Because each DPB is 15 bytes long, successive addresses for
adjacent DPBs will usually differ by 15 bytes.

We will now study the DPB area. We found a DPB at address D47B hex
and another at address D48A hex. However, there might be additional
DPBs for other disk formats. These will usually be given in the same
general area. Therefore, we will start the display a few lines prior to the
DPB area we found. Give the debugger command

DD450

270

MASTERING CP/M

The resulting output might look like Figure 8.1. There are actually five
different DPBs given in this figure. The boldface numbers designate the
first byte of each DPB. We will study them in more detail shortly. But first
we will consider the information given in the DPB.

p450: 00 00 00 00 00 00 OC 5p D4 08 DD F2 DC 28 00 04 Josene C..
D460: OF 01 A9 00 3F 00 80 00 10 00 02 00 14 00 03 07?cecucecncns
D470: 00 4F 00 3F 00 €O 00 10 00 03 00 28 00 03 07 00 .0.2....... QA
D480: A4 00 3F 00 €O 00 10 00 02 0O 28 00 04 OF 01 51 ..?....... (....Q
D490: 00 3F 00 80 00 10 00 02 00 1A 00 03 07 00 F2 00 «?veccvncancnens
D4AD: 3F 00 CO 00 10 00 02 00 (I

Figure 8.1: Five Different Disk Parameter Blocks

THE DISK PARAMETER BLOCK

Nine items describing the format of the disk are specified in the disk
parameter block. Some of the entries are one byte long; others are two
byteslong. Table 8.1 summarizes these items. The value given in the offset
column is the address relative to the beginning of the DPB. That is, the ad-
dress of eachitem is the value of the offset plus the DPB address contained
in the HL register after BDOS call 31.

Table 8. 1: Items Specified in the Disk Parameter Block

Offset Symbol Bytes Explanation

0 SPT 2 Logical sectors per track
2 BSH 1 Block shift
3 BLM 1 Block mask
4 EXM 1 Extent mask
5 DSM 2 Maximum number of blocks
7 DRM 2 Maximum directory entries
9 ALO,1 2 Directory allocation
11 CKS 2 Directory sectors to check
13 OFF 2 Track offset

Let us consider the disk parameters in more detail. The first entry, SPT,
gives the number of logical 128-byte sectors per track. It is a two-byte
value, with the low-order byte stored first. Many disk controllers are

THE CP/M DISK DIRECTORY 271

programmed for sectors that are larger than 128 bytes. For example, the
North Star double-density format uses 512-byte sectors. There are 10 of
these sectors per track. The SPT value for this disk, however, is 40 rather
than 10. That is, the number of logical, 128-byte sectors per track is given.

Both the second and the third entries, the BSH and the BLM, are functions
of the block size. Remember, this is the minimum amount of information
that can be referenced on the disk. The BSH is the logarithm, base 2, of
the number of 128-byte sectors in the block. For example, the standard
IBM single-density, 8-inch format uses eight sectors per block. Conse-
quently, the BSH is 3 (since 2* = 8). The BLM is one less than the number
of 128-byte sectors per block. The possible values for BSH and BLM are
summarized in Table 8.2.

Table 8.2: Possible Values for BSH and BLM

Block Number of

size sectors BSH BLM
1K 8 3 7
2K 16 4 15
4K 32 5 31
8K 64 6 63

16K 128 7 127

We have seen that disk files are described by a 32-byte FCB. The first 16
bytes contain the name and size of the file. The remaining 16 bytes give the
location of each block of sectors on the disk. The single-density, 8-inch
disk has a 1K block size. Each FCB on this disk can reference a maximum
of 16K bytes of data, because each pointer is one byte in size.

With double-density disks, the situation is different. We have seen that
a double-density disk can have a block size of 2K, 4K, 8K, or 16K bytes.
Consider, for example, a disk with a 2K block size. The 16 pointers can
now reference 32K bytes. Because CP/M is programmed to handle a 16K
extent, each FCB is divided into two 16K byte extents. In a similar way,
there can be four 16K extents in one FCB when the block size is 4K bytes.
The terminology is sometimes confusing when an FCB is referred to as an
extent. For example, we may read about a format that has four logical ex-
tents in each physical extent. The writer means that there can be 64K bytes
in each FCB.

The situation is further complicated if a disk has more than 255 blocks.
In this case the pointers are two bytes in length. Consequently, there can

272

MASTERING CP/M

be no more than eight pointers in an FCB. A disk with a 2K block size and
two-byte pointers can only reference 16K bytes in each FCB.

The many possible formats are decoded with the help of the fourth item
in the disk parameter block. This is the extent mask, EXM, a one-byte
value. This entry is a function of both the block size and the total number
of blocks on the disk. It is one less than the maximum number of extents
that can fit into each FCB. Table 8.3 shows this relationship. Small disks
have less than 256 blocks; large disks have more.

Table 8.3: Possible Values for EXM

Extent mask
Block Small Large
size disk disk
1K 0 --
2K 1 0
4K 3 1
8K 7 3
16K 15 7

The fifth entry gives the largest block number on the disk. It is identi-
fied by the symbol DSM. The two-byte value is stored with the low byte
first. Because block numbers begin with zero, the actual number of blocks
is one larger than the value given as the DSM.

The sixth entry, DRM, has a value that is one smaller than the maximum
number of directory entries. It is a two-byte value that is stored with the
low byte first. Directory entries are 32 bytes long. Consequently, there are
four directory entries for each logical 128-byte sector.

The CP/M directory occupies the first one or more data blocks on the
disk. Consequently, these blocks must always be allocated so that data are
not accidentally written onto them, destroying the directory. The seventh
entry is used for this purpose. The two bytes are considered together as a
16-bit map. Starting at the left side, each bit that is set to 1 reserves one
block for the directory. The binary representation in Table 8.4 shows the
directory allocation.

When a diskette is removed from the drive and replaced by another,
it is necessary to perform a warm start before data can be written on the
new diskette. Whenever a write operation is requested, CP/M checks
the directory to see if the diskette has been changed. The eighth entry
in the DPB specifies the number of directory sectors that should be

THE CP/M DISK DIRECTORY 273

Table 8.4: 16-Bit Map Determining Directory Allocation

Number of
directory Binary value Hex value
blocks ALO ALl AL0 ALl
1 10000000 00000000 80 0
2 11000000 00000000 co 0
3 11100000 00000000 EO 0
4 11110000 00000000 Fo 0

checked prior to each write operation.

For floppy disks or other removable media, the CKS will be the number
of directory entries, DRM plus one, divided by four (the number of entries
per sector). If the disk medium cannot be changed, as a hard disk cannot,
then there is no need to make such a check. In that case, the value is set to
0, greatly speeding up the warm-start operation.

The ninth and last entry in the DPB is the track offset. This two-byte
value is added to the track number requested by BDOS (the logical track
number) to obtain the actual (physical) track number. This parameter can
be used to partition one large disk into several logical disks. Each logical
disk will have a different track offset. For example, suppose one large
disk is partitioned into logical disks A, B, and C. The offsets could be 0,
100, and 200 for drives A, B, and C.

The DPB for a standard 8-inch, single-density floppy disk is given in
Table 8.5.

Table 8.5: The DBP for a Standard 8-Inch Floppy Disk

Address Symbol Hex Decimal Meaning

D499 SPT 1A 26 Logical sectors per track

D49B BSH 3 3 Block shift

D49C BLM 7 7 Block mask

D49D EXM 0 0 Extent mask

D49E DSM F2 242 Number of Blocks—1 (243 actual)
D4AO DRM 3F 63 Directory entries— 1 (64 actual)
D4A2 ALO o Directory allocation (11000000)
D4A4 CKS 10 16 Directory sectors to check

D4A6 OFF 2 2 Track offset

274

MASTERING CP/M

Consider the DPB for drive A starting at address D48A (line 4 of Figure
8.1). This DPB describes a double-density, 5-inch drive that has 40 sectors
per track (28 hex). There are 82 blocks (51 hex + 1), each with asize of 2K
bytes (BLM is 15). There are 64 directory entries (3F hex + 1), so one
block is reserved for the directory (AL1 is 80 hex or 10000000 binary). The
track offset is 2.

VIEWING THE DISK PARAMETERS

Before we can write an executable program for displaying the disk
parameters, we must add five new macros that will make it easier to program
displays of binary numbers, 16-bit base conversions, and multiplication
and division.

A Macro to Display a Binary Number in Binary

All information, whether alphanumeric characters, decimal numbers,
or hexadecimal numbers, is stored in a computer as a sequence of bits—
binary zero or binary one. We have already written routines to convert
binary numbers to ASCII and hexadecimal. Sometimes, however, we
want to consider the bits themselves. To represent this pattern for a byte,
we must display a sequence of eight ASCII zeros and ones. The routine
that performs this task is called a binary to ASCII binary program.

In Chapter 3 we used this routine to determine whether our printer in-
corporates a DTR bit. Let us now use that routine in the form of a macro.
Copy macro BINBIN, shown in Figure 8.2, into your macro library.
Notice that it uses the flag BNFLAG.

A Macro to Display a 16-Bit Binary Number in Decimal

Sometimes we need to determine the decimal equivalent of a binary
number. The largest 8-bit numberis 255. Therefore, in converting an 8-bit
binary number to decimal, we must consider three powers of ten—10°,
10}, and 102. But we are going to convert a 16-bit number to decimal, and
in this case the largest number is 65,535. We must therefore consider five
powers of ten—10°, 10!, 102, 10%, and 10*,

The algorithm we use subtracts powers of ten from the original number
until the result becomes negative. Then we add back the most recent term.
The net number of subtractions is the decimal power. We continue in this
way with 1000, 100, and 10.

THE CP/M DISK DIRECTORY

275

BINBIN

Iz}

BINB2?:

BIT2:

BNFLAG

AROUND:

MACRO

;:(Put current date here)

;;Inline macro to convert binary number in A
;1o a string of ASClI-coded binary characters.

LOCAL
CALL
iF

JMP

PUSH
MOV
MVI

MOV
ADD
MOV
Mmvi
ADC
PCHAR
DCR
JNZ
POP
RET
SET
ENDIF

ENDM

BIT2, AROUND
BINB2?

NOT BNFLAG
AROUND

B
C.A
B.8

AC

A ;iset carry
CA

A0/2

A

B

BIT2

H

TRUE

;;BINBIN

Figure 8.2: Macro BINBIN to Display a Binary Number as a Sequence of

ASCII Zeros and Ones

We have seen that the 8080 CPU cannot directly perform a 16-bit sub-
traction. We therefore wrote macro SBC for this purpose. We also noticed
that we could subtract one number from another by adding the two’s
complement. Our algorithm uses this technique. We begin by repeatedly
adding —10,000, the two’s complement of 10,000. When the result
becomes negative, we add back that last subtraction by subtracting the
two’s complement. We use macro SBC for this purpose.

276

MASTERING CP/M

A second complication is the matter of leading zeros. If a number is less
than 10,000, the left digit will be 0. If the number is less than 1000, there
will be another 0 in the next position. However, it is customary to omit
leading zeros in decimal numbers, so we will delete the leading zeros from
our resulting decimal number.

Macro HLDEC, shown in Figure 8.3, converts a 16-bit binary number
in HL to a string of ASCII-coded decimal digits and displays the result on
the console. Add this macro to your library.

A Macro to Display a 16-Bit Binary Number in Hexadecimal

In Chapter 5 we wrote macro OUTHEX to convert an 8-bit binary
number to two hexadecimal characters and display them on the console.
For the programs in this chapter we will need to convert a 16-bit binary
number in HL to hexadecimal characters, We will use macro OUTHEX
for this purpose. If the value in HL is larger than 255, we will reference

HLDEC MACRO
;;(Put current date here)
;;Inline macro to print HL as decimal.
::Macros needed: SBC, PCHAR
LOCAL AROUND, SUBTR,SUBT2,NZERO
CALL HLDC2?
IF NOT DEFLAG
JMP AROUND
HLDC2?:
PUSH H
PUSH D
PUSH B _
MVI B,0 ;;leading-zero flag
LXI D, — 10000 ;two’s complement
CALL SUBTR ;ten thousands
LXi D, — 1000
CALL SUBTR sthousands
LXI D,—100
CALL SUBTR ;;hundreds

Figure 8.3: Macro HLDEC to Display a 16-Bit Binary Number in Decimal

THE CP/M DISK DIRECTORY 2711

LXI D,—10

CALL SUBTR ;tens

MOV AL

ADI (o ;;ASCll bias
PCHAR

pOP B

POP D

POP H

RET

.
rr

;1subtract power of ten and count

SUBTR: MVi C,0—1 ;;ASCl| count
SUBT2: INR C
DAD D ;;add neg number
JC SUBT2 ;;keep going

;;one too many, add one back
;:by subtracting complement

SBC HL,DE
MOV A,C ;;get count
;;check for zero
CPI 1’ <1?
JNC NZERO ;no
MOV AB ;;check zero flag
ORA A ;set?
MOV AC ;;restore
RZ ;:;skip leading 0
PCHAR
RET
;;set flag for nonzero character
NZERO:
MVI B,OFFH
PCHAR
RET
DEFLAG SET TRUE
ENDIF
AROUND: ;;HLDEC
ENDM

Figure 8.3 (continued)

278

MASTERING CP/M

macro OUTHEX twice. This will produce four ASCII characters. If the
value in HL is less than 256, the value in H is 0. In this case, we will
reference macro OUTHEX only once. Macro OUTHL is shown in Figure
8.4. Add it to your macro library.

A Macro to Multiply a 16-Bit Number by a Power of 2

The 8080 and Z80 CPUs have instructions for addition and subtraction,
but they do not have instructions for multiplication and division. We will
now write a macro to multiply a 16-bit number in HL by a power of 2, using
addition and rotation. Restricting the multiplier to a power of 2 greatly
simplifies the algorithm without limiting our applications, because our
applications always need a multiplier of this type.

We consider two special cases at the beginning of the macro. If the
multiplier is 0, the result in HL is set to 0. If the multiplier is 1, the original
value in HL is returned. We place other multipliers into register B and
then add HL to itself. This doubles the original multiplicand. We then
rotate the multiplier in B and check the carry flag. If the carry flag is set,
the multiplier is 2 and the task is finished. However, if the carry flag is
reset, the original multiplier was larger than 2. We continue adding HL to
itself and rotating B to the right into the carry flag.

Add macro MULT, shown in Figure 8.5, to your macro library. This
macro has one optional parameter—the multiplier. If the parameter is
omitted in the reference, it is assumed that the multiplier is already loaded
in the accumulator.

A Macro to Divide a 16-Bit Number by a Power of 2

The complement of the previous macro is a routine to divide a 16-bit
number in HL by a power of 2. When we double the value in HL by adding
it to itself, the result is the same as shifting the double register to the left.
Division is accomplished by shifting to the right. However, there is no
16-bit shift or rotation instruction, so we must perform two 8-bit rota-
tions instead.

Macro DIVIDE is shown in Figure 8.6; add it to your library. There is
one optional parameter, the divisor. If it is omitted from the macro
reference, a value of 2 is assumed. Division by zero is undefined, but this
macro will leave the dividend unchanged in this case. The result is also un-
changed if the divisor is 1.

Now that we have added the necessary macros, we can write a program
that will display the disk parameters.

THE CP/M DISK DIRECTORY

279

OUTHL MACRO

rr

LOCAL

MOV

ORA

JZ

OUTHEX
OVER:

OUTHEX

ENDM

;;(Put current date here)
;;Inline macro to display HL in hex.
;:Macro needed: OUTHEX

OVER
AH
A
OVER
H

L
;;OUTHL

Figure 8.4: Macro OUTHL to Display a 16-Bit Binary Number in Hexadecimal

17}

LOCAL
PUSH
IF
MOV
ELSE
Mvi
ENDIF
CALL
POP
IF
JMP
MULT2?:

MULT MACRO
;:(Put current date here)
;;Inline macro to multiply value in HL by TIMES.
;;Parameter should be a power of 2.

;0 and 1 are valid operands.

;;Parameter is omitted when A has multiplier.

TIMES

LOOP, AROUND, NOTZ
B

NUL TIMES

B,A

B, TIMES

MULT2?

B

NOT MLFLAG
AROUND

Figure 8.5: Macro MULT to Multiply a 16-Bit Number in HL by a Power of 2

280 MASTERING CP/M

MOV A,B
ORA A ;zero
JNZ NOTZ no
MOV LA
MOV H,A ;HL=0
RET

NOTZ:
RAR
RC ;times 1
MOV B,A

LOOP:
DAD H times 2
MOV AB
RAR
MoV BA
JNC LOOP
RET

MLFLAG SET TRUE ;;one copy
ENDIF

AROUND: iMULT
ENDM

Figure 8.5 (continued)
DIVIDE MACRO DENOM

1

LOCAL
PUSH
IF

mvi
ELSE
Mvi
ENDIF

;:(Put current date here)

;:Inline macro to divide HL register by DENOM.,
;;Denom should be power of 2 (2, 4, 8, 16).
;;HL unaltered if DENOM is QO or 1.

AROUND, SHFTR?, DIV3?
B

NUL DENOM

B,2 ;default

B,DENOM

Figure 8.6: Macro DIVIDE to Divide a 16-Bit Number in HL by a Power of 2

THE CP/M DISK DIRECTORY 281

CALL DIv2?
POP B
IF NOT DVFLAG
JMP AROUND

Div2?:
MOV AB
ORA A ;clear carry
RZ ;divide by zero?
RAR
RC ;divide by 1?
MOV B.A

DIV3?:
CALL SHFTR? ;shift HL right
MOV A,B ;get divisor
RAR
MOV BA
JNC DIV3?
RET

SHFTR?: ;16-bit shift right
XRA A
MOV AH
RAR
MOV HA
MOV AL
RAR .
MOV LA
RET

DVFLAG SET TRUE ;;one copy
ENDIF ’

AROUND: ;:DIVIDE
ENDM

Figure 8.6 (continued)

A Program to Display the Disk Parameters

The program shown in Figure 8.7 can be used to determine the disk
parameters for any CP/M disk. The CP/M version must be 2.0 or greater
for this program to run. The program begins in the usual way with macros
ENTER and VERSN. Then macro CPMVER is used to determine the

282

MASTERING CP/M

CP/M version. If the version s less than 2, the program is terminated with
the appropriate error message.

The memory FCB at 5C hex is checked next to see whether a disk drive
was specified on the command line. If a specific drive was indicated,
subroutine SETDSK is called. This subroutine selects the desired disk
with BDOS function 14. If no disk drive was specified, the default drive is
used. Subroutine SETDSK concludes in an interesting way—with a jump
to BDOS rather than the usual call. The more obvious construction

CALL BDOS
RET

performs the same task. However, it requires more code and more stack
space than the instruction

JMP BDOS

The next step is to determine the address of the disk parameter block using
BDOS function 31. The disk parameters are then moved to the end of the
program so they can be altered slightly. For example, the greatest block
number (DSM) is incremented so that it becomes the total number of
blocks. The number of directory entries (DRM) is incremented and then
divided by four to find the corresponding number of directory sectors.
This is saved as DIRMAX,

The allocation bytes (ALO and AL1) are interchanged so that the low
byte will be in the H register after an LHLD operation. Repeated DAD
H instructions will then shift the HL register left into the carry flag. This
flag will be set each time there is a corresponding bit set in ALO and
ALl. Remember, each bit corresponds to one reserved directory block.
The number of reserved directory blocks is determined in this way. The
result is subtracted from the total number of blocks to find the number of
data blocks. This is stored as NETBL. The number of directory blocks is
converted from binary to ASCII and saved as ALLOCA. This value
will be used later.

Type in the program shown in Figure 8.7 and assemble it. The macro
library we have developed is needed in the program. First try this program
on the default drive with the command

DIREC
Then try it on another drive by giving a parameter:
DIREC B:

The second example will display the disk parameters for drive B.

THE CP/M DISK DIRECTORY

283

’
’

FALSE
TRUE
BOOT
BDOS
TPA
FCB
FCB1
FCB2
DBUFF
ABUFF
UNUSED
LMAX

’

BNFLAG
COFLAG
CRFLAG
CXFLAG
DEFLAG
DVFLAG
MLFLAG
MVFLAG
PRFLAG

’

ORG

’

EQU
EQU

EQU
EQuU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

SET
SET
SET
SET
SET
SET
SET
SET
SET

;end of flags

MACLIB

TPA

TITLE ’DIREC, directory utility’

;(Put current date here)

0
NOT FALSE

0

5
100H
5CH
5CH
6CH
80H
DBUFF
OE5H
24

;Set flags in main program so only one
;copy of certain subroutines will be generated.
;Place set lines before MACLIB call.

FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE
FALSE

CPMMAC

;BDOS entry point

sfile control block
;first file name
;second file name
;default buffer
;actual buffer

;dir entry

;max lines/screen

;binary to ASCII bin
;output console char
;carr-ret/line-feed
;binary to hex
;binary to decimal
:16-bit divide

;16-bit multiply in HL
;block move

;print console

Figure 8.7: Program to Display the Disk Parameters

284 MASTERING CP/M

START:
ENTER
VERSN ‘(current date).DIREC. 1’
CPMVER ;check version
CPI 20H
JC ERRVER ;wrong version
LDA FCB1
ORA A ;drive specified?
CNZ SETDSK ;yes
CALL GETDPH ;disk parameters
CALL XAMINE
JMP DONE

1

;block move disk parameters to end of program

GETDPH:

Mvi C.3 ;disk param address

CALL BDOS

MOVE ,DPARM, 15 ;copy to end

LHLD BLKMAX ;maximum # blocks

INX H

SHLD BLKMAX ;starts at zero

LHLD DIRENT ;# of directory entries

INX H ;starts at zero

DIVIDE 4 ;convert to # sectors
;Save number of directory sectors as 16 bits

SHLD DIRMAX ;and save

SHLD DIRMX2 ;count,

;Directory block allocation is stored as
;1000 0000 for 1 block, 1100 0000 for 2, etc.
;But we want left byte in H.

