

I Λ-

' ' ';· · À ■■

A 3ict

C>8l'3.0i> j

CP/M* — The Software Bus:
a programmées companion

A. Clarke
J.M. Eaton

D. Powys Lybbe

*CP/M is a trademark of Digital Research, Inc.

Sigma Technical Press

Copyright © 1983 by Sigma Technical Press

Ail Rights Reserved

No part of this book may be reproduced or transmitted by any means without
the prior permission of the publisher. The only exceptions are for the purposes
of review, oras provided for by the Copyright (Photocopying) Act or in order
to enter the programs herein onto a computer for the sole use of the purchaser
of this book.

ISBN 0-905104-18-8

Published by:
SIGMA TECHNICAL PRESS
5 Alton Road
Wilmslow
Cheshire
UK

Distributors:

Europe, Africa:
JOHN WILEY & SONS LIMITED
Baffins Lane
Chichester
West Sussex
England

Australia, New Zealand, South-East Asia:
Jacaranda-Wiley Ltd., Jacaranda Press,
JOHN WILEY a SONS INC.
PO Box 859,
Brisbane,
Queensland 40001,
Australia

Acknowledgement:

CP/M and MP/M are registered trade marks of Digital Research Inc. The
contents of Chapter 18 are proprietary to Digital Research.

PREFACE

If you are new to CPM™ you may find that some of this book is way over your
head at first reading - and if you are also new to programming, even more of it
will be. Take heart, we've allowed for ail levels of understanding.

Each relevant Chapter starts with a few paragraphs of 'fundamentals' -
sufficient outline to get you started. Then the detailed content of the Chapter
follows, and finally there is a reference summary of the points made in that
Chapter.

Newcomers to CP/M will find ali they need in the opening paragraphs, and
will also be able to dip into the summaries to extent their useful knowledge.
After a little practice, the remainder of the material will begin to make sense -
and by the time you've read and understood the whole book, you will be
making CP/M dance to your tune.

You should be aware that there is a key called the 'Control' key (often marked
CTRL) on your keyboard, which is used in a similarway to a shift key. A key
pressed on itsown hasa meaning - usually a small letteror'lower case'. A key
pressed while the 'Shift' key is held down has a different meaning - usually the
capital or 'upper case' letter. A key pressed while the CTRL key is held down
has a third meaning - often an instruction to CP/M. These instructions or
commands are usually written as C which means hold down the CTRL key
while you press and release the C key. Holding down the CTRL key has no
effect, however long you hold it, but some keyboards hâve letters which
repeat, so apart from the 'shift' and 'control' keys, get into the habit of
pressing any key firmly but briefly.

CP/M is a registered trademark of Digital Research Incorporated.

iii

CP/M The Software Bus (a programmera companion)

A final point, some keyboards hâve both a CAPS LOCK and a SHIFT LOCK.
The CAPS LOCK, when pressed, is engaged, and stays engaged until it is
pressed again to release it. This only affects the letter keys, not the number
or punctuation keys. When it is engaged, ail letters are upper case - capital
letters - but ali the other keys work normally. For instance, the keyboard on
which this was first typed has a key with a / on the lower half and a ? above.
Whether the caps lock is pressed or not, touching that key produced a / but
touching it while holding down the 'shift' key produced ?. If your keyboard
has a shift lock it is suggested that you avoid it - leave it unlatched - off - not
pressed. On some hardware implémentations of CP/M the CTRL key won't
work if the shift lock is 'on'. On the other hand, it is suggested that you do
work with CAPS LOCK engaged, unless you are keying in text which requires
upper and lower case. Where there is no apparent SHIFT, the hardware
System may require (say) a λ A to change from upper to lower case, and vice
versa.

iv

CONTENTS

Préfacé

1. A Historical Sketch 1
1.1 Fundamentals 1
1.2 The Historyupto Version 1.3 2

1.2.1 The Structure of CP/M 1.3 5
1.3 CP/M Version 1.4 5
1.4 CP/M Version2.x 6
1.5 CP/M PLUS — orCP/M Version3.1 6
1.6 ConcurrentCP/M 7
1.7 MP/M 7
1.8 Sixteen Bits 7
1.9 Summary 8

2. The Console Commands 9
2.1 Fundamentals 9
2.2 FileNames 11
2.3 Command Summary 14

2.3.1 HowtoStartUpaNewUSER Area 18
2.3.2 Console Editing Commands 21
2.3.3 Résident Commands in the Console Command

Processor 25

3. The Information Transients- STAT, HELP, DEVICE, SHOW 27
3.1 Fundamentals 27
3.2 The STATCommand 28

3.2.1 STAT — The Multifaceted Utility to show
STATus 30

3.2.2 Setting File(s) or Driveto R/O 30
3.2.3 STATto'Hide'a Filefrom the DIR Command 31
3.2.4 STAT to show the DEVISE Assignments 32

v

3.2.5 STAT Used to Find the Characteristics of
Your Drives 33

3.2.6 STAT and USERS 34
3.2.7 SUMMARYof STATCommands 35

3.3 The Version 3.1 Commands 36
3.4 DEVICE 36

3.4.1 Display the Assignments 36
3.4.2 Protocol and Baud Rate 37
3.4.3 Displaying the Device Names and

Characteristics 38
3.4.4 Making Assignments 38

3.5 SHOW In Version 3.1 39
3.6 Summary of DEVICE and SHOW Commands in

Version 3.1 41

4. PIP 42
4.1 Fundamentals 42
4.2 PIP — The Peripheral Interchange Program 45

4.2.1 PIPWithandWithoutaCommand Line 46
4.2.2 General Formsof PIPCommand Lines 46
4.2.3 PIP Destinations 46
4.2.4 PIP Sources 47
4.2.5 Sample PIP Commands 48
4.2.6 UsingthePIPParameters 49

4.3 Summary of PIP 52

5. The 'Batch Processing' Transients, SUBMIT and XSUB,
PROFILE, and GET 54

5.1 Fundamentals 54
5.2 UsingXSUBwith SUBMIT 56
5.3 PuttingaRun-TimePARAMETERinSUBMIT 58
5.4 Making a 2.2 Program Djsk into an 'Auto-Start'

System 59
5.5 Makinga3.1 Disk into an'Auto-Start'System 60
5.6 Summary 60

6. Creating and ControllingCP/M's Operation 62
6.1 Fundamentals 62
6.2 SYSGEN (Versionsupto2.2) 63

6.2.1 What SYSGEN Does (and doesn't do) 65
6.3 MOVCPM (Versionsupto2.2) 65

6.3.1 Summaryof MOVCPM 66

vi

6.4 Summary of SYSGEN and MOVCPM, the Commands
upto Version 2.2 67

6.5 COPYSYS (Version 3.1) 67
6.6 INITDIR and SET 68
6.7 GETand PUT 73
6.8 SETDEF (Version3.1 only) 76
6.9 GENCOM (Version3.1 only) 78

DUMP, LOAD, DDT and SID 81
7.1 DUMP 81
7.2 LOADand HEXCOM 82
7.3 DDT 82

7.3.1 An Informative Illustration 91
7.4 SID 91
7.5 Summary 95

The CP/M Compatible Assemblers 97
8.1 Fundamentals 97
8.2 AS M 97

8.2.1 Successful Assembly 98
8.2.2 Errors on the Console 99
8.2.3 Errors in the PRN File Lines 99

8.3 An Overview of Assembler 100
8.3.1 Formatoi Assembly Code
8.3.2 Basic Concepts of Assembler Level

100

Programming 100
8.4 Assemblers Available 103
8.5 Summary of Conventions and Symbols used in

Assembler Directives 106
8.5.1 Assembly Directives 107
8.5.2 MACRO Directives 107
8.5.3 RELOCATION Directives 108

8.6 Assembler Pseudo-Ops 109
8.7 MAC (Supplied with Version 3.1) 111

8.7.1 MACFilename 111
8.8 RMAC 115
8.9 LINK 115
8.10 LIB 117
8.11 Summary 117

vii

The CP/M Programming Languages 118
9.1 Fundamentals 118
9.2 The Common Languages 119
9.3 BASIC-E 119
9.4 CBASIC 121

9.4.1 The CBASICToggles in Detail 122
9.4.2 More examples of Toggles 123

9.5 XREF 124
9.5.1 TheXREFToggles 124
9.5.2 Examples of XREF Commands 125

9.6 RESERVED WORDS in CBASIC 125
9.6.1 Error Messages from CBAS2 126
9.6.2 Error Messages in CRUN2 129
9.6.3 Text Messages in CRUN2 130
9.6.4 Warning Error Codes in CRUN2 130
9.6.5 Error Codes in CRUN2 130

9.7 MBASIC 133
9.7.1 Loading MBASIC underCP/M 134
9.7.2 The MBASIC Editor 135
9.7.3 The MBASIC Interpréter 139
9.7.4 The MBASIC Compiler 145

9.8 ALGOL/M 148
9.8.1 ALGOL/M Compile and Run 149
9.8.2 ALGOL/M Errorsand Warnings 149
9.8.3 ALGOL/M General Description 151

9.9 CIS COBOL 153
9.9.1 CIS COBOL Error Codes 157
9.9.2 COBOL 'RUN' Command Line 160
9.9.3 Interactive Debugging 163

9.10 Pascal/MT 164
9.10.1 Compile-Time Options 165
9.10.2 Input and Outputin Pascal/MT 166
9.10.3 PASCAL/MTSpecial Routines 166
9.10.4 Pascal Debugging Facilities 167
9.10.5 Reserved Wordsin PASCAL/MT 168

9.11 The LanguageC 169
9.12 FORTRAN under CP/M 170
9.13 MACRO-80 171
9.14 Summary 172

viii

10. TheCP/M Editors 173
10.1 ED - The CP/M TextEditor 173

10.1.1 Simple Command Set 174
10.1.2 Back-Up Files 176
10.1.3 LineNumbersin ED 177
10.1.4 The Full Set of ED Commands 177
10.1.5 Further Examples of Combination Commands 180
10.1.6 ED Error Indicators 181
10.1.7 ED Control Characters 181
10.1.8 Summaryof ED 181

10.2 Wordstar 182
10.2.1 Single Letter Commands 184
10.2.2 Two Letter Commands 185
10.2.3 The Dot Commands 190
10.2.4 Wordstar Summary 193

10.3 BASIC LineEditors 193
10.4 Other Editors 194
10.5 Spooling the Printed Output 194

10.6 Summary 195

11. The Structure of CP/M 196
11.1 Fundamentals 196
11.2 CP/MinMemory 198

11.2.1 The System Parameter Area 201
11.2.2 TheBootstrap 202
11.2.3 The Disc Directory 203
11.2.4 The File NameTable 204
11.2.5 Record Block Table 206
11.2.6 The IOBYTE — Input/Output Device

Mapping 206
11.2.7 Sector Allocation by CP/M 207

11.3 Memory Disc — MDISC 208
11.3.1 AddingMDISCtoaCP/MSystem 209
11.3.2 AUseof MDISC 211

12. Hardware 213
12.1 Fundamentals 213
12.2 Dises 213
12.3 Screen Handling 218
12.4 Non-Functional and Missing Characters 219

ix

14.

15.

16.

13. UsingtheFDOS 221
221
222
249

13.1
13.2
13.3

Fundamentals
The Function Codes
Summary

Using the BIOS 250
14.1 Fundamentals 250
14.2 Howto Call BIOS Routines 250

14.2.1 WheretheBIOS RoutineCallsare 252
14.2.2 BIOS Extensions 258
14.2.3 BIOS Enhancements 258
14.2.4 Beforeand After CP/M 2.2 259
14.2.5 BlOSCalls 259

14.3 Stack Requirements 261
14.4 Interlacing 261
14.5 ThelOBYTE — Input/Output 263

14.5.1 AlteringthelOBYTE 264
14.6 Disc Parameter Block 265
14.7 A Complété Illustrative Subroutine 267
14.8 Summary 269

Configuration 270
15.1 Fundamentals 270
15.2 CP/M Installation 272
15.3 'Patching'the BIOS 273
15.4 First-Time Installation of CP/M 273

Networking and Multi-User Systems 275
16.1 Fundamentals 275
16.2 Networking 276
16.3 Multi-User Systems 279
16.4 MP/M Commands 280

16.4.1 M PM STAT 282
16.4.2 ERAQ 282
16.4.3 CONSOLE 282
16.4.4 ABORT 282
16.4.5 ~D 283
16.4.6 ATTACH 283
16.4.7 DSKRESET 283
16.4.8 SPOOLand STOPSPLR 284
16.4.9 TOD 284
16.4.10 SCHED 285

x

16.5 GENerateand LoaDan MP/M System 285
16.6 Priority within MP/M 286
16.7 MP/M Version 1 versus Version 2 287

16.7.1 Record Locking in Shared Files 287
16.7.2 NewFCBs 288
16.7.3 File Structure Enhancement 289
16.7.4 Special Additional Dises 289

16.8 Conversion from '80 to '86 292
16.9 Summary 292

17. CP/M onthe8086 294
17.1 Fundamentals 294
17.2 The Initial Hardware 295
17.3 The Design Decisions 295
17.4 BOOT86 296
17.5 Loading CP/M86 297
17.6 Processor Conflict 299
17.7 BIOS86 300
17.8 Using CP/M86 303

17.8.1 The Advantagesof CP/M86 303

18. 'BUG FIXES'from Digital Research 305
18.1 CCPAUTO-LOAD 305
18.2 Reversing the Functions of the Backspace and Rubout

(Delete)Keys 308
18.2.1 Make Rubout (Delete) identicalto Backspace 310

18.3 BIOS Error Return Code Options 311
18.4 Error when Using the Optional Block/Deblock

Algorithms 313
18.5 Phase Error WronglyGenerated in ASM 314
18.6 ImprovingtheS Function 315
18.7 Error in PIP when Start and Quit Strings are the Same

Length 316
18.8 Using XSUB and SUBMITwith PIP 317
18.9 $$$ SUB FileCreated on Wrong Drive 317
18.10 PIPObjectFileTransferProblem 318
18.11 Using'CTRLandn'Charactersin'.SUB'Files 319
18.12 Allowing PIPtoCopytothePRN: Device 320
18.13 ASampleBIOSforaSerialPrinter 320

xi

18.14 Changing the'p'(Page) Lengthin ED 321
18.15 Nested SUBMIT Files 322
18.16 Configuring CP/M for Page Boundaries 324
18.17 Summary 325

APPENDIX 326

xii

CHAPTER ΟΝΕ

A HISTORICAL SKETCH

1.1 Fundamentals.

An operating System breathes life into hardware. With an operating System,
you can press a key on the keyboard and get a response. Press the right keys,
and you can taik to the computer, and get its replies. Without a program, the
hardware is lifeless - a sculpture in métal and plastics. Without an operating
System, ali the detailed activities of timing the movements of data bits betwen
the main internai memory and the peripherals - keyboard, screen, dise drives,
printer - would hâve to be written into every single program you write. Also,
you would hâve to write your own spécial programs to do ali the routine
'housekeeping' tasks, like keeping lists of files, copying files from here to
there, naming and renaming them, and keeping the activities of one program
from damaging another.

CP/M, which is what the Digital Research Inc 'Control Program and Monitor'
is usually called, is an operating System. It is in several parts, one of which is
held in the internai memory of your machine ali the time the machine is active.
This part is called the 'résident' operating System. Ali the other parts (the
'transient commands') are held on flexible disc and are called into the
internai memory when they are wanted, and the space they occupy is then
released as soon as they hâve done their task. The résident part of CP/M
handles ali the input and output, the communication with you, the operator,
and some of the 'housekeeping' as we will see. This part of CP/M is also held
on flexible disc, usually on the first one or two tracks of a disc and is not
directly accessible by the programmer.

To load the résident part of CP/ M from the disc into the internai store requires
a program. But, aswesaid, until CP/M isin the store, the machine is lifeless-
apparently a paradox. If you hâve ever worn or seen old-fashioned boots with

1

CP/M The Software Bus (a programmers companion)

a loop at the back to help you to pull them on, you may hâve heard the
expression 'to pull yourself up with your own bootstraps'. Of course, you
cannot lift yourself off the ground that way - but that is why the tiny program
which loads CP/M into the main store is called a 'bootstrap'. Ail hardware
has some kind of a bootstrap built in, or some way to get one in. Loading
CP/M is called 'booting' - or 're-booting' - the System.

When you hâve CP/M loaded into the machine, waiting for your command, it
will show the 'prompt' on the left edge of the console - thus -

A>

This tells you that you are logged on' and that the first dise drive (drive A) is
directly availableto you. Other drives (aswe willsee) areindirectly available, if
you include the other drive name in your instruction.

How your particular machine 'boots' CP/M dépends on what machine it is -
so look at the manual. Perhaps you just switch on, put a CP/M disc into the
first drive and close the door on it. Some machines require you to press a key -
B perhaps, or the RETURN or ENTER key. This 'loading from cold' is known
as a 'cold start' or a 'cold boot'. If you already hâve CP/M loaded, perhaps
with someother program aswell, you can reload CP/M and clearthe memory
without losing what is on the screen - this is called a 'warm start' or a 'warm
boot'. You 'reboot' ('warm boot') by using·^ C, or CONTROLand C, aswesaid
earlier.

The CP/M operating System isan industry standard simply because it is used
so widely - on computers from over 80 different manufacturers - by so many
people. It is well understood, reliable, and although purists and academies
criticise it, it is popular with users who understand it. The remainder of this
Chapter is concemed with the background to the development of CP/ M. Skip
to Chapter 2 if you do not need the detail at this stage, and corne back to this
Chapter when you need to understand more of the make-up and backqround
to CP/M.