’

LHLD ALLOC ;reverse bytes
MOV AL

MOV LH

MOV H,A

SHLD ALLOC
;get number of directory blocks as ASCII

Figure 8.7 (continued)

’

XAMINE:
PRINT
LHLD
HLDEC
PCHAR
PCHAR
OUTHL
PRINT
LDA
INR
MOV
Mmvi
HLDEC
PCHAR
PCHAR
OUTHEX
PRINT
PRINT
DIVIDE
MOV

;display disk parameters

<CR,LF,’Sectors/track: ">
NUMSEC

;decimal
BLANK

"

<’ hex)’,CR,LF,’Sectors/block: ">
BLM

A

LA

H,0

BLANK

%

L

" hex)

<CR,LF,’Block size: ">

8

B,L ;save block size

THE CP/M DISK DIRECTORY 285
XRA A ;zero A
XAMS3:
DAD H ;shift left
JNC XAM4
INR A
JMP XAM3
XAM4:
MOV EA ;# dir blocks
MVI D,0
LHLD BLKMAX ;blocks
SBC HL,DE ;deduct for directory
SHLD NETBL ;net data blocks
MOV AE
ORI o ;ASCII bias
STA ALLOCA ;save
RET

Figure 8.7 (continued)

286

MASTERING CP/M

HLDEC
PRINT
LHLD
MOV
MULT
PRINT
HLDEC
PRINT
PRINT
LDA
INR
MOV
MVI
HLDEC
PRINT
LHLD
HLDEC
PCHAR
PCHAR
OUTHL
PRINT
LHLD
INX
HLDEC
PCHAR
PCHAR
OUTHL
PRINT
LDA
PCHAR
PCHAR
PCHAR
LDA
BINBIN
LDA
ORA
JZ
BINBIN
XAM2:

‘K bytes’
NETBL ;# data blocks
AB ;block size

<CR,LF,’Disk size: >

‘K bytes’
<CR,LF,’Extents/entry: >
EMASK

A

LA

H,0

<CR,LF,’Number of blocks: ">
BLKMAX

BLANK
I(I

<’ hex)’,CR,LF,’Max directory entries: ">
DIRENT
H

BLANK
I(I

<’ hex),CR,LF, Directory blocks: ">
ALLOCA

BLANK
2
ALLOC+1
;alloc in binary
ALLOC
A
XAM2
;2nd if needed

Figure 8.7 (continued)

THE CP/M DISK DIRECTORY

287

XAMS:

SETDSK:

ERRVER:

DONE:

DPARM:

NUMSEC:

BSHIFT:
BLM:
EMASK:

BLKMAX:

DIRENT:
ALLOC:
CKS:
TRKOFF:

DIRMAX:
NETBL:

ALLOCA:
DIRMX2:

’

PRINT
LHLD
HLDEC
MOV
ORA

JZ
PCHAR
PCHAR
OUTHL
PRINT

CRLF
RET

DCR
MOV
Mvi
JMP

ERRORM

EXIT

DS
DS
DS
DS
DS
DS
DS
DS
DS

DS
DS
DS
DS

END

<’Y,CR,LF, Track offset: >
TRKOFF

AH

A

XAM5 ;skip hex
BLANK

o

" hex)

;set disk drive
A ;0=A,1=B
£ A
C, 14 :select new drive
BDOS

‘2CP/M version must be 2 or greater’

;copy of disk parameters
;sectors per track

;block shift

;block mask

;extent mask

:max # blocks on disk
:max # dir entries

;ALY, ALO reversed
;check size

;track offset

NN~ — —=N

;max # directory sectors
:number of data blocks
;directory blocks (ASCil)
;remaining dir sectors

N - NN

START

Figure 8.7 (continued)

288

MASTERING CP/M

Theresults for an 8-inch, single-density floppy will look like Figure 8.8.
The display shows that there are 26 sectors per track and 8 sectors per
block of 1K bytes. There are 64 directory entries that are stored in 2
blocks. The disk can hold a maximum of 241K bytes of data, exclusive of
thedirectory. The track offsetis 2; that is, the first two tracks are reserved.

On the other hand, a 5-inch, double-density, double-sided, hard-
sectored floppy might give the results shown in Figure 8.9. In this example,
there are 40 logical sectors per track and 16 sectors per 2K block. The disk
can store a maximum of 338K bytes, exclusive of the one block reserved
for the directory.

Sectors/track: 26 (1A hex)
Sectors/block: 8 (8 hex)

Block size: 1K bytes

Disk size: 241K bytes
Extents/entry: 1

Number of blocks: 243 (F3 hex)
Max directory entries: 64 (40 hex)
Directory blocks: 2 (11000000)
Track offset: 2

Figure 8.8: The Disk Parameters for an 8-Inch Floppy

Sectors/track: 40 (28 hex)
Sectors/block: 16 (10 hex)

Block size: 2K bytes

Disk size: 338K bytes
Extents/entry: 2

Number of blocks: 170 (AA hex)
Max directory entries: 64 (40 hex)
Directory blocks: 1 (10000000)
Track offset: 2

Figure 8.9: The Disk Parameters for a 5-Inch Floppy

THE CP/M DISK DIRECTORY 289

THE DISK DIRECTORY BLOCKS

The first one or more data blocks on each CP/M disk contain a direc-
tory of the files that are present on the remainder of the disk. As we saw in
Chapter 6, each directory entry is 32 bytes long. Consequently, a logical
128-byte sector can reference a maximum of four disk files.

We saw that the first byte of each directory entry refers to the user who
created the file. This is a binary number from0to 15. A value of ES hexin
this position indicates that the file has been deleted. The file name and extent
are coded in ASCII in the next 11 bytes. Then there are four bytes that
contain the extent number and the number of records.

The actual location of the file is indicated by the remaining 16 bytes.
For smaller disks, each block is identified as a one-byte binary number,
Larger disks use two-byte block numbers with the low-order byte given first.

Let us now see how a group of files is stored on three different types of
disks. The three disk types are as follows:

¢ 1K-byte block size, 1-byte block addresses
» 2K-byte block size, 1-byte block addresses
e 2K-byte block size, 2-byte block addresses

Our last program in the book will investigate the FCB. For a 1K block
size we might obtain a listing as follows:

CPMIO ASM 00000055 02030405060708090A0BOCO0

DUMP COM 00000007 0DOO

GO COM 00000002 OEOO

LOAD COM 0000000E OF1000

CPMIO HEX 00000007 1100

WSOVLY1 OVR 00000080 12131415161718191A1B1CIDIE1F2021
WSOVLY1 OVR 01000080 22232425262728292A2B2C2D2E2F3031
WSOVLY1 OVR 0200000A 323300

TIME COM O00O000A 343500

SORT BAS 00000009 363700

SORT BAK 0000000OF 383900

SORTA BAS 00000008 3A00

PRIN STR 000000OC 3B3C00

The first FCB, CPMIO.ASM, belongs to user 0. It contains 55 (85
decimal) records stored in blocks 02 to OC. The block numbers refer to
the actual regions on the disk where the file is stored. The next file,
DUMP.COM, has seven records; they all fit into block OD. Lines 6, 7, and
8 of the directory listing refer to the same file, WSOVLY1.OVR. This file

GhI83288888888

290

MASTERING CP/M

is so large that it requires three FCBs (called physical extents). The first
and second FCBs (designated 0 and 1) contain 80 records. The third FCB
is designated as extent 2; it has OA records. The block numbers run from
12 to 33 hex. For this disk format, each FCB can reference a maximum of
one extent of 80 records (16K bytes).

The block size for the previous example is 1K bytes. However, CP/M
disks may have block sizes of 2K, 4K, 8K, or 16K bytes. The next disk for-
mat we will consider has 2K bytes per block. With this format each FCB
can contain a maximum of two 16K logical extents. Let us see how the
previous files are stored with this format:

00 CPMIO ASM 00000055 01020304050600

00 DUMP COM 00000007 0700

00 GO COM 00000002 0800

00 LOAD COM 0000000E 0900

00 CPMIO HEX 00000007 OAQO

00 WSOVLY1 OVR 01000080 OBOCODOEOF101112131415161718191A
00 WSOVLY1 OVR 0200000A 1B0OO

01 TIME COM 0000000A 1C00

02 SORT BAS 00000009 1D0O

o
N

SORT BAK 0000000F 1EQQ

The files in this example are the same size as in the previous example.
However, fewer blocks are needed for the longer files because the block
size is twice as large. Notice that WSOVLY1.OVR needs only two FCBs
rather than three. However, the first of these two FCBs shows an extent of
1, meaning that extents 0 and 1 are both contained in one FCB. Each of
the two extents has 80 records. The third extent, extent 2, is contained in
the second FCB. It has OA records. The block numbers run from OB to 1B.

As athird example, consider a high-density disk that also has a 2K-byte
block size but uses two-byte block addresses. The same files are shown
again. However, the block addresses now appear as 0200, 0300, 0400, and
SO on:

CPMIO ASM 00000055 020003000400050006000700

DUMP COM 00000007 0800

GO COM 00000002 0900

LOAD COM 000000CE OA00

CPMIO HEX 00000007 0BOO

WSOVLY1 OVR 00000080 OCOOODOOOEOOOF0010001 10012001300
WSOVLY1 OVR 01000080 1400150016001700180019001A001800
WSOVLY1 OVR 0200000A 1C00

38888888

THE CP/M DISK DIRECTORY 291

THE BLOCK ALLOCATION MAP

When a warm start is performed by typing control-C, all disk drives are
reset and the directory on drive A is read. If a drive other than A is cur-
rently the default drive, the disk directory for that drive is also read at this
time. A block allocation map is constructed during this initialization step.
This map uses a single bit to represent each block. Blocks that are cur-
rently in use are given a value of 1. Unused blocks havea value of 0. CP/M
searches the map for unused blocks when a new file is to be created.

The third part of our last program constructs a block map not from the
CP/M version, but by actually locating each block address in the disk
directory. Our technique will show when there are multiple referencestoa
particular block.

The map for a newly formatted disk might look like that in Figure 8.10.
In this example, the first block, block 0, is located in the upper-left corner.
The value of 1 means that the block is in use. The remaining positions
have a value of 0, indicating that they are not in use. The first block of this
disk is reserved for the directory. The directory itself will always occupy
the first one or more blocks at the beginning of the data area. Thus there
will always be values of 1 at the beginning of this map. The number of
blocks given in the summary at the bottom of the display does not include
those reserved for the directory.

Each time a file is saved on a disk, the corresponding blocks will be set
to 1. As more and more files are saved, the block map gradually becomes
filled in. If some files are erased, holes will open up in the table. After a
while, the map might look like that in Figure 8.11.

The allocation map also can indicate whether there are multiple linkstoa
file. For example, consider the allocation map in Figure8.12. In this example,
several blocks (41, 42, 47, and others) are marked with a value of 2. This

01234567 89ABCDEF 01234567 89ABCDEF
10000000 00000000 (00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00

169 total blocks, 0 in use, 169 remaining

§88588

Figure 8.10: Block Allocation Map for a Newly Formatted Disk

292

MASTERING CP/M

01234567 B89ABCDEF 01234567 89ABCDEF
00: 11111111 11111111 11111111 11 1nnn
20: 1MIT1T11 11111000 01111111 11111
40: 11111111 117111111 10000001 11111111
60: 11111111 00000000 00000000 00000000
80: 00000000 00000000 00000000 11111111
AO: 11111000 00
169 total blocks, 63 in use, 106 remaining

Figure 8.11: Block Allocation Map for a Disk with Files

01234567 89ABCDEF 01234567 89ABCDEF
00: 111711111 11111111 11111111 11111
20: 1111110 TRIIRIIT 1MEI1IEY 1
40: 12211112 21111111 11111111 111111
60: 22111111 11111110 11111911 11111121
80: 11101222 21111111 11111111 11111111
AO: 11111101 1N
169 total blocks, 166 in use, 3 remaining

Figure 8.12: Block Allocation Map Indicating Multiple Links
to a File

indicates that there are two different files that refer to these blocks. This
can occur with a disk utility program such as BADLIM or RECLAIM.
These programs read the entire disk looking for bad sectors. If bad sec-
tors are found, they are collected into a special file so that they will not be
used. Of course, if the original program is still present, it will also refer to
these sections.

VIEWING THE DISK DIRECTORY BLOCKS
AND THE BLOCK ALLOCATION MAP

In this section we will extend our directory program so it will display the
actual directory entries. The user number and block addresses will be
shown. A separate feature will construct a block allocation map for the
disk. Before we develop this program, however, we need to add one more
macro to our library.

THE CP/M DISK DIRECTORY 293

A Macro to Fill Large Blocks

In Chapter 4 we wrote a macro to fill an area of memory with a partic-
ular byte. The area was limited to 256 bytes, because a single register was
used to count the number of locations to fill. For the next program we will
need to fill an area larger than 256 bytes. Consequently, we will alter
our FILL macro so that a double register is used to count the number of
locations.

Make a copy of macro FILL and give it the name FILLD (for double
precision). Alter the new macro so it looks like Figure 8.13. Notice that the
same flag, FLFLAG, is used for this version. This means that you should
only use one of these two macros for any particular program.

We are now ready to add two new features to our directory program.

The DIREC Program, Version 2

Make a copy of the first version of the directory program shown in
Figure 8.7 and alter it to look like the version shown in Figure 8.14. Macro
FILLD is needed. Assemble the program and try it out. As with the
previous version, if you execute this program without a parameter, the
currently logged-in disk is used. However, if you want to select another
disk, give the disk name followed by a colon.

This new version begins by printing out the disk parameters, just as the
previous version did. But then if you press any console key, the program
will continue. Each directory entry is shown on a separate line. The user
number, extent, number of records, and block addresses are included in
this listing. Pressing any console key a second time will display the third
part of the program—a block allocation map for the disk. Blocks that are
in use will be designated by a value of 1 in the map. Blocks that are free
are shown by zeros.

Program DIREC begins like the previous one with macros ENTER,
VERSN, and CPMVER. Subroutine CDISK is called to determine the
default disk drive. BDOS function 25 is used for this task. A check ismade
to see if a disk drive was specified on the command line. If so, subroutine
SETDSK is called as before. If no drive was specified, the default drive is
coded in location FCB1. The drive name is also displayed on the console
at that time.

The disk parameters are displayed, as they were with the previous ver-
sion. The program then waits for any key to be pressed. This causes the
complete disk directory with the block addresses to be shown. When any
other key is pressed, the block allocation map is displayed.

294 MASTERING CP/M

FILLD MACRO ADDR, BYTES, CHAR
;:(Put current date here)
;;(double precision version)
;;Inline macro to fill BYTES memory
;;locations with CHAR starting at ADDR.
;;Usage: FILL FCB+1, 8, blank
o FILL FCB+9, 3, '?”
LOCAL AROUND, FILL3?
PUSH H
PUSH B
IF NOT NUL ADDR
LXi H,ADDR
ENDIF
IF NOT NUL BYTES
LXI B,BYTES
ENDIF
Mvi A,CHAR
CALL FILL2?
POP B
POP H
IF NOT FLFLAG
JMP AROUND
FILL2?:
PUSH D
MOV D A
FILL3?:
MOV MDD
INX H
DCX B
MOV A,C
ORA B
JNZ FILL3?
POP D
RET
FLFLAG SET TRUE
ENDIF
AROUND: ;;FILLD
ENDM

Figure 8.13: Macro FILLD to Fill a Large Portion of Memory

THE CP/M DISK DIRECTORY

295

TITLE ‘DIREC, directory utility’

’

;(Put current date here)

’

FALSE
TRUE

BOOT
BDOS
TPA

FCB
FCB1
FCB2
DBUFF
ABUFF
UNUSED

’

EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

0

NOT FALSE

0

5 ,BDOS entry point
100H

5CH :file control block
5CH :first file name
6CH ;second file name
80H ;default buffer
DBUFF ;actual buffer
OESH ;dir entry

;Set flags in main program so only one
;copy of certain subroutines wil! be generated.
;Place set lines before MACLIB call.

BNFLAG

MACLIB

SET
CIFLAG SET
COFLAG SET
CRFLAG SET
CXFLAG SET
DEFLAG SET
DVFLAG SET
FLFLAG SET
MLFLAG SET
MVFLAG SET
PRFLAG SET
;end of flags
ORG TPA

FALSE ;binary to ASCII bin
FALSE ;input console char
FALSE ;output console char
FALSE ;carr-ret/line-feed
FALSE ;binary to hex

FALSE ;binary to decimal
FALSE ;16-bit divide

FALSE ;fill characters
FALSE ;16-bit multiply in HL
FALSE ;block move

FALSE ;print console
CPMMAC

Figure 8.14: Program DIREC to Display Disk Parameters and the

Block Allocation Map

296 MASTERING CP/M

START:

ENTER

VERSN ’(current date).DIREC. 2

CPMVER ;check version
CPI 20H

JC ERRVER ;wrong version
PRINT “For disk drive *

CALL CDISK ;get current disk
LDA FCB1

ORA A ;drive specified?
CNZ SETDSK ;yes

LDA CURD2 ;requested drive
STA FCB1 ;binary

ADI ‘A ;convert to ASCII
PCHAR

CALL GETDPH ;disk parameters
CALL XAMINE ;show them
PRINT ‘Press any key to continue: ’
READCH ;wait for character
CALL REPEAT ;reset parameters
CALL BLOCK ;block map

JMP DONE

’

;block move disk parameters to end of program

GETDPH:

MVI C,31 ;disk param address

CALL BDOS

MOVE ,DPARM, 15 ;copy to end

LHLD BLKMAX smaximum # blocks

INX H

SHLD BLKMAX ;starts at zero

LHLD DIRENT ;# of directory entries

INX H ;starts at zero

DIVIDE 4 ;convert to # sectors
;Save number of directory sectors as 16 bits

SHLD DIRMAX ;and save

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY

297

SHLD DIRMX2 ;count,
;Directory block allocation is stored as
+1000 0000 for 1 block, 1100 0000 for 2, etc.
;But we want left byte in H.

’

LHLD ALLOC ;reverse bytes
MOV Al

MOV LH

MOV H,A

SHLD ALLOC
;get number of directory blocks as ASCH

XRA A ;zero A
XAM3:
DAD H ;shift left
JNC XAM4
INR A
JMP XAM3
XAM4:
MOV EA ;# dir blocks
MVi D,0
LHLD BLKMAX ;blocks
SBC HL,DE ;deduct for directory
SHLD NETBL ;net data blocks
MOV AE
ORI o ;ASCH bias
STA ALLOCA ;save

;select disk and setup disk parameter header

’

LDA FCB

MOV CA

CALL SELDSK ;select drive

MOV AH ;HL has DPH

ORA L

JZ ILDISK ;error, no disk
MOV EM ;get translate table
INX H ;address

Figure 8.14 (continued)

298 MASTERING CP/M
MOV DM
XCHG
SHLD DPH ;save address
RET

’

XAMINE:
PRINT
LHLD
HLDEC
PCHAR
PCHAR
OUTHL
PRINT
LDA
INR
MOV
mvi
HLDEC
PCHAR
PCHAR
OUTHEX
PRINT
PRINT
DIVIDE
MOV
HLDEC
PRINT
LHLD
MOV
MULT
PRINT
HLDEC
PRINT
PRINT
LDA
INR

;display disk parameters

<CR,LF,’Sectors/track: ">
NUMSEC

;decimal
BLANK
2

<’ hex),CR,LF,’Sectors/block: ">
BlM

A

LA

H,0

BLANK
I(I

L

" hex)
<CR,LF,’Block size: ">
8
B,L ;save block size
‘K bytes’
NETBL
AB

;# data blocks
;block size

<CR,LF,’Disk size: >

‘K bytes’
<CR,LF,’Extents/entry: >
EMASK

A

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY

299

MOV

- MVI
HLDEC
PRINT
LHLD
HLDEC
PCHAR
PCHAR
OUTHL
PRINT
LHLD
INX
HLDEC
PCHAR
PCHAR
OUTHL
PRINT
LDA
PCHAR
PCHAR
PCHAR
LDA
BINBIN
LDA
ORA
JZ
BINBIN

XAM2:
PRINT
LHLD
HLDEC
MOV
ORA
JZ
PCHAR
PCHAR
OUTHL
PRINT

LA
H,0

<CR,LF,’'Number of blocks: ">
BLKMAX

BLANK
’, (I

<’ hex),CR,LF,’Max directory entries: ">
DIRENT
H

BLANK
I(I

<’ hex)’,CR,LF,’Directory blocks: >
ALLOCA

BLANK
o
ALLOC+1
;alloc in binary
ALLOC
A
XAM2
;2nd if needed

<'Y,CR,LF, Track offset: ">
TRKOFF

AH

A

XAMS5 ;skip hex
BLANK

%

" hex)’

Figure 8. 14 (continued)

MASTERING CP/M

XAM5:
CRLF
RET
SETDSK: ;set disk drive
DCR A ;0=qa, 1=b
STA CURD2 ;save
MOV E.A
Mvi C14 ;select new drive
JMP BDOS
REPEAT: ;reset parameters

FILLD SECTOR, HERE-SECTOR,0
LHLD TRKOFF

SHLD TRACK ;reset track offset
LHLD DIRMAX ;# directory sectors
SHLD DIRMX2

RET

’

;show block allocation map

BLOCK:
;Set reserved directory blocks in map
;by shifting alloc to left.

’

PRINT <CR,LF,LF,” disk allocation map’,CR,LF>

LHLD BLKMAX ;number of blocks
MOV B,H
MOV C,L ;put in BC
FILLD BMAP, , 0 ;zero map area
LHLD ALLOC ;both bytes
LXI D,BMAP ;location
Cl14A:
XCHG
INR M ;set bit
INX H
XCHG
DAD H sshift left

Figure 8. 14 (continued)

THE CP/M DISK DIRECTORY 301
MOV Al
ORA H ;zero
JNZ Cl4A ;no -
BLOCKS:
CALL NXTSEC
JZ BLOCK4 sfinished
CALL BPROG
JMP BLOCKS

’

;display disk allocation map

BLOCK4:
PRINT
READCH
PRINT
PRINT
LHLD
MOV
MOV
LXI
BMAP2:
MOV
ANI
JNZ
MOV
ANI
JZ
PCHAR
JMP
BMAP7:
ABORT
CRLF
OUTHEX
PCHAR
PCHAR
JMP
BMAP6:
CPI

‘Press any key to continue: ’

] ;wait for character
<CR,LF,LF,’ 01234567 89ABCDEF >
’ 01234567 89ABCDEF’

BLKMAX

B,H

ClL

H,BMAP ;start of map

Al

OFH ;mask upper 4 bits
BMAP6

AL

1FH

BMAP7 :mask 4 bits
BLANK ;even

BMAP5

ESC

;start new line
L ;show address
BLANK
BMAP5

Figure 8.14 (continued)

302 MASTERING CP/M
JNZ BMAP5
PCHAR BLANK
BMAPS5:
MOV AM ;get entry
ORA A ;zero?
JZ BMAPS ;yes
XCHG ;save HL in DE
LHLD BLKCNT
INX H ;use count
SHLD BLKCNT
XCHG srestore HL
BMAPS:
CpPI 10
JNC BMAP3 <9
ORI 0 ;make ASCII
JMP BMAP4
BMAP3:
ADI ‘A'—10 :make hex
BMAP4:
PCHAR ;print
INX H
DCX B ;count
MOV A,C ;done?
ORA B
JNZ BMAP2 ;no

’

’

CRLF

LHLD NETBL

HLDEC

PUSH H

PRINT ’ total blocks, *
LHLD BLKCNT

LDA ALLOCA

Sul 0

MOV E.A

;show total number of blocks and number in use

;net # blocks

;save HL

;dir blocks
;make binary

Figure 8. 14 (continued)

’

BPROG:
CALL
MOV
CPI
JNC
PUSH

OUTHEX
PCHAR
INX
PRINT
PCHAR
LXi

DAD

MVI

’

LOOP2:
OUTHEX
INX
DCR
JNZ
PCHAR

;code for setting up block allocation map

E5AREA ;found E5?

AM ;first byte

17 ;user > 167

BKINCD ;yes

H ;save pointer
;user number

BLANK

H ;file name

AR ;display file name

BLANK

D1 ;move past file name

D sfirst entry

C.4 ;next 4 bytes

;next 4 bytes have extent and number of sectors

M
H
Cc
LOOP2
BLANK

THE CP/M DISK DIRECTORY 303
MVI D,0
SBC HL,DE
HLDEC
PRINT ’in use, ’
XCHG
POP H
SBC HL,DE ;difference
HLDEC
PRINT <’ remaining’,CR,LF>
RET

Figure 8. 14 (continued)

MASTERING CP/M

Mvi C, 16 ;16 blocks/extent
:See if there are more than 255 blocks.
;A 16-bit block address is used if so.

’

LDA BLKMAX+1 ;high half
ORA A ;zero?
INZ BNEXT6 :no, 16 bits

:code for 8-bit block addresses

BNEXTS:
MOV AM ;get byte
OUTHEX ;display block number
ORA A ;zero?
JZ BPRT2 :last block
PUSH H
LXI H,BMAP ;start
MOV EA
MVI D,0
DAD D ;offset
INR M ;show use
POP H
INX H
MOV AL
ANI OFH ;end of line
JNZ BNEXT8 ;no
JMP BPRT2

;16-bit block addresses

BNEXT6:

MOV EM ;low byte

OUTHEX E ;block number, low
INX H

MOV AM ;high

OUTHEX ;block number, high
ORA E ;zero?

Figure 8. 14 (continued)

’

CKDONE:
LHLD
DCX
SHLD
LHLD
INX
SHLD
XCHG
LHLD

SBC
MOV
ORA

DIRMX2
H
DIRMX2
SECTOR
H
SECTOR

NUMSEC

;see if we need another track

HL,DE

Al

H

;increment count, decrement sector number

;sector count

;16 bits

;save in DE
;sectors/track

;difference

;difference zero?

THE CP/M DISK DIRECTORY 305
RV4 BPRT2 ;yes, quit
MOV D,M
PUSH H ;save pointer
LXI H,BMAP ;map start
DAD D ;add address
INR M ;show use
POP H ,restore pointer
INX H ;next location
MOV AL
AN OFH ;end of line?
JNZ BNEXT6 ;no
BPRT2:
POP H ;beginning of FCB
CRLF :new line
BKINCD:
CALL DECCNT
Jz CKDONE
LXI D,32 ;FCB length
DAD D ;next entry
JMP BPROG

Figure 8. 14 (continued)

306 MASTERING CP/M

RNZ

SHLD SECTOR ;set to zero
LHLD TRACK

INX H siner track
SHLD TRACK

RET

;Read next sector (4 directory entries).
;Return with zero flag set if no more.

NXTSEC:

LDA ESFLAG ;uninitialized found?
CPI 1
RZ yes
NXTSF:
LHLD DIRMX2 ;more sectors?
MOV Al
ORA H ;set flags
RZ ;no
CALL SETTRK ;set track
LHLD SECTOR ;16 bits
MOV B,H
MOV ClL
CALL TRANSL
CALL SETSEC ;set sector
CALL READ
MVI A4 ;entries/sector
STA ECOUNT ;reset
Xl H,ABUFF ;DMA address
ANI 1
XRI 1 ;invert error flag
RET ;zero if bad flag

;:Decrement number of remaining entries in sector

;(4 maximum). Zero flag set if no more.

DECCNT:
LDA ECOUNT ;entries/sector
DCR A

Figure 8. 14 (continued)

THE CP/M DISK DIRECTORY 307

STA ECOUNT
RET

:look for E5 uninitialized areq, set ESFLAG = 1 if so

E5AREA:
INX H ;1st char
INX H ;2nd char
MOV AM
CPI UNUSED
DCX H
DCX H
RNZ ;not found
MVI Al
STA ESFLAG ;set flag
RET

;find currently logged-in disk

CDISK:

MVi C.25

CALL BDOS

STA CURD2 ;A=0, B=1

ADI ‘A ;convert to ASCII
STA CURDSK

RET

;translate BC from logical to physical
;sector number BC => HL =>BC

TRANSL:
LHLD DPH ;translate table
XCHG
CALL SECTRN
MOV B,H
MOV C.L
RET

Figure 8. 14 (continued)

308 MASTERING CP/M

SETTRK:

SETSEC:

SELDSK:

READ:

WRITE:

;set track to 16-bit value in BC

LHLD TRACK

MOV B,H
MOV ClL
LHLD BOOT+1
PUSH D
LXI D,3*9
DAD D
POP D
PCHL
LHLD BOOT+1
PUSH D
LXI D,3*10
DAD D
POP D
PCHL
LHLD BOOT+1
PUSH D
LXt D,3*8
DAD >}
POP D
PCHL

;read sector, A=0 if successful
LHLD BOOT+1
PUSH D
LXI D,3*12
DAD D
POP D
PCHL

;write sector, A=0 if successful

LHLD BOOT+1
PUSH D

;16 bits
;may be zero

;warm boot

;offset

;select sector in BC
;swarm boot

;offset

;select disk in C
;warm boot

;offset

;warm boot

;offset

;warm boot

Figure 8.14 (continued)

THE CP/M DISK DIRECTORY 309
LXI D,3*13 ;offset
DAD D
POP D
PCHL

;Sector translation from logical sector in BC
;1o physical sector in HL, DE has translate table.

SECTRN:

ERRVER:
ILDISK:

DONE:

DPARM:

NUMSEC:

BSHIFT:
BLM:
EMASK:

BLKMAX:

DIRENT:
ALLOC:
CKS:
TRKOFF:
DPH:

DIRMAX:
NETBL:
ALLOCA:

LHLD
PUSH
LXI
DAD
POP
PCHL

ERRORM

ERRORM

EXIT

DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

DS
DS
DS

BOOT+1 ;warm boot
D

D,3*15 ;offset

D

D

‘?CP/M version must be 2 or greater’

“?lllegal disk drive’

;copy of disk parameters
;sectors per track

;block shift

:block mask

;extent mask

;max # blocks on disk
;max # dir entries
;A11,A10 reversed
;check size

strack offset

;disk parameter header

NNDNMNNNNN—=——N

N

;max # directory sectors
;number of data blocks
;directory blocks (ASCII)

- N

Figure 8.14 (continued)

310 MASTERING CP/M
DIRMX2: DS 2 ;remaining direct sectors
CURDSK: DS 1 ;current disk (ASCH)
CURD2: DS 1 ;current disk (binary)
ECOUNT: DS i ;entries in sector (0-3)
SECTOR: DS 2 ;current sector
TRACK: DS 2 ;current track
ESFLAG: DS 1 ;found uninitialized if 1
BLKCNT: DS 2 ;blocks in use
HERE: ;replace with ASEG:
ORG (here and OFFOOHY 4+ 100H ;ORG OAQOH for Microsoft
BMAP: DS 1 ;block allocation map
END START
Figure 8. 14 (continued)

This program will perform several disk operations by directly calling
the BIOS rather than the BDOS. Recall that the BIOS begins with a se-
quence of jump vectors. In this case we are interested in the vectors that
are 8, 9, 10, 12, 13, and 15 positions from the warm-start vector. These
are the following vectors:

JMP SELDSK Select disk drive from register C

JMP SETTRK Set track number to value in BC

JMP SETSEC Set sector number to value in BC

JMP READ Read a sector into memory at DMA address
JMP WRITE Write a sector from memory at DMA address
JMP SECTRN Translate from logical to physical sector

The location of BIOS changes with each different size of CP/M. Conse-
quently, the exact addresses cannot be coded directly into our program.
The address of the warm-start vector is stored at address 1. We can re-
trieve this address, add the offset to the desired vector, then branch to it.
For example, the vector to select the disk is eight vectors past the warm-
start vector, and each vector is three bytes long. Consequently, we need to
add 3 times 8 to the warm-start vector. The instructions are as follows:

SELDSK: ;select disk in C
LHLD BOOT+1 ;warm boot to HL

THE CP/M DISK DIRECTORY 311

PUSH D ;save DE

LXI D,3*8 ;put offset in DE

DAD D ;add to HL

POP D ;restore DE

PCHL ;branch to HL address

The other five routines operate in a similar way.

Each time a disk is logged in, CP/M constructs a bit map of the sectors
in use. However, we will not use this map in our program. Rather, we will
construct a separate table. A block of memory starting at BMAP at the
end of the program is set aside for this purpose. We saw previously that
CP/M allocates one bit for each block. However, in this case we will use
one byte for each block. The map area is zeroed initially. Then each time
a block number is encountered, the corresponding location in the block
is incremented.

We start with the blocks allocated to the directory. Then each directory
entry is scanned for blocks that are in use. When a block is found to be in
use, the corresponding entry in the table is incremented.

SUMMARY

In this chapter we studied the CP/M disk directory in detail. We
developed a disk program to list the disk parameters, show an expanded
directory with the block addresses, and generate a block allocation map.
We can add more features to this program to further increase its
usefulness. For example, an accidentally deleted file can be recovered if
the value at the beginning of the FCB can be changed from ES to 0.

Creating multiple links to a single file is another useful feature if more
than one user area is active, If a particular program is needed in more than
one user area, it is usually necessary to save a separate copy of the program
for each user. But this requires additional disk space. On the other hand,
disk space can be saved by creating multiple FCBs to the same file. One
FCB is designated for each user according to the initial byte of the FCB.
However, the remainder of each FCB is the same. Thus all of these FCBs
refer to the same file. (All of these features are incorporated into a disk
utility program called FILEFIX, available commercially.)

The directory of your macro library should now look like this:

;:Macros in this library Flags
;;ABORT MACRO CHAR CIFLAG, COFLAG
5 AMBIG MACRO OLD, NEW (none)

312 MASTERING CP/M

;;BINBIN MACRO : BNFLAG
;;CLOSE MACRO POINTR CLFLAG, COFLAG, CRFLAG
5 PRFLAG, OPFLAG, MVFLAG,
5 DEFLAG, CIFLAG, UNFLAG,
3 RNFLAG, S2FLAG
;;COMPAR MACRO FIRST, SECOND, BYTES CMFLAG
;;COMPRA MACRO FIRST, SECOND, BYTES CMFLAG
;;JCPMVER MACRO (none)
;;CRLF MACRO CRFLAG, COFLAG
;;DELETE MACRO POINTR, WHERE DEFLAG, CIFLAG
5 COFLAG, PRFLAG, UNFLAG
;;DIVIDE MACRO DENOM DVFLAG
;;ENTER MACRO (none)
;;ERRORM ~ MACRO TEXT, WHERE COFLAG, CRFLAG, PRFLAG
SEXIT MACRO SPACE? (none)
;:FILL MACRO ADDR, BYTES, CHAR FLFLAG
;;FILLD MACRO ADDR, BYTES, CHAR FLFLAG
;i GFNAME MACRO FCB FNFLAG, FLFLAG, RCFLAG
5 COFLAG, CRFLAG, PRFLAG
;s HEXHL MACRO POINTR HXFLAG, RCFLAG
;;HLDEC MACRO DEFLAG, COFLAG
;;LCHAR MACRO PAR LOFLAG
;;LDFILE MACRO FCB, POINTR, CHAR COFLAG, DMFLAG
5 RDFLAG
;;MAKE MACRO POINTR MKFLAG, COFLAG, CRFLAG,
b PRFLAG
;;MOVE MACRO FROM, TO, BYTES MVFLAG
;s MULT MACRO TIMES MLFLAG
;;OPEN MACRO POINTR, WHERE OPFLAG, COFLAG, PRFLAG
5 ‘ CRFLAG
;i OUTHEX MACRO REG CXFLAG, COFLAG
;;OUTHL MACRO CXFLAG, COFLAG
;;PCHAR MACRO PAR COFLAG
5 PFNAME MACRO FCB COFLAG, PRFLAG
;;PRINT MACRO TEXT, BYTES PRFLAG, COFLAG
;;PROTEC MACRO POINTR (none)
;;READB MACRO BUFFR RCFLAG
;;READCH MACRO REG CIFLAG, COFLAG
;;READS MACRO POINTR, STAR RDFLAG, COFLAG

MACRO POINTR RNFLAG, COFLAG

1:RENAME

rr

PRFLAG, CRFLAG

THE CP/M DISK DIRECTORY 313

;1SBC
;:SETDMA
1:SETUP2

5, SYSF
;;UCASE
1;JUNPROT
;iUPPER
;JVERSN

s WRITES
;;WRFILE

124

MACRO
MACRO
MACRO

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

MACRO

POINTR

FUNC, AE
REG

POINTR

REG

NUM

POINTR, STAR

FCB, POINTR

{(none)

DMFLAG

S2FLAG, CIFLAG, COFLAG,
CRFLAG, CMFLAG, DEFLAG,
MKFLAG, MVFLAG, OPFLAG,
PRFLAG, UNFLAG

(none)

(none)

UNFLAG

(none)

(none)

WRFLAG, COFLAG

PRFLAG

COFLAG, CRFLAG
DMFLAG, WRFLAG

A
APPENDICES

| [l APPENDIX A

The ASCII
Character Set

The ASCII character set is listed here in numeric order with the corre-
sponding decimal, hexadecimal, and octal values. The control characters
are indicated with a caret (Y. For example, the horizontal tab (HT) is
formed with control-I (*I).

ASCII Decimal Hex Octal Control
symbol value value value character Meaning

NUL 0 00 000) Null

SOH 1 01 001 A Start of heading
STX 2 02 002 AB Start of text
ETX 3 03 003 Ac End of text
EOT 4 o 004 D End of transmission
ENQ 5 05 005 *E Inquiry

ACK 6 06 006 Ap Acknowledge
BEL 7 07 007 AG Bell

BS 8 08 010 AH Backspace

HT 9 09 o011 M Horizontal tab
LF 10 0A 012 Ay Line feed

vT 11 0B 013 K Vertical tab

FF 12 oC 014 AL Form feed

CR 13 oD 015 M Carriage return

THE ASCII CHARACTER SET 317

ASCII Decimal Hex Octal Control
symbol value value value character Meaning

SO .14 OE 016 AN Shift out

SI 15 OF 017 o) Shift in

DLE 16 10 02 Ap Data link escape
DCI 17 11 021 Q Device control 1
DC2 18 12 022 AR Device control 2
DC3 19 13 023 AS Device control 3
DC4 20 14 024 A Device control 4
NAK 21 15 025 AU Negative acknowledge
SYN 2 16 026 AV Synchronous idle
ETB 23 17 027 'w End of transmission block
CAN 24 18 030 X Cancel

EM 25 19 031 Ay End of medium
SUB 26 1A 032 Az Substitute

ESC 27 1B 033 Al Escape

FS 28 1IC 034 M File separator
GS 29 1D 035 "] Group separator
RS 30 1E 036 AA Record separator
US 31 IF 037 A Unit separator
SP 32 20 040 Space

1 33 21 041

“ 4 2 042

35 23 043

$ 36 24 044

% 37 25 045

& 38 26 046

’ 39 27 047 Apostrophe

(40 28 050

) 41 29 051

* 42 2A 052

+ 43 2B 053

, 44 2C 054 - Comma

- 45 2D 055 Minus

. 46 2E 056 Period

/ a7 2F 057

0 48 30 060

1 49 31 061

2 50 32 062

3 51 33 063

318 MASTERING CP/M

ASCII Decimal Hex Octal Control
symbol value value value character Meaning

4 52 4 064
5 53 35 065
6 54 36 066
7 55 37 067
8 56 38 070
9 57 39 071
: 58 3A 072
; 59 3B 073
< 60 3C 074
= 61 3D 075
> 62 3E 076
? 63 F 077
@ 64 40 100
A 65 41 101
B 66 2 102
C 67 43 103
D 68 4 104
E 69 45 105
F 70 46 106
G 71 41 107
H 72 48 110
I 73 49 111
] 74 4A 112
K 75 4B 113
L 76 4C 114
M 77 4D 115
N 78 4E 116
o 79 F 117
P 80 50 120
Q 81 51 121
R 82 52 122
S 83 53 123
T 84 54 124
U 85 55 125
\ 86 56 126
w 87 57 127
X 88 58 130
Y 89 59 131

THE ASCII CHARACTER SET 319

ASCII Decimal Hex Octal Control
symbol value value value character Meaning

z 90 5A 132
[91 5B 133
\ 92 5C 134
1 93 5D 135
A 94 SE 136
— 95 SF 137 Underline
. 96 60 140
a 97 61 141
b 98 62 142
c 9 63 143
d 100 64 144
€ 101 65 145
f 102 66 146
g 103 67 147
h 104 68 150
i 105 69 151
j 106 6A 152
k 107 6B 153
1 108 6C 154
m 109 6D 155
n 110 6E 156
o 111 6F 157
p 112 70 160
q 113 71 161
r 114 72 162
$ 115 73 163
t 116 74 164
u 117 75 165
v 118 76 166
w 119 77 167
b 120 78 170
y 121 79 171
z 122 71A 172
{ 123 7B 173
| 124 7C 174
} 125 D 175

126 TE 176
DEL 127 7F 177 Delete

lillilll APPENDIX B

A 64K
Memory Map

The 8080 and Z80 microprocessors can directly address 64K bytes of
memory. The memory area is mapped out in the chart that follows. Each
entry represents a 256-byte block. The high-order byte of the address is
given first as a hexadecimal value, then as an octal value. For example, the
entry

Hex Ot K BI
20 040 32

represents an address range of 2000 to 2FFF hex, or 040-000 to 040-777
octal. The third column gives the decimal number of 1K blocks. The
fourth column is the decimal number of 256-byte blocks starting at ad-
dress 100 hex. As an example, suppose that a CP/M program runs from
100 hex to 3035 hex. The 30 hex entry in the table shows that the program
contains 48 decimal blocks of 256 bytes. The program can be saved with
the CP/M command

A>SAVE 48 (file name)

Hex Oct K Bl Hex Oct K Bl
00 000 0 0B 013 3 11
01 001 1 0oC 014 12
02 002 2 oD 015 13
03 003 1 3 OE 016 14
04 004 4 OF 017 4 15
05 005 5
06 006 p 10 020 16
07 007 2 7 11 021 17
12 022 18
08 010 8 13 023 5 19
09 011 9 14 024 20
0A 012 10 15 025 21

A 64K MEMORY MAP 321
Hex Oct K Bl Hex Oct K Bl
16 026 22 D 075 61
17 027 6 23 3E 076 62
3F 077 16 63
18 030 24
19 031 25 40 100 64
1A 032 26 41 101 65
iB 033 7 27 42 102 66
1C 034 28 43 103 17 67
1D 035 29 44 104 68
1E 036 30 45 105 69
1F 037 8 31 46 106 70
47 107 18 71
20 040 32
21 041 33 48 110 72
22 042 34 49 111 73
23 043 9 35 4A 112 74
24 044 36 4B 113 19 75
25 045 37 4C 114 76
26 046 38 4D 115 77
27 047 10 39 4E 116 78
4F 117 20 79
28 050 40
29 051 41 50 120 80
2A 052 42 51 121 81
2B 053 11 43 52 122 82
2C 054 44 53 123 21 83
2D 055 45 54 124 84
2E 056 46 55 125 85
2F 057 12 47 56 126 86
30 060 48 s 121 2 8
31 061 49 58 130 88
32 062 50 59 131 89
33 063 13 51 5A 132 90
34 064 52 5B 133 23 91
35 065 53 5C 134 92
36 066 54 5D 135 93
37 067 14 55 SE 136 94
38 070 56 SF 137 24 95
39 071 57 60 140 96
3A 072 58 61 141 97
3B 073 15 59 62 142 98
3C 074 60 63 143 25 99

322 MASTERING CP/M
Hex Oct K Bl Hex Oct K Bl
64 144 100 8B 213 35 139
65 145 101 8C 214 140
66 146 102 8D 215 141
67 147 26 103 8E 216 142
68 150 104 8F 217 36 143
69 151 105 90 220 144
6A 152 106 91 221 145
6B 153 27 107 92 222 146
6C 154 108 93 223 37 147
6D 155 109 94 224 148
6E 156 110 95 225 149
6F 157 28 111 9% 226 150
97 227 38 151
70 160 112
71 161 113 98 230 152
72 162 114 99 231 153
73 163 29 115 9A 232 154
74 164 116 9B 233 39 155
75 165 117 9C 234 - 156
76 166 118 9D 235 157
77 167 30 119 9E 236 158
78 170 120 9F 237 40 159
79 171 121 A0 240 160
7A 172 122 Al 241 161
7B 173 31 123 A2 242 162
7C 174 124 A3 243 41 163
7D 175 125 Ad 244 164
7E 176 126 AS 245 165
TF 177 32 127 A6 246 166
A7 247 42 167
80 200 128
81 201 129 A8 250 168
82 202 130 A9 251 169
83 203 33 131 AA 252 170
84 204 132 AB 253 43 171
85 205 133 AC 254 172
86 206 134 AD 255 173
87 207 34 135 AE 256 174
AF 257 4 175
88 210 136
89 211 137 B0 260 176
8A 212 138 Bl 261 177