1.2 The history up to version 1.3

CP/M is a control program and monitor for computers running one or more
floppy dises. It is by no means the most sophisticated dise operating System,
and for ail its merits, it has been compared unfavourably with other Systems.
One fact remains: it is by far the most popular System for 8080, Z80,8085 and

2

Chapter 1 A Historiée! Sketch

possibly 8086 chips. Its strengths lie in its robustness, versatility, portability
and flexibility. It has won almost universal acceptance as a general purpose
operating System for small machines, and has been selected and supported
by numerous microcomputer manufacturers and software suppliers, but
above ail by users.

CP/M's most important function has been to link standard user procedures
and applications to a wide variety of computers. In this respect, it has corne to
resemble a 'software bus'.

The development of the cheap microprocessor meant that, for the first time,
hobbyists could construct their own computers Suddenly in the United
States, people who were involved in the computer industry in some way
could hâve their own computer at home. The arrivai of the floppy disc - and
particularly the mini-floppy - meant that computers could be made that would
rival the power of the commercially made micro-computers; but such
complex devices and ali that power are useless without software that can
Control and monitor the internai, interacting operations within the micro. As
in the past, it proved to be much easier to make the physical hardware of a
computer than to make the controlling program to run it. In programming
terms even now we are still far from exploiting the full power of the
obsolescent 8080 central processing unit. The floppy disc demanded Control
at the leading edge of the science of Control software. In effect, there were
suddenly a great number of 8080- based computers with floppy disc drives,
looking for adéquate software to drive and run them. CP/M fell almost by luck
into this sudden market vacuum, and and established an ubiquitous position,
which it retains and consolidâtes to this day, despite the regular gossip and
product launches which predict its imminent demise and replacement with a
'better product'.

CP/M was the right software in the right place at the right time. It was created
by one man, Gary Kildall, not as an end in itself but simply as a means of
implementing PL/M on the 8080 chip. Gary Kildall - Doctor Kildall - was an
experienced computer consultant, who had played a major part in the
software development work for the 8080, and had developed PL/M as a
software tool to facilitate this development work.

Many of the projects like lnterp/80, which simulated the 8080 before the chip
became a reality, were written in PL/M. The next stage was to be PL/M
implemented on the 8080 by cross compilation, and by the construction of an
operating System to support the compiler. It was at about this time that the

3

CP/M The Software Bus (a programmers companion)

floppy disc appeared, and Gary decided that the operating System should be
based on this revolutionary mass Storage device. CP/M was the resuit of the
struggle to make the floppy disc work with the 8080 chip. Previous Systems,
before the floppy disc, depended on paper tape for Storage of programs and
data - and the Teletype 33 for input and output (some colleges and schools
still use the type 33 - it can be a nerve-shattering expérience I).

If fate had not intervened, CP/M might hâve become Intel's operating
System. For most of us, it was fortunate that the firm was suffering growing
pains due to the enormous success of their 8080. No-one, up to that moment,
had succeeded in packing so many transistors onto a small piece of Silicon,
and Intel was, in conséquence, swamped by the demand for it. Rapid growth
meant re-organising management structures and the decision was taken -
incredible in hindsight - to jettison the software projects and disband the
brilliant team. CP/M went with Gary, and CP/M was gradually developed in
his spare time, and as part of his work as lecturer at the Monterey Naval
Postgraduate school.

John Torode, an electronics engineer, became interested in the development
of CP/M from its early stages, and was responsible for the design of the disc
controller. His company, Digital Systems, exhibited the 'wire wrapped'
prototype of the controller board for the Altair computer at a local computer
club meeting. To the considérable surprise of thespectators, and the relief of
John and Gary, it worked perfectly !

CP/M is, in fact, a very simple and robust operating System that supports
expansion and élaboration with great ease. It is a skilled and calculated
compromise between size and versatility. It is possible to devise a a System
which stores files more economically, or which accesses the information
more speedily. One can certainly construct an operating System that is more
helpful to the user. Whether one can do these things in as little memory space
- or in such an adaptable way - is another matter.

Several qualities contribute to CP/M's popularity. It re- allocates dise space
dynamically, it uses command files in preference to inbuilt functions, and it
allows programs to access its primitive functions. It is not unique in these
qualities, only in their combination within a simple and robust operating
System. The fanciest System is useless if it occasionally malfunctions, or uses
up an excessive proportion of the often rather cramped addressing space of
an 8-bit micro. And there is one more very significant feature of current CP/M
as we know it.

4

Chapter 1 A Historica! Sketch

1.2.1 The structure of CP/M 1.3.

The qualities described above are insufficient to explain the success of CP/ M.
In common with most operating Systems, the original versions of CP/M were
designed for spécifie ranges of microcomputers. Probably more by accident
than design, CP/M diverted from this rigid hardware dependence.

It was in 1976 that the profound change took place in the philosophy of CP/ M
and its structure. Imsai had suplied a large number of floppy disc units and
approached Dr Gary Kildall for an operating system for them. He was
reluctant to adapt CP/M to yet another controller, and thought to save
duplicating effort by introducing a separated 'Basic input and output system'
or 'BIOS'. In principle, now that this step was taken, the hardware dépendent
parts of CP/M were concentrated in the BIOS. Anyone could thus adapt
CP/M to his own peculiar hardware while leaving a common standardised
user interface. This led to the release of CP/M Version 1.3, the first system to
be offered to the public.

Aisoin 1976, Dr. Kildall founded Digital Research to market the new product.
Since then CP/M has been chosen by over 80 manufacturers, and there are
estimated to be over 200,000 users worldwide, establishing CP/M as the
'de-facto' standard operating system. This was acknowledged when in 1979,
CP/M was named to the Datapro Software Honor Roll.

We will nowconsiderthedevelopmentsof CP/M, and the general trendsup
to the présent. We will look at the future in later chapters. However, it is
important to réalisé that the whole concept of CP/M is to produce an
appearance to the user which is the same for ali implémentations, and that
this is achieved by inserting interfaces between what the user does (or
receives) and what the computer itself receives (or sends).

1.3 CP/M version 1.4

Ail products which are widely used are subject to pressure for change. CP/M
is no exception. The version of CP/M for 8 inch IBM standard floppy dises,
which isstill widely used, isthe one immediately after 1.3- so version 1.4 isthe
one which took CP/M into world-wide acceptance. However, the drives to
handle 8 inch dises are quite large, and before long the 'mini-floppy' - the five
and a quarter inch dise was launched. Fine - but this had a new recording
standard, new numbers of tracks and sectors, new packing densities and so

5

CP/M The Software Bus (a programmera companion)

on. And there was not just one new standard, there were several. Density of
recording on the track varied, mechanisms were developed for using both
sides of dises as an alternative to the original 'single sided' standard. There are
even different recording codes. Version 1.4 could not cope.

1.4 CP/M version 2.x

Just as CP/M came into existence as the operating System for
microcomputers with IBM standard dises, so versions2.x were developed to
allow the impementors to cope with the vagaries of the multiplicity of new
formats, particularly on the smaller 'mini-floppies'.There are undoubtedly
enhancements in 2.2 which were not available in 1.4, but to the user - perhaps
an individual running a business package - the différences are relatively small.
To the programmer, the différences are more significant. In this book, we will
be concentrating mainly on 2.2, with notes about différences which arise with
1.4, and withasmuch detail aswecangive on later versionsstill. Essentially in
CP/M2.X, the BIOS passes tothe BDOS a table of the parameters of the dise
drive being used, rather than the BDOS assuming the 8 inch IBM standard as
in previous releases.

1.5 CP/M PLUS - or CP/M version 3.1

Now that memory is becoming available relatively cheaply, memory 'banking'
- the use of more memory than can be addressed directly in a two-byte
address - has become of much greater significance. The old address
limitation of CP/ M version 2.2 was 64k. So subterfuges were resorted to such
as making CP/M think that parts of memory were peripherals. Alternatively,
more extensive modificationsof the System were required. So just as 1.4 was
'dise', 2.2 was 'different dises', version 3.1 is 'memory banking'. There is
more différence between 2.2 and 3.1 than there isbetween 1.4 and 2.2. The
commands are more powerful, there is a 'help' System, and there are many
different commands. We will try to cover them without confusing the users of
earlier versions. CP/M 3 really is a version of CP/M that contains extended
features allowed by the greater availability of banked memory, and this
updates the product to make it more compatible with MP/M 2 and
Concurrent CP/M86 v 2.

6

Chapter 1 A Historical Sketch

1.6 Concurrent CP/M

The availability of low cost memory, fast 16 bit micros - and the increased
availability of a wide range of peripherals - also opened an opportunity for
Digital Research in another direction. A single user, ata single keyboard, with
one microcomputer, can only do one job at once, with CP/M 1.4 up to 3.1.
However, the processor is almost always under-used in those circumstances,
and there are often times when the computer could be set running on some
task that does not need input from the keyboard, so the user just has to wait.
Concurrent CP/M allows the user to switch the job that does not need
keyboard input to the 'background'. The keyboard (and screen) are then free
to initiate another task, so that the foreground and background tasks keep
running together. Upto eight different jobs can bestarted inthisway, and the
screen display can be switched from one to another by the user. If you were
familiar with the big computers of ten and more years ago, you would
recognise this as the old 'multi-programming' approach. Now, with the
advent of so much direct input by keyboards attached to the computer, there
is another different approach.

1.7MP/M

With the MP/M System - which isyet another version of CP/M -several users
at separate terminais (keyboards and screens or printers) can use the same
microprocessor to run different jobs simultaneously. This used to be known
as 'time-sharing', among other things. Such a System places considérable
demands on MP/M and some of the earlier versions of it came in for a good
deal of criticism - but current versions appear to hâve overcome the problème
of delaysand 'bugs' satisfactorily. MP/M 2 also serves as a master for CP/M
based networking Systems where several computers can share common
resources, such as large capacity dises and printers.

1.8 Sixteen bits.

With the arrivai of the 16 bit (instead of the 8 bit) chips, and the conséquent
increase in directly accessed memory and the larger instruction sets available
- Digital Research hâve been beavering away to produce versions of CP/M
2.2 and3.1 and MP/M which will run on those processors. CP/M-86 wasthe
first, which runs on the Intel 8086 chip. There is also an MP/M-86, for the
same processor and Concurrent CP/M86 v 2. A range of CP/M operating

7

CP/M The Software Bus (a programmera companion)

Systems is now available for the Motorola 68000 chip and will soon be
available for the Zilog Z8000.

1.9 Summary of Chapter 1

The 'fundamentals' explained the requirements of an operating System, and
how CP/M satisfies them.

The principal feature of CP/M which led to its success is the existence of the
BIOS - the interface which is provided in skeletal form by Digital Research, for
computer manufacturers to complété with the necessary hardware handling
instructions. Ali the rest of CP/M is standard, provides a standard 'face' to
the operator, and also happens (!) to offer an extremely effective compromise
between powerful commands and minimal memory occupancy. Some
transient CP/M commands exist only on dise until they are invoked, others
are built into the Console Command Processor, partof CP/M which isloaded
or reloaded at every cold or warm 'boot'

CP/M 1.4 is the operating System of the 8 inch standard dise. CP/M 2.2
followed it by opening up the possibilities for ali the different sizes and
formats of dises now available - principally thefive and a quarter inch. CP/M
3.1 is the System which also allows the use of 'banked' memory - as we will see
in later chapters. Ali the other versions are developments to take account of
16 bit processors, and/or multi-user or multi-job environments. There are
also the 32 bit processors to take into account!

8

CHAPTER TWO

THE CONSOLE COMMANDS.

2.1 Fundamentals.

The whole of this Chapter, with the exception of the information about
MP/M, is important for everyone who uses CP/M. Even someone who is
brand new to computers and operating systems should read everything
including the USER part.

The console is the keyboard and vdu screen (or teletype) of your
microcomputer. The keyboard is the principal input device, and the screen
may be simply a television set which is tuned to thejiTif output of your

computer, or is more likely to be a spécial vdu screen which is part of, or at
least directly connected to the keyboard. Your console may, alternatively, be
like a typewriter, with keyboard input and 'hard copy' output. Note that a tv
set cannot clearly display a full 80 column screen, so micro-computers which
have no true video connection may not have the standard 80 column by 24
line screen either.

There is one part of CP/M called the Console Command Processor -
something we will be dealing with in detail later - but what we need now is the
idea that it exists, and it contains within it the utilities (each is a small program)
which are invoked by one of six CP/M commands. In ali versions of CP/M
these are

ERA(erase)
DIR(directory)
REN(re-name)
TYPEIdisplay on screen)
USERIprotection of files)

and in 1.4 to 2.2
SAVE(copy memory to file)

but in 3.1
DIRSfdisplay system files)

9

CP/M The Software Bus (a programmer companion)

The SAVE command exists in 3.1, but is invoked in a way slightly different
from the version we will describe first - though the action of the command is
identical. We will describe DIRS in the section covering DIR.

These six 'résident' commands are the ones we will cover in this Chapter - the
remainder (transient) follow later. There are separate chapters on the
'statistics' command (STAT) the 'peripheral interchange program'
(PIP) and the SUBMIT program, used to enter a preset chain of commands.
Version 3.1 does not use STAT, but hasadditional commands which we will
cover when describing STAT.

The CCP (Console Command Processor) is 'booted' into memory with the
BIOS and BDOS - in the later versions of CP/M you will see it in the disc
directory as CCP.COM.

Ali the six 'résident' commands refer to files.

If a collection of characters which hâve been put in through the keyboard is
going to be retained - stored on a mass Storage medium - then it has to be
handled as a group which CP/M calls a file. Everything on the mass Storage
which you put there, whether it is a data file or a program is a file.

The mass Storage will take one of several forms. Originally, as we saw in
Chapter One, it was the arrivai of the 'flexible' dise which stimulated Gary
Kildall into producing CP/M as we now knowit. Since then, there hâve been
many technical advances. There are 'hard' dises which can be used on
micros, some of them using the sealed unit Winchester technology, and
others with replaceable dises. There are tapes, in cassettes, in cartridges and
in other handling Systems. There is the 'M-disc' - actually mass memory, but
organised so that it looks like a dise to CP/M, but gives phénoménal access
speeds. For brevity, we will simply refer to 'disc' for the remainder of this
section, but ali the comments apply equally to other forms of file Storage.

Files which are programs are generally read in from the disc into the memory,
ali at once. One program cannot be larger than the available memory space
unless it, in turn, invokes overlays which replace some of the code originally
loaded with the new code in the overlay.

Files which are data are read by program instructions, in small groups of
characters. Data files can be as large as a complété dise, or more, because
they are only read into the 'Transient program area' in small groups. When a

10

CCP.COM

Chapter2 The Console Commands

program is running, and a 'read record' instruction is encountered, this
translates into a call to CP/M for a record. CP/M actually reads a sector - part
of a track - not just a record. The sector may contain several records, so the
first 'read record' causes CP/M to read thesectorcontaining that record, and
pass to the program the memory location of the start of the desired record.
The second 'read record', if the second record required is in the same sector
as the first, which is already in the memory, does not cause a sector read, but
CP/M simply passes the appropriate memory address to the program.
Similarly when writing data records, CP/M 'buffers'data into logical groups
of characters, each of which is a sector in size. There may be several records
to a sector, one record to a sector, or even several sectors to a record - but
the actual physical read and write instructions are 'transparent' to the
program, CP/M handles them.

Sector sizes vary according to the device used (flexible or hard disc, or
whatever).

2.2 File Names.

CP/M allows for filenames of from one to 8 letters, and allows for an extra one
tothreeletterstoindicatethe type of file. In CP/M 3.1, a password may also
be added.

Ali letters and numbers, and most symbols, can be used in a file name. These
are permitted -

ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890 + - ! @ $ % ~ & () _ ^ x | { } /"'

and these are not permitted -

<>.,.;:=?*[]

Notice that the lower case letters do not appear. This is because the Console
Command Processor automatically translates any lower case letters in a
command or a file name into upper case. Fred and fred would both become
FRED. Program names, in some languages, may include lower case letters
and these will be preserved into the directory, but would not be available to
the CP/M console commands which we are covering here. You would be
unable to ERAse (say) a file which has the name Myprog.BAS.

11

CP/M The Software Bus(aprogrammerscompanion)

A file name is up to eight letters, plus up to three letters of type.

XXXXXXXX. XXX

If the type is specified (and the file need not have a type, or the type may be
omitted in some cases) there must be a 'period' or 'décimal point' between
the name and the type.

In 3.1, if a password is added to the filespec, it must follow a semicolon, and
contain 0 to 8 letters and/or numbers.

XXXXXXXX. XXX; XXXXXXXX

Ail files may be stored on one or other of at least two, and often more than two
dise drives. The name of the file is used as the Storage key on the disc, but
CP/M needsto know on which discto look for the file. Disc drives are lettered
from A to P. (Version 1.4 of CP/M only allowed A to D). To tell CP/M which
drive to look on for the file, the letter is put first, then a colon, and then the
name.

In 1.4 - 2.2, D:NNNNNNNN.TTT
In 3.1, D:NNNNNNNN.TTT;PPPPPPPP

If you do not use or do not need the drive letter, then the colon must not be
used either. As we will see, if you do not use a drive name (A: or B: etc) then
CP/M assumes one. The rules follow later. At présent we will assume that a
missing drive name 'defaults' to A:

CP/M allows you to refer to a single file by giving it the correct name, as
above, orallowsyou to refertoa 'class' of files (e.g. 'ailfileswith type .BAK').
'Wild card' characters are used for this.