A 64K MEMORY MAP 323

_ _
Hex Oct K Bl Hex Oct K Bl

_ =
B2 262 178

D9 331 217
B3 263 45 179 DA 332 218
B4 264 180 DB 333 55 319
BS 265 181 DC 334 220
B6 266 182 DD 335 221
B7 267 46 183 DE 336 222
BS 270 184 DF 337 56 223
B9 271 185 E0O 340 224
BA 272 186 El 341 225
BB 273 47 187 E2 342 226
BC 274 188 E3 343 57 227
BD 275 189 E4 344 228
BE 276 190 ES 345 229
BF 277 48 191 E6 346 230
0 300 192 E7 347 58 231
Ci 301 193 E8 350 232
C2 302 194 E9 351 233
C3 303 49 195 EA 352 234
C4 304 196 EB 353 59 235
Cs 305 197 EC 354 236
Cé6 306 198 ED 355 237
Cc? 307 50 199 EE 356 238
8 310 200 EF 357 60 239
c9 311 201 FO 360 240
CA 312 202 Fl 361 241
CB 313 51 203 2 36 242
cC 314 204 F3 363 61 243
CD 315 205 F4 364 244
CE 1316 206) 365 245
CF 317 5 27 F6 366 246
Do 32 208 F1. 367 62 27
D1 321 209 F8 370 248
D2 322 210 F9 371 249
D3 323 53 211 FA 372 250
D4 324 212 FB 373 63 251
D5 325 213 FC 374 252
D6 326 214 FD 375 253
D7 327 54 215 FE 376 254
D8 330 216 FF 377 64 255

APPENDIX C

The 8080
Instruction Set
Alphabetic

The 8080 instruction set is listed alphabetically with the correspond-
ing hexadecimal code. The following representations apply:

nn 8-bit parameter
nnnn 16-bit parameter

Hex Mnemonic Hex Mnemonic

CE nmn ACI nn 86 ADD M
8F ADC A Cé6 nn ADI nn
88 ADC B A7 ANA A

89 ADC C A0 ANA B

8A ADC D Al ANA C

8B ADC E A2 ANA D

8C ADC H A3 ANA E

8D ADC L Ad ANA H
8E ADC M AS ANA L

87 ADD A A6 ANA M

80 ADD B E6 nn ANI nn
81 ADD C CD nnnn CALL nnnn
82 ADD D DC nnnn CC nnnn
83 ADD E FC nnnn CM nnnn
84 ADD H 2F CMA

85 ADD L 3F CMC

THE 8080 INSTRUCTION SET (ALPHABETIC) 325

Hex Mnemonic Hex Mnemonic

BF CMP A 24 INR H
B8 CMP B 2C INR L
B9 CMP C 34 INR M
BA CMP D 03 INX B
BB CMP E 13 INX D
BC CMP H 23 INX H
BD CMP L 33 INX SP
BE CMP M DA nnnn JC nnnn
D4 nnnn CNC nnnn FA nnnn M nnnn
C4 nnnn CNZ nnnn C3 nnnn JMP nnnn
F4 nnnn CP nnnn D2 nnnn JNC nnnn
EC nnnn CPE nnnn C2 nnnn IJNZ nnnn
FE nn CPI nn F2 nnnn JP nnnn
E4 nnnn CPO nnnn EA nnnn JPE nnnn
CC nnnn CzZ nnnn E2 nnnn JPO nnnn
27 DAA CA nnnn JZ nnnn
09 DAD B 3A nnnn LDA nnnn
19 DAD D 0A LDAX B

29 DAD H 1A LDAX D
39 DAD SP 2A nnnn LHLD nnnn
3D DCR A 01 nnnn LXI B,nnnn
05 DCR B 11 nnnn LXI D,nnnn
(1)) DCR C 21 nnnn LXI H,nnnn
15 DCR D 31 nnnn LXI SP,nnnn
1D DCR E 7F MOV AA
25 DCR H 78 MOV AB
2D DCR L 79 MOV AC
35 DCR M TA MOV AD
0B DCX B 7B MOV AE
1B DCX D 7C MOV AH
2B DCX H 7D MOV AL
3B DCX SP 7E MOV AM
F3 DI 47 MOV B,A
FB El 40 MOV B,B
76 HLT 41 MOV B,C
DB nn IN nn 42 MOV B,D
3C INR A 43 MOV B,E
04 INR B 44 MOV B,H
oC INR C 45 MOV B,L
14 INR D 46 MOV B,M
1C INR E 4F MOV C,A

326 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
48 MOV C,B 71 MOV M,C
49 MOV C,C 72 MOV M,D
4A MOV CD 73 MOV M,E
4B MOV C,E 74 MOV M,H
4C MOV C,H 75 MOV M,L
4D MOV C,L 3E nn MVI A,nn
4E MOV C,M 06 nn MVI B,nn
57 MOV D,A OE nn MVI C,nn
50 MOV D,B 16 nn MVI D,nn
51 MOV D,C 1E nn MVI E,nn
52 MOV D,D 26 nn MVI H,nn
53 MOV D,E 2E nn MVI L,nn
54 MOV D,H 36 nn MVI M,nn
55 MOV D,L 00 NOP
56 MOV D,M B7 ORA A
SF MOV E,A BO ORA B
58 MOV E.B B1 ORA C
59 MOV E,C B2 ORA D
SA MOV E,D B3 ORA E
SB MOV E.E B4 ORA H
5C MOV E.H BS ORA L
5D MOV E,.L B6 ORA M
SE MOV E.M Fé6 nn ORI nn
67 MOV H,A D3 nn ouT nn
60 MOV H,B E9 PCHL
61 MOV H,C Cl POP B
62 MOV H,D D1 POP D
63 MOV H,E El POP H
64 MOV HH F1 POP PSW
65 MOV H,L Cs PUSH B
66 MOV HM DS PUSH D
6F MOV L,A ES PUSH H
68 MOV L,B F5 PUSH PSW
69 MOV L,C 17 RAL
6A MOV L,D 1IF RAR
6B MOV L,E D8 RC
6C MOV L,H 9 RET
6D MOV L,L 07 RLC
6E MOV LM F8 RM
77 MOV M,A DO RNC
70 MOV M,B Co RNZ

THE 8080 INSTRUCTION SET (ALPHABETIC) 327

Hex Mnemonic Hex Mnemonic
FO RP 32 nnnn STA nnnn
ES8 RPE 02 STAX B
EO RPO 12 STAX D
OF RRC 37 STC

C7 RST 0 97 SUB A
CF RST 1 90 SUB B
D7 RST 2 91 SUB C
DF RST 3 922 SUB D
E7 RST 4 93 SUB E
EF RST 5 94 SUB H
F7 RST 6 95 SUB L
FF RST 7 96 SUB M
C8 RZ D6 nn SUI nn
9F SBB A EB XCHG

98 SBB B AF XRA A
99 SBB C A8 XRA B
9A SBB D A9 XRA C
9B SBB E AA XRA D
9C SBB H AB XRA E
9D SBB L AC XRA H
9E SBB M AD XRA L
DE mn SBI nn AE XRA M
22 nnnn SHLD nnnn EE nn XRI nn
Fo SPHL E3 XTHL

APPENDIX D

The 8080
Instruction Set
Numeric

The 8080 instruction set is listed numerically with the corresponding
hexadecimal code. The following representations apply:

nn

nnnn

8-bit parameter
16-bit parameter

Hex Mnemonic Hex Mnemonic

00 NOP 16 nn MVI D,nn
01 nnnn LXI B,nnnn | 17 RAL

02 STAX B 18 <not used>

03 INX B 19 DAD D

04 INR B 1A LDAX D

05 DCR B 1B DCX D

06 nn MVI B,nn 1C INR E

07 RLC iD DCR E

08 <not used> 1E nn MVI E,nn
09 DAD B 1F RAR

0A LDAX B 20 <not used>

0B DCX B 21 nnnn LXI H,nnnn
oC INR C 22 nnnn SHLD nnnn
(1)) DCR C 23 INX H
OE nn MVI C,nn 24 INR H

OF RRC 25 DCR H

10 <not used> 26 nn MVI H,nn
11 nnnn LXI D,nnnn | 27 DAA

12 STAX D 28 <not used>

13 INX D 29 DAD H

14 INR D 2A nnnn LHLD nnnn
15 DCR D 2B DCX H

THE 8080 INSTRUCTION SET (NUMERIC)

329

Hex Mnemonic Hex Mnemonic

2C INR L 55 MOV D,L
2D DCR L 56 MOV D,M
2E nn MVI L,nn 57 MOV D,A
2F CMA 58 MOV E,B
30 <not used> 59 MOV E,C
31 nnnn LXI SP,nnnn|{ 5A MOV E,.D
32 nnnn STA nnnn 5B MOV E,E
33 INX SP 5C MOV E,H
34 INR M 5D MOV E,L
35 DCR M SE MOV EM
36 nn MVI M,nn 5F MOV E,A
37 STC 60 MOV H,B
38 <not used> 61 MOV H,C
39 DAD SP 62 MOV H,D
3A nnnn LDA nnnn 63 MOV H,E
3B DCX SP 64 MOV H,H
3C INR A 65 MOV H,L
D DCR A 66 MOV HM
3E nn MVI A,nn 67 MOV H,A
3F CMC 68 MOV L,B
40 MOV B,B 69 MOV L,C
41 MOV B,C 6A MOV L,D
42 MOV B,D 6B MOV L,E
43 MOV B,E 6C MOV L,H
44 MOV B,H 6D MOV L,L
45 MOV B,L 6E MOV LM
46 MOV B.M 6F MOV LA
47 MOV B,A 70 MOV M,B
48 MOV C,B 71 MOV M,C
49 MOV C,C 72 MOV M,D
4A MOV C,D 73 MOV M,E
4B MOV C,E 74 MOV M,H
4C MOV C.H 75 MOV M,L
4D MOV C,L 76 HLT

4E MOV C,M 77 MOV M,A
4F MOV C,A 78 MOV A,B
50 MOV D,B 79 MOV A,C
51 MOV D,C TA MOV ADD
52 MOV D,D 7B MOV AE
53 MOV D,E 7C MOV AH
54 MOV D,H 7D MOV AL

330 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
7E MOV AM A7 ANA A
7F MOV AA A8 XRA B
80 ADD B A9 XRA C
81 ADD C AA XRA D
82 ADD D AB XRA E
83 ADD E AC XRA H
84 ADD H AD XRA L
85 ADD L AE XRA M
86 ADD M AF XRA A
87 ADD A BO ORA B
88 ADC B B1 ORA C
89 ADC C B2 ORA D
8A ADC D B3 ORA E
8B ADC E B4 ORA H
8C ADC H BS ORA L
8D ADC L B6 ORA M
8E ADC M B7 ORA A
8F ADC A B8 CMP B
90 SUB B B9 CMP C
91 SUB C BA CMP D
92 SUB D BB CMP E
93 SUB E BC CMP H
94 SUB H BD CMP L
95 SUB L BE CMP M
96 SUB M BF CMP A
97 SUB A Co RNZ
98 SBB B Ci POP B
99 SBB C C2 nnnn INZ nnnn
9A SBB D C3 nnnn JMP nnnn
9B SBB E C4 nnnn CNZ nnnn
9C SBB H Cs PUSH B
9D SBB L C6 nn ADI nn
9E SBB M C7 RST 0
9F SBB A C8 RZ
A0 ANA B Cc9 RET
Al ANA C CA nnnn JZ nnnn
A2 ANA D CB <not used>
A3 ANA E CC nnnn CZ nnnn
A4 ANA H CD nnnn CALL nnnn
AS ANA L CE nmn ACI nn
A6 ANA M CF RST 1

THE 8080 INSTRUCTION SET (NUMERIC)

331

Hex Mnemonic Hex Mnemonic

DO RNC E8 RPE

D1 POP D E9 PCHL

D2 nnnn JNC nnnn EA nnnn JPE nnnn
D3 nn OuT nn EB XCHG

D4 nnnn CNC nnnn EC nnnn CPE nnnn
D5 PUSH D ED <not used>

D6 nn SUI nn EE nn XRI nn
D7 RST 2 EF RST 5

D8 RC FO RP

D9 <not used> F1 POP PSW
DA nnnn JC nnnn F2 nnnn JP nnnn
DB nn IN nn F3 DI

DC nnnn CC nnnn F4 nnnn CP nnnn
DD <not used> F5 PUSH PSW
DE nn SBI nn Fé nn ORI nn
DF RST 3 F7 RST 6

EO RPO F8 RM

El POP H F9 SPHL

E2 nnnn JPO nnnn FA nnnn M nnnn
E3 XTHL FB EI

E4 nnnn CPO nnnn FC nnnn CM nnnn
ES PUSH H FD <not used>

E6 nn ANI nn FE nn CPI1 nn
E7 RST 4 FF RST 7

APPENDIX E

The Z80
Instruction Set
Alphabetic

The Zilog Z80 instruction set is listed alphabetically with the cor-
responding hexadecimal values. The following representations apply:

nn 8-bit parameters

nnnn 16-bit parameters

dd 8-bit signed displacement

* Instructions common to the 8080
Hex Mnemonic Hex Mnemonic
8E * ADC A,HL) 81 * ADD A C
DD 8Edd ADC A,(IX+dd) 82 * ADD AD
FD 8Edd ADC A,dY+dd) 83 * ADD AE
8F * ADC AA 84 * ADD AH
88 * ADC A,B 85 * ADD A|L
89 * ADC A,C C6 nn * ADD A,nn
8A * ADC AD 09 * ADD HL,BC
8B * ADC A\E 19 * ADD HL,DE
8C * ADC AH 29 * ADD HL,HL
8D * ADC A,L 39 * ADD HL,SP
CE nn * ADC A,nn DD 09 ADD IX,BC
ED 4A ADC HL,BC DD 19 ADD IX,DE
ED S5A ADC HL,DE DD 29 ADD IX,IX
ED 6A ADC HL,HL DD 39 ADD IX,SP
ED 7A ADC HL,SP FD 09 ADD 1Y,BC
86 * ADD A,(HL) FD 19 ADD 1IY,DE
DD 86dd ADD A, (IX+dd) FD 29 ADD IY.IY
FD 86dd ADD A,(IY+dd) FD 39 ADD 1Y,SP
87 * ADD AA A6 * AND (HL)
80 * ADD AB DD A6dd AND (IX+dd)

THE Z80 INSTRUCTION SET (ALPHABETIC)

333

Hex Mnemonic Hex Mnemonic

FD Aé6dd AND (IY+dd) CB SF BIT 3,A

A7 * AND A CB 58 BIT 3,B

A0 *AND B CB 59 BIT 3,C

Al * AND C CB 5A BIT 3,D

A2 * AND D CB 5B BIT 3,E

A3 * AND E CB 5C BIT 3,H

Ad * AND H CB 5D BIT 3,L

AS * AND L CB 66 BIT 4,(HL)

E6 nn * AND nn DD CBddé66 BIT 4,(0X+dd)
CB 46 BIT 0,(HL) FD CBdd66 BIT 4,(IY +dd)
DD CBdd46 BIT 0,(IX+dd) CB 67 BIT 4,A

FD CBdd46 BIT 0,(IY +dd) CB 60 BIT 4,B

CB 47 BIT 0,A CB 61 BIT 4,C

CB 40 BIT 0,B CB 62 BIT 4,D

CB 41 BIT 0,C CB 63 BIT 4,E

CB 42 BIT 0,D CB 64 BIT 4,H

CB 43 BIT 0,E CB 65 BIT 4,L

CB 4 BIT 0,H CB 6E BIT 5,(HL)

CB 45 BIT o,L DD CBdd6E BIT 5,(IX+dd)
CB 4E BIT 1,(HL) FD CBdd6E BIT 5,(IY +dd)
DD CBdd4E BIT 1,(IX+dd) CB 6F BIT 5,A

FD CBdd4E BIT 1,(IY +dd) CB 68 BIT 5B

CB 4F BIT 1,A CB 69 BIT 5C

CB 48 BIT 1,B CB 6A BIT 5D

CB 49 BIT 1,C CB 6B BIT 5,E

CB 4A BIT 1,D CB 6C BIT 5,H

CB 4B BIT 1LE CB 6D BIT 5L

CB 4C BIT 1,H CB 76 BIT 6,(HL)

CB 4D BIT 1,L DD CBdd76 BIT 6,(IX+dd)
CB 56 BIT 2,(HL) FD CBdd76 BIT 6,(IY +dd)
DD CBddsé6 BIT 2,(IX+dd) CB 77 BIT 6,A

FD CBddsé BIT 2,(IY+dd) CB 70 BIT 6,B

CB 57 BIT 2,A CB 71 BIT 6,C

CB 50 BIT 2,B CB 72 BIT 6,D

CB 51 BIT 2,C CB 73 BIT 6,E

CB 52 BIT 2,D CB 74 BIT 6,H

CB 53 BIT 2,E CB 75 BIT 6,L

CB 54 BIT 2,H CB 7E BIT 7,(HL)

CB 55 BIT 2L DD CBdd7E BIT 7,0X+dd)
CB SE BIT 3,(HL) FD CBdd7E BIT 7,dY +dd)
DD CBddSE BIT 3,(IX+dd) CB 7F BIT 7,A

FD CBdd5E BIT 3,(IY +dd) CB 78 BIT 7,B

334 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
CB 79 BIT 7,C 25 * DEC H
CB 7A BIT 7,D 2B * DEC HL
CB 7B BIT 7,E DD 2B DEC. IX
CB 7C BIT 7H FD 2B DEC IY
CB 7D BIT 7,L 2D * DEC L
DC nnnn * CALL C,nnnn 3B * DEC SP
FC nnnn * CALL M,nnnn F3 * DI
D4 nnnn * CALL NC,nnnn 10 dd DJNZ dd
CD nnnn * CALL nnnn FB * EI
C4 nnnn * CALL NZ,nnnn E3 * EX (SP),HL
F4 nnnn * CALL P,nnnn DD E3 EX (SP),IX
EC nnnn * CALL PE,nnnn FD E3 EX (SP),IY
E4 nnnn * CALL PO,nnnn 08 EX AF,AF
CC nnnn * CALL Z,nnnn EB * EX DE,HL
3F * CCF D9 EXX
BE * CP (HL) 76 * HALT
DD BEdd CP (IX+dd) ED 46 M 0
FD BEdd cp Y +dd) ED 56 ™M 1
BF * CP A ED SE IM 2
B8 * CP B ED 78 IN AC)
B9 * CP C DB nn * IN A,(nn)
BA * CP D ED 40 IN B,(©
BB * CP E ED 48 IN C,(O)
BC * CP H ED 50 IN D,(C)
BD * CP L ED 58 IN E,(O)
FE nn * CP nn ED 60 IN H,(O)
ED A9 CPD ED 68 IN L,(O)
ED B9 CPDR 34 * INC (HL)
ED Al CPI DD 34dd INC (IX+dd)
ED Bl CPIR FD 34dd INC (IY+dd)
2F * CPL 3C *INC A
27 * DAA 04 *INC B
35 * DEC (HL) 03 * INC BC
DD 35dd DEC (IX+dd) oC *INC C
FD 35dd DEC (IY+dd) 14 *INC D
3D * DEC A 13 * INC DE
05 *DEC B 1C * INC E
0B * DEC BC 24 *INC H
0D * DEC C 23 * INC HL
15 *DEC D DD 23 INC IX
1B * DEC DE FD 23 INC 1Y
1D * DEC E 2C * INC L

THE Z80 INSTRUCTION SET (ALPHABETIC)

335

Hex Mnemonic Hex Mnemonic

33 * INC SP FD 71dd LD (Y +dd),C
ED AA IND FD 72dd LD (IY+dd),D
ED BA INDR FD 73dd LD (Y +dd),E
ED A2 INI FD 74dd LD (Y +dd),H
ED B2 INIR FD 75dd LD (IY+dd),L
E9 * JP (HL) FD 36ddnn LD (IY +dd),nn
DD E9 JP (IX) 32 nnnn * LD (nnnn),A
FD E9 JP ay) ED 43nnnn LD (nnnn),BC
DA nnnn * JP C,nnnn ED 53nnnn LD (nnnn), DE
FA nnnn * JP M,nnnn 22 nnnn * LD (nnnn),HL
D2 nnnn * JP NC,nnnn DD 22nnnn LD (nnnn),IX
C3 nnnn * JP nnnn FD 22nnnn LD (nnnn),IY
C2 nnnn * JP NZ,nnnn ED 73nnnn LD (nnnn),SP
F2 nnnn * JP P,nnnn 0A * LD A,(BC)
EA nnnn * Jp PE,nnnn 1A * LD A,(DE)

E2 nnnn * JP PO,nnnn 7E * 1D A,(HL)
CA nnnn * JP Z,nnnn DD 7Edd LD A,(IX+dd)
38 dd JR C,dd FD 7Edd LD A,(IY+dd)
18 dd JR dd 3A nnnn * LD A,(nnnn)
30 dd JR NC,dd 7F * LD AA

20 dd JR NZ,dd 78 * LD AB

28 dd JR Z,dd 79 * LD AC

02 * LD (BC),A TA * LD AD

12 * LD (DE),A 7B * LD AE

77 * LD (HL),A 7C * 1D AH

70 * LD (HL),B ED 57 LD Al

71 * LD (HL),C 7D * LD AL

72 * LD (HL),D 3E nn * LD A,nn

73 * LD (HL),E ED SF LD AR

74 * LD (HL),H 46 * LD B,(HL)

75 * LD (HL),L DD 46dd LD B,(IX+dd)
36 nn * LD (HL),nn FD 46dd LD B,(IY +dd)
DD 77dd LD (IX+dd),A | 47 * 1D B,A

DD 70dd LD (IX+dd),B | 40 * LD B,B

DD 71dd LD (IX+dd),C | 41 * LD B,C

DD 72dd LD (IX+dd),D | 42 * LD B,D

DD 73dd LD (IX+dd),E | 43 * LD B,E

DD 74dd LD (IX+dd),H | 44 * LD B,H

DD 75dd LD (IX+dd),L | 45 * 1D B,L

DD 36ddnn LD (IX+dd),nn| 06 nn * LD B,nn

FD 77dd LD (IY+dd),A | ED 4Bnnnn LD BC,(nnnn)
FD 70dd LD (IY+dd),B | 01 nnnn * LD BC,nnnn

336 MASTERING CP/M

Hex . Mnemonic Hex Mnemonic

4E * LD C,(HL) 63 * 1D H,E

DD 4Edd LD C,(IX+dd) | 64 * LD H,H

FD 4Edd LD C,(IY+dd) | 65 * 1D H,L

4F * LD C,A 26 nn * LD H,nn

48 * LD C,B 2A nnnn * LD HL,(nnnn)
49 * LD C,C 21 nnnn * LD HL,nnnn
4A * 1D C,D ED 47 LD LA