CP/M recognises two 'wild card' characters in a name, the ? and *. The file
name with a ? or * is called an ambiguous file name. The file name in which ail
characters are given is an unambiguous file name. We will be referring to
these, shortly, as afn and ufn. Note that neither ? nor * may be used as the
Drive letter.

If a ? is used, it means 'any letter in this position'. If a * is used instead of a
name, or instead of a type, it means 'any name' or 'any type'.

12

Chapter2 The Console Commands

These illustrations show how file names are used.

ufn examples

FRED is a valid name on the logged drive.
FRED.COM is also valid.
A:FRED.COM is the same file, stated to be on drive A
B:FREDA.COM is a different file on a different drive.
A:FREDA.COM is the full name of FREDA.COM if you had taken the
disc out of B, and put it into A.
FREDA.COM is different from FRED.COM, whether on the same disc or not.

File names must be unique within a disc. You can hâve several dises with the
same file name on each, and the contents may be the same or different - but
you hâve to keep track if they are different - CP/M only recognises a file by its
name, not its content. 'Backup' copies of files are almost always exact
duplicates of the files, with the same names, held on a disc which is labelled
on the outside 'Security copy taken 15.9.83' or something similar. You haveto
do the labelling. Some programs which run under CP/M hâve ways of
keeping Security copies which we will refer to when we look at spécifie file
types.

afn examples

FRED.* refers to FRED and FRED.COM and any other type, but not to
FREDA.type.
FRED?.* refers to FRED and FRED.COM and FREDA and FREDA.COM.
FRED????.* refers to ali those, and FREDERIK and FREDERIK.COM.
FRED*.* is exactly the same as the line above.
*.C0M refers to ali files ending in .C0M on the logged drive.
. refers to ali files on the logged drive.
A:*.* refers to ali files on drive A.

We will give more illustrations as we define the commands.

If we use afn, then either an unambiguous name or an ambiguous name
(including the ? or *) may be used.

If we use ufn, then the filename must be unambiguous.

Certain 'type' entries are reserved and others are conventionally used for
spécifie purposes, to describe the type of a file in a standard way.

13

FRED.COM
A:FRED.COM
B:FREDA.COM
A:FREDA.COM
FREDA.COM
FREDA.COM
FRED.COM
FRED.COM
FRED.COM
FREDA.COM
FREDERIK.COM

CP/M The Software Bus (a programmer companion)

This list of reserved and commonly used 'types' may be incomplète for your
purposes - so add your own conventions. The common ones are highlighted
in bold face.

ASC ASCII text file, usually used for Basic source code (CBASIC)
ASM ASseMbly language file (source for a program to be assembled)
BAK BAcKup copy file, the editor renames your original file to this.
BAS BASic source program file (MBASIC).
CBL CoBoL source program file.
COM COMmand file (an exécutable program).
DAT DATa file.
DOC DOCument file.
FOR FORtran source program file.
INT INTermediate program file - needs 'run-time' software.
HEX HEXadecimal format file (LOADable programs).
LIB LIBrary file used by macro assembler (see later).
LST LiSTing file - may be compiler output - for printing.
OVR OVeRlay file used by some packages (eg Wordstar).
PAS PAScal program source file.
PLI PL/1 source file.
PRN PRiNt file (source and object files produced by ASM).
REL RELocatable module of program.
SAV System file (Versions 2.x).
SRC Pascal intermediate file in assembler mnemonic form.
SUB SUBmit text file executed by the SUBMIT command (see later).
SYM SYMbol file.
TEX TEXt formatter source file.
TXT TeXT file produced by Wordstar.
XRF Cross reference file.
$$$ Temporary file produced by ED, PIP and Wordstar etc.

2.3 Command summary.

ERA afn This command removes the named file(s) from the
directory. The space the file(s) occupy on the disc is
made available for re-use. In 3.1 ERASE may be used in
full, and the afn may be followed by [C] or
[CONFIRM], in which case each filename will be
displayed for confirmation before erasure. In ali ver-

14

Chapter2 The Console Commands

DIR afn

REN ufn1 =ufn2

SAVE n ufn

TYPE ufn

sions, ERÄ *.* (erase ali files) will cause the ALL (Y/N)
? question to be displayed before erasure.
The directory command causes the names of ali spe-
cified files to be listed on the console. If no afn is given,
ali files are listed. In 3.1 DIRS lists ali 'system' files.
Those are files which have been given the SYS
attribute, and are not displayed by DIR. In 3.1 also, DIR
can be followed by one or more 'options', which are
listed and explained after this summary and the exam-
plesfollowing.

The re-name command gives the file called ufn2 the
new name ufn1. ufn2 may specify a drive, but ufn1
may not. The file itself is unchanged, the directory
entry is altered to the new name (Think of 'Revised-
name Equals Name'. The syntax is the same as the
'LET' assignment conventions of programming lan-
guages.) RENAMEcanbeusedinfullwith3.1.

Versions 1.4 - 2.2. The 'n' is a number. It means a
number of 'pages' each of which is 256 bytes. The
command takes the specified number of pages from
the memory, starting at the bottom of the users pro
gram area, and puts then onto disc with the specified
name. This is a 'copy' function - the pages in memory
are unchanged. In version 3.1 SAVE works differently.
You enter SAVE< Rt> before loading the memory.
When you exit from the program, you are prompted for
the filename and size. See example later in this
Chapter.

This displays the contents of the specified file on the
console. It assumes the file is held in ASCII and will
display it as such, expanding any Tab characters into
screen tabs as it does so If it is not an ASCII file, you
will get gibberish. In 3.1 you can add [PAGE] or
[NOPAGE] and if you added [PAGE], 24 Iines would
be displayed, and the display would be suspended until
you press any key to see the next page, and so on. The
default is [NOPAGE], Version 3.1 also has a DUMP
command, which is described at the end of this
Chapter, because it issimilar in action to TYPE.

15

CP/M The Software Bus (a programmera companion)

USER n This allows a user to move to the designated 'user
area', n is a number between 0 and 15. User areas are a
simple protection device, allowing compatibility bet
ween CP/M file directories and MP/M directories. In
3.1, the command USER< Rt> will prompt for the user
no.

To change from the currently logged drive to another, after the prompt, key in
the new drive letter and the colon. Then press return. We illustrate pressing
the return key like this - < Rt> . Nothing actually appea rs on the console when
you press return, but the command is not obeyed until you do. Ail commands
to CP/M require the return key at the end, tosignify that you hâve completed
your entry. The single letter commands which use the 'control' key are the
exception to this.

This sequence shows 're-booting' and changing the logged drive.

A>~C
A>B:< Rt>
B>

The console actually shows this

A>~C
A>B:
B>

Whatever letter is shown before the prompt is the logged drive, and is taken
as the default' in a command. DIR < Rt> will display the directory of the
logged drive.

When the directory is displayed by CP/M, it does not show the 'décimal
point' between name and type, and it puts spaces where there are no spe-
cified characters. A sample directory looks like this

A>DIR
A: PIP COM : STAT COM : WS COM : WSU COM
A:WSMSGS OVR : WS0VLY1 OVR : CPMBOOK : CPMBOOK BAK
A: FULLNAMETYP : Z
A>

There are examples of files with a name but no type (Z and CPMBOOK) and
files with .COM types (the top row) and you can see that to the System,

16

Chap ter2 The Console Commands

CPMBOOK is different from CPMBOOK.BAK

The directory is displayed as above, but when you entera file name, it must be
entered as CPMBOOK.BAK not CPMBOOK BAK

Examples of the Résident commands, with the explanations, are:

DIR
DIR d:

Display file directory on logged (current) drive
Display file directory on the designated drive

DIRfilename.typ Search for stated file, current drive (replies NO
FILE if not found, repeats name if found)

DIR *.typ
DIR filename.*
DIR X*.*
DIRX????.*

Displays ail files of stated type, current drive
Displays ail types of designated filename
Display ail filenames beginning with letter X
Display ail file names beginning with X which are
five characters long, or less, any type.

DIRS Display ail files with the $SYS attribute on the
logged drive (version 3.1 only).

(NOTE. There are options which considerably extend the DIR
commandwhich are only available under3.1. Thesearedescribed later in this
chapter.)

TYPEfilename.typ Display at the console the file named on the
current drive, treating it as ASCII

TYPE d:filename.typ
ERAfilename.type

Display as above, but on the stated drive
Erase the named file from the current drive (but
not a file of the same name on any other drive)

ERA*.* Erase ail files on the current drive. (In version 2.x,
only erases in the current user area) Asks for
confirmation ALL(Y/N) before continuing

ERAd:*.typ
ERA filename.*

Erase ail files of the stated type on the named drive
Erase ail types of named file on current drive

(WAR NING - ER A only erases the directory entry - it actually sets the f i rst (00)
byte of each extentof a directory entry for the file to the value (in hex) E5. The
space which the file itself occupies is untouched, until it is re-allocated, and
until new characters are written into the space. If you use direct access data
files (eg, BASIC 'random' files) then ERA will not empty the file space. (Nor
will Kl LL.) Reading from a record in a random file to which you hâve not
previously written will return the characters which happen to be left there
from the previous use of the disc space.)

17

CP/M The Software Bus (a programmer companion)

REN newname.typ = oldname.typ
REN newname.typ = d:oldname.typ

SAVE n filename.typ

SAVE n d:filename.typ

SAVE

d:

USER n

USER

Rename the file on the current drive.
Rename the file on the designated
drive.
Save the first n pages from memory
asnamedfile.
Save the first n pages from memory
(a page is 1 /4K or 256 bytes) as the
named file on the designated drive.
Thisisthel .4-2.2versionof SAVE.
In version 3.1, the SAVE command
must be given before you load the
memory image which you want to
save. Then, when you have loaded
the memory, and you exit, instead of
returning directly to CP/M, the
SAVE routine displays on the screen
three prompts, asking first for the
filespec of the new file, then for the
hex address of the start (prob-
ably 100) and the hex address of the
end. That end address is the first
byte which is not to be copied to the
new file. If you give a filespec of an
existing file, you will be asked if you
want to delete the existing version. If
you enter < Rt> for the filespec, you
will exit from SAVE without per-
forming the SAVE.
Change the logged drive to the
stated one
Change user area (version 2.x) to the
numbered one. (The system always
'boots'to userO.)
In 3.1 the CCP gives the prompt
'Enter user

The purpose of USER areas is to allocate Storage (disc) space to which other
users cannot write. If you put a file onto disc while USER 1 is set - that is, you
are at that time, user 1 - then no-one in USER 0 or USER 2 to 15 can erase that
file, show it in a DIR or STAT command, or overwrite it. That présents you
with a 'Catch 22' situation, initially, becauseyou cannot load or run a program

18

Chapter2 The Console Commands

(a file) inanother USER either. When you first enter USER 1 (or any other than
0), you are alone in there, and cannot PIP any file into your area. We will
return to this in Chapter 7, when we look at DDT, but for the moment it is
sufficient to follow the following sequence the first time you enter a USER
other than 0:

2.3.1 How to start up a new USER area.

Enter PIP, and wait for the * prompt. Hit Return to get the A> back. Now
enter the user area, say USER 1. Type SAVE 30 PIP.COM and hit Return.
(Version3.1 needsaddresses 100 and 1 E00). Notethatearlierversionsof PIP
were only 28 pages (100 to 1C00) - you can check yours using DDT, as shown
in chapter 7. Saving 30 pages is safe with either version.

That will give you the PIP program (Chapter 4) in your user area. Now you can
coy any file into your area from area 0 by typing PIPA: = ufn[G0] and Return.
The Gn in brackets (square brackets, no space before the first) allows PIP to
read a file in another area and copy it into your USER 1 area. We will study this
in more detail, but for the moment, it works.

DIR options in version 3.1.

An option is specified by adding the first two or more letters of the option
name, after a square bracket. We show the option name in full, and the
examples show the right hand square bracket as well, though it is not
necessary. [DA is équivalent to [DATE].

The options allow you to search for files on any or ail drives, and in any user
number or numbers. They also allow display of the 'date stamps' which files
may hâve in 3.1.

Two or more options require only one set of square brackets, and are
separated by commas. The options do not applyto DIRS, because, as we will
see, there is a [SYS] option for DIR which fulfils the same purpose.

ATT Displays the file attributes (R/O, R/W, DIR, and
SYS if the SYS option is also used.)

DATE
DRIVE = ALL

Displays the date and time stamps of files.
Displays the files on ail on-line drives.

19

PIP.COM

CP/M The Software Bus (aprogrammers companion)

DRIVE = d
DRIVE = (A,B,C)
EXCLUDE

FF

FULL

LENGTH = n

MESSAGE

NOSORT

RO
RW
SIZE

SYS

USER = n
USER = (0,1,6)

USER = ALL

Displays the files on drive 'd'.
Displays the files on the listed drives.
Displays only those files which do not match the
spécification in the command line.
Sends a 'form feed' (seek head of form) to the
printer if it has been engaged with * P, before
displaying and printing the resuit of the command
Shows the name, size, number of 128-byte
records and attributes of ail files listed. If there is a
directory label, FULL also shows the password
protection mode and the time stamps. If there is
no directory label, the display omits the password
and time stamp columns, and shows two entries
to a line. The display is sorted into ascending
sequence of filename/type. (See the SET
command in Chapter 6 for a description of file
attributes, directory labels passwords and
protection modes.)
If-P has engaged the printer, n Iines of output are
printed and then a table heading is repeated. n is
an integer with values from 5 to 65536.
Displays the drive names and user numbers being
searched as the search takes place.
Displays filenames in the order in which they are
found in the directory.
Displays only R/O files (but see 'EXCLUDE')
Displays only R/W files.
Displays the filename and size in kilobytes (1024
bytes). Not used with FULL.
Displays only files with the SYS attribute (which
are 'hidden' from a normal DIR command).
Displays files in the user number stated.
Displays files in the user areas listed. Any number
of user numbers may be included.
Displays ail files for ali users on the default or
specified drive(s).

The following examples will show the types of command which you may find
useful. We show them in full, but any option may be specified in two letters,
and the closing square bracket is optional.

20

Chapter2 The Console Commands

A>DIR C: [FULL]<Rt>
This shows ali the characteristics of ali the files in user 0 on drive C.

A> DIR C: [DATER Rt>
This lists ali the files in user 0 on drive C and their dates, (see Chapter 6 for
SETting date stamps etc.)

A>DIR D: [RW,SYS]< Rt>
This displays ali the files which have the SYS attribute, and are 'Read or
Write', in user 0 on drive D.

A> DIR [USER = ALL,DRIVE = ALLR Rt>
Ali files (except ones with SYS attribute) on ali drives, in ali user areas.

6B> DIR [EXCLUDE1 *.COM< Rt>
This shows ali files which are not command (.COM) files on drive B, in user 6.

30 DIR [SIZE] *.PLI ‘.COM *.ASM< Rt>
This shows that more than one filespec can be included in a command line.
The effect is that ail files on drive C, in user 3, which have one of the three type
specified will be displayed, and the name and size of each will be shown.

A>DIR [DRIVE = ALL,USER = ALL,MESSAGE] LOSTFILE.DAT< Rt>
This will show which drives and users are being searched while the whole of
the on-line disc Storage is being searched for the file. If found,
LOSTFILE.DAT will be displayed. If not - NO FILE will be displayed.

A> dir [size,rw] d:< Rt>
If you enter a command to CP/M in lower case, it will be translated to upper
case before being obeyed. In this case ail R/W files on drive D will be
displayed, with their name and size in kilobytes. Note that D: is the same, in a
DIR command, as D:*.*

2.3.2 Console Editing Commands

During the entry of a command - or any other entry - you will occasionally
mis-key, or perhaps get halfway through a command and réalisé that you
should do something else first. If the command, as you have typed it, is
invalid, you could just press Return or Enter, the console would repeat your
'part command' with a question mark after it, and re-prompt, like this -

A> GOOD MORNING<Rt>
GOOD?
A>

21

%25e2%2580%2598.COM

CP/M The Software Bus (a programmera companion)

However, this is dangerous, because your incomplète command may be
valid, and may do something disastrous. (Murphy's Law I) Therefore you
need to be able to 'edit' the line you are typing, and CP/M has reserved certain
keys for this.

Hardware Systems vary in the way they show délétion on the screen, but ail
hâve a key named RUBOUT or DELETE (on a few Systems other names are
used, or even a 'left arrow'). Pressing this key will delete the last character
keyed, and may also 'écho' it. If you typed DIR FRED and then pressed
RUBOUT four times, the console may show DIR FREDDERF

If you then pressed Return, the response would be a normal DIR output.

Since a line with 'écho' deletes in it can be confusing, CP/M has a way of
re-typing the line without them. Simply press ~ R - (Control and R together)
and the console will show this -

A> DIR FREDDERF (now press Λ R)
DIR I (and you can now see what is in the command)

In versions2.xonwards, thereisa.backspaceanddeletecomand, whichis~ H.
Your keyboard may be marked to show this. If you hâve a screen (vdu or tv)
there may also be a single key (perhaps BACKSPACE) which will backspace
and delete a character. That is hardware dépendent. The CP/M CONFIGUR
program will, particularly with 2.2 onwards, allow you to make the DELETE
key equal to BACKSPACE if you prefer that. See Chapter Fifteen.