4B * LD CE DD 2Annnn LD IX,(nnnn)
4C * LD C,H DD 21nnnn LD IX,nnnn
4D * LD CL FD 2Annnn LD IY,(nnnn)
OE nn * LD C,nn FD 21nnnn LD IY,nnnn
56 * LD D,(HL) 6E * LD L,(HL)
DD 56dd LD D,(IX+dd) | DD 6Edd LD L,(IX+dd)
FD 56dd LD D,(IY+dd) | FD 6Edd LD L,(IY +dd)
57 * LD D,A 6F * LD LA

50 * LD D,B 68 * LD LB

51 * LD D,C 69 * 1D L,C

52 * LD D,D 6A * 1D L,D

53 * LD D,E 6B * LD L,E

54 * LD D,H 6C * LD LH

55 * LD D,L 6D * LD L,.L

16 nn * LD D,nn 2E nn * LD L,nn

ED S5Bnnnn LD DE,(nnnn) ED 4F LD R,A

11 nnnn * LD DE,nnnn ED 7Bnnnn LD SP,(nnnn)
SE * LD E,(HL) F9 * LD SP,HL
DD SEdd LD E,IX+dd) | DD F9 LD SP,IX
FD S5Edd LD E,(IY +dd) FD F9 LD SP,IY

SF * LD E,A 31 nnnn * LD SP,nnnn
58 * LD E,B ED A8 LDD

59 * LD E,C ED B8 LDDR

S5A * LD E,D ED A0 LDI

5B * LD E,E ED BO LDIR

5C * LD E,H ED 44 NEG

5D * LD E,L 00 * NOP

1IE nn * LD E,nn : B6 * OR (HL)

66 * LD H,(HL) DD Bédd OR (IX+dd)
DD 66dd LD H,IX+dd) | FD Bé6dd OR (dY+dd)
FD 66dd LD H,dY+dd) | B7 * OR A

67 * LD HA BO * OR B

60 * LD H,B B1 * OR C

61 * LD H,C B2 * OR D

62 * LD H,D B3 * OR E

THE Z80 INSTRUCTION SET (ALPHABETIC)

337

Hex Mnemonic Hex Mnemonic

B4 * OR H CB 89 RES 1,C

BS * OR L CB 8A RES 1,D

F6 nn * OR nn CB 8B RES LE

ED BB OTDR CB 8C RES 1,H

ED B3 OTIR CB 8D RES 1,L

ED 79 ouT (O),A CB 96 RES 2,(HL)

ED 41 ouT (©),B DD CBdd96 RES 2,(IX+dd)
ED 49 ouT (©),C FD CBdd96 RES 2,(IY+dd)
ED 51 ouT (C),D CB 97 RES 2A

ED 59 ouT (©O.,E CB 90 RES 2,B

ED 61 our (O,H CB 91 RES 2,C

ED 69 ouT (O),L CB 92 RES 2,D

D3 nn * OUT (mn),A CB 93 RES 2,E

ED AB OUTD CB 9% RES 2,H

ED A3 OUTI CB 95 RES 2,L

F1 * POP AF CB 9E RES 3,(HL)

Cl * POP BC DD CBdd9E RES 3,(IX+dd)
D1 * POP DE FD CBdd9E RES 3,(IY+dd)
El * POP HL CB 9F RES 3,A

DD El POP IX CB 98 RES 3,B

FD El POP 1Y CB 99 RES 3,C

F5 * PUSH AF CB 9A RES 3,D

Cs5 * PUSH BC CB 9B RES 3,E

D5 * PUSH DE CB 9C RES 3,H

ES * PUSH HL CB 9D RES 3,L

DD ES PUSH IX CB A6 RES 4,(HL)

FD E5 PUSH 1Y DD CBddAé RES 4,(IX+dd)
CB 86 RES - 0,(HL) FD CBddAé6 RES 4,(IY+dd)
DD CBdd86 RES 0,IX+dd) | CB A7 RES 4,A

FD CBdd86 RES 0,(IY+dd) CB A0 RES 4,B

CB 87 RES 0A CB Al RES 4,C

CB 80 RES 0B CB A2 RES 4,D

CB 81 RES 0,C CB A3 RES 4,E

CB 82 RES 0,D CB A4 RES 4H

CB 83 RES 0OE CB AS RES 4,L

CB 84 RES O0OH CB AE RES 5,(HL)

CB 85 RES O,L DD CBddAE RES 5,(IX+dd)
CB 8E RES 1,(HL) FD CBddAE RES 5,(Y+dd)
DD CBddS8E RES 1,0X+dd) | CB AF RES S$5,A

FD CBdd8E RES 1,JY+dd) CB A8 RES 5,B

CB 8F RES LA CB A9 RES 5,C

CB 88 RES 1,B CB AA RES 5,D

338 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
CB AB RES 5,E CB 14 RL H
CB AC RES 5,H CB 15 RL L
CB AD RES 5,L 17 * RLA
CB Bé6 RES 6,(HL) CB 06 RLC (HL)
DD CBddB6 RES 6,(IX+dd) DD CBddo6 RLC (IX+dd)
FD CBddB6 RES 6,(IY+dd) FD CBddoé6 RLC (AY+dd)
CB B7 RES 6,A. CcB 07 RLC A
CB B0 RES 6,B CB 00 RLC B
CB Bl RES 6,C CB 01 RLC C
CB B2 RES 6,D CB 02 RLC D
CB B3 RES 6,E CB 03 RLC E
CB B4 RES 6,H CB 04 RLC H
CB BS RES 6,L CB 05 RLC L
CB BE RES 7,(HL) 07 * RLCA
DD CBddBE RES 7,0X+dd) ED 6F RLD
FD CBddBE RES 7,0Y+dd) CB 1E RR (HL)
CB BF RES 7,A DD CBddIE RR (IX+dd)
CB B8 RES 17,B FD CBddIlE RR dY+dd)
CB B9 RES 7,C CB |IF RR A
CB BA RES 7,D CB 18 RR B
CB BB RES 7.E CB 19 RR C
CB BC RES 7,H CB 1A RR D
CB BD RES 7,L CB 1B RR E
C9 * RET CB 1C RR H
D8 * RET C CB 1D RR L
F8 *RET M 1F * RRA
DO * RET NC CB 0OE RRC (HL)
Co * RET NZ DD CBddOE RRC (IX+dd)
FO *RET P FD CBddOE RRC (IY+dd)
E8 * RET PE CB OF RRC A
EO * RET PO CB 08 RRC B
C8 * RET Z CB 09 RRC C
ED 4D RETI CB 0OA RRC D
ED 45 RETN CB 0B RRC E
CB 16 RL (HL) CB 0C RRC H
DD CBddlé RL (IX+dd) CB 0D RRC L
FD CBddlé RL (Y +dd) OF * RRCA
CB 17 RL A ED 67 RRD
CB 10 RL B Cci * RST O
CB 11 RL C CF * RST 8
CB 12 RL D D7 * RST 10H
CB 13 RL E DF * RST 18H

THE Z80 INSTRUCTION SET (ALPHABETIC)

339

Hex Mnemonic Hex Mnemonic

E7 * RST 20H FD CBddDé6 SET 2,(IY+dd)
EF * RST 28H CB D7 SET 2A

F7 * RST 30H CB DO SET 2,B

FF * RST 38H CB DI SET 2,C

9E * SBC A,HL) CB D2 SET 2D

DD 9Edd SBC A(IX+dd) | CB D3 SET 2,E

FD 9Edd SBC A, (lY+dd) | CB D4 SET 2H

9F * SBC AA CB D5 SET 2,L

98 *SBC AB CB DE SET 3,(HL)

99 * SBC A/C DD CBddDE SET 3,(IX+dd)
9A *SBC ADD FD CBddDE SET 3,(JY+dd)
9B * SBC AE CB DF SET 3,A

9C *SBC AH CB D8 SET 3,B

9D * SBC A,L CB D9 SET 3,C

DE nn * SBC A,nn CB DA SET 3,D

ED 42 SBC HL,BC CB DB SET 3,E

ED 52 SBC HL,DE CB DC SET 3,H

ED 62 SBC HL,HL CB DD SET 3,

ED 72 SBC HL,SP CB E6 SET 4,(HL)

37 * SCF DD CBddE6 SET 4,(IX+dd)
CB Cé6 SET 0,(HL) FD CBddEé6 SET 4,(IY+dd)
DD CBddC6 SET 0,(IX+dd) CB E7 SET 4,A

FD CBddCé6 SET 0,(0Y+dd) CB EO SET 4,B

CB C7 SET O0,A CB El SET 4,C

CB CO SET 0,B CB E2 SET 4,D

CB Cl SET 0,C CB E3 SET 4,E

CB C2 SET 0D CB E4 SET 4H

CB C3 SET OE CB ES SET 4,L

CB C4 SET OH CB EE SET 5,(HL)

CB C5 SET O,L DD CBddEE SET 5,(IX+dd)
CB CE SET 1,(HL) FD CBddEE SET 5,(IY+dd)
DD CBddCE SET 1,IX+dd) CB EF SET S5,A

FD CBddCE SET 1,(JY +dd) CB E8 SET 5,B

CB CF SET 1LA CB E9 SET 5,C

CB C8 SET 1,B CB EA SET 5,.D

CB 9 SET 1,C CB EB SET 5,E

CB CA SET 1,D CB EC SET 5,H

CB CB SET LLE CB ED SET 5,L

CB CC SET 1,H CB Fé6 SET 6,(HL)

CB CD SET 1,L DD CBddFé SET 6,(IX+dd)
CB D6 SET 2,(HL) FD CBddFé6 SET 6,(IY+dd)
DD CBddD6 SET 2,(IX+dd) CB F7 SET 6,A

340 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
CB FO SET 6,B CB 2C SRA H
CB Fl SET 6,C CB 2D SRA L
CB F2 SET 6,D CB 3E SRL (HL)
CB F3 SET 6,E DD CBdd3E SRL (IX+dd)
CB F4 SET 6,H FD CBdd3E SRL ({AY+dd)
CB F5 SET 6,L CB 3F SRL A
CB FE .SET 7,(HL) CB 38 SRL B
DD CBddFE SET 7,(IX+dd) CB 39 SRL C
FD CBddFE SET 7,(1Y+dd) CB 3A SRL D
CB FF SET 7,A CB 3B SR E
CB F8 SET 7.B CB 3C SRL H
CB F9 SET 17,C CB 3D SRL L
CB FA SET 7,D 96 * SUB (HL)
CB FB SET 7.E DD 96dd SUB (IX+dd)
CB FC SET 7,H FD 96dd SUB (IY+dd)
CB FD SET 7,L 97 *SUB A
CB 26 SLA (HL) 9 *SUB B
DD CBdd26 SLA (IX+dd) 91 *SUB C
FD CBdd26 SLA (IY+dd) 92 *SUB D
CB 27 SLA A 93 * SUB E
CB 20 SLA B 94 *SUB H
CB 21 SLA C 95 *SUB L
CB 22 SLA D D6 nn * SUB nmn
CB 23 SLA E AE * XOR (HL)
CB 24 SLA H DD AEdd XOR (IX+dd)
CB 25 SLA L FD AEdd XOR (IY+dd)
CB 2E SRA (HL) AF * XOR A
DD CBdd2E SRA (IX+dd) A8 * XOR B
FD CBdd2E SRA (IY+dd) A9 *XOR C
CB 2F SRA A AA *XOR D
CB 28 SRA B AB * XOR E
CB 29 SRA C AC * XOR H
CB 2A SRA D AD * XOR L
CB 2B SRA E E nn * XOR mn

APPENDIX F

The Z80
Instruction Set
Numeric

The Z80 instruction set is listed numerically with the corresponding
hexadecimal values. The following representations apply:

nn 8-bit parameter

nnnn 16-bit parameter
dd 8-bit signed displacement

* Instructions common to the 8080
Hex Mnemonic Hex Mnemonic
00 * NOP 13 * INC DE
01 nnnn * LD BC,nnnn 14 * INC D
02 * LD (BO),A 15 *DEC D
03 * INC BC 16 nn * LD D,nn
04 * INC B 17 * RLA
05 * DEC B 18 dd JR dd
06 nmn * LD B,nn 19 * ADD HL,DE
07 * RLCA 1A * 1D A,(DE)
08 EX AF,AF’ 1B * DEC DE
09 * ADD HL,BC 1C * INC E
0A * LD A,(BO) 1D * DEC E
0B * DEC BC 1IE nn * 1D E,nn
0oC * INC C 1F * RRA
oD * DEC C 20 dd JR NZ,dd
OE nn * LD C,nn 2] nnnn * LD HL,nnnn
OF * RRCA 22 nnnn * LD (nnnn),HL
10 dd DINZ dd 23 * INC HL
11 nnnn * LD DE,nnnn 24 * INC H
12 * LD (DE),A 25 * DEC H

342 MASTERING CP/M

Hex Mnemonic Hex Mnemonic

26 nn * LD H,nn 50 * LD D,B
27 * DAA 51 * LD D,C
28 dd JR Z,dd 52 * LD D,D
29 * ADD HL,HL 53 * LD D,E
2A nnnn * LD HL,(nnnn) 54 * LD D,H
2B * DEC HL 55 * LD D,L
2C *INC L 56 * 1D D,(HL)
2D * DEC L 57 * LD D,A
2E nmn * LD L,nn 58 *1D E,B
2F * CPL 59 * LD E,C
30 dd JR NC,dd SA * LD E,D
31 nnnn * 1D SP,nnnn 5B * LD E,E
32 nnnn * LD (nnnn),A 5C * LD E,H
33 * INC SP sD * LD E,L
34 * INC (HL) SE * LD E,(HL)
35 * DEC (HL) 5F * LD E,A
36 nmn * LD (HL),nn 60 * 1D H,B
37 * SCF 61 * LD H,C
38 dd JR C,dd 62 * LD H,D
39 * ADD HL,SP 63 * LD H,E
3A nnnn * LD A,(nnnn) 64 * LD H,H
3B * DEC SP 65 * 1D H,L
3C *INC A 66 * 1D H,(HL)
iD * DEC A 67 * LD HA
3E nn * LD A,nn 68 * LD L,B
3F * CCF 69 * LD L,C
40 * LD B,B 6A * LD L,D
41 * LD B,C 6B * 1D L.E
42 * LD B,D 6C * LD LH
43 * LD B,E 6D * LD L,L
4“4 * LD B,H 6E * LD L,(HL)
45 * LD B,L 6F * LD LA
46 *1D B,(HL) 70 * 1D (HL),B
47 * 1D B,A 71 * LD (HL),C
48 * 1D C,B 72 * LD (HL),D
49 * 1D C,C 73 * LD (HL),E
4A * 1D C,D 74 * LD (HL),H
4B * LD C,E 75 * LD (HL),L
4C * 1D C,H 76 * HALT

4D * LD C,L 77 * LD (HL),A
4E *1D C,(HL) 78 * LD AB
4F * 1D CA 79 * 1D AC

THE Z80 INSTRUCTION SET (NUMERIC) 343

Hex Mnemonic Hex Mnemonic

7A * 1D AD Ad * AND H
7B * LD AE AS * AND L
7C * LD AH A6 * AND (HL)
7D * LD AL A7 * AND A
7E * LD A,(HL) A8 * XOR B
7F * LD AA A9 *XOR C
80 * ADD A,B AA *XOR D
81 * ADD AC AB * XOR E
82 * ADD AD AC *XOR H
83 * ADD A\E AD * XOR L
84 * ADD AH AE * XOR (HL)
85 * ADD A,L AF * XOR A
86 * ADD A,(HL) BO * OR B

87 * ADD AA B1 * OR C
88 * ADC A,B B2 * OR D
89 * ADC AC B3 * OR E
8A * ADC AD B4 * OR H
8B * ADC AE BS * OR L
8C * ADC AH B6 * OR (HL)
8D * ADC AL B7 * OR A
8E * ADC A,(HL) B8 * CP B
8F * ADC AA B9 * CP C
92 *SUB B BA * CP D
91 *SUB C BB * CP E
92 *SUB D BC * CP H
93 *SUB E BD * CP L
94 *SUB H BE * CP (HL)
95 *SUB L BF * CP A
96 * SUB (HL) Co * RET NZ
97 *SUB A C1 * POP BC
98 * SBC A,B C2 nnnn * JP NZ,nnnn
99 * SBC AC C3 nnnn * JP nnnn
9A * SBC A,D C4 nnnn * CALL NZ,nnnn
9B * SBC AE Cs5 * PUSH BC
9C * SBC AH C6 nn * ADD A,nn
9D *SBC AL C7 *RST O
9E * SBC A,(HL) C8 * RET Z
9F * SBC AA 9 * RET

A0 * AND B CA nnnn * JP Z,nnnn
Al * AND C CB 00 RLC B
A2 *AND D CB 01 RLC C
A3 * AND E CB 02 RLC D

344 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
CB 03 RLC E CB 2D SRA L
CB 04 RLC H CB 2E SRA (HL)
CB 05 RLC L CB 2F SRA A
CB 06 RLC (HL) CB 38 SRL B
CB 07 RLC A CB 39 SRL C
CB 08 RRC B CB 3A SRL D
CB 09 RRC C CB 3B SRL E
CB 0A RRC D CB 3C SRL H
CB 0B RRC E CB 3D SRL L
CB 0C RRC H CB 3E SRL (HL)
CB 0D RRC L CB 3F SRL A
CB 0OE RRC (HL) CB 40 BIT 0,B
CB OF RRC A CB 41 BIT 0,C
CB 10 RL B CB 42 BIT 0,D
CB 11 RL C CB 43 BIT 0,E
CB 12 RL D CB 44 BIT 0,H
CB 13 RL E CB 45 BIT oO,L
CB 14 RL H CB 46 BIT 0,(HL)
CB 15 RL L CB 47 BIT 0,A
CB 16 RL (HL) CB 48 BIT 1,B
CB 17 RL A CB 49 BIT 1,C
CB 18 RR B CB 4A BIT 1,D
CB 19 RR C CB 4B BIT 1LE
CB 1A RR D CB 4C BIT 1LH
CB 1B RR E CB 4D BIT 1,L
CB 1C RR H CB 4E BIT 1,(HL)
CB 1D RR L CB 4F BIT LA
CB 1E RR (HL) CB 50 BIT 2,B
CB 1IF RR A CB 51 BIT 2,C
CB 20 SLA B CB 52 BIT 2,D
CB 21 SLA C CB 53 BIT 2,E
CB 22 SLA D CB 54 BIT 2,H
CB 23 SLA E CB 55 BIT 2,L
CB 24 SLA H CB 56 BIT 2,(HL)
CB 25 SLA L CB 57 BIT 2,A
CB 26 SLA (HL) CB 58 BIT 3,B
CB 27 SLA A CB 59 BIT 3,C
CB 28 SRA B CB S5SA BIT 3,D
CB 29 SRA C CB 5B BIT 3,E
CB 2A SRA D CB 5C BIT 3,H
CB 2B SRA E CB 5D BIT 3,L
CB 2C SRA H CB SE BIT 3,(HL)

THE Z80 INSTRUCTION SET (NUMERIC)

345

Hex Mnemonic Hex Mnemonic

CB SF BIT 3,A CB 89 RES 1,C
CB 60 BIT 4,B CB 8A RES 1,D
CB 61 BIT 4,C CB 8B RES LE
CB 62 BIT 4,D CB 8C RES 1,H
CB 63 BIT 4.E CB 8D RES 1,L
CB 64 BIT 4,H CB 8E RES 1,(HL)
CB 65 BIT 4L CB S8F RES 1,A
CB 66 BIT 4,(HL) CB 9% RES 2,B
CB 67 BIT 4,A CB 91 RES 2,C
CB 68 BIT 5B CB 92 RES 2,D
CB 69 BIT 5,C CB 93 RES 2,E
CB 6A BIT 5D CB 94 RES 2,H
CB 6B BIT 5E CB 95 RES 2,L
CB 6C BIT 5H CB 96 RES 2,(HL)
CB 6D BIT 5,L CB 97 RES 2A
CB 6E BIT 5,(HL) CB 98 RES 3,B
CB 6F BIT 5,A CB 99 RES 3,C
CB 70 BIT 6,B CB 9A RES 3,D
CB 71 BIT 6,C CB 9B RES 3,E
CB 72 BIT 6,D CB 9C RES 3,H
CB 73 BIT 6,E CB 9D RES 3,L
CB 74 BIT 6,H CB 9E RES 3,(HL)
CB 75 BIT 6,L CB 9F RES 3,A
CB 76 BIT 6,(HL) CB A0 RES 4,B
CB 77 BIT 6,A CB Al RES 4,C
CB 78 BIT 7,B CB A2 RES 4,D
CB 79 BIT 7,C CB A3 RES 4,E
CB 7A BIT 7,D CB A4 RES 4,H
CB 7B BIT 7,E CB A5 RES 4,1
CB 7C BIT 7,H CB A6 RES 4,(HL)
CB 7D BIT 7L CB A7 RES 4,A
CB 7E BIT 7,(HL) CB A8 RES 5,B
CB 7F BIT 7,A CB A9 RES 5,C
CB 80 RES 0,B CB AA RES 5,D
CB 81 RES 0,C CB AB RES S5,E
CB 82 RES 0,D CB AC RES 5,H
CB 83 RES O,E CB AD RES 5,L
CB 84 RES OH CB AE RES 5,(HL)
CB 85 RES O,L CB AF RES S5,A
CB 86 RES 0,(HL) CB B0 RES 6,B
CB 87 RES 0A CB BI RES 6,C
CB 88 RES 1,B CB B2 RES 6,D