With CP/M you can also delete the entire line typed so far. If you are keying
something in - and you want to start ail over again with that line, use ~ U.
Usually some spécial character will terminate the cancelled line, and you will
be positioned ready to restart.

A> DISINFECTANTTTTTTTTTTTTT#

I

The same effect exactly is produced by ~ X instead of ~ U.

There is a convenient 'line feed' command E- which returns the cursor or
carriage to the start of a new line, but which does not 'transmit' the entry until
you press Return. This is more used when you hâve a hard copy printer than
when you hâve a screen, but it can be useful. A single command can be up to

22

Chap ter2 The Console Commands

255 characters long, and the ability to use Λ E to lay it out readably may be
helpful.

If you hâve a small screen or a long directory, you may want to stop the
display before it 'scrolls' the top Iines off the screen. The command to inter-
rupt console outputtemporarilyisthe'' S. Use^ Qto restart the output. (Ver
sions 2.2 and earlier accept any key to restart.) In a language such as Micro
soft BASIC, (MBASIC), this allows you to stop the display of a listing on the
screen while you inspect a particular part of it. ~ S - Stop ! ~ Q - Continue !

CP/M does not contain any built-in commands to allow you to print out on a
listing device the existing contents of the screen, but it does allow you to écho
to the list device (LST:) anything which is next displayed, by typing~ P first.
So if you want a hard copy of your Directory, and you hâve a printer attached
and powered up, type DIR, then beforeyou hit Return, pressa P. The'' P isnot
echoed to the screen, but now, when you hit Return, the output will appear
on printer and screen. ~ P is a 'toggle', so to disable the 'écho to printer', press
Λ P again, or re-boot. ~ P is always 'off' when the System is booted. (See also
the DEVICE command in version 3.1, covered in Chapter 3.)

There is one more command, Λ Z, which we will look at later. It is a type of
interrupt which you will need with the CP/M editor (ED) and which is also
used with PIP.

SUMMARY.

Console editing andcontrol commands:

RUBOUT/DELETE
-H
~U
-R
-E
~C
~Z
-S
-P

Delete last charater and écho
Backspace and delete (Version 2.x)
(also λ X) Delete the entire line
Repeat the entire line on the console, no échos
Line feed and carriage return but not 'send'
CP/M 'warm boot'
End console input (end of string) in ED and PIP
Pause console output. Any key to restart.
Echo ail subséquent console output (including
keyboard input) to list device until next'' P or 'boot'.

23

CP/M The Software Bus ta programmera companion)

Version 3.1 Console Editing

There are actually 18 commands plus Delete/Rubout available under
3.1 ,though not ail of them are implemented on ail Systems. Some of them
work under 2.2 as well, so try them for your system. There are hardware
restrictions which affect the implémentation of these commands - Apples
don't allow'' A through, and some SuperBrains don't allow~ W, for example.
This is the full set, with the corresponding ASCII codes for the commands.

The ASCII code for Delete is 7FH
The ASCII code for Backspace is the same as~ H 08H

Command Meaning ASCII code
λ A Move the cursor one char left 01H
-B Move cursor within command line 02H
-C 'Warm' boot 03 H
~ E Start a new line 05H
- F Move the cursor one char right 06H
-G Delete the char under the cursor 07 H
- H Backspace and delete 08H
Λ I Tab 8 columns 09H
Λ J Line feed OAH
-K Delete to end of line OBH
- M Carriage Return (as < Rt>) ODH
-P Echo to printer on/off toggle 10H
-Q Restart display after ~ S 11H
-R Retype current line 12H
-S Stop display -Λ Q restarts it 13H
-U Delete line, update buffer with the cha

racters to the left of the cursor 15H
~w Recall previous command line if buffer

isempty 17H
-X Delete from cursor to beginning of line 18H

File Names.

Versions 1.4 - 2.2
Version 3.1

X: XXXXXXXX. XXX
X: XXXXXXXX.XXX; XXXXXXXX

The first X: is the drive and is always optional, the default assumed will be the
'logged' drive (the one in the 'prompt'). If a drive letter is stated, the colon (:)
must be présent.

24

Chapter2 The Console Commands

The 'filename' XXXXXXXX may be from one to eight characters.

The 'type' .XXX may be from none to three letters. If it is included, the 'period'
(.) must be included. When an unambiguousfilename (ufn) is stated, the type
must be included if it exists in the filename. The exception is when a 'transient
command' - a '.COM' file is invoked. To load and run a .COM file, the name
only may be entered.

The final group of characters ;XXXXXXXX is the password in version 3.1. Up
to eight letters or numbers may be used, and the semicolon must be présent if
the password is présent. Chapter 6 refers to the use of passwords, and the
SET command.

Ambiguous filenames include one or more 'wild card' characters. The ?
replaces any single character, and the * replaces a name or a type. (*.* is 'ail
files' and so is ????????.???)

2.3.3 Résident commands in the Console Command
Processor.

d:
DIR afn or d:
DIRS afn or d:

TYPE ufn
ERA afn
REN ufn1 = ufn2
USER n
USER
SAVE n ufn

Change the logged drive to the stated drive
Output directory to the console
In version 3.1, shows $SYS files (see chap.
3)
Output the content of ASCII file to console
Erase the directory entry for the file/s
Rename existing file ufn2 as ufn1
Change to user area n (0 to 15)
In version 3.1 prompts for number
Put the n pages (each 256 bytes) in the
transient program area into the named file.
Version 3.1 requires SAVE< Rt> before
loading memory, then prompts for ufn and
start/end addresses in Hex.

Each of these commands needs RETURN/ENTER to 'send' it to the CCP for
action. The editing commands (~ R etc) act immediately.

25

CP/M The Software B us la programmera companion)

Version 3.1 accepts ERASE and RENAME in full, and allows [PAGE] as an
option following the ufn in a TYPE command, displaying a page at a time.
Note that some implémentations of version 3.1 may only restart a display
which hasbeenstoppedby^ S whenyou press A Q. Earlierversionsaccepted
any key to restart.

Transient commands are held as exécutable programs on dise. For example -

PIP ufn1 =ufn2
SUBMIT filename

Make a copy of ufn2 and call it ufn1
Enter a command sequence held in
filename.SUB

DUMP ufn Display the contents of the file ufn in both
hexadécimal form and ASCII form.

There are more, as we will see later. Résident commands are obeyed
immediately, and need no spécial files on the dises. Transient commands are
first loaded from dise, then obeyed - so they must be présent before they can
be invoked.

26

CHAPTER THREE

The Information Transients -
STAT,HELP,DEVICE and SHOW.

3.1 Fundamentals.

Transient commands are those which are held as a file on disc, and which are
invoked by name as required. In CP/ M version 3.1 there is an extensive HELP
file, which allows you to display on the screen brief details of each topic and
subtopic in the file. Previous versions do not have this facility.

HELP is intended to be self explanatory, and will be found very useful to jog
your memory on the details of infrequently used commands. It works like this.

If you enter HELP, you get the new prompt

HELP>

on the screen. Enter ?< Rt> and you will get a list of topicsto choosefrom. If
you enter HELP DEVICE (say), you get the subtopics in the DEVICE topic to
choose from. You can enter a period (décimal point) to redisplay the last
description you looked at, or as a topic name if you want to go straight to a
subtopic.

HELP> .< Rt>

will redisplay the last description.

HELP> .PASSWORD (or just .PASS) < Rt>

will display the details of the subtopic PASSWORD

Pressing any key except < Rt> will take you back to the HELP> prompt.
Pressing < Rt> only will take you back to the A> . There are two options
which may be implemented, [NOPAGE] and [LIST].

27

CP/M The Software Bus (aprogrammera companion)

By default, the HELP screens are displayed in 24 line units, but continuous
display can be obtained by putting [NOPAGE] after the topic or subtopic you
want. Similarly [LIST] échos the display to the LST: device (your printer) if
that facility is implemented.

Since the HELP file is there for your use - use it, and you willfind ita welcome
addition to the otherwise rather uncommunicative displays which earlier
versionsof CP/M offered.

In the rest of this chapter, we will be describing the facilities available for you
to obtain various statistics of the System and your files. In versions up to 2.2,
these were available through the STAT command - a transient. In 3.1, the
facilities hâve been extended, and they are available under a sériés of different
commands. You hâve already seen the 'DIR with otions' (in Chapter 2), and
there are DEVICE and SHOW commands as well in 3.1. However, we will
ignore version 3.1, to begin with, while we cover the details of STAT, and
then we will return to the3.1 commands. You will see how the3.1 commands
paralle! and extend the facilities available under STAT.

3.2 The STAT command.

The STAT command allows you to see how much space your files are
occupying on disc, and how much free (not allocated in the directory) space
there is. It also allows you to find out the physical characteristics of your
dises, and to alter the assignments of logical devices to physical devices.

The simplest, most often used versions of the commands are these

STAT
STAT d:
STAT d:*.*

where d is a drive letter.

If you type STAT (and < Rt>) alone, the screen will display a message like
this -

d: R/W, Space: nnnK (if the disc is Read/Write)
d: R/O, Space: nnnK (if the disc is Read Only)

28

Chapter3 The Information Transients

There will be as many Iines as you hâve 'active' dises. If you hâve an active
dise (from which you hâve read the directory, say) and you take it out and
replace it with another, the CCP automatically sets that new disc to R/O
(except version 3.1 which automatically logs onto a new medium.) In versions
2.2 and earlier, you cannot write to a replaced or new dise until you hâve done
some form of 'reset' - such as a 'warm' boot.

STAT d: (and < Rt>) will resuit in a single line message

Bytes Remaining On d: nnnK

STAT d:*.* (and < Rt>) will sean ali the files available on the specified drive
(see notes about $SYS and USER, later) and will list them on the console in
alphabetical order, will give the Storage allocated to each, and will also give
the amount of free space remaining. The format of the table will be like this:

Recs Bytes Ext Acc
rrrr nnnnK ee a/b d:ufn (repeated for each file)
Bytes remaining on dinnnnK

rrrr = the number of 128 byte records in each 'extent' of the file
nnnnK = the number of bytes in K (= 1024) allocated to the file
ee = the number of 16K file extents
a/b = the access mode of the file (R/W or R/O or SYS)
d:ufn = the drive and filename (in brackets if a SYS file)

A sample listing looks like this

A>STAT B:*.*

Bytes remaining on B: 260k

Recs Bytes Ext Acc
285 36k 2 R/W B:CPM
277 36k 2 R/W B:CPM.BAK
48 6k 1 R/W B:CPM/CH11

A>

Now you can use these commands to check whether or not a dise is
R/ W(available for writing to) and find out how much spare space there is on a
disc, and you can find out the size of any or ail files on that dise.

29

CP/M The Software Bus (a programmer companion)

3.2.1 STAT the multifaceted utility to show STATus.

You can add another column to the display above, by adding $S to the
command -

stat d:*.* $S

That puts the 'Size' column in front of the 'Recs' column like this-

Size Recs Bytes Ext Acc
ssss rrrr nnnnk ee a/b d:ufn

where ssss isthe number of 'virtual' records in the file. In a serial file, this will
be the same as the Recs column, but in a random file which has space
allocated but not yet occupied, the ssss will give the allocated size, and the
rrrr the occupied size.

3.2.2 Setting file(s) or drive to R/O.
STAT d:R/O

Set drive d: to Read Only, so that an error will occur if an attempt is made to
write to it, or to erase from it. The error message from CP/M (which can be
'trapped' in most programming languages) is -

BDOS ERR ON d: READ ONLY

This is a temporary 'read only' state. Whenever the system is re-booted,
both/ail dises are reset to R/W.

STAT d:ufn $R/O

This is not temporary. The command will set the fi/e specified to Read Only. It
stays in effect until you alter it with STAT. Even removing a dise, switching
off the machine, and then re- starting from cold will not reset that file, nor can
you erase it until you restore the R/W attribute.

The commands:
STAT d: ufn$R/W
STAT d: R/W

will set the file or the drive to Read/Write.

Note that the $ sign is omitted when a drive only is specified, but must be
présent when a filename is included in the command. (If you are using R/O or
R/W.)

30

Chapter3 The Information Transients

3.2.3 STAT to 'hide' a file from the DIR command.

Aswellasmakingafile R/O or R/W, there are two other indicators which you
can use.

STAT d:ufn $SYS

marks the file as a 'System' file, which will not appear when a DIR command is
given. The file will appear when a STAT *.* listing is called up, but the
filename will be in brackets (). Here is an illustration.

A>DIRA:
A: PIP COM : STAT COM : KARMA DAT

A>STAT A:KARMA.DAT $SYS
KARMA.DAT set to SYS (this is a CP/M response)

A> DIR A:
A: PIP COM :: STAT COM
A>STAT A:*.*

Recs Bytes Ext Acc
18 4k 1 R/W A:(KARMA.DAT)
58 8K 1 R/W A:PIP.COM
42 6K 1 R/W A:STAT.COM
Bytes Remaining on A: 322k

A> STAT A:KARMA.DAT $DIR
KARMA.DAT set to DIR
A>

and there we are, back where we started. What we did, if you follow the
sequence through was first to show the directory of the disc in A. Then we set
the DAT file to SYS, and re-displayed the directory - no DAT file. Use STAT
and the file is there, with the name in brackets. Finally, we used STAT $DIR to
set the file back to directory status.

The purpose is to hide a file from a DIR or PIP (Chapter 4) command. It does
not hide it from STAT, and if you know it is there, you can ER Ase it, either
individually or by using *.*.

Notice that $SYS is like $R/O for files, in that it is actually marked in the
directory on disc, and is retained even when the dise is removed. Only a $DIR
parameter will re-set it to allow DIRectory display. Re-boot does not re-set it.
In fact, PIP can find it if you use a spécial parameter in the PIP command.

31

A:PIP.COM
A:STAT.COM

CP/M The Software Busla programmer companion)

3.2.4 STAT to show the DEVICE assignments.

STAT DEV:
This gives the current 'mapping' of physical devices onto the logical devices
which CP/M uses. Such a list could be -

CON: isCRT:
RDR: isUR1:
PUN: is PTP:
LTP: isTTY:

The four logical devices are ail that CP/M handles (apart from dises I). They
signify the following -

CON: is the System console for messages and inputs.
RDR: is the auxiliary serial input device, and in this case is set to a user defined
device with a user routine.
PUN: is the auxiliary serial output device - in this case a paper tape punch.
LST: is the output list device, and in this case is set to 'teletype'.

The full list of possible physical devices is this -

TTY: slow speed serial output device, eg teletype.
CRT: high speed I/O device - eg cathode ray tube (vdu) and keyboard.
BAT: batch processing (CON:input is RDR:, CON: output is LST:).
UC1: user defined console.
PTR: paper tape reader.
UR1: user defined reader no. 1.
UR2: user definer reader no. 2.
UP1: user defined punch no. 1.
UP2: user defined punch no. 2.
LPT: line printer.
UL1: user defined list device.

You can see a summary of the valid (VAL) STATus commands on your
console at any time by entering the command STAT VAL:

This is the list -

Temp R/O disk: d: = R/O
Set Indicator: d:filename.typ $R/O $R/W $SYS $DIR
Disk Status : DSK: d:DSK:

32

Chapter 3 The Information Transients

User Status : USR:
lobyte Assign:
CON: = TTY: CRT: BAT: UC1 :
RDR: = TTY: PTR: UR1: UR2:
PUN: = TTY: PTP: UP1 : UP2:
LST: = TTY: CRT: LPT: UL1:

Note that a single ST AT command can only set one of the indicators, and that
the list of 'Input/Output Byte' assignments shows each of the four possible
values for each logical device. You can alter the assignments as follows -

STAT Idi = pd1, Id2 = pd2, ...

One or several logical devices (Id) can have physical devices (pd) allocated in a
single command. Both the Id and pd must be complété with the terminating
colon. (LST: not LST)

3.2.5 STAT used to find the characteristics of your drives.

You can specify a drive, or use the default to the logged drive. Valid
commands are therefore -

STAT DSK:
STAT d:DSK:

A sample of the output for drive A of aparticular system is -

A: Drive Characteristics
2220: 128 Byte Record Capacity

340: Kilobyte Drive Capacity
64: 32 Byte Directory Entries
64: Checked Directory Entries

256: Records/Extent
16: Records/Block
40: Sectors/Track

2: Reserved Tracks

(That is the list for a particular 5 1/4" diskette, double sided, double density,
soft sectored, with the the CP/M operating system on the first two tracks, 0
and 1, shown above as 'reserved'.)

33

CP/M The Software Bus ta programmer companion)

The System checks directory entries when the device has a removable dise -
so the number of 'checked' entries should equal the number on the line
above. With non-removable media, the 'checked' counter is usually set to
zéro.

3.2.6 STAT and USERs.

To enable several users to hâve files and programs on the same dises -
particularly important for fixed media, of course - without risk of accidentai
access or over-writing, CP/M allows upto 16 different users to'log-in'. UserO
is always active when CP/M is loaded. In MP/M, the multi-user version of
CP/M, it is clear which user is active, because the number précédés the
logged drive letter in the prompt -

0A>
1A>
etc

In CP/M versions up to 2.2, you hâve to ask for the active user by typing -

STAT USR:

and the System will reply by telling you which user is active and which user
numbers hâve files on the current logged dise - like this

Active User : 0
Active Files: 0 1 3

(There happenedtobe files for USER 1 andUSER3aswellas USEROonthat
drive. Note that although the line says 'Active Files', it means 'User Numbers
which hâve Active Files'. It is not a file count !)