346 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
CB B3 RES 6,E CB DD SET 3,L
CB B4 RES 6,H CB DE SET 3,(HL)
CB BS RES 6,L CB DF SET 3,A
CB B6 RES 6,(HL) CB EO SET 4,B
CB B7 RES 6,A CB El SET 4,C
CB B8 RES 7,B CB E2 SET 4,D
CB B9 RES 7,C CB E3 SET 4,E
CB BA RES 7,D CB E4 SET 4H
CB BB RES 7,E CB E5 SET 4,L
CB BC RES 7,H CB E6 SET 4,(HL)
CB BD RES 7,L CB E7 SET 4,A
CB BE RES 7,(HL) CB E8 SET 5,B
CB BF RES 7,A CB E9 SET 5,C
CB C0 SET 0,B CB EA SET 5,D
CB C1 SET 0,C CB EB SET 5,E
CB C2 SET 0,D CB EC SET 5,H
CB C3 SET O,E CB ED SET 5,L
CB C4 SET 0OH CB EE SET 5,(HL)
CB C5 SET O,L CB EF SET S$5,A
CB Cé6 SET 0,(HL) CB FO SET 6,B
CB C7 SET 0A CB F1 SET 6,C
CB C8 SET 1,B CB F2 SET 6,D
CB C9 SET 1,C CB F3 SET 6,E
CB CA SET 1,D CB F4 SET 6,H
CB CB SET 1LLE CB F5 SET 6,L
CB CC SET LLH CB Fé6 SET 6,(HL)
CB CD SET |,L CB F7 SET 6,A
CB CE SET 1,(HL) CB F8 SET 7,B
CB CF SET LA CB F9 SET 7,C
CB DO SET 2,B CB FA SET 7,D
CB D1 SET 2,C CB FB SET 7,E
CB D2 SET 2,D CB FC SET 7,H
CB D3 SET 2,E CB FD SET 7,L
CB D4 SET 2,H CB FE SET 7,(HL)
CB D5 SET 2,L CB FF SET 7,A
CB D6 SET 2,(HL) CC nnnn * CALL Z,nnnn
CB D7 SET 2,A CD nnnn * CALL nnnn
CB D8 SET 3,B CE nn * ADC A,nn
CB D9 SET 3,C CF * RST 8
CB DA SET 3,D DO * RET NC
CB DB SET 3,E D1 * POP DE
CB DC SET 3,H D2 nnnn * JP NC,nnnn

THE Z80 INSTRUCTION SET (NUMERIC)

347

Hex Mnemonic Hex Mnemonic

D3 nn * OUT (mn),A DD Bé6dd OR (IX+dd)
D4 nnnn * CALL NC,nnnn DD BEdd Cp (IX+dd)
D5 * PUSH DE DD CBddoé RLC (IX+dd)
D6 nn * SUB nn DD CBddOE RRC (IX+dd)
D7 * RST 10H DD CBddié RL (IX+dd)
D8 * RET C DD CBddIE RR (X +dd)
D9 EXX DD CBdd26 SLA (IX+dd)
DA nnnn * JP C,nnnn DD CBdd2E SRA (IX+dd)
DB mn * IN A,(nn) DD CBdd3E SRL (IX+dd)
DC nnnn * CALL C,nnnn DD CBdd46 BIT 0,IX+dd)
DD 09 ADD IX,BC DD CBdd4E BIT 1,dX+dd)
DD 19 ADD IX,DE DD CBddsé BIT 2,IX+dd)
DD 21nnnn LD IX,nnnn DD CBddSE BIT 3,(IX+dd)
DD 22nnnn LD (nnnn),IX DD CBddé66 BIT 4,(IX+dd)
DD 23 INC IX DD CBdd6E BIT 5,(IX+dd)
DD 29 ADD IX,IX DD CBdd76 BIT 6,(IX +dd)
DD 2Annnn LD IX,(nnnn) DD CBdd7E BIT 7,(IX+dd)
DD 2B DEC IX DD CBddsé RES 0,(IX+dd)
DD 34dd INC (IX+dd) DD CBdd8E RES 1,(IX+dd)
DD 35dd DEC (IX+dd) DD CBdd96 RES 2,(IX+dd)
DD 36ddnn LD (IX+dd),nn | DD CBdd9E RES 3,(IX+dd)
DD 39 ADD IX,SP DD CBddA6 RES 4,(IX+dd)
DD 46dd LD B,(IX+dd) | DD CBddAE RES 5,(IX+dd)
DD 4Edd LD C,(IX+dd) | DD CBddB6 RES 6,(IX+dd)
DD 56dd LD D,(IX+dd) | DD CBddBE RES 7,(IX+dd)
DD S5Edd LD E,(IX+dd) DD CBddCé6 SET 0,(IX+dd)
DD 66dd LD H,(IX+dd) | DD CBddCE SET 1,(IX+dd)
DD 6Edd LD L,(IX+dd) DD CBddDé SET 2,(IX+dd)
DD 70dd LD (IX+dd),B | DD CBddDE SET 3,IX+dd)
DD 71dd LD (IX+dd),C | DD CBddE6 SET 4,(IX+dd)
DD 72dd LD (IX+dd),D | DD CBddEE SET 5,(IX+dd)
DD 73dd LD (IX+dd),E | DD CBddFé6 SET 6,(IX+dd)
DD 74dd LD (IX+dd),H | DD CBddFE SET 7,(IX+dd)
DD 75dd LD (IX+dd),L | DD El POP IX

DD 77dd LD (IX+dd),A | DD E3 EX (SP),IX
DD 7Edd LD A,(IX+dd) | DD ES PUSH IX

DD 86dd ADD A,(IX+dd) { DD E9 JP Ix)

DD 8Edd ADC A, (IX+dd) | DD F9 LD SP,IX

DD 96dd SUB (IX+dd) DE nn * SBC A,nn

DD 9Edd SBC A,(IX+dd) | DF * RST 18H

DD Aeédd AND (IX+dd) EO * RET PO

DD AEdd XOR (IX+dd) E1l * POP HL

348 MASTERING CP/M
Hex Mnemonic Hex Mnemonic
E2 nnnn * Jp PO,nnnn ED 69 ouT (©O.,L
E3 * EX (SP),HL ED 6A ADC HL,HL
E4 nnnn * CALL PO,nnnn ED 6F RLD
ES * PUSH HL ED 72 SBC HL,SP
E6 nn * AND nn ED 73nnnn LD (nnnn),SP
E7 * RST 20H ED 78 IN A,(C)
E8 * RET PE ED 79 ouT (O),A
E9 * JP (HL) ED 7A ADC HL,SP
EA nnnn * Jp PE,nnnn ED 7Bnnnn LD SP,(nnnn)
EB * EX DE,HL ED A0 LDI
EC nnnn * CALL PE,nnnn ED Al CPI
ED 40 IN B,(O) ED A2 INI
ED 41 ouT (©),B ED A3 OUTI
ED 42 SBC HL,BC ED A8 LDD
ED 43nnnn LD (nnnn),BC ED A9 CPD
ED 4 NEG ED AA IND
ED 45 RETN ED AB OUTD
ED 46 IM 0 ED BO LDIR
ED 47 LD LA ED Bl CPIR
ED 48 IN C,(O ED B2 INIR
ED 49 ouTt (©),C ED B3 OTIR
ED 4A ADC HL,BC ED BS LDDR
ED 4Bnnnn LD BC,(nnnn) ED B9 CPDR
ED 4D RETI ED BA INDR
ED 4F LD R,A ED BB OTDR
ED 50 IN D,(C) EE nn * XOR N
ED 51 outT (©),D EF * RST 28H
ED 52 SBC HL,DE FO *RET P
ED 53nnnn LD (nnnn),DE F1 * POP AF
ED 56 IM 1 F2 nnnn * Jp P,nnnn
ED 57 LD Al F3 * DI
ED 58 IN E,(C) F4 nnnn * CALL P,nnnn
ED 59 ouT (O),E F5 * PUSH AF
ED SA ADC HL,DE F6 nn * OR nn
ED S5SBnnnn LD DE,(nnnn) F7 * RST 30H
ED SE M 2 F8 * RET M
ED S5F LD AR F9 * LD SP,HL
ED 60 IN H,(C) FA nnnn * JP M,nnnn
ED 61 ouT (©O,H FB * EI
ED 62 SBC HL,HL FC nnnn * CALL M,nnnn
ED 67 RRD FD 09 ADD 1Y,BC
ED 68 IN L,(C) FD 19 ADD 1Y,DE

THE Z80 INSTRUCTION SET (NUMERIC) 349

Hex Mnemonic Hex Mnemonic

FD 2lnnnn LD IY,nnnn FD CBddIE RR (IY +dd)
FD 22nnnn LD (nnnn),IY FD CBdd26 SLA (IY+dd)
FD 23 INC 1Y FD CBdd2E SRA (IY+dd)
FD 29 ADD 1IY,IY FD CBdd3E SRL (IY+dd)
FD 2Annnn LD IY,(nnnn) FD CBdd46 BIT 0,dY +dd)
FD 2B DEC IY FD CBdd4E BIT 1,dY +dd)
FD 34dd INC (dY+dd) FD CBdd56 BIT 2,(IY +dd)
FD 35dd DEC (IY+dd) FD CBddSE BIT 3,(IY+dd)
FD 36ddnn LD (IY +dd),nn | FD CBdd66 BIT 4,(IY +dd)
FD 39 ADD 1Y,SP FD CBdd6E BIT 5,(IY +dd)
FD 46dd LD B,(IY+dd) | FD CBdd76 BIT 6,(IY +dd)
FD 4Edd LD C,(IY+dd) | FD CBdd7E BIT 7,(IY 4+ dd)
FD 56dd LD D,dIY+dd) | FD CBdds8é RES 0,(IY +dd)
FD S5Edd LD E,dY+dd) | FD CBdd8E RES 1,dY+dd)
FD 66dd LD H,(IY+dd) | FD CBdd96 RES 2,(IY+dd)
FD 6Edd LD L,dY+dd) | FD CBdd9E RES 3,(IY+dd)
FD 70dd LD (IY+dd),B | FD CBddAé6 RES 4,(IY+dd)
FD 71dd LD (IY+dd),C | FD CBddAE RES 5,(IY+dd)
FD 72dd LD (IY+dd),D | FD CBddBé6 RES 6,(IY+dd)
FD 73dd LD (dY+dd),E | FD CBddBE RES 7,(dY+dd)
FD 74dd LD (IY+dd),H | FD CBddCé SET 0,(IY+dd)
FD 75dd LD (Y+dd),L | FD CBddCE SET 1,dY +dd)
FD 77dd LD (IY+dd),A | FD CBddD6 SET 2,(IY+dd)
FD 7Edd LD A,(IY+dd) | FD CBddDE SET 3,(IY-+dd)
FD 86dd ADD A,(IY+dd) | FD CBddE6 SET 4,(IY+dd)
FD 8Edd ADC A,0IY+dd) | FD CBddEE SET 5,0Y+dd)
FD 96dd SUB (IY+dd) FD CBddFé6 SET 6,(IY-+dd)
FD 9Edd SBC A,IY-+dd) | FD CBddFE SET 7,dY+dd)
FD A6dd AND (IY+dd) FD El POP 104

FD AEdd XOR (IY+dd) FD E3 EX (SP),IY
FD Bédd OR (1Y +dd) FD ES PUSH 1Y

FD BEdd CP (1Y +dd) FD E9 JP ay)

FD CBddoé RLC (Y+dd) FD F9 LD SP,IY

FD CBddOE RRC (Y+dd) FE nn * CP nn

FD CBddilé6 RL (1Y +dd) FF * RST 38H

APPENDIX G

Details of the 8080
Instruction Set

A summary of the 8080 instruction set is given in this appendix. The
instructions are listed alphabetically by the official Intel mnemonic. The
Zilog (Z80) version of the mnemonic is shown in angle brackets.

The letters A, B, C, D, E, H, L, and SP are used for the standard 8080
register names. In addition, the symbols BC, DE, and HL are used for the
register pairs. The following symbols are used for general parameters:

r,r2 8-bit CPU register
nn General 8-bit constant
nnnn 16-bit constant

The flag bits are represented by the following symbols:

C Carry

H Half carry

N Add/subtract
P Parity

S Sign

Z Zero

For the Zilog mnemonic, pointers to memory or input/output addresses
are enclosed in parentheses.

DETAILS OF THE 8080 INSTRUCTION SET 351

ACl nn <ADC A,nn>

Add the constant nn to the accumulator and the carry flag. The result is
placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADC M <ADC A, (HL)>

Add the memory byte referenced by the HL register to the accumulator
and the carry flag. The result is placed in the accumulator.

Flags affected: C,H, O, S, Z
Flag reset: N

ADC r <ADC A,r>

Add the value in register r to the accumulator and the carry flag. The
result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADD M <ADD A, (HL>

Add the memory byte referenced by the HL register to the accumulator.
The result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADD r <KADD Ar>

Add the value in register r to the accumulator. The result is placed in the
accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADI nn <ADD A,nn>

Add the constant nn to the accumulator. The result is placed in A.

352

MASTERING CP/M

Flags affected: C, H, O, S, Z
Flag reset: N

ANA M <AND (HL)>

Perform a logical AND with the accumulator and the memory location
referenced by the HL register. The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

ANA r <AND >

Perform a logical AND with the accumulator and register r. The result is
placed in the accumulator. The instruction ANA A is an effective way to
test the parity, sign, and zero flags, because this instruction does not alter
the value in A.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

ANI nn <AND nn>

Perform a logical AND with the accumulator and the constant given as
the parameter. The result is placed in the accumulator. This instruction
can be used to selectively reset bits of the accumulator. For example, the
instruction ANI 7FH will reset bit 7.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

CALL nnnn <CALL nnnn>

Unconditional subroutine call to address nnnn. The address of the
following instruction is pushed onto the stack.

Flags affected: none

DETAILS OF THE 8080 INSTRUCTION SET 353

CC nnnn <CALL C,nnnn>
CM nnnn <CALL M,nnnn>
CNC nnnn <CALL NC,nnnn>
CNZ nnnn <CALL NZ,nnnn>
CP nnnn <CALL P,nnnn>
CPE nnnn <CALL PE,nnnn>
CPO nnnn <CALL PO,nnnn>
cz nnnn <CALL Z,nnnn>

Conditional subroutine call to address nnnn. The address of the following
instruction is pushed onto the stack. The conditions are as follows:

C Means carry flag set (Carry)

M Means sign flag set (Minus)
NC Means carry flag reset (Not carry)
NZ Means zero flag reset (Not zero)

P Means sign flag reset (Plus)
PE Means parity flag set (Parity even)
PO Means parity flag reset (Parity odd)
Z Means zero flag set (Zero)

CMA <CPL>

Complement the accumulator. This instruction performs a one’s comple-
ment on the accumulator; that is, each bit that has a value of 0 is changed
to 1, and each bit that has a value of 1 is changed to 0.

Flags set: H, N

CcmC <CCF>

Complement the carry flag. This instruction can be given after an STC
command to reset the carry flag.

Flag affected: C
Flagreset: N

CMP M <CP (HL>

Compare the byte in memory referenced by the HL register to the
accumulator, which is an implied operand. The zero flag is set if the ac-
cumulator is equal to the operand. The carry flag is set if the accumulator

354

MASTERING CP/M

is smaller than the operand.

Flags affected: C,H, O, S, Z
Flag set: N

CMP r <CP r>

Compare register r to the accumulator, which is an implied operand. The
zero flag is set if the accumulator is equal to the operand. The carry flag is
set if the accumulator is smaller than the operand.

Flags affected: C, H, O, S, Z
Flag set: N

CPl nn <CP nn>

Compare the constant given in the operand to the accumulator, which is
an implied operand. The zero flag is set if the accumulator is equal to the
operand. The carry flag is set if the accumulator is smaller than the
operand.

Flags affected: C, H, O, S, Z
Flag set: N

DAA <DAA>

Decimal adjust the accumulator. This instruction is used after each addi-
tion with BCD numbers. The Z80 performs this operation properly for
both addition and subtraction. The 8080, however, gives an incorrect
result for subtraction.

Flags affected: C,H, O, S, Z

DAD B <ADD HL,BC>
DAD D <ADD HL,DE>
DAD H <ADD HLHL>
DAD SP <ADD HL,SP>

Add the specified double register to the HL register. The result is placed in
HL. This is a double-precision addition. The carry flag is set if the result is
greater than 16 bits (if overflow occurs). The instruction DAD H per-
forms a 16-bit arithmetic shift left, effectively doubling the HL value. The

DETAILS OF THE 8080 INSTRUCTION SET 355

DAD SP instruction can be used to save an incoming stack pointer:

X H,0
DAD SP
SHLD OLDSTK

Flags affected: C, H, O, S, Z
Flag reset: N

DCR M <DEC (HL>
Decrement the memory byte referenced by the HL register.

Flags affected: H,0,S5,Z
Flag set: N
Flag not affected: C

DCR r <DEC >

Decrement register r. Do not try to decrement a register past zero while
executing a JNC loop. The carry flag is not affected by this operation.

Flags affected: H,O,S,Z
Flag set: N
Flag not affected: C

DCX B <DEC BC>
DCX D <DEC DE>
DCX H <DEC HL>
DCX SP <DEC SP>

Decrement the indicated double register. Do not try to decrement a double
register to zero in a JNZ loop. It will not work because this operation does
not affect any of the PSW flags. Instead, move one byte of the double
register into the accumulator and perform a logical OR with the other byte:

REPEAT:
MOV AC
ORA B
JNZ REPEAT

Flags affected: none

356

MASTERING CP/M

Di <DI>

Disable interrupt request.

El <EB>

Enable interrupt request.

HLT <HALT>

Suspend operation of the CPU until a reset or interrupt occurs.

IN nn <IN A, (hn)>
Input a byte to the accumulator from the port address nn.

Flags affected: none

INN M <INC (HL)>

Increment the memory byte referenced by the HL register.
Flags affected: H,O0,S,Z
Flag set: N
Flag not affected: C

INR r <INC >

Increment the 8-bit register. Do not try to increment a register past zero
while executing a JNC loop. It will not work because the carry flag is un-
affected by this instruction.

Flags affected: H,O0,S,Z
Flag set: N
Flag not affected: C

INX B <INC BC>
INX D <INC DE>
INX H <INC HL>
INX SP <INC SP>

Increment the specified double register.

DETAILS OF THE 8080 INSTRUCTION SET 357

Flags affected: none

JMP nnnn <JP nnnn>
Unconditional jump to address nnnn.

Flags affected: none

JC nnnn <JP C,nnnn>
JM nnnn <JP M, nnnn>
JNC nnnn <JP NC,nnnn>
JNZ nnnn <JP NZ,nnnn>
JP nnnn <JpP P,nnnn>
JPE nnnn <JP PE,nnnn>
JPO nnnn <JP PO,nnnn>
JZ nnnn <JP Z,nnnn>

Conditional jump to address nnnn where:

C Means carry flag set (Carry)

M Means sign flag set (Minus)
NC Means carry flag reset (Not carry)
NZ Means zero flag reset (Not zero)

P Means sign flag reset (Plus)
PE Means parity flag set (Parity even)
PO Means parity flag reset (Parity odd)
Z Means zero flag set (Zero)

LDA nnnn <LD A, (nnnn)>

Load the accumulator from the memory byte referenced by the 16-bit
pointer nnnn.

LDAX B <LD A, (BC)>
LDAX D <LD A, (DE)>

Move the memory byte referenced by the specified double register BC or
DE into the accumulator. (See STAX B.)

tHLD nnnn <D HL(nnnn)>

Load register L from the address referenced by the 16-bit value nnnn.

358

MASTERING CP/M

Load register H from the address nnnn + 1.

LXI B,nnnn <LD BC,nnnn>
LXI D,nnnn <LD DE,nnnn>
LXI H,nnnn <LD HL nnnn>
LXI SP,nnnn <LD SP,nnnn>

Load the specified double register with the 16-bit constant nnnn.

MOV Mr <D (HL),>

Move the byte in register r to the memory byte referenced by the HL
register.

MOV M <D r,(HL>
Move the byte referenced by the HL register into register r.

MOV r,r2 <tb rr2>

Move the byte from register 12 tor.

MVI M,nn <D (HL),nn>

Move the data byte nn into the memory location referenced by the HL
register.

MVI r,nn <D r,nn>
Load register r with the 8-bit data byte nn.

NOP <NOP>
No operation is performed by the CPU.

Flags affected: none

ORA M <OR (HL>

Perform a logical OR with the accumulator and the memory byte
referenced by the HL register. The result is placed in the accumulator.

DETAILS OF THE 8080 INSTRUCTION SET 359

Flags affected: P, S, Z
Flags reset: C,H,N

ORA r <OR >

Perform a logical OR with the accumulator and register r. The result is
placed in the accumulator. An instruction of ORA A is an efficient way to
test the parity, sign, and zero flags, because this instruction does not alter
the value in A.

Flags affected: P, S, Z
Flags reset: C,H,N

ORI nn <OR nn>

Perform a logical OR with the accumulator and the data byte nn. The
result is placed in the accumulator. This instruction can be used to set
individual bits of the accumulator. For example, ORI 20H will set bit 5 to
a logical 1.

Flags affected: P, S, Z
Flags reset: C,H,N

OUT nn <OUT (nn)A>
Output the byte in the accumulator to the port address nn.

Flags affected: none

PCHL <JP (HL>

Copy the HL register into the program counter, then retrieve the next
instruction from the address referenced by HL. This instruction causes a
branch to the address referenced by HL.

Flags affected: none

POP B <POP BC>
pOP D <POP DE>
PpOP H <POP HL>

Copy two bytes of memory into the appropriate double register as
follows. The memory byte referenced by the stack pointer is moved into

360

MASTERING CP/M

the low-order byte (C, E, or L), then the stack pointer is incremented. The
memory byte referenced by the new stack-pointer value is then moved
into the high-order byte (B, D, or H). The stack pointer is incremented a
second time.

Flags affected: none

POP PSW <POP AF>

Move the byte at the memory location referenced by the stack pointer into
the flag register (PSW), and increment the stack pointer. Then move the
byte at the location referenced by the new stack-pointer value into the
accumulator and increment the stack pointer a second time.

Flags affected: all

PUSH B <PUSH BC>
PUSH D <PUSH DE>
PUSH H <PUSH HL>

Store the referenced double register in memory as follows. The stack
pointer is decremented, then the byte in the specified high-order register
B, D, or H is copied to the memory location referenced by the stack
pointer. The stack pointer is decremented a second time. The byte in the
low-orderregister C, E, or L is moved to the byte referenced by the current
value of the stack pointer.

Flags affected: none

PUSH PSW <PUSH AP>

Store the accumulator and flag register in memory as follows. The stack
pointer is decremented, then the value in the accumulator is moved to the
memory byte referenced by the stack pointer. The stack pointer is
decremented a second time. The flag register is copied to the byte at the
memory address referenced by the current stack-pointer value.

Flags affected: none

DETAILS OF THE 8080 INSTRUCTION SET 361

1T
] C [+ 7 +6 *+5 %4 -3 =24 + <
L1 1 1 1 1

Carry Register

RAL <RLA>

This instruction rotates bits to the left through carry by one position. The
byte in the accumulator is rotated left through carry. The carry flag moves
to bit 0. Bit 7 of the accumulator moves to the carry flag.

Flags affected: C
Flags reset: H, N

17T 1T 1 1 1T 1
M 7T b>5>4+3 2>]1—>0 > C >
Lt r 1t 1

Register Carry

RAR <RRA>

This instruction rotates bits to the right through carry by one position.
The accumulator is rotated right through carry. The carry flag moves to
bit 7. Bit 0 moves to the carry flag.