We covered the way of getting started in a new USER in the previous chapter,
but we will repeat the sequence here, as it would appear on the screen

A>USER2
A>DIR
NO FILE
A> USERO
A>DIR
A: PIP COM: STAT COM: KARMA DAT
A>PIP
* (hit Return)

34

Chapter3 The Information Transients

AXJSER2
A> SAVE 30 PIP.COM (or28PIP.COM)
A> DIR
A: PIP COM
A> PIP A: = STAT.COMIGO]
A>DIR
A: PIP COM: STAT COM
A>

and so on. The uses of SAVE and PIP will be covered in chapters 7 and 4,
later.

3.2.7 SUMMARY of STAT commands.

We hâve covered the uses of STAT to:

- find free dise space (STAT or STAT *.*)
- set read only or read/write status (STAT B:R/O)
- list the characteristics of a drive (STAT DSK:)
- list the valid STAT commands (STAT VAL:)
- re-assign physical devices to the four logical devices
- find out what USER is active, and what files (STAT USR:)

Here is a summary of the commands, using d: for drive, afn and ufn as before.

STAT Display STATus of active/logged drive(s) and free
space.

STATd: As above, but for named drive.
STAT DEV: Display current DEVice assignments.
STAT VAL: Display VALid assignments.
STAT DSK: Display the DiSK characteristics.
STAT USR: Display current USeR and disc users.
STAT ufn
STAT ufn $S
STAT afn

Display the record count etc of file.
As above but with Size column.
Display the details of files which match the afn
given, and the free space.

STAT d:R/O
STATd: R/W
STAT ufn$R/O

Set the drive to Read Only.
Set the drive to Read/Write.
Temporarily set file to R/O.

35

PIP.COM
or28PIP.COM

CP/M The Software Bus (a programmera companion)

STAT ufn $R/W
STAT ufn $SYS

STAT ufn $DIR
STAT III: = ppp:

Reset to R/W.
Set to SYStem status (not on DIR, not found by
PIP, in braceson STATlisting).
Reset to DIRectory status.
Assign physical device ppp to logical device III.

3.3 The Version 3.1 commands.

If you are a user of version 3.1, and have skipped forward to this point, it is
suggested that you may find it useful to read the details of STAT, not only to
see the plethora of facilities which it includes, but also because in the next
pages we will cover the 3.1 facilities in rather less detail, and the detail already
covered may help you to understand. If you are a user of 2.2 or an earlier
version, the following pages will not apply to you.

3.4 DEVICE

This command allows you to see what the current device assignments are, to
change the assignments, and to set or change the communication protocol
and speed. It also shows or alters the size of the console display. Device
assignment is the process of telling CP/M which physical devices are to be
handled by the routines within CP/M for its set of logical devices. There are
several aspects to DEVICE, so we will take the simplest ones first, then
progress to the more complex and powerful ones.

3.4.1 Display the assignments.

If you give the command on its own like this -

A> DEVICE< Rt>

you will see a display of the physical devices, and a list of the current
assignments of the logical devices in the system. It also prompts you for new
assignments, should you want to make any. We will look at the assignment
commands shortly.

If you only want to see the assignments, then enter -

A> DEVICE VALUES< Rt>

36

Chapter 3 The Information Transients

and this will display the current logical device assignments.

3.4.2 Protocol and baud rate.

Some peripherals expect the processor to send a message enquiring if the
device is ready to receive data. The message is answered if the peripheral is
ready, and the processor initiâtes the transmission. If the device is not ready,
no acknowledgement is sent, and the processor does not transmit. The 'not
ready' State could arise because the buffer in the peripheral is full, because the
peripheral is not powered up or connected - or for any similar reason. The
protocol which CP/M uses is called XON/XOFF. You can choose, according
to the peripheral you are using, whether to tell CP/M to wait for an
acknowledgement before transmitting data, or to just send it whether the
peripheral is ready or not. You do this by telling CP/M, for the device chosen,
either XON or NOXON - 'use the protocol' or 'do not'.

Baud rate is the transmission speed between the processor and the
peripheral. Some peripherals 'sense' the baud rate, and automatically adjust
to it, or may work at a f ixed rate, but much more often, the baud rate at which
a peripheral can work can be set at one of a number of different values, with
internai or external switches. You can set the CP/M baud rate fora particular
peripheral at any one of the following values -

50 75 110 134 150 300
600 1200 1800 2400 3600 4800
7200 9600 19200

In versions 2.2 and earlier, setting the baud rates was usually done by running
a 'transient' called CONFIGUR or CONFIG. In 3.1, the DEVICE command
achieves these settings. We will use examples. First, you can set a physical
device directly, without affecting the logical device to which it is linked.
Examples of this command are -

A> DEVICE CRT [XON,9600]< Rt>
A> DEVICE LPT [NOXON,1200]< Rt>

37

CP/M The Software Bus ia programmera companion)

These set the physical devices as shown, with the CRT using protocol, but
the LPT not, and the different baud rates as shown. Note the use of the
square brackets [], they are part of the syntax of the command.

3.4.3 Displaying the device names and characteristics.

If you want to see the physical device names, and a summary of the
characteristics of each of those devices, then type in -

A> DEVICE NAMES< Rt>

If you know the name, and just want to see the characteristics, then type the
name after DEVICE. For example, if you want to see the characteristics of the
physical device CRT, you would type -

A> DEVICE CRT< Rt>

If you put a /ogvca/device name instead of the physical one, you will be shown
the current assignment of that logical device. For instance, to see the
assignment of the CON device, you type -

A> DEVICE CON< Rt>

You can also ask DEVICE to display or set the number of columns and rows
used on the console display. To see what the current page size is, you enter -

A> DEVICE CONSOLE [PAGEK Rt>

and the width in columns and length in Iines will be displayed. To alter them,
you would enter, say,

A> DEVICE CONSOLE [COLUMNS = 60 LINES = 20]< Rt>

or

A> DEVICE CONSOLE [COLUMNS = 80 LINES = 24]< Rt>

3.4.4 Making assignments.

You will hâve noticed already that we hâve not needed the colon (:) after the
logical or physical device name so far. However, you do need it if the name is
followed by a equals sign { =). So when we use DEVICE to make an
assignment, we use it like this -

38

Chapter3 The Information Transients

K> DEVICE CONOUT: = CRT< Rt>

The logical device CONOUT is now assigned to the physical device CRT. We
can also assign a logical device to more than one physical device - like this -

A> DEVICE CONOUT: = CRT,LPT< Rt>

and now everything we get on the screen of the CRT will be echoed on the
LPT (printer).

Earlier, we looked at the protocol and baud rate settings of physical devices.
Now we can see that we may assign a logical to one or more physical devices,
and set the comms. at the same time, like this-

A> DEVICE LST: = LPT [XON,1200]< Rt>

or

A> DEVICE LST: = LPT [XON,1200],CRT [XON,9600]< Rt>

With earlier versions of CP/M, switching between two printers which were
used at different baud rates - say a 'daisy wheel' which could not be set higher
than 1200 baud, and a fast 'dot matrix' which needed to be set at 9600 baud to
achieve satisfactory performance - was a little troublesome - and often meant
two sets of dises, one configured for each. Now, with CP/M 3.1, itissimple
to modify the protocol and/or speed at the keyboard, using the DEVICE
command.

There is one more assignment which we have not mentioned, and that is
actually a disconnention. If you want to suppress output, perhaps from the
LST device, you can disconnect it by using the command -

A> DEVICE LST: = NULL< Rt>

Notice that this disconnects logical devices, and that the colon is used
because the equals sign follows the device name. You would have to
re-assign an appropriate physical device to start using the logical device
again.

3.5 SHOW in version 3.1.

Thefunctions performed by STAT in earlier versions of CP/M, which relate to
the characteristics of a drive and the usage of a dise, are performed by SHOW
in version 3.1. You can use SHOW to obtain a display of information about

39

CP/M The Software Bus (a programmer companion)

the drive characteristics by entering -

A> SHOW [DRIVEX Rt>

To get the display of the access mode (R/W or R/O) and free space on ali the
logged in dises, you type in -

A> SHOW [SPACEX Rt>

T o get the same information about the logged drive, SHOW alone will suffice
- and to get that information about another drive, say drive B, type in -

A> SHOW B:<Rt>

Since version 3.1 allows for dise labelling, you can display the label
information by entering (for drive D, in this case) -

A> SHOW D:[LABEL]< Rt>

Omitting the drive letter gives you the label information on the logged drive,
as you would expect.

The USER command is somewhat different in version 3.1, as we indicated in
Chapter 2, and to obtain details of current users and files, you enter -

A>SHOW B:[USERSX Rt>

This will give you the current user number (which is not displayed in CP/M,
only in MP/M) and ali the user numbers which are 'active' on drive B,
together with the number of files assigned to each user. Omit the drive letter
(and colon) and the default drive will be the logged drive.

The same display would be obtained with -

A>B:
B>SHOW [USERSX Rt>

A final useful facility in SHOW is the ability to show the number of unused
directory entries on a dise. This is -

A>SHOW [DIRX Rt>

and simply shows how many free directory entries there are on the logged
drive. The drive letter (and colon) may précédé [DI R], if you want a drive other
than the logged drive.

In case you may hâve missed it in Chapter 2, the STAT command which

40

Chapter3 The Information Transients

versions 2.2 and earlier used to display file sizes has been replaced with the
extended DIR command (eg DIR [FULL]).

Setting files to Read Only or Read/Write is done with the SET command,
which we will cover in Chapter 6.

3.6 Summary of DEVICE and SHOW commands inversion
3.1.

DEVICE

DEVICE

DEVICE

DEVICE

DEVICE

DEVICE
DEVICE

DEVICE

DEVICE

DEVICE

NAMES

VALUES

physical-dev

logical-dev

log-dev: = phy-dev
phy-dev[protocol,baud-rate]

log-dev: = NULL

CONSOLE [PAGE]

Displays the logical and
physical assignments.
Displays the physical
devices and
characteristics.
Displays the logical
device assignments.
Displays the attributes
of the device.
Displays the
assignment.
Assigns as stated.
Sets XON or NOXON

andspeed.
Disconnects the
assignment.
Displays the columns
and Iines set.

CONSOLEiCOLUMNS = nn ,LINES = mm] Sets as stated.

SHOW

SHOW [SPACEI

SHOW d:

SHOW [USERS]

Displays the space on
the logged drive.
Displays the space on
ail drives.
Displays the space left
on the specified drive.
Displays the users on
the default drive and
how many files each
has.

41

CP/M The Software Bus la programmer companion)

SHOW [LABEL]

SHOW [DIR]

SHOW [DRIVE]

Displays label
information for the
default drive.
Displays the number of
unused directory
entries on the default
(logged) drive.
Displays the drive
characteristics.

These apply only to CP/M version 3.1. For earlier versions, see the STAT
command earlier in this Chapter.

42

CHAPTER FOUR

PIP

4.1 Fundamentals

PIP is the Peripheral Interchange Program - it is principally used to move files
about between peripherals. You can use it to copy the whole of a disc to
another, for 'back-up', and to copy a particular program or file from one disc
to another, and you will find it a quick way of 'dumping' the contents of a file
to the printer. The basic format of PIP is this -

PIP d:ufn = d:ufn

The command requires the DESTINATION first, then the SOURCE. If you
find it difficult to remember which cornes where, then think of LET instead of
PIP. The command then becomes 'Let x equal y' and you can see that x is
where the file goes to, and y is where it cornes from.

PIP leaves the original file where it is at the start - so it is a copy program. Also,
the original file has the same name as it had at the start - it is completely
unchanged. However, when you copy the file, you can re-nameitif you want
to. There are plenty of defaults and options, and ways of using the ? and *
characters as well.

Tocopyeverythingonthediscin A: toadiscin B:, keeping thesamenames
for ali the files, you can type

PIP B: = A:*.*

The screen will show

COPYING -

43

CP/M The Software Bus (aprogrammera companion)

and then there will be the name of the first file being copied, followed by the
next and so on, like this -

A> PIPB: = A:*.*

COPYING-
PIP.COM
STAT.COM
KARMA.DAT

A>

Now, on drive B:, you hâve an exact copy of ali the files which are $DIR files
on drive A: To make sure that it really isan exact copy, you can tell PIP to do a
'read after write' check. If you do that, then a block is read from the original
file, and that block is written to the destination file. Then, immediately, the
destination file is read, and the block is compared with the block in the
memory. If they are the same, then the write was successful. This is called
'vérification' and is invoked by putting a V in square brackets after the PIP
command, thus -

PIP B:=A:*.*[V]

That command, as it stands, is the idéal 'back-up copy' command for
creating a new program dise.

However, you do not hâve to copy a whole set of files, you can copy just one
file, like this -

PIP B: = A:FRED.COM

and you can hâve the copy file with another name, like this -

PIP B:BILL.COM = A:FRED.COM

That last command takes an exact copy of the file FRED.COM, puts it onto
drive B:, and names it, in the drive B: directory, BILL.COM as you require.

Andfinally, forthefundamental usesof PIP, you can invoke PIP withoutany
file names, which loads PIP into the memory, and givesyou a 'prompt'toask
you for a destination and source. This is the interactive mode of using PIP.
The prompt is an *. This is how it looks -

A>PIP
*

44

PIP.COM
STAT.COM
A:FRED.COM
B:BILL.COM
A:FRED.COM
FRED.COM
BILL.COM

Chapter4 PIP

and you enter the appropriate details after the *. Let us say that you have PIP
on a dise in drive B:, and you are logged onto drive A. You want a copy of
KARMA.DAT taken from drive A: and put onto drive B:, and a copy of
PIP.COM itself, taken from B: put on A: and called LET.COM This is the
sequence -

A>B:PIP
*B: = A:KARMA.DAT
*A:LET.COM = B:PIP.COM
* (just press return to're-boot')

A>

You can even, if you wish, make a copy of a file on the same disc as the
original, provided that you give it a different name. The command could be
(assuming that PIP had already been activated) -

*B:BILL.DAT=B:FRED.DAT

4.2 PIP - The Peripheral Interchange Program

The 'fundamentals' paragraphs above show one use of PIP for simply
copying files. However, as the name shows, it can do far more than that. The
'destination' can be a file, or an output peripheral, such as one of the logical
devices for output (CON: PU N: LST:) or one of the physical devices. If a
logical device is specified, then the output will appear on the currently
assigned physical device.

Also, the source can be a file or a device, or can be a list of files, which are
output to the destination as one concatenated file.

Last, there are numerous parameters which can be supplied to any PIP
command, which edit the files before output, or which (as the [V] mentioned
above) invoke some extra facility. These are often called the 'options'.

In ail these uses of PIP, the original (the source) is not affected by the use of
PIP, but the copy (the destination) is controlled by the command and any
parameters added.

45

PIP.COM
LET.COM
A:LET.COM
B:PIP.COM

CP/M The Software B us (a programmers companion)

4.2.1 PIP with and without a command line.

If PIP (and Return) is typed, then this is an empty command line, and the PIP
program is loaded, displays the * prompt, and waitsfor a command. When a
command is completed, the * prompt is re- displayed. To exit from PIP and
re-boot, another empty command line is entered (i.e. the Return is pressed,
or λ C typed as the first character of the command).

If PIP dest = source[parameter list] is typed, then PIP is invoked, the
command is obeyed, and on completion, the CP/M System is re-booted
automatically.

4.2.2 General forms of PIP command Iines.

(After PIP is invoked, and the * prompt is on the screen)

x: = y:afn Copy ail files satisfying the afn from drive y to drive x,
keeping the same names. If y is omitted, then the
currently logged drive is assumed.

x:ufn = y: Copy the file given by ufn from y to x. If x is omitted,
the currently logged drive is assumed.

x:afn = y:afn Like the above, but x and/or y may be omitted, and the
logged drive is assumed for the drive(s) omitted.

Id = pd Copy from the specified physical device to the
specified logical device. Valid physical devices are TTY:
CRT: UC1 : PTR: PTP: UR1 : UR2: UP1 : UP2: LPT:
UL1 : Valid logical devices are CON: RDR: PUN: LST:

4.2.3 PIP destinations.

A valid destination is any filename, or a logical or physical device whichcan
accept the file (a paper tape reader, for instance, cannot be a destination). An
invalid destination will be rejected, without any 'PIP' action taking place.

x: The drive is the destination.
x:ufn The file stated is the destination.
x:afn The ? or * characters are replaced with their équivalents in

the source.

46

Chapter4 PIP

OUT: This is the user patched output device (requires modification
toPIP).

CON: Currently assigned console - usually VDU.
CRT: The VDU.
UC1: Alternative console.
LST: The currently assigned printer.
LPT: Alternative printer (line printer).
UL1: User defined list device.
TTY: Teletype.
PRN: This is the list device, but tab characters are expanded, form

feedsare obeyed, and line numbersare printed.
PTP: Paper tape punch.
UP1: User defined punch no.1.
UP2: User defined punch no.2.

4.2.4 PIP sources.

A valid source is a filename, a list of filenames separated by commas, or a
logical or physical device. There are also two spécial 'pseudo-sources' (see
below).

x: The drive is the source.
x:ufn The specified file is the source.
x:afn The set of files, each treated separately.
ufn,ufn,ufn... The files listed, in the sequence shown,

concatenated to the single destination.
INP: The user patched input device.
CON: The console.
TTY: Teletype.
CRT: The VDU console.
UC1 : Alternative console.
PTR: Paper tape reader.
UR1: User defined reader no.1.
UR2: User defined reader no.2.
NUL: Pseudo-source which sends 40 null characters.
EOF: Pseudo-source which sends an 'end-of-file'

marker.