Flag affected: C
Flags reset: H, N

RET <RET>

Return from a subroutine. The top of the stack is moved into the program
counter. The stack pointer is incremented twice.

362 MASTERING CP/M

RC <RET C>
RM <RET M>
RNC <RET NC>
RNZ <RET NZ>
RP <RET P>
RPE <RET PE>
RPO <RET PO>
RZ <RET Z>

Conditional return from a subroutine. If the condition is met, the top of
the stack is moved into the program counter. The stack pointer is
incremented twice.

C Means carry flag set (Carry)

M Means sign flag set (Minus)
NC Means carry flag reset (Not carry)
NZ Means zero flag reset (Not zero)

P Means sign flag reset (Plus)
PE Means parity flag set (Parity even)
PO Means parity flag reset (Parity odd)

Z Means zero flag set (Zero)
A Y
R
C 7645444342 <] &+
[1 1 1 1 1 1
Carry Register
RLC <RLCA>

This instruction rotates bits to the left by one position. The accumulator is
rotated left circularly. Bit 7 moves to both the zero bit and the carry flag.

Flags affected: C
Flags reset: H,N

DETAILS OF THE 8080 INSTRUCTION SET 363

T 1
7> 65453 >2>]>0 C
D N O A I
Register Carry
RRC <RRCA>

This instruction rotates bits to the right by one position. The accumulator
is rotated right circularly. Bit 0 moves to both the carry flag and bit 7.

Flag affected: C
Flags reset: H,N

RST 0 <RST 00H>
RST 1 <RST 08H>
RST 2 <RST 10H>
RST 3 <RST 18H>
RST 4 <RST 20H>
RST 5 <RST 28H>
RST 6 <RST 30H>
RST 7 <RST 38H>

These restart instructions generate one-byte subroutine calls to the address
given in the Z80 operand. For example, RST 7 calls address 38 hex.

SBB M <SBC A, (HL>

Subtract the carry flag and the memory byte referenced by the HL register
from the accumulator. The result is placed in the accumulator.

Flags affected: C,H, O, S, Z
Flag set: N

SBB r <SBC Ar>

Subtract the carry flag and the specified CPU register from the accumula-
tor. The result is placed in the accumulator.

364 MASTERING CP/M

Flags affected: C,H, O, S, Z
Flag set: N

SBI nn <SBC A,nn>

Subtract the data byte nn and the carry flag from the accumulator. The
result is placed in the accumulator.

Flags affected: C,H, O, S, Z
Flag set: N

SHLD nnnn <LD (nnnn)HL>

Store register L at the memory address nnnn. Store register H at the address
nnnn + 1.

SPHL <LD SP,HL>

Load the stack pointer from the HL register. This instruction can be used
to retrieve a previously saved stack pointer.

LHLD nnnn
SPHL
STA nnnn <LD (nnnn),A>

Store the accumulator in the memory location referenced by nnnn.

STAX B <ID (BC)A>
STAX D <ID (DE),A>

Move the byte in the accumulator to the memory byte referenced by the
specified register pair. (See LDAX B.)

STC <SCF>

Set the carry flag. There is no equivalent reset command. However, the
carry flag can be reset with the XRA A instruction or with the pair of in-
structions STC and CMC.

Flag set: C
Flags reset: H, N

DETAILS OF THE 8080 INSTRUCTION SET 365

SUB M <SUB (HL)>

Subtract the memory byte referenced by the HL register from the accu-
mulator. The result is placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

suB r <suB r>

Subtract the specified CPU register from the accumulator. The result is
placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

SUlI nn <SUB nn>

Subtract the data byte nn from the accumulator. Theresultis placed in the
accumulator.

Flags affected: C, H, O, S, Z
Flag set: N

XCHG <EX DEHL>
Exchange the double registers DE and HL.
Flags affected: none

XRA M <XOR (HL)>

Perform a logical exclusive OR with the accumulator and the byte
referenced by the HL register. The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C,H,N

XRA r <XOR r>

Perform a logical exclusive OR with the accumulator and register r. The
result is placed in the accumulator. The XRA A instruction is an efficient
way to zero the accumulator, although all flags are then reset. XRA A is
also frequently used to reset the carry flag, because there is no single

366

MASTERING CP/M

instruction for this operation.

Flags affected: P, S, Z
Flags reset: C,H,N

XRl nn <XOR nn>

Perform a logical exclusive OR with the accumulator and the data byte
nn. The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C,H,N

XTHL <EX (SP)HL>

Exchange the bytein memory referenced by the stack pointer with register
L. Exchange the byte referenced by the stack pointer + 1 with register H.

Flags affected: none

| Il APPENDIX H

Details of the Z80
Instruction Set

A summary of the Z80 instruction set is given in this appendix.* The in-
structions are listed alphabetically by the official Zilog mnemonic. If
there is a corresponding 8080 instruction, the Intel mnemonic is shown in
angle brackets; refer to Appendix G for the details of this instruction. If
there is no 8080 equivalent, ‘‘no 8080’ is shown in angle brackets. The
Z80 mnemonics are listed in numeric order in Appendix F. The Z80
equivalent of an 8080 mnemonic can be found from the cross reference
given in Appendix G.

The letters A, B, C, D, E, H, I, L, IX, IY, R, and SP are used for the
standard Z80 register names. In addition, the symbols BC, DE, and HL
are used for the register pairs. The following symbols are used for general
parameters:

r,r2 8-bit CPU register

dd 8-bit signed displacement
nn General 8-bit constant
nnnn 16-bit constant

The flag bits are represented by the following symbols:

C Carry

H Half carry

N Add/subtract
P/O Parity/overflow
S Sign

Z Zero

Pointers to memory and input/output addresses are enclosed in paren-
theses.

*More details can be be obtained from the Zilog programmer’s manual, Z80
Assembly Language Programming Manual, Zilog, Inc., 1977.

368 MASTERING CP/M

ADC A, (HL) <ADC M>
ADC A, (IX+dd) <no 8080>
ADC A, (IY+dd) <no 8080>

Add the memory byte referenced by the sum of the specified index register
and the displacement to the accumulator and the carry flag. The result is
placed in the accumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADC Ar <ADC r>

ADC A,nn <ACI nn>
ADC HL,BC <no 8080>
ADC HL,DE <no 8080>
ADC HLHL <no 8080>
ADC HL,SP <no 8080>

Add the indicated double register to the HL register and the carry flag.
The result is placed in HL.

Flags affected: C,H, O, S, Z
Flag reset: N

ADD A, (HL) <ADD M>
ADD A, (IX+dd) < no 8080>
ADD A, (IY+dd) <no 8080>

Add the memory byte pointed to by the sum of the specified index register
and the displacement to the accumulator. The result is placed in the ac-
cumulator.

Flags affected: C, H, O, S, Z
Flag reset: N

ADD Ar <ADD >

DETAILS OF THE Z80 INSTRUCTION SET 369

ADD A,nn <ADI nn>

ADD HL,BC <DAD B>
ADD HL,DE <DAD D>
ADD HL,HL <DAD H>
ADD HL,SP <DAD SP>
ADD IX,BC <no 8080>
ADD IX,DE <no 8080>
ADD IX,IX <no 8080>
ADD IX,SP <no 8080>
ADD 1Y,BC <no 8080>
ADD 1Y,DE <no 8080>
ADD Y, IY <no 8080>
ADD IY,SP <no 8080>

Add the indicated double register to the specified index register. The
result is placed in the index register. The HL register pair does not par-
ticipate in this group of instructions. Notice that there is no equivalent
series of ADC instructions.

Flags affected: C, O, S, Z
Flag reset: N

AND (HL) <ANA M>

AND (IX+dd) <no 8080>
AND (IY +dd) < no 8080>

Perform a logical AND with the accumulator and the memory byte
referenced by the sum of the index register and the displacement. The
result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, N
Flag set: H

AND r <ANA r>

AND nn <ANI nn>

370 MASTERING CP/M
BIT b,(HL) < no 8080>
BIT b,(IX+dd) <no 8080>
BIT b,(IY+dd) <no 8080>

Test bit b of the memory byte referenced by the second operand. Bit bcan
range from O through 7. The zero flag is set if the referenced bit is a logical
1, otherwise it is reset. Thus the zero flag becomes the complement of the
selected bit.

Flag affected: Z
Flag set: H
Flag reset: N

BIT b,r <no 8080>

Test bit b of register r, where b can range from 0 through 7. The zero flag is
set if the referenced bit is a logical 1. It is reset otherwise.

Flag affected: Z
Flag set: H
Flag reset: N

CALL nnnn <CALL nnnn>
CALL C,nnnn <CC nnnn>
CALL M,nnnn <CM nnnn>
CALL NC,nnnn <CNC nnnn>
CALL NZ,nnnn <CNZ nnnn>
CALL P,nnnn <CP nnnn>
CALL PE,nnnn <CPE nnnn>
CALL PO,nnnn <CPO nnnn>
CALL Z,nnnn <CZ nnnn>

CCF <CMC>
CP (HL) <CMP M>

CP (IX+dd) <no8080>
CP (IY+dd) <no 8080>

Compare the memory location referenced by the sum of the index register

DETAILS OF THE Z80 INSTRUCTION SET 3N

and the displacement to the accumulator, which is an implied operand.
The zero flag is set if the accumulator is equal to the operand. The carry
flag is set if the accumulator is smaller than the operand.

Flags affected: C, H, O, S, Z

Flag set: N

CP r <CMP r>
CP nn <CPI nn>
CPD < no 8080>

CPDR <no 8080>

CPI <no 8080>

CPIR <no 8080>

Compare the memory byte pointed to by HL to the accumulator. Decre-
ment HL (if D) or increment HL (if I). Decrement the byte countin the BC
register. Repeat the operation for CPDR and CPIR until a match is found
or until the BC register pair has been decremented to zero. The zero flag is
set if a match is found. The parity flag is set if BC is decremented to 0.

Flags affected: H, S

Flag set: N, Zif A = (HL), Pif BC = 0
cPL <CMA>

DAA <DAA>

DEC (HL) <DCR M>

DEC (IX+dd) < no 8080>
DEC (IY+dd) <no 8080>

Decrement the memory byte pointed to by the sum of the index register
and the displacement.

Flags affected: H,O0,S8,2Z
Flag set: N
Flag not affected: C

372 MASTERING CP/M

DEC r <DCR r>
DEC BC <DCX B>
DEC DE <DCX D>
DEC HL <DCX H>
DEC SP <DCX SP>
DEC IX <no 8080>
DEC Y <no 8080>

Decrement the index register.

Flags affected: none

DI <DI>

DINZ dd <no 8080>

Decrement register B and jump relative to displacement dd if B register is
not 0.

Flags affected: none

El <EI>
EX (SP)HL <XTHL>

EX (SP)IX <no 8080>
EX (SP)IY <no 8080>

Exchange the 16 bits referenced by the stack pointer with the specified index
register.

Flags affected: none

EX AFAF <no 8080>
Exchange the accumulator and flag register with the alternate set.
Flags affected: all

DETAILS OF THE Z80 INSTRUCTION SET 373

EX DEHL <XCHG>

EXX <no 8080>
Exchange BC, DE, and HL with the alternate set.

Flags affected: none

HALT <HLT>

M 0 < no 8080>
M < no 8080>
M 2 < no 8080>

Sets interrupt mode 0, 1, or 2. Interrupt mode 0 is automatically selected
when a Z80 reset occurs. The result is the same as the 8080 interrupt
response. Interrupt mode 1 performs an RST 38H instruction. Interrupt
mode 2 provides for many interrupt locations.

IN r(C) <no 8080>
Input a byte from the port address in register C to register r.

Flags affected: P, S, Z
Flags reset: H,N

IN A, (nn) <IN nn>
INC (HL) <INR M>
INC (IX+dd) <no 808B0>
INC (IY+dd) <no 8080>

Increment the memory byte pointed to by the sum of the index register
and the displacement.

Flags affected: H,O,S,Z
Flag set: N
Flag not affected: C

374 MASTERING CP/M

INC r <INR r>

INC BC <INX B>
INC DE <INX D>
INC HL <INX H>
INC SP <INX SP>
INC IX <no 8080>
INC Y <no 8080>

Increment the specified index register.

Flags affected: none

IND <no 8080>
INDR <no 8080>
INI <no 8080>
INIR < no 8080>

Input a byte from the port address in register C to the memory byte
pointed to by HL. Decrement register B. The HL register is incremented
(f I) or decremented (if D). For INDR and INIR the process is repeated
until the 8-bit register B becomes 0.

Flag affected: Z (if B = 0)

Flag set: N
JP(HY <PCHL>
P (X) <no 8080>
JP(y) <no 8080>

Copy the contents of the specified index register into the program
counter; then retrieve the next instruction from the address referenced by
IXorIY.

Flags affected: none

JP nnnn <JMP nnnn>

DETAILS OF THE Z80 INSTRUCTION SET

375

JP
JP
JP
JP
JP
JP
JP
JP

JR

C,nnnn <JC
M,nnnn <JM
NC,nnnn <JNC
NZ,nnnn <JNZ
P,nnnn <JP
PE,nnnn < JPE
PO,nnnn <JPO
Z,nnnn <JZ
nn <no 8080>

nnnn>
nnnn>
nnnn>
nnnn>
nnnn>
nnnn>
nnnn>
nnnn>

Unconditional relative jump with a signed displacement nn. The jump is

limited to 129 bytes forward and 126 bytes backward in memory.

Flags affected: none

JR
JR
JR
JR

C,nn
NC,nn
NZ,nn
Z,nn

<no 8080>
<no 8080>
<no 8080>
<no 8080>

Conditional relative jump to address nn where:

C
NC
NZ
z

LD
LD

LD

LD

LD
LD
LD
LD

Means carry flag set
Means carry flag reset
Means zero flag reset
Means zero flag set

(BC),A
(DE),A

(HL),r
(HL),nn

(IX+dd),r
(IX+dd),nn
(IY +dd),r
(1Y +dd),nn

<STAX
<STAX

<Mvi

(Carry)
(Not carry)
(Not zero)

(Zero)

B>
D>

<MOV Mr>

M, nn>

< no 8080>
<no 8080>
<no 8080>
<no 8080>

376

MASTERING CP/M

Move the byte in register r or the immediate byte nn into the memory byte
referenced by the sum of the index register plus the displacement. These
instructions can be used to load relocatable binary code.

ID (nnnn)A <STA nnnn>
LD (nnnn),BC <no 8080>
LD (nnnn),DE <no 8080>

Store the low-order byte (C or E) of the specified double register at the
memory location nnnn. Store the high-order byte (B or D) at nnnn + 1.

LD (nnnn)HL <SHLD nnnn>
LD (nnnn),iIX <no 8080>
LD (nnnn)lY <no 8080>
LD (nnnn),SP < no 8080>

Store the low-order byte of the specified register IX, I'Y, or SP at the loca-
tion nnnn. Store the high-order byte at nnnn + 1. The instruction LD
(nnnn),SP can be used to temporarily save an incoming stack pointer. It
can later be restored by an LD SP,(nnnn) operation.

LD A,(BC) <LDAX B>
LD A, (DE) <LDAX D>
LD Al <no 8080>

Load the accumulator from the interrupt-vector register. The parity flag
reflects the state of the interrupt-enable flip-flop.

Flags affected: P, S, Z
Flags reset: H,N

D AR <no 8080>

Load the accumulator from the memory-refresh register. The parity flag
reflects the state of the interrupt-enable flip-flop. This is an easy way to
obtain a fairly decent random number.

Flags affected: P, S, Z
Flags reset: H,N

DETAILS OF THE Z80 INSTRUCTION SET

31

b LA < no 8080>
Copy the accumulator into the interrupt-vector register.

Flags affected: none

tb RA <no 8080>
Copy the accumulator into the memory-refresh register.

Flags affected: none

LD r,(HL) <MOV r,M>
LD r,(IX+dd) < no 8080>
LD r,(IY+dd) <no 8080>

Move the byte at the memory location referenced by the sum of the index

register and the displacement into register r.

D rr2 <MOV rrr2>

D r,nn <MVl r,nn>

LD A, (nnnn) <LDA nnnn>
LD BC,(nnnn) <no 8080>

LD DE,(nnnn) <no 8080>

Load the low-order byte (C or E) from the location referenced by the
16-bit pointer nnnn. Load the high-order byte (B or D) from nnnn + 1.

LD HL,(nnnn) <LHLD nnnn>
LD BC,nnnn <Xl B,nnnn>

LD DE,nnnn <Xl D,nnnn>

LD HL,nnnn <iXi H,nnnn>

LD SP,nnnn <Xl SP,nnnn>
LD IX,nnnn <no 8080>

LD IY,nnnn <no 8080>

378

MASTERING CP/M

Load the specified double register with the 16-bit constant nnnn. Be
careful not to confuse LD HL,(nnnn) with LD HL,nnnn.

LD IX,(nnnn) <no 8080>
LD IY,(nnnn) <no 8080>
LD SP,(nnnn) <no 8080>

Load thelow byte of IX, I'Y, or SP from the memory location nnnn. Load
the high byte from nnnn + 1. The LD SP,(nnnn) instruction can be used
to retrieve a previously saved stack pointer.

LD SPHL <SPHL>
LD SPIX <no 8080>
LD SPIY <no 8080>

Load the stack pointer from the specified 16-bit register. The SPHL in-
struction can be used to retrieve a previously saved stack pointer when the
8080 CPU is used.

LHLD nnnn

SPHL

LDD <no 8080>
LDDR <no 8080>
LDI < no 8080>
LDIR <no 8080>

Move the byte referenced by the HL pair into the location pointed to by
the DE register pair. Decrement the 16-bit byte counter in BC. Increment
@if I) or decrement (if D) both HL and DE. Repeat the operation for
LDDR and LDIR until the BC register has been decremented to zero.

NEG <no 8080>

This instruction performs a two’s complement on the accumulator. It ef-
fectively subtracts the accumulator from zero. To perform this task on an
8080 use a CMA command followed by an INR A command.

Flags affected: all

NOP <NOP>

DETAILS OF THE Z80 INSTRUCTION SET 379

OR (HL) <ORA M>
OR (IX+dd) <no 8080>
OR (IY+dd) <no 8080>

Perform alogical OR with the accumulator and the byte referenced by the
specified index register plus the displacement. The result is placed in the
accumulator.

Flags affected: P, S, Z
Flags reset: C,H,N

OR r <ORA >
OR nn <ORI nn>
OTDR < no 8080>

OTIR < no 8080>

Output a byte from the memory location pointed to by the HL pair. The
port address is contained in register C. Register Bis decremented. The HL
register pair is incremented (if I) or decremented (if D). The process is
repeated until register B has become zero.

Flags set: N, Z

outr (Q)r <no 8080>
Output the byte in register r to the port address contained in register C.

Flags affected: none

OUT (nn),A <OUT nn>
ouTD <no 8080>
ouTl <no 8080>

Output a byte from the memory location pointed to by the HL pair. The
port address is contained in register C. Register Bis decremented. The HL
register pair is incremented (if I) or decremented (if D).

380 MASTERING CP/M

Flag affected: Z
Flag set: N

POP AF <POP PSW>

POP BC <POP B>

POP DE <POP D>
POP HL <POP H>
POP IX <no 8080>
POP Y <no 8080>

Copy the top of the stack into the specified index register. Increment the
stack pointer twice.

Flags affected: none

PUSH AF <PUSH PSW>

PUSH BC <PUSH B>
PUSH DE <PUSH D>
PUSH HL <PUSH H>

PUSH X <no 8080>
PUSH 1Y <no 8080>

The indicated index register is copied to the top of the stack. The stack
pointer is decremented twice.

Flags affected: none

RES b, (HL) < no 8080>
RES b,(IX+dd) <no 8080>
RES b,(IY+dd) <no 8080>

Reset bit b of the memory byte referenced by the second operand. Bit b
can range from O through 7.

Flags affected: none
Flag reset: N

DETAILS OF THE Z80 INSTRUCTION SET 381

RES b,r <no 8080>
Reset bit b of register r to a value of 0. Bit b can range from 0 through 7.

Flags affected: none
Flag reset: N

RET <RET>

RET C <RC>
RET M <RM>
RET NC <RNC>
RET NZ <RNZ>
RET P <RP>
RET PE <RPE>
RET PO <RPO>
RET Z <RZ>
RETI <no 8080>

Return from maskable interrupt.

RETN < no 8080>

Return from nonmaskable interrupt.

The following RL and RLA instructions rotate bits to the left through
carry.

Y
Y

Carry Register

382

MASTERING CP/M

RL (HL) < no 8080>

The memory byte referenced by the HL pair is rotated left through carry.
The carry flag moves into bit 0. Bit 7 moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H,N

RL (IX+dd) <no 8080>
RL (IY+dd) <no 8080>

The memory byte referenced by the sum of the index register and the
displacement is rotated left through carry. The carry flag moves into bit 0.
Bit 7 moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H,N

RL r <no 8080>

The byte in register r is rotated left through carry. The carry flag moves into
bit 0. Bit 7 moves to the carry flag. Note: the instruction RL A performs
the same task that instruction RLA does, but instruction RLA is twice as
fast.

Flags affected: C, P, S, Z
Flags reset: H,N
RLA <RAL>

The following RLC and RLCA instructions rotate bits to the left.

T

P
c - 7<—6<—5<—4<—3<l-2<l-1<l-0~

I 1§ |

Carry Register

DETAILS OF THE Z80 INSTRUCTION SET 383

RLIC (HL) <no 8080>

The byte referenced by the HL pair is rotated left circularly. Bit 7 moves to
both the zero bit and the carry flag.

Flags affected: C, P, S, Z
Flags reset: H,N

RIC (IX+dd) <no 8080>
RIC (IY+dd) < no 8080>

The byte referenced by the specified index register plus the displacement is
rotated left circularly. Bit 7 moves to both the zero bit and the carry flag.

Flags affected: C, P, S, Z
Flags reset: H, N

RLC r <no 8080>

The byte in register r is rotated left circularly. Bit 7 moves to both the zero
bit and the carry flag. Note: RLC A performs the same task that instruc-
tion RLCA does, but instruction RLCA is twice as fast.

Flags affected: C, P, S, Z
Flags reset: H,N

RLCA <RLC>
A
4 bits 4 bits 4 bits 4 bits
Accumulator Memory
RLD <no 8080>

A four-bit rotation over 12 bits. The low four bits of A move to the low

384

MASTERING CP/M

four bits of the memory location referenced by the HL pair. The original
low four bits of memory move to the high four bits. The original high four
bits move to the low four bits of A. This instruction is used for BCD
operations.