Any of the above devices can only be used, of course, if they exist. OUT: and
INP: require patches to PIP, and the physical devices can only be referenced

47

CP/M The Software Bus (a programmera companion)

if the'IOBYTE'isimplemented (see section 14.5 for details ofthelOBYTE). In
version 3.1, the DEVICE command can switch a physical device toa desired
logical device before the PIP command, and then DEVICE will switch back to
the original physical device. See Chapter 3.

Note that an afn can be a source. Ail files which match the afn given will be
copied, but not concatenated. They will be copied as separate files, with the
same names.

4.2.5 Sample PIP commands.

PIP

*d: =s:filename.typ
d:newname. = s:old name.typ
PIP filename.typ = s:
PIP d:filename.typ = s:
PIP d: = s:*.*
PIP d: =s:filename.*
PIP d: = s:*.typ
PIP LST: = filename.typ

PIP PUN: =filename.typ
PIP CON: = filename.typ

PIP filename.typ = RDR:

*newname.typ = aname. typ, bname.typ,cname. type
*d:newname.type = s:aname.type,s:bname.typ

*newname.typ = aname.typ[X],bname.typ[X]

PIP LST: = aname.typ,bname.typ
PIP PRN: = aname.typ,bname.typ
PIP filename.typ = CON:

Load PIP into memory and display
the * command prompt.
Copy the named file from s to d.
Copy and rename, same type.
Copy the file from s to current drive.
Copy the file from s to d.
Copy ail directory files from s to d.
Copy ail files of that name (s to d).
Copy ail files of that type (s to d).
Print the named file on the current
list device.
Send the file to the punch device.
Display the named file on the con
sole.
Copy data from reader device to
file.

Copy and join
together ASCII
files.
Copy and join
non-ASCII files)
see parameters).

Print files in sequence.
Print files in sequence.
Write whatever is typed on the
screen to the named file.

48

Chapter4 PIP

PIP LPT: = CON: Write whatever is typed on the
screen to the line printer. This and
the command above are terminated
by ~ Z.

4.2.6 Using the PIP parameters.

We hâve used two parameters already, the V and the X. There are several
more, allowing you to start and/or stop at specified strings of characters, to
check the validity of the characters in the file(s), and to perform some layout
editing.

Any parameters can be used in combination - as long as the combination
makes sense - and the parameters may be separated by one or more spaces,
or may be entered one after the other with no spaces and no other separators.
The parameter or the group of parameters must be enclosed in a pair of
square brackets [], and the parameters apply only to the file which they
follow. The example of [X] above shows the parameter repeated for each file.

We will list ali the parameters, including the ones which only apply to version
3.1. These are indicated with (3.1 only) after the parameter (oroption) name.

[A] Archive. (3.7 ônly). This option isused to copy only those files which hâve
been changed since the last copy.

[B] Block read. (2.2andearlier version only.) This reads blocks from the file
(see STAT DSK: for the blocking on your hardware) and fills the memory
buffer until the ASCII 'x-off' character is detected. This is the end of block
character, put in by the System, and is the same character as the'' Sgenerated
at the keyboard. As soon as a^ S is detected, the memory buffer isemptied
into the destination and the next block read is initiated. This is useful, among
other things, for continuous read/write devices, with no start/stop
controlled by the System, such as a cassette player.

[Cl Confirm. (3.7 only.) PIP displays a prompt asking for confirmation before
carrying out the copy. This is normally ohly used when the source filename is
ambiguous.lt considerably eases the copying of a sélection of files for which
no suitable afn exists, since an afn of wider scope can be specified in the
command line, and at the prompts, the final sélection can be made.

49

ambiguous.lt

CP/M The Software Bus (a programmer companion)

[Dn] Delete characters after the 'nth'. This is used for records with a known
length greater than n characters - and is effectively a 'delete ail after column
n'.

[E] Echo ail transfers to the console. You can see the 'write to destination'
operation being performed by adding the E to the source filename.typ

[F] Formfeeds removed. Whenever the formfeed character is encountered,
omit it from the output to destination. This is the ASCII décimal code 12,
usually listed as 'FF' (note, that is not the hexadécimal FF). See also the P
parameter below.

[Gn] Get the file from user n's area. This allows you to operate in user 3, say,
and copy into your user area a file from another user, say 0. That would
require [GO], (We mentioned this in connection with USER, in Chapter2.) In
CP/M version 3, this option can be used to put a file into a different users
area.

[H] Hexadécimal characters are assumed, and PIP checks that valid hex
characters only are in the file. Errors are reported on the console.

[I] Ignore any ":00" characters in the source file, omitting them from the
output. This also checks for hex as H above.

[L] Lower case only required. Converts any upper case characters to lower
case before output. See also U below.

[N] Number ail Unes. This adds line numbers to the output file, with leading
zéro suppression. See next parameter.

[N2] Number ail Unes but include leading zéros and put a 'tab' after each
number, before the text.

[O] Object files are being copied, and the end-of-file or end- of-string
character (~ Z) is to be ignored. This is for non-ASCII files, and the'' Z's to be
ignored are those encountered when concatenating files.

[P] Page. This parameter inserts the formfeed character (ASCII 12) after
every 60 Iines of the text. This is the default form of the next parameter.

[Pn] Page length n. Inserts the formfeed character after every n Iines of text.
See the F parameter for removal.

50

Chapter4 PIP

[Qstring^ Z] Quit the copying process after the string (which must be
terminated with the ~Z character in the command) is encountered. An
examplecouldbe [QChapter4^ Z]. Thatwould copyeverything upto, butnot
including, 'Chapter 4'. A word of warning here. We said earlier that we
always use upper case when giving commands to CP/M. If we used lower
case, then CP/M would automatically convert them to upper case before
obeying them. And there is the warning. If you want to specify a string which
has lower case letters in it, as we just did, then you must hâve invoked PIP
first, to get the * prompt, and then give your command with the lower case
letters. PIP itself does not change lower case to upper - it is the CCP which
doesthat. Thisalso appliestothe [S... parameterbelow. Noticethatwehâve
printed the'' and then the Z. In the command string you must put that in as a
single character, by holding the Control key while you hit Z. It will appear on
the screen asAZ.

[R] Read System (SYS) file(s). This allows you to copy a SYS file (the copy
will be a SYS file too) without first changing the attribute, and then changing
it back after the copy. Without one or the other, the file would not be
accessible to PIP.

[Sstring^ Z] Start the copying process with the specified string. This can be
used to re-start a copying process which was interrupted for some reason
(useful when copying tothe LPT: or LST: device is interrupted), or to extract
a section of a file, when used in combination with [Q... Notice that the string
specified in a S (start) parameter is included in the output to the destination
file/device, but the string specified in a Q (quit) parameter is not. Therefore
the whole of Chapter 4, but none of Chapter 5, would be selected and copied
with the parameters [SChapter 4~ ZQChapter 5~ Z],

[Tn] Tabulate, expanding the tabs from whatever are specified to every nth
position (every n columns).

[U] Upper case is required at output to destination, ali lower case characters
are converted to upper case. See L above.

[V] Verify ali copied data by comparing source and destination files. The
comparison is done by reading after writing and comparing what is read with
what is still in the output buffer.

[W] Write-over files of the specified name even if they are set to R/O. Note
here that if you copy a file to a filename.typ on the destination drive which

51

CP/M The Software B us (a programmera companion)

already exists and is R/W, the copy will take place, and whatever was there
before will be deleted from the directory. Effectively, you will have
over-written the original. In practice, you will have created a new version and
thedirectory entry for the old on will have character 00 set to E5H. If you use
the [W] parametertoover-writea protected (R/O) file, thesameapplies. The
new file is not set to R/O if you do this. The new file actually occupies a
different part of the disc than the original did, and the 'overwrite' is actually a
'write to filename.$$$ - then erase filename.typ from directory and rename
.$$$ to .typ'. You may see this because the position of the file in the directory
may change.

[X\Copy files which are not strings of ASCII characters. This negates the
check for valid ASCII characters which is otherwise performed.

[ZJ Zéro the parity bit on ail ASCII characters input. This may be used when
you are using INP: as the input device.

And that is the full list. We mentioned in the previous Chapter that there was
something spécial about the PRN: device. Here is theexplanation. If you had
a text file called, say, FRED.TXT, then you could put it out onto the currently
allocated list device (LST:) with line numbering, tabs every 8 columns, and
page changes (formfeeds) every sixty Iines, like this -

A>PIP LST: = FRED.TXT[N T8 P60]

(The parameters are separated by spaces to make them easier to read.)

The same resuit exactly would be achieved by using the pseudo device PRN:,
like this -

A> PIP PRN: = FRED.TXT

Different page lengths, leading zéros and so on do require you to specify the
full parameter list, but PRN: is very useful as a standard listing format.

4.3 Summary of PIP.

We started by looking at PIP as a simple file coying program. PIP can also be
used to concatenate files, and produce a single output at the destination.
ASCII files can be split, and parts of a file can be copied, together with parts
of other files, if you wish. There is a powerful list of parameters which allow
PIP to perform fairly complex sélection and editing work. The PRN: device
assumes a standard set of parameters.

52

Chapter4 PIP

PIP can be invoked without a command line, in which case the * prompt is
displayed ready for a command, or the single command can follow PIP on the
console, and you will be returned to CP/M after the command isobeyed. To
return to CP/M when the * is on the screen, press Return, or use* C.

The basic format after PIP or after the * prompt is -

destination = source or source list

Files specified with ambiguous file name (afn) are treated by PI P as 'the set of
files which match the afn'.

Parameters must be enclosed in square brackets [], must follow immediately
after the filename to which they refer, and must be repeated for each
filename as necessary, if concaténation is specified.

53

CHAPTER 5.

The 'Batch Processing' transients,
SUB MIT and XSUB, PROFILE and GET.

5.1 Fundamentals.

Ali the commands which we hâve so far given to CP/M hâve been given
through the keyboard. SUBMIT is a routine which, when loaded into
memory, tells CP/M to take its next command from a file which we hâve
provided, and to go on taking commands from that file until it is empty.

This allows you to process a 'batch' of commands, one after the other,
without any keyboard entry.

Also, SUBMIT allowsyou to store one or several long or complex commands
in a file, and invoke them with just a two-word command.

In CP/M 2.2, with SUBMIT on its own, the batch of commands can only be
CP/M commands, not keyboard entries required by the program which the
command loads. With SUBMIT and XSUB, even those commands can be
built into the file (or 'batch') of commands.

In CP/M 3.1, SUBMIT contains the XSUB facility, so it is not a separate,
transient, and does not need to be invoked separately. 3.1 also has a GET
facility and an auto-search for a file PROFILE.SUB. We will define these at
the end of this Chapter. Briefly, GET acts as a temporary re-direction of the
CONIN: device, taking ali input from a specified file, instead of the console.
PROFILE.SUB isa spécialform of .SUB file which gives automaticcommand
processing whenever the System is'booted'. PROFILE.SU B can besimulated
in 2.2, as we will see.

54

PROFILE.SU

Chapter 5 The ‘Batch Processing' transients

In version 2.2, XSUB was introduced, and allows you to put into the
command file, entries which are passed directly to the program you are
running, not held until CP/M is invoked after the run. However, that only
applies to those programs which use the BIOS Function 10 - the buffered
console input. MBASIC programs do not use Function 10 - soyou cannotuse
XSUB to pass commands from a file in response to an INPUT statement in
MBASIC. However, most fully compiled or assembled and linked (.COM)
programs (COMmand files) do use Function 10.

You must hâve SUBMIT.COM on the dises in the machine, of course, and
you must also be able to create your file of commands. You could do this by
using PIP, but it is normally done using the CP/M editor (ED) or one of the
Word Processing packages.

The PIP command to enter text into a .SUB file through the keyboard is this -

PIP filename.SUB = C0N:< Rt>

which loads PIP and then leaves the cursor at the start of a blank line on the
screen. Type in your command, or your list of commands, ending each one
with 'LINE FEED' and < Rt> . After the last command, use''Z (Control and Z)
to indicate to PIP that you hâve finished. That will create the file
filename.SUB.

We will be discussing ED and friends in Chapter 10, so for the moment, we
will assume that you can create a file. The file can be called any name you like,
of course, provided that you give it the extension .SUB

To take a simple example, if you are using MBASIC (see chapter 9) and you
want to hâve six files open simultaneously, you need to start with the
command MBASIC /F:6

If yourfirst program is called, say, START. BAS - then the command to enter
that program automatically becomes -

MBASIC START /F:6

If you forget the /F:6 and your program tries to open a file with a number
greater than the initial allocation (usually 3), the program will hait and the only
way to continue is to return to CP/M. Irritating. Use SUBMIT to avoid that
problem.

55

SUBMIT.COM

CP/M The Software Bus la programmer companion)

Set up a file which has just the instruction we looked at in it -

MBASIC START /F:6

and call it SPECIAL.SUB (or some other name of your choice.)

Now torun the program, you type in SUBMITSPECIAL< Rt> andCP/M will
load SUBMIT, then take the instruction from the .SUB file (and show it on
the screen) and obey it.

The screen would look like this -

A> SUBMIT SPECIAL

A> MBASIC START/F:6

BASIC Rev. 5.01
[CP/M Version]
Copyright 1977,78,79 (C) by Microsoft
Created..... etc.
etc.
- - and the program START. BAS is loaded and runs.

5.2 Using XSUB with SUBMIT.

If the XSUB program is also invoked, then the list of commands must start
with XSUB. XSUB is seldom invoked alone, and if it is invoked, it is always the
first of the commands in a . SU B file. It is loaded into memory, and stays there
for the duration of that SUBMIT run. You can then mix commands as
appropriate.

As we said earlier in the Chapter, you cannot use XSUB with interpreted
programs in MBASIC, so to illustrate XSUB, we will use a different
illustration.

Let us say that you hâve formatted and 'sysgen'ed some new dises, and you
want to copy onto them four of the CP/M transient commands. One way
would be to invoke PIP, and then, in response to the * prompt, to enter each
name in turn. However, it would really be quite convenient to enter the
names once, and once only, and to let SUBMIT do the copying for you.

56

Chapter 5 The ’Batch Processing'transients

You could createafile, let uscall it PIPSTATS.SUB, containing thefollowing

XSUB
PIP
B: = A:PIP.COM
B: = A:STAT.COM
B: = A:SUBMIT.COM
B: = A:XSUB.COM
B: = A:PIPSTATS.SUB

Note here that although you actually want to finish the commands with an
extra < Rt> , to re-boot from PIP, you cannot, because a file (.SUB) which
ends in two < Rt> s exits back to CP/M without doing anything useful.

If you now use that file in a SUBMIT statement, you will copy ali the five
named files - including the. SU B file itself - from the disc in A: to the disc in B :,
regardless of what else was on the A: disc.

This is what it will look like on the screen -

A> SUBMIT PIPSTATS

A>XSUB

A>PIP

*B: = A:PIP.COM

*B: = ArSTAT.COM

*B: = ArSUBMIT.COM

*B: = ArXSUB.COM

*B: = ArPIPSTATS.SUB

*-and at this point you press < Rt> tore-bootCP/M

A>

If you were copying the five files to several dises, you would change the disc in
B: before pressing < Rt> , otherwisechanging the disc would set the new one

57

A:PIP.COM
A:STAT.COM
A:SUBMIT.COM
A:XSUB.COM
A:PIP.COM
ArSTAT.COM
ArSUBMIT.COM
ArXSUB.COM

CP/M The Software Bus la programmera companion)

to R/0. (But version 3.1 would not set the disc to R/0.) Then you would
simply repeat the SUBMIT PIPSTATS command.

5.3 Putting a run-time PARAMETER in SUBMIT.

Any of the commands or part commands in the .SUB file can take the form $1
$2 $3 and so on. These are variables, meaningless as they stand, but given a
value at the time SUBMIT is run. To give the values, you follow the SUBMIT
command with the actual value to be inserted instead of the $1 $2 etc.
Logically, the first value entered in the command is put into $1, the second
into $2 and so on.

The way it is done is that SUBMIT créâtes a temporary file called $$$.SUB,
with the actual values in, and CP/M (etc) uses that as its source of
commands. SUBMIT also deletes the $$$.SUB file after the last command is
obeyed, but does not delete the original. SU B file. That is preserved. We will
mention that $$$.SUB file again towards the end of the chapter.

To continue with our example, we might want to put in the name of another
file, perhaps an MBASIC program, at the time we enter the SUBMIT
command. Our file called PIPSTATS.SUB now looks like this

XSUB
PIP
B: = A:PIP.COM
B: = A:STAT.COM
B: = A:SUBMIT.COM
B: = A:XSUB.COM
B: = A:PIPSTATS.SUB
B: = A:$1.BAS

To include the program JOBCOST.BAS in the copying, the command
becomes SUBMIT PIPSTATS JOBCOST< RT>

The $$$.SUB file is created, with the commands in reverse order, and with
other significant characters, as we will see. It is that $$$.SUB file which is
actually used. The .SUB file contains JOBCOST.BAS instead of $1 .BAS.

The parameter does not hâve to 'stand alone', it can be just part of a
command line, as you see. If the whole of the identity of the extra file to be
copied was unknown until the time of copying, the last line of the file would

58

A:PIP.COM
A:STAT.COM
A:SUBMIT.COM
A:XSUB.COM

Chapter5 The 'Batch Processing'transients

beB: = A:$1 instead of B: = A:$1 .BAS - and then the full filename.typ (the
ufn) would be used in the SUBMIT command.

To stop a sequence of commands, type RUBOUT (DELETE) as soon as the
next command is echoed onto the screen.

The CCP itself will terminate a sequence if it finds an error, or a missing
parameter.

For a continuous operation sequence, make the last command in the file
(.SUB) a repeat of the SUBMIT command ! That will simply re-start the
sequence from the top of the list. (Gets complicated if you also hâve
parameters in the list I)

5.4 Making a 2.2 program disc into an 'auto-start' System.

If you create a file $$$.SUB, in the right format, then as soon as you re-boot
that dise, (must be in A drive), the command line contained will be obeyed
immediately, as though SUBMIT had created it. You do not even need to
hâve SUBMIT on the disc ! The format - and we will concentrate on a single
command line because that is ail you need for 'auto-start' - is that the first
character of the file must contain a value equal to or greater than the number
of characters (in hex) in the command. For simplicity, put a 'space' character
there. That give you up to 32 characters in your command. Then the
command follows, and finally there must be at least one 'null' - OOH - to stop
the CCP from reading beyond your command.

A $$$.SUB file is normally a maximum of 128 characters long, so a small
MBASIC program to create a $$$.SUB file on drive B: would be like this -

10 PRINT"ENTER THE COMMAND FOR THE 'AUTO-START' FILE
20 LINE INPUT B$:IF LEN(B$)>32 THEN 10
30 A$ = " "
40 C$ = STRING$(95,CHR$(0»
50 OEN"O", #1 ,"B:$$$.SUB"
60 PRINT#1,A$;B$;C$
70 PRINT"THE DISC IN B: NOW HAS YOUR $$$.SUB FILE ON IT,''
80 PRINT"CONTAINING THE COMMAND - ";B$
90 CLOSE:END

59

CP/M The Software Bus la programmera companion)

This will allow you to put in a command such as -

BASIC START /F:6/S:256

or just -

BASIC

or the name of a .COM file, without the .COM, say -

PIP

When you have run that program, take the disc out of B: and put it into A: and
reboot. The A> will appear, and then your command, and it will be obeyed.
The one thing that you must not do, is to exit to CP/M. If you do, the CCP
knows that it has used your $$$.SUB file and it will be deleted. However, if
you do not exit to CP/M (if SYSTEM does not appear in your programs) the
$$$.SUB file will remain, ready to auto-start the next time you boot to that
disc. Even without SUBMIT !

5.5 Making a 3.1 disc into an 'auto-start' system.

Easy. Create a file called PROFILE.SUB, with an editor, or with PIP as we
showed earlier. No complicated 'first character' or ' nu II ' characters. The CCP
will automatically treat a PROFILE.SUB file as though you had typed
SUBMIT PROFILE at the keyboard. And it will not be deleted when you
re-boot. But it will be re-entered if you re-boot, so unless you have a sériés of
commands in your PROFILE.SUB, you might as well not bother to re- boot.

5.6 SUMMARY

SUBMIT allows use of a file of commands (one or several) which are
contained in a .SUB file, and are extracted from the file and used instead of
keyboard entered commands until the list is exhausted. XSUB entered in the
file as the first of such a list of commands also allows you to incorporate
keyboard commands or inputs which are required by the program which the
command invoked (ie not CP/M commands). XSUB stays in memory for the
whole of a SUBMIT sequence, so it does not need to be re-invoked if CP/M
and program inputs are mixed. XSUB is part of SUBMIT in version 3.1, so
must not be invoked.

60

Chapter 5 The 'Batch Processing'transients

Parameters may be entered in a .SUB file using $1 $2 etc, and these are
replaced by the values which you enter at the keyboard after the .SUB
filename, separated from the filename and each other by spaces.

You can use a parameter in any position, and the use or not of parameters is
entirely Independent of the use of XSUB.

Clearly, if your file contains $1, $2, $3 etc, then you must supply the values
which are to replace these when you SUBMIT the file. If you do not supply
them, the CCP will terminate the SUBMIT run.

You may use as many parameters as you need, and you are not even
prevented from using an actual $ sign as part of a command, not as a
parameter. To do that, simply put two $ symbols, i.e. $$, and they will be
interpreted as a single $. (eg If one of your filenames happened to be
TEMP.$$$ then you could include it in a SUB file by entering TEMP.$$$$$$)

To escape from a .SUB sequence, type RUBOUT or DELETE as soon as the
next command appears on the screen.

Alternatively, if one program in a sequence detects an error from which it
cannot recover, the sequence can be terminated by the program ERAsing (or
KILLing etc) the $$$.SUB file. It is unwise to allow the program to ERAse a
filename.SUB file, unless you hâve a back-up copy (filename.BAK,
perhaps). Make sure that you indicate clearly on the screen when there has
been an early termination due to a fault !

We submit (!) that this command is probably one of the most powerful
available under CP/M - because it contains the potentiel for fully automatic
processing.

PROFILE.SUB is the CP/M 3.1 'auto-start' file, and you can simulate it by
creating a $$$.SUB file.

61

CHAPTER SIX

Creating and controlling CP/M's
operation.

6.1 Fundamentals.

For the user of CP/M 2.2 and earlier, the sections on SYSGEN and MOVCPM
are fundamental, but the following sections do not apply at ali.

For the user of 3.1, the sections on COPYSYS, INITDIR and SET, GET and
PUT, SETDEF and GENCOM are equally fundamental.

Users of 3.1 and users of some implémentations of version 2.2 will have the
DATE command, which will be found at the end of this Chapter.

Since CP/M 2.2 and earlier versions work with a maximum memory size of
64k, but can work with smaller memories, the MOVCPM command allows
you to create a CP/M System to fit your memory exactly. Having created it,
you can then use SYSGEN to copy it onto the System track(s) of any dise.

CP/M3.1 workswith'banked'memory,aswewillseelaterin Chapter11,so
there is no direct équivalent to the MOVCPM command. However,
COPYSYS is similar to SYSGEN, allowing you to copy the System track(s).

INITDIRand SET are the commands which préparé for, and then initiate, the
date stamping and password protection available only under 3.1.

GET and PUT re-direct console input and console or printer output to
specified files, as needed. Again, this is applies only to version 3.1.

SETDEF allows you to tell CP/M to search on more than one dise for a
program or command - and to indicate the search order.

62

Chapter6 Creating and controlling CP/ M'soperation

GENCOM allows you to add spécial system extensions - such as a graphies
extension - to your command files, so that they will be loaded when your
command is obeyed, and then act as part of the BIOS, but do not have to be
résident when you do not require them. This is yet another way of reducing
the résident portion of CP/M without sacrificing any facilities which a
program may need. SETDEF and GENCOM are commands in version 3.1
only.

The command descriptions now follow in the sequence in which we have
listed them above.

SYSGEN (versions up to 2.2)

Before a disc can be used to load the operating system (to 'boot' or to
're-boot'), the operating system must be in position on the first track (0) orthe
first two tracks (0 and 1), depending on your dises. You have a disc with your
system which is the CP/M master disc. Put it into drive A, and type

SYSGEN< Rt>

The program (a transient command) is loaded, and announces itself with
SYSGEN VERSION 2.0 (or whatever version you have).

Then it asks where it is to take the 'system' from with the question

SOURCE DRIVE NAME (OR RETURN TO SKIP)

(Thisquestion will be suppressed if you supply SYSGEN with a filenamefrom
which the system is to be loaded - the command is SYSGEN
CPMxx.COM< Rt> - and xx is the CP/M version.)

Your operating system is in the memory and is on the disc in A (but see the
MOVCPM command below). Answer with the single letter A to tell SYSGEN
to take the system from the disc. (Or if the actual system which you want is on
a disc in another drive, then give the letter of that drive.)

Now the program allows you to change disc if you want to by asking you to
put the required disc in A (or wherever you said) and the screen shows

SOURCE ON x THEN TYPE RETURN

where x is the letter you entered. If you did not enter a drive name, but
pressed RETURN in answer to the first question, this instruction (SOURCE
ON etc.) is skipped.

63

CP/M The Software Bus (a programmers companion)

When you hâve pressed return, the next message shown is

FUNCTION COMPLETE

This tells you that CP/M has been loaded into memory from the disc, and
immediately the next prompt appears

DESTINATION DRIVE NAME (RETURN TO REBOOT)

You can abandon the operation at this point by pressing < Rt> , but usually
you want SYSGEN to create the operating System on a new disc. The new
disc can be in any drive - you can take the master disc out of A at this stage, if
you want to, and use drive A to create new initialised dises. However, let us
assume that you want to initialise new dises in drive B. You press B, and the
prompt invites you to put the new disc in B (it is probably there already I) by
displaying

DESTINATION IN B THEN PRESS RETURN

(or if you pressed some other letter - that will be shown).

Put the disc in B, press < Rt> and the program will write the operating
System (CP/M) onto the first track(s) of the disc in B. When that is
completed, the screen displays

FUNCTION COMPLETE

and immediately offers you the opportunity to SYSGEN another dise, with
the prompt

DESTINATION DRIVE NAME (OR RETURN TO REBOOT)

Atthis point the disc in B has the System on it. If you want to SYSGEN a box
full of dises, then press B again, change the newly initialised disc in B for a
blank one, and reply with < Rt> to the repeated prompt

DESTINATION IN B THEN PRESS RETURN

Continue like this for as many dises as you want to initialise. When you hâve
no more to do, press < Rt> in answerto the DRIVE NAME question, and the
System will re-boot from drive A. To SYSGEN a number of disesquickly, take
the source disc out of A after the first 'FUNCTION COMPLETE', and then
flip-flop between B and A as the Destination drive names. You will be able to
change a disc in the drive which is not the destination in the time it takes to
carry out the SYSGEN.

64

Chapter6 CreatingandcontrollingCP/M'soperation

6.2.1 What SYSGEN does (and doesn't do).

The sequence of operations which you hâve just completed has taken a copy
of the operating System from a disc, loaded it into memory, and then written
itonto the first track(s) of the dises which you putin drive B (in our example).
Ail other tracks are completeiy untouched by SYSGEN. If the disc had files
on it, they are still there, unaffected.

CP/M can be constructed in a form which will use a limited amount of
memory - or the whole of your available memory (random access memory, or
'ram'). Also, CP/M can hâve various different options, like the speed at
which data is transferred through the 'ports' (the connection sockets used for
printers etc.).

You can quite easily hâve one particular configuration of CP/M which you
are using, and a different configuration that you are copying. SYSGEN only
uses the source which you tell it to use, and puts that System configuration
onto the destination dises which you nominate, and does not affect anything
else.

You do not need to hâve CP/M on a dise, provided you will not want to'boot'
from it. If dises hâve not been 'SYSGENned', then they obviously cannot be
the source of a 'boot' or 'reboot' command. In fact, of course, the track(s)
used to record CP/M are not actually available to you for any other purpose.
You cannot put your own files onto them. So you do not 'waste space' by
having CP/M on ail dises.

If you hâve several different 'current' versions of CP/M or different
configurations to drive spécial peripherals - even different printers - you may
prefer to keep your CP/M initialised dises separate, labelled appropriately,
and leave the first track(s) of ail your program and data dises blank, so that
you only load the version/configuration of CP/M which you want, when you
want it.

6.3 MOVCPM (versions up to 2.2)

Some of the 'résident' part of CP/M is at the 'bottom' of memory (the lowest
numbered locations, starting at 0000H) and the rest, the majority, is at the
'top' of memory, in the highest numbered locations.

65

CP/M The Software Bus (a programmer companion)

We mentioned above that CP/M can be tailored to fit the memory you hâve
available. This is one of the jobs that MOVCPM does. The other job which
MOVCPM does is to create an actual file called CPMxx. COM (where xx is the
version number) within the data area of the disc, so that it can be modified to
suit some spécial hardware requirement. Two jobs, two parameters.

When you invoke MOVCPM, you add two parameters, separated by spaces.
Thefirst iseither a number (the memory size in 'kilobyes') or an *. If you hâve
a 32k version of CP/M, and a 48k memory, then either of these commands

MOVCPM *< Rt>
MOVCPM 48< Rt>

will take the version you hâve, re-locate it in memory so as to use the whole of
the available space, and then wait for your next command (which would
probably be SYSGEN - to put that version from memory onto a dise, from
where it can be 'booted').

The second parameter was omitted, in those two commands. That second
parameter has only one permitted value - the *. So to use MOVCPM to take
ail available memory, and to take a copy on a file in the data area, you would
enter

MOVCPM * *< Rt>

That would resuit in the message

"SAVE 32 CPMxx.COM"

which tells you how to create CP/M on the file CPMxx.COM - and xx is the
version number. This is the file image which you would load with SYSGEN
CPMxx.COM, aswe noted earlier. You enter the SAVE command exactly as
it is shown. CP/M (up to version 2.2, remember) occupies 32 pages of 256
bytes, or 8k bytes. Make sure that you hâve that much space available on the
destination disc. If the disc on which you want to store the new version is not
in the default drive, you can put the drive letter before the filename as usual.

6.3.1 Summary of MOVCPM.

M0VCPM< Rt> results in the loading of CP/M unchanged in size, and
CP/M then 'executes'. That is, the A> appears. Your original CP/M is
unaltered, and is the same as the one in memory.

66

CPMxx.COM
CPMxx.COM
CPMxx.COM

Chapter6 Creating and controlling CP/M'soperation

MOVCPM *< Rt> results in the loading of CP/M, relocated to take
advantage of the wholeof the available memory, and again CP/M 'executes',
giving the A> . Your original version is unchanged, and there is no copy of the
new CP/M. To copy it into the 'operating system track(s)', you would use
SYSGEN.

MOVCPM * *< Rt> is the same as the previous one, but you are invited to
"SAVE" the new CP/M by creating a file.

You can use MOVCPM to (say) create a smaller version which can be used on
your machine with less memory allocated. This might be useful to simulate
the operation of some software which you have produced, on a smaller
machine. What you can not do is to produce a 'brand new' CP/M with a
different serial number in it. CP/M owes its existence to the fact that many
people buy it !

6.4 Summary of SYSGEN and MOVCPM, the commands
up to version 2.2.

SYSGEN takes either the version of CP/M currently in memory, the version
in a specified file, or the version on the first track(s) of a dise in a drive which
you nominate, and copies it onto the first track(s) of one or several dises in a
nominated drive. It is then available on those dises for 'boot' or 'reboot'
operations.

MOVCPM loads CP/M into memory, relocating it to suit the stated or
available memory, and offers the opportunity to file it within the data area of a
dise, ready for 'user patching' (see Chapter 15). The use of MOVCPM
*< Rt> before SYSGEN makes sure that the CP/M which goes onto the
'operating system' tracks is relocated to utilise the whole of the memory
available, if a smaller version (say) was provided initially. MOVCPM * *< Rt>
is the command required to obtain the invitation to file CP/ M. If the second
parameter is to be used, the first must also be présent. The first parameter
only, or none, may be used.

6.5 COPYSYS. (version 3.1)

The command in version 3.1 to copy the System track(s) from one dise to
another is COPYSYS. There are no 'options' - the command is entered as the

67

CP/M The Software Bus la programmer companion)

single word. Your System will be provided with a 'master disc' - and after
formatting a new dise if that is needed for your hardware, you will put use
COPYSYS to put the System on the first track(s) of that new dise.

Since the System track(s) may not be used for any other purpose, there is no
reason not to put the 'System' onto those tracks, unless you are using a
'package' which needs data dises that are never used in drive A, and
therefore are never used to 'boot' the System.

6.6 INITDIR and SET. (version 3.1)

Since version 3.1 has a facility to carry two date and time stamps and a
password for each file, you need to set up the directory on a dise in a form
which can accept those extra items. Unless you hâve used INITDIR, you
cannot use SET, and you cannot use the date stamps and password.

The command is either -

INITDIR< Rt>

which initialises the directory on the logged (default) drive, or

INITDIR d:< Rt>

which does the same thing on the disc in the specifed drive.

The response to the command (if you had specified drive B:, say) is -

INITDIR WILL ACTIVATE TIME-STAMPS FOR SPECIFIED DRIVE.
Do you want to reformat the directory on B: (Y/N)?

and you enter Y or N as appropriate. However - ali that INITDIR does is to
make space available. It does not actually start the 'stamping'. To do thatyou
need to use SET and one of the options available.

SET itself can take several forms, depedent on what you want to do. As we
said, it can initiate password protection and date stamping of files.

SET can also change the drive or file attributes to Read-Write, Read-Only,
DIR and SYS.

SET allows you to label a disc and password protect the label.

68

Chapter6 Creatingandcontrolling CP/M'soperation

We will start with the labelling and password protection of a dise.

A label has the same rules exactly as a filename, and may hâve a 'type' suffix.
If you want to label the default drive, you omit the drive name and the colon -
but note its position if you want to specify a particular drive. To put
'CPMBOOK2.TXT' as the label on a dise in drive B:, you would enter -

SET B: [NAME = CPMB00K2.TXTK Rt>

To apply password protection to that same dise, (a password is up to 8
characters, as we saw in Chapter 2), you choose your password - we will
choose the password 'JME' for our illustration - you enter -

SET B: [PASSWORD = JME]<Rt>

If you are putting the password protection on the default drive, you omit the
drive letter, of course. The closing square bracket can also be omitted, if you
wish.