Flags affected: P, S, Z
Flags reset: H,N

The following RR and RRA instructions rotate bits to the right through
carry.

765> 4432]>0 C >
I I N S I |
Register Carry
RR (HL) <no 8080>

The memory byte pointed to by the HL pair is rotated right through carry.
Carry moves to bit 7. Bit 0 moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H,N

RR (IX+dd) <no 8080>
RR (IY+dd) <no 8080>

The memory byte pointed to by the specified index register plus the offset
isrotated right through carry. The carry flag moves to bit 7. Bit0 moves to
the carry flag.

Flags affected: C, P, S, Z
Flags reset: H,N

RR r <no 8080>

The byte in register r is rotated right through carry. Carry moves to bit 7.
Bit 0 moves to the carry flag. Note: RR A performs the same task that

DETAILS OF THE Z80 INSTRUCTION SET 385

instruction RRA does, but instruction RRA is twice as fast.
Flags affected: C, P, S, Z
Flags reset: H,N
RRA <RAR>

The following RRC and RRCA instructions rotate bits to the right.

1 1T 1T 1T 1 1
> 7> b6 >5>4>3>2>] >0 > C
T I I S I I
Register Carry
RRC (HL) <no 8080>

The memory byte pointed to by the HL pair is rotated right circularly. Bit
0 moves to both the carry flag and bit 7.

Flags affected: C, P, S, Z
Flags reset: H,N

RRC (IX+4dd) <no 8080>
RRC (IY+dd) <no 8080>

The memory byte pointed to by the index register plus the offset isrotated
right circularly. Bit 0 moves to both the carry flag and bit 7.

Flags affected: C, P, S, Z
Flags reset: H,N

RRC r <no 8080>

The byte in register r is rotated right circularly. Bit 0 moves to both the
carry flag and bit 7. Note: RRC A performs the same task that instruc-
tion RRCA does, but instruction RRCA is twice as fast.

386

MASTERING CP/M

Flags affected: C, P, S, Z

Flags reset: H,N
RRCA <RRC>
y y
4 bits 4 bits 4 bits 4 bits
Accumulator Memory
RRD <no 8080>

A four-bit rotation over 12 bits. The low four bits of A move to the high
four bits of the memory location referenced by the HL pair. The original
high four bits of memory move to the low four bits. The original low four
bits move to the low four bits of A. This instruction is used for BCD

operations.

Flags affected: P, S, Z

Flags reset:

RST
RST
RST
RST
RST
RST
RST
RST

SBC

SBC
SBC

H,N

O0H <RST O>

08H <RST 1>

10H <RST 2>

18H <RST 3>

20H <RST 4>

28H <RST 5>

30H <RST &>

38H <RST 7>
A, (HL) <SBB M>
A, (IX+dd) <no 8080>
A, (lY+dd) <no 8080>

DETAILS OF THE Z80 INSTRUCTION SET 387

Subtract the carry flag and the memory byte pointed to by the sum of the
index register and the displacement from the accumulator. The result is
placed in the accumulator,

Flags affected: C,H, O, S, Z

Flag set: N

SBC Ar <SBB r>
SBC Ann <SBlI nn>
SBC HL,BC <no 8080>
SBC HL,DE < no 8080>
SBC HLHL < no 8080>
SBC HL,SP <no 8080>

Subtract the specified CPU double register and the carry flag from the HL
register pair. The result is placed in HL. You may need to reset the carry
flag with an OR A operation before using these instructions.

Flags affected: C, H, O, S, Z

Flag set: N
SCF <STC>
SET b, (HL) <no 8080>

SET b, (IX+dd) < no 8080>
SET b,(IY+dd) < no 8080>

Set bit b of the memory byte referenced by the second operand. Bit b can
range from 0 through 7.

Flags affected: none
Flag reset: N

SET b,r <no 8080>
Set bit b of register r. Bit b can range from 0 through 7.

Flags affected: none
Flag reset: N

388

MASTERING CP/M

The following SLA instructions shift bits to the left.

Pt bl

C 74 b4+ 54+ 44 <+ 2% |+ 0
Lt 1 1 § |

Carry Register

SLA (HL) <no 8080>

Perform an arithmetic shift left on the memory byte pointed to by the HL
pair. Bit 7 is moved to the carry flag. A zero is moved into bit 0. This
operation doubles the original value.

Flags affected: C, P, S, Z
Flags reset: H,N

SLA (IX+dd) <no 8080>
SLA (IY+dd) <no 8080>

Perform an arithmetic shift left on the memory byte pointed to by the index
register plus the displacement. Bit 7 is moved to the carry flag. A zero is
moved into bit 0. This operation doubles the original value.

Flags affected: C, P, S, Z
Flags reset: H, N

SLA r <no 8080>

Perform an arithmetic shift left on register r. Bit 7 is moved to the carry
flag. A zero is moved into bit 0. This operation doubles the original value.
Note: SLA A performs the same task that instruction ADD A, A does, but
instruction ADD A,A is twice as fast.

Flags affected: C, P, S, Z
Flags reset: H,N

The following SRA instructions shift bits to the right.

DETAILS OF THE Z80 INSTRUCTION SET 389

1T 1T 1 1 1 1
7652443221220 » C
I N T B N
Register Carry
SRA (HL) <no 8080>

Perform an arithmetic shift right on the memory byte pointed to by the
HL pair. Bit 0 moves to the carry flag. Bit 7 is copied into bit 6.

Flags affected: C, P, S, Z
Flags reset: H, N

SRA (IX+dd) <no 8080>
SRA (IY+dd) < no 8080>

Perform an arithmetic shift right on the byte pointed to by the index
register plus the displacement. Bit 0 moves to carry and bit 7 is copied into
bit 6.

Flags affected: C, P, S, Z
Flags reset: H,N

SRA r <no 8080>

Perform an arithmetic shift right on register r. Bit 0 moves to carry and bit
7 is copied into bit 6. The operation effectively halves the register value.
The carry flag represents the remainder. The carry flag is set if the original
number was odd.

Flags affected: C, P, S, Z
Flags reset: H,N

The following SRL instructions shift bits to the right.

Register Carry

390 MASTERING CP/M

SRL (HL) < no 8080>

Perform alogical shift right on the byte pointed to by the HL register pair.
A zero bit is moved into bit 7. Bit 0 moves to the carry flag.

Flags affected: C, P, Z
Flags reset: H,N,S

SRL (IX+dd) < no 8080>
SRL (IY+dd) <no 8080>

Perform a logical shift right on the byte pointed to by the index register
plus the displacement. A zero bit is moved into bit 7. Bit 0 moves to the
carry flag.

Flags affected: C, P, Z
Flags reset: H,N,S

SRL r <no 8080>

Perform a logical shift right on register r. A zero bit is moved into bit 7. Bit
0 moves to the carry flag.

Flags affected: C, P, S, Z
Flags reset: H,N

SUB (HL) <suB M>
SUB (IX+dd) < no 8080>
SUB (IY+dd) <no 8080>

Subtract the memory byte referenced by the index register plus the
displacement from the value in the accumulator. The resultis placed in A.

Flags affected: C,H, O, S, Z
Flag set: N
SUB r <suB r>

SUB nn <SUI nn>

DETAILS OF THE Z80 INSTRUCTION SET 391

XOR (HL) <XRA M>
XOR (IX+dd) < no 8080>
XOR (IY +dd) <no 8080>

Perform a logical exclusive OR with the accumulator and the byte
referenced by the sum of specified index register and the displacement.
The result is placed in the accumulator.

Flags affected: P, S, Z
Flags reset: C, H,N
XOR r <XRA r>

XOR nn <XRI nn>

APPENDIX |

The CP/M
BDOS Functions

The Nondisk BDOS Functions
Function
number
(in C) Operation Value sent Value returned
1 Read console character in A
2 Write console character in E
3 Read reader character in A
4 Write punch character in E
5 Write list character in E
6 Direct console /O FF (input) 0 = not ready or
character (output) character in A
7 Determine IOBYTE bytein A
8 Set IOBYTE inE
9 Print buffer address in DE
10 Read buffer address in DE
11 Return console status bytein A
12 Return CP/M version bytein A and L

THE CP/M BDOS FUNCTIONS 393

The Disk-Related BDOS Functions

Function
number
(inC) Operation Value sent Value returned
13 Reset disks
14 Select disk E = disk
15 Open file DE = FCB A = error code
16 Close file DE = FCB A = error code
17 Search for first DE = FCB A = error code
18 Search for next A = error code
19 Delete file DE = FCB A = error code
20 Read sequential DE = FCB A = error code
21 Write sequential DE = FCB A = error code
22 Make new file DE = FCB A = error code
23 Rename file DE = original FCB A = error code
24 Determine logged-in drives HL = vector
25 Find default drive A = drive
26 Set DMA address DE = address
27 Get allocation vector HL = vector
28 Write protect disk
29 Find R/O drives HL = vector
30 Set file attributes DE = FCB
31 Get disk parameter block HL = block
32 Get or set user number E = FF A = user number
E = new user number
33 Read randomly DE = FCB A = error code
34 Write randomly DE = FCB A = error code
35 Get file size DE = FCB
36 Set random record DE = FCB

INDEX

Aborting a program, 192
ADDRESS program, 199-203
Alphanumeric characters, 9, 35
Altering BIOS, 17, 20
Ambiguous symbols, 6, 113, 121
AND, logical, 46, 50, 120, 124
Angle brackets, enclosing parameters, 104
Argument. See Parameter
ASCII bias, 151
ASCII character set, 316-319
ASCII coding, 116, 149, 174
changing lowercase to upper, 118
converting to binary, 54
ASM assembiler, 34
Assembler directives, 35
Assemblers
Digital Research, 23-25, 34, 80-81, 84
Microsoft, 25-26, 34, 74, 81, 84
Assembling with ASM, 23, 37
Assembling with a debugger, 42
Assembling with MAC, 24, 37
Assembling with MACRO-80, 25, 37
Assembly language, 34
Assembly listing, 37
Base conversion
binary to ASCII binary, 54, 275
binary to BCD, 123
binary to decimal, 276
binary to hexadecimal, 149, 279
hexadecimal to binary, 159
BCD coding, 123
BDOS, 2, 5, 130
BDOS calls, 130
to change default drive, 282
to change IOBYTE, 161
to close a disk file, 226
to create a disk file, 211
to delete a disk file, 216, 252
to determine console status, 133, 192

BDOS calls (continued)
to determine CP/M version, 153
to determine default drive, 293
to determine IOBYTE value, 153
to find next file, 260
to locate the disk parameter block, 270
to open a disk file, 177
to perform console input, 132, 154
to perform console output, 135
to perform printer output, 167
to read console buffer, 154
to print a string, 135
to read a sector, 182
to rename a disk file, 225, 251
to set the DMA address, 182
to set file attributes, 215, 248
to write a disk sector, 225
BDOS function numbers, 130
for disk operations, 393
for nondisk operations, 131, 392
Binary numbers, 174
converting to ASCII, 151
BIOS, 2, 5, 130
altering, 20
assembling, 23
cold start, 22, 40, 60
copying to disk, 26
locating, 21
logical devices, 4, 40, 45
mapping printer output in, 58
source program for, 64
USER area in, 21, 40
vectors for, 21, 39, 130, 310
warm start, 22, 28, 40, 44, 60, 86, 130,
291
Bit setting and resetting, 46, 79
Bit bucket, 56
Block allocation map, 291-292
program to display, 294-310

INDEX 395

Block move, 92
Block numbers, 174-175, 289
Block size, 174, 271
Boot
cold, 22
warm. See Warm start
Branch, absolute vs. relative, 78
Breakpoint, 97
Buffer
console. See Console buffer
general, 4
sector, 182
Built-in commands, 6-8
Cache, memory, 59
Carry flag, 125, 159
CCP, 2, 5. See also Built-in commands
Closing a disk file, 226-228
Cold boot, 22
Colon
in device name, 40
in label, 35
Command file, 9
displaying, 194
Command line tail, 4, 178
Commands, 6, 9
Comments, 35, 76
Comparing disk files, 245, 247
Comparison, ASCII, 116
Comparison, binary, 113, 115
Complement, two’s, 76
Conditional assembly, 74-75
Console buffer, 139, 143, 156-157, 159,
164, 178
getting characters from, 156-157, 159
printing characters from, 139, 143
reading characters into, 154, 156
Console command processor, 2, §
Console, 144)
BIOS vectors for, 22, 41-42
BDOS calls for, 132
logical vs. physical, 55
status, BDOS call for, 134
Constants, in macro library, 80
CONTIN program, 12
Control characters, 8, 157
check for paired, 198
Conversion, base. See Base conversion
COPY program, 20
Copying BIOS to disk, 26-31
Copying a diskette
with COPY, 20
with PIP and SYSGEN, 17-19
Copying a file
with PIP, 17
with COPYV, 248-249
Copying all files, 17

Copying system tracks, 17-20
CP/M
altering, 17, 20-21
finding the version number, 153
organization of, 2-5
SYSGEN version of, 18, 28
working version of, 18, 28
CPU, distinguishing 8080 from
780, 146-147
CRYPT program, 233-235
DAA operation, 152-153
Data port, 50
Data terminal ready, 51
encorporating a check for, 55
program to find the flag for, 52
Data tracks, 17
DDT, 24. See aiso Debugger
Debugger
loading a file with an offset, 30
loading a hex file with, 24
return to, 97, 214
setting up an FCB with, 30
Default FCB, 4, 164
DELETE program, 257-260
Device names, 40
DIR command, 6
DIREC program, 283-287, 294-310
Directive, assembler, 35
Directory, disk, 8, 17, 174, 212
blocks, 289-290
Directory allocation, 272
Disassembly, 21, 40
Disk
block numbers, 174-175, 289
block size, 174, 271
copying, 17-20
data tracks on, 17
formatting, 16
organization, 173-174, 212, 268-274
program storage area on, 17
resetting. See Warm start
system tracks on, 17
Disk directory, 8, 17, 174, 212
blocks, 289-290
Disk FCB, 174
Disk file
closing, 226-228
creating, 211-212
deleting, 216, 218-219, 252-253, 260
duplicating, 229
opening, 177-182, 221-222, 224
protecting, 116, 213, 248
reading, 238, 240
reading a sector of, 182-183
renaming, 9, 225, 251-252
unprotecting, 212-215

396

MASTERING CP/M

Disk file (continued)
writing, 240, 242
writing a sector of, 225-226
Disk-operating system, 2
Disk parameters, 268-270
directory allocation, 272
for 8-inch floppy, 273, 288
extent mask, 272
program to display, 281-282, 288
Disk parameter block, 270-274
Dispiay
of ASCII file, 188
of binary file, 194
Division, macro for, 278
DMA address, 182, 240
DTR bit, 57
Dummy parameter, 73
DUMP program, 194-197
Editor, 34
Encrypting a file, 230, 232, 235-237
End of file, 59, 61
Engaging the printer
with control-P, 11
with the debugger, 42-43
with an executing program, 43-45
with the IOBYTE, 45-47
Envelope addressing, 198
Erase file, 7, 17, 252-253, 260
Error messages, macro for, 176
Escape key, termination with, 192-193
Executable file, 38-39
Extension, file name, 10
Extent, 11, 175
Extent mask, 272
FCB. See File control block
FDOS, 2, 130
File control block, 4, 173-175, 212
block numbers, 174-175
block size, 174, 271
default, 4, 164
disk, 174
example, 175
extent, 11, 175
file name, 174
file type, 174
from command line, 164
initializing, 30, 178-180, 214, 219
memory, 174, 177
multiple, 11, 175, 290
updating disk, 227
File name, 9
ambiguous, 113, 121, 220
extension, 10
macro to delete, 216, 218-219
macro to input, 184
File protection, 116, 215
File type, 10

Filling memory with a constant, 109-112,
293
Flags
assembly time, 99
carry, 125, 159
data ready, 50
data terminal ready, 51
distinguishing 8080 from Z80 with, 146
file protection, 116
macro, 99
overflow, 146
parity, 146
ready, 50
resetting and setting, 79
status, 50
write protection, 212
zero, 46
zero for double register, 94
780, 78
Floppy disk. See disk
Formatting a disk, 16
Function number, BDOS, 130-131,
392-393
Global variable, 98
GO program, 165-166
HEX file, 37-38
converting to COM file, 38
loading with debugger, 24
Hexadecimal numbers
converting to binary, 159
converting from binary, 149, 151-153,
High-level language, 34
Inline macro, 82, 94, 207
Instruction set
8080, alphabetic listing of, 324-327
8080, details of, 350-366
8080, numeric listing of, 328-331
Z80, alphabetic listing of, 332-340
780, details of, 367-391
Z80, numeric listing of, 341-349
Interrupts, 4, 50
IOBYTE, 4, 130
changing with BASIC, 47-48
changing with a debugger, 47
changing with an executable program,
161
changing with STAT, 48
engaging the printer with, 45-47
program to display, 153-154
directing printer output with, 56-58
Jump, absolute vs. relative, 78
Jump vectors, 21, 39, 130, 310
Label, assembly-language, 35
Leading-zero suppression, 276
Library, macro, 80. See aiso Macros,
library of
Linking loader, 25, 38

INDEX 397

List device. See Printer
Literal parameter, 104
Loader, 25, 38
Local variable, 84, 94, 99
Logical AND, 46, 50, 120, 124
Logical device, 4, 40, 153
mapping to actual device, 45-48
Logical OR, 94
Logical shift, 54
Looping method, 50
Lowercase, conversion to upper, 118-121
MAC assembler, 23-25, 34, 80-81, 84
Macro, 71
definition of, 72
directory of, 81
dummy variable in, 73
expansion of, 72
global variable in, 98
inline, 82, 94, 207
library, 80. See also Macros, library of
local variables in, 84, 94, 99
missing parameters in, 74, 104
for Z80 instructions, 75
DJINZ, 79
NEG, 76
Macro assembler, 72
MACRO-80 assembler, 25, 34, 74
Macro parameters, 73, 84
angle brackets around, 104, 176
omitted, 74, 104
Macros, library of
ABORT, 193
AMBIG, 122
BINBIN, 275
CLOSE, 228-229
COMPAR, 114-115
COMPRA, 116-118
CPMVER, 154
CRLF, 137
DELETE, 217-218
DIVIDE, 280-281
ENTER, 89
ERRORM, 177
EXIT, 89
FILL, 110
FILLD, 294
GFNAME, 185-197
HEXHL, 159-161
HLDEC, 276-277
LCHAR, 168
LDFILE, 238-239
MAKE, 213
MOVE, 93, 100-101, 106-107
MULT, 279-280
OPEN, 181
OUTHEX, 150

Macros, library of (continued)
OUTHL, 279
PCHAR, 135
PFNAME, 217
PRINT, 141, 144-145
PROTEC, 248
READB, 157-158
READCH, 134
READS, 184
RENAME, 226
SBC, 125
SETDMA, 183
SETUP2, 223-224
SYSF, 133
UCASE, 119
UNPROT, 216
UPPER, 124
VERSN, 83
WRFILE, 241-242
WRITES, 227
Mapping
disk block numbers, 291-292
IOBYTE, 45
logical to physical devices, 45, 48
Masking AND, 46, 58
Memory allocation, 3, 19
Memory cache, 59
saving on disk, 260-261
Memory FCB, 174
Memory map, 64K, 320-323
Mnemonic, 22, 34
Moving information in memory, 92-95,
97-100, 104-105, 107, 109
Multiplication, macro for, 278
NUL, 74, 104
Offset, calculation of, 29-30
One’s complement, 76
Opening a disk file, 177-182, 221-222, 224
Operand, 35
Operating system, 2
Operation code, 34
OR, logical, 94
Order of evaluation, 105, 107
ORG directive, 22, 35, 84
Overflow flag, 146
PAGE program, 168-169
PAIR program, 204-206
Parameter
actual, 73
angle brackets around, 104, 176
command line, 178-180, 219-220
dummy, 73, 88
formal, 73
literal, 104
macro, 73
Parity flag, 146

398

MASTERING CP/M

Patch, 42

Peripheral device, 4, 45

Physical device, 45, 153

PIP program, 12, 17

Pointer, memory cache, 60-61

Port, peripheral, 50

Printer
engaging with BASIC, 47-48
engaging with control-P, 11, 55
engaging with the debugger, 42-43

engaging with an executable program,

43-45
engaging with the IOBYTE, 45-47
mapping output, 56, 58
directing output to console, 56
directing output to memory cache,
59-60
Printer ready, 50
Printing a string, 139-144
Program storage area, 17
Reading a sector, 182-183
Reading a file, 238
Ready flag, 50
Record, 11, 175, 289
Register
data, 50
saving CPU, 131
status, 50
testing double, 94
REL file, execution of, 38-39
RENAME program, 253-256
Renaming a file, 251-252
Repeat macro, 203, 207-208
Resetting a bit, 46
Restart instructions, 4, 97, 214
SAVEUSER program, 26
Saving a program, 7
Scrolling, 7
Sector, 16
Semicolon
double, 76
single, 35
Sending a character, 50
Setting a bit, 79
SHOW program, 189-191
SID, 24. See also Debugger
Size of file, 11, 320
Stack pointer, 36
saving and restoring, 86~-88, 90

STAT, 11, 213
changing the IOBYTE with, 48
changing names of devices, 49
Status flags, 50
Status port, S0
Subtraction, 76
16-bit, 125, 275
SYM file, 24
Symbol table, 24
SYSGEN program, 17-19, 27-31
System boot, 22
System diskette, 16
System parameter area, 2
System tracks
copying, 17-19
revising, 26-31
Tail, command line, 4, 178
Terminating programs, 192-193
TPA, 2, 5, 164
Tracks, 16
data, 17
system, 17
Transient command, 9
Transient program area, 2, 5, 164
Two’s complement, 76, 275
USER area of BIOS, 21.
source program for, 64-68
See also BIOS
User number, 130, 174
Variable
dummy, 73
global, 98
local, 84, 94, 99
Vectors, 21, 39, 130
Verification, 245, 247
Version
CP/M, 153
coding with macro, 81-82, 84

Warm start, 2, 8, 22, 40, 44, 60, 86, 130,

291

Working version

of BIOS, 21

of CP/M, 18
Wrap around, 60
Write-protected file, 212
Writing a disk file, 240, 242
Writing a sector, 225-226
Zero, testing double register for, 94