To remove password protection from a dise, you simply press 'Return' after
the equals sign, like this -

SET B: [PASSWORD = < Rt>

Now we can look at password protection of files.

First, before you can assign passwords, you must switch password
protection on. You do this with the command -

SET [PROTECT = ON]

To disable file password protection, the command is -

SET [PROTECT = OFF]

as you might expect !

To assign a password to a file, simply give the filespec, and specify the
password as we showed it for use with a dise, like this -

SET filespec [PASSWORD - password]

To remove a password from a file, you cannot use the
'PASSWORD = < Rt> ' which we showed above for dises, instead you use
this command -

SET filespec [PROTECT = ΝΟΝΕ]

69

CP/M The Software Bus (aprogrammers companion)

Now we corne to the levels of password protection which are available. If
you simply want to prevent délétion of a file unless the password is given, or
to prevent re-naming of the file unless the password is given, use this
command -

SET filespec [PROTECT= DELETE]

or combine the spécification of the password with that same level of
protection, like this -

SET filespec [PASSWORD = password,PROTECT= DELETE]

However, you can add another level of protection, to prevent the file from
being altered in any way without use of the password. This is the 'WRITE'
protection. If you set WRITE protection, then anyone who wants to write to
the file, or to re-name or delete it, must give the correct password. The
command is -

SET filespec [PROTECT = WRITE]

The highest level of protection also prevents anyone (any program, or any
console user) from READING the file, unless the password is given. If you set
READ protection, then all file manipulations, reading, copying, writing,
re-naming or délétion will be blocked unless you include the password in the
full filespec. The command to set this level of protection is -

SET filespec [PROTECT= READ]

The filespec can be an afn. If you are logged onto drive A, to protect all files of
type TXT with the password KEEPIT, at the lowest protection level, on drive
B, the command would be -

A>SET B:*.TXT [PASSWORD= KEEPIT,PROTECT= DELETE]

or you could log onto B: and get the same resuit exactly with -

B>SET *.TXT [PASSWORD = KEEPIT,PROTECT= DELETE]

So now you can set password protection for a dise or a file, and you can label a
dise. We indicated, back in Chapter 2, how to include a password in a
filespec, but it is worth repeating here, now that you know how to get the
password onto the file. To include a password in a filespec, you put a
semicolon after the name and type (if any) and then the password. These are
all valid filespecs including passwords - in each case, the password follows
the semicolon (;).

70

Chapter 6 Creating and controlling CP/M's operation

MYPROG.BAS;JME
JOBCOST;SECURE
C:CPMB00K3.TXT;HIDDEN

For any of these, one of the levels of Security will apply, dépendent on which
you have allocated, with 'PROTECT = '.

There are two more areas in which SET is used, one we mentioned briefly in
Chapter 3, for setting 'attributes', and the other for defining what the
date-stamping is to be. There is a range of available attributes, so we'll look at
those first.

Each of the attributes listed is used in square brackets, after the 'SET filespec'
part of the command. Several attributes may be set in one command, they
are simply listed within the square brackets, with commas as separators.
These are the attributes -

RO Set the file to Read Only
RW Set the file to Read/Write

(Note that password protection is applied in addition to these, so that it would
be quite possible to have a file with RW attribute, but with password
protection to prevent délétion without the correct password. Setting a file to
RO will stop anyone from writing to the file, even if they have the right
password.)

SYS Set the file attribute to SYS
DIR Set the file attribute back to DIR

(Those we referred to in Chapter 3)

ARCHIVE = OFF means that the file has not been 'backed-up' (or
archived).

ARCHIVE = ON means that the file has been 'backed-up'. You can
turn the ARCHIVE attribute on directly by SET, as
we are showing it here, or by using the [A] option
with PIP as we showed in Chapter 4. If you copy a
file with PIP, using the [A] option, then the file you
copy from will have the ARCHIVE attibute set ON.

There are four user-definable attributes which can also be switched on or off.
Theattributesareknownto CP/M 3.1 asF1, F2, F3 and F4, and are set ON or
OFF with ' = ON' or ' = OFF'. These are examples -

71

CP/M The Software Bus (a programmer companion)

F1 =0N
F3 = 0FF

Just as with ali the rest of the attributes we are discussing here, you enclose
the attribute in square brackets after the filespec. This is an example of a full
command, setting several attributes -

A>SET INITIAL.BAS [RO SYS F1=ON F4 = OFF]

Note that the attribute list is separated by spaces.

The last of the functions of the SET command is the initiation of
date-stamping. (Sometimes called 'time-stamping'. The time and date are
recorded.)

These are three possible time/date stamps which you can choose, but only
two may beappliedto one file. CREATE and ACCESS are mutually exclusive
- turning one on, turns the other off. In each case, as you will see, the
command is completed with the ' = ON', and that is necessary in the
command.

Each of the three is specified for a drive - and therefore for the whole dise in
that drive. You cannot set time/date stamping for a single file on a dise - ail
the files are handled in the same way on that dise. Therefore, the command
does not and may not include a filespec - but it may include a drive letter and
colon.

CREATE = ON If this is set on, then when a new file is created, the
time/date stamp is marked in the directory for the
file. This is not updated, because it is inherently a
'one-off'. It cancels ACCESS if that was set
previously.

ACCESS = ON If this is set, it cancels CREATE, if that was set
previously. Whenever the file is opened, whether for
'read' or 'write', the ACCESS time/date stamp is
updated.

UPDATE = ON This is Independent of the previous two, and records
the time/date on which the file was last altered. The
alteration could be writing to any record in the file,
or increasing or reducing the length of the file.

There is one final use of SET which we did mention in Chapter 3, but which
we include here for completeness, and that is the use of SET to make a dise

72

Chapter6 Creating and controlling CP/M'soperation

Read-Only, or Read-Write. RO set this way is a temporary condition, reset to
RW by re-booting. The command may have a drive letter, or the default drive
is assumed. the command forms are -

SET [RO]
S ETC: [RW]
SETB:[RO]

It is worth mentioning again here the fact that although versions 2.2 and
earlier would detect a changed medium, and would set the disc RO attribute
automatically, version 3.1 does not set the medium to RO - but does prevent
any further access to files which were open on the first dise when the disc
itself was removed and replaced.

6.7 GET and PUT.

GET tells the system to take console input from a file for the next system
command, or user program enterd ar the console.

PUT tells the system to direct its console or printer output (you specify
vyhich) to a file until the next program terminâtes.

Both GET and PUT have ECHO/NO ECHO and SYSTEM options, and there
is a FILTER/NO FILTER option on PUT, so we will cover the options first.

ECHO means that console input or output are displayed at
the console - this is the normal condition, the
default. If it is used with a 'PUT to printer’ com
mand, then printer output is also echoed to the con
sole.

NO ECHO tells the System not to écho console or printer (as
stated) input or output to the console. This is the
default in a 'PUT to printer' command.

SYSTEM in a GET command means that all system input is
immediately taken from the file specified, and the
system continues to take input from the file until the
file is empty, or until another GET is encountered in
the file itself.

73

CP/M The Software Buslaprogrammerscompanion)

SYSTEM

FILTER

NO FILTER

in a PUT command intercepts any system output to
the console, and re-directs it to the same file as that
specified in the command. The system output will
continue to be directed to the file until another PUT
CONSOLE command re-intates the usual condition,
is used in a PUT command if you want Control
characters to be recorded in printable form. For
instance, if FILTER is on, an 'ESCAPE' character will
be translated into 4 so that it can be recognised, but
not acted on during the transfer to file.
switches FILTER off, and is the default, and means
that any Control characters are passed into the file
exactlyas received.

The full GET command is -

GET CONSOLE INPUT FROM FILE filespec

or -

GET CONSOLE INPUT FROM CONSOLE

but the words 'CONSOLE INPUT FROM' may be, and usually are, omitted.
The command is therefore

GET FILE... or
GETCONSOLE

Examples will show more clearly the use of the command.

A>GET FILE DATAINP<Rt>
A> EXECPROG< Rt>

This shows that console input is to be taken from the file DATAI N P, but not
until the program which expects console input has been loaded and run. Any
request for console input in the program EXECPROG will be answered with
data from DATAINP. If DATAINP has no more data, EXECPROG is
redirected to the console. When EXECPROG ends, the system reverts to
console input, whether DATAINP is ail 'used' or not.

A> GET FILE DATAINP [SYSTEMK Rt>

It may reasonably be assumed that DATAINP in this case contains a valid
command at the start of file - because the 'SYSTEM' option has told the
system to go immediately to DATAINP for its next console input.

74

Chapter 6 Creating and controlling CP!M's operation

GETCONSOLE

This may be included in a file to re-direct the System back to the console for
console input even though the file may not be empty, and/or the program
may not hâve terminated.

Because the default is 'ECHO', you would expect to see the command
echoed on the screen, like this -

A>GET FILE DATAINP[SYSTEM]
A>GET CONSOLE
A>

If you included 'NO ECHO', you would get this -

A>GET FILE DATAINP[MO ECHO,SYSTEM]
A>

And the System would wait for your input.

Now for the PUT command. There are the two types of command, one for
the console, the other for the printer. In the PUT command, you can omit the
words OUTPUT TO', but in fact you will probably find it easier to include
them, so that the command is more understandable to you ! The commands,
two for the console and two for the printer, allow you to redirect output to a
file, like this -

PUT CONSOLE OUTPUT TO FILE filespec
PUT PRINTER OUTPUT TO FILE filespec

or to direct it back to the original device like this -

PUT CONSOLE OUTPUT TO CONSOLE
PUT PRINTER OUTPUT TO PRINTER

The ECHO option is the default for PUT CONSOLE... commands, and the
NO ECHO option is the default for PUT PRINTER... commands.

The NO FILTER option is the default for PUT PRINTER commands, as we
said when we listed the options above.

The SYSTEM option for the PUT commands means that System output as
well as program output is written to the file. PUT CONSOLE CONSOLE
cancels the SYSTEM option.

75

CP/M The Software Bus la programmer companion)

The examples below illustrate common commands.

A> PUT CONSOLE OUTPUT TO FILE PROGOUT [NO ECHO]

Note that you do not need to use [ECHO] in a PUT CONSOLE... command,
because that is the automatic default. The above command would put
anything which the program displays at the console onto a file called
PROGOUT instead. The file could have a full filespec, such as
B:PROGOUT.TXT;SECRET, if that was needed.

A> PUT PRINTER OUTPUT TO FILE PROGOUT.DAT
A> START

The output from program START would befiled instead of printed. Because
this is a PRINTER command, there is no ECHO to the console, unless you
specify it as an option. There is no FILTER in operation, either.

A> PUT PRINTED OUTPUT TO FILE PROGOUT2.DAT[ECHO,SYSTEM]
A>THISPROG

Here you have a command which directs the output of TH ISPROG to the file,
and échos it to the console. All system output is also put on the file and
echoed to the console. This stays in effect until you enter a system command
PUT PRINTER TO PRINTER.

6.8SETDEF. (version 3.1 only)

One of the minor restrictions with versions 2.2 and earlier is that the system
requires a single drive to be specified for any file which is to be opened. This
could be the default drive, or could be explicit. Version 3.1 allows you to
define a list of up to four drives which will be searched for the filename
specified. Also, version 3.1 allows you to specify two filetypes, so that a
filename of the first type will be sought, and if it is not found, then a file of the
same name, but with the second type will be sought and opened if found.

Also, in versions upto 2.2, the SUBMIT command always created its spécial
$$$.SUB file on drive A, the 'boot' drive. This was almost always a 'floppy
disc', and was therefore much slower than, say a Winchester dise or M-disc
(see Chapter 11), which would have a different drive letter. Version 3.1 allows
you to specify onto which drive the 'temporary' files (like $$$.SUB) are to be
created.

76

Chapter 6 Creating and controlling CP/M's operation

To help you to keep track of what the system is doing, you can direct version
3.1 to display the identities of ali programs loaded, and any 'submit' files
executed.

When you have a reasonably fast console display, it can be mildly irritating to
have information which is being displayed, and which you therefore
presumably want to read, scrolled off the top of the screen, before you have
chance to see it. Version 3.1 can set the console into 'PAGE' mode, which
always f il Is a screen page (which you can define with the DEVICE command,
Chapter 3) and then wait for you to release it, before accepting the next page,
and so on.

Ali these facilities are available through the SETDEF command.

A>SETDEF [PAGE] and
A> SETDEF [NOPAGE]

turn the console 'page at a time' feature on and off.

A> SETDEF [DISPLAY] and
A> SETDEF [NO DISPLAY]

turn the 'trace program and submit files on the screen' feature on and off.

To set a particular drive (say drive M :) as the one to which temporary files (like
$$$.SUB) are to be sent, you enter the command -

A> SETDEF [TEMPORARY = M:]

For the type search order, the command (which must not have more than
two 'types' in it) is like this -

A> SETDEF [ORDER = (SUB,COM)]

This will look for a file of type SUB first (instead of type COM, which is what it
would normally look for, and then, if it does not find one, look for a type
COM. If your exécutable command files were ali of type JME, for some
reason, you would want the system to search for them, not for type COM
files. So you would first enter -

A> SETDEF [ORDER = (JME)]

and then, if your command file was called SPECIAL.JME, you could type in

A>SPECIAL< Rt>

and SPECIAL.JME would be found, loaded and executed.

77

CP/M The Software Bus (a programmera companion)

Finally, to define a search order for the System, you simply list the drives (up
to 4) with commas between, after the SETDEF. You can even use * as 'the
default drive'.

A> SETDEF C:,B:,A:

will tell the System to search for your command file (program name) on drives
C, then if it is not there, B, and if it is not there either, try A.

Once you hâve set the search order, it stays in operation even though you
may change logged drives, so you can enter -

A> SETDEF C:,*

to tell the System to search C first, then the default drive. If the default drive
stays at A as shown, that drive will be searched. However, if you changed to
B, and then gave this command -

B>FINDPROG< Rt>

the System would look first on C for FINDPROG.COM (or whatever ORDER
you hâve set) and then on B: - because the SETDEF included the * for the
default drive.

6.9 GENCOM. (version 3.1 only)

There are some RSX modules (Résident System extensions) which are
needed as résident parts of the System when they are in use, but which
occupy space in the memory which is best released, when the modules are
not needed. There is a 'graphies' module, for example. They are handled by
BDOS calls, from the résident BIOS, so they must be 'attached' to the BDOS
up at the 'top' of memory, when they are needed.

Version 3.1 has a mechanism for creating spécial COM files which include not
only the COM program itself, but also a 'header' to tell CP/M that there isan
RSX attached, and the RSX itself.

The mechanism is the GENCOM command. Examples will show the use of
the command and its options. We will call our COM program MAINPROG
and the RSX modules PR0G1 PR0G2 etc.

A> GENCOM MAINPROG PR0G1 PR0G2

78

FINDPROG.COM

Chapter 6 Creating and controlling CP/M's operation

This command will create a new version of com-filespec, with the same
name, but with the necessary header and with the two (in this case) RSX
modules attached, in the same file. Now, when you give the command, you
will automatically load the RSX modules with the program.

To re-instate the original version of MAINPROG, without the header and
RSX's, we simply enter -

A> GENCOM MAINPROG

This strips off the additional items.

If we have a new version of PROG1, say, and perhaps another R SX, we could
take the already 'GENCOMmed' version of MAINPROG and repeat the
command, adding the third RSX, like this -

A> GENCOM MAINPROG PROG1 PROG2 PROG3

Even though MAINPROG already has the header etc, GENCOM will look at
MAINPROG, rebuild the header to take the third RSX into account, and will
replace the existing PROG1 and PROG2 with the ones on disc as separate
modules, and will add the new PROG3.

You do noteven have to have a MAINPROG. GENCOM will create a file with
a header and an RSX (or more than one) if you indicate that there is no
MAINPROG with the NULL option, like this -

A> GENCOM PROG1 PROG2 [NULL]

This créâtes the dummy COM file with the two RSX's in it, and calls it
PROG1.

There are two further options, 'LOADER' and 'SCB = ’. The first tells CP/M
to keep the program loader active after completing the création of the file
with the RSX's specified. The second (SCB =) allows you to set the System
Control Block from your program, by taking the values from the command
line. The command would be, say, -

A> GENCOM MAINPROG PROG1 [SCB = (offset,value)]

Thepurposeand useof the SCB will be shown in Part Three, from Chapter 11
onwards.

Any of these options is enclosed in square brackets, as shown. The principal
use of GENCOM is the one we started with - the création or dismantling of a

79

CP/M The Software Bus (a programmera companion)

file which allows RSX modules to be loaded with the program, without any
spécial command at run time.

There is a command loosely related to the ones we have covered in this
Chapter, called PATCH, but we will be covering the CP/M assemblers in
Chapter 8, so we will corne back to that one in due course.

80

CHAPTER SEVEN

DUMP, LOAD, DDTand SID

7.1 DUMP

DUMPisa program (ora transientcommandif you prefer) which will takeany
named file, and display the contents on the monitor. Versions 1.4 and 2.2
display the file content in 'hexadécimal' only, but Version 3.1 displays the
content in both 'hex' and ASCII. If 'Control P' (’P) is used first, you will also
get a printout. At the 'f undamental' level, you may not wish to get involved in
'hex', or in programs or files held in that way. If you do want to use it, the
commands are -

DUMP ufn (display the content of the file ufn in hex)
DUMP d:ufn (as above, but the file from drive d:)
DUMP d:*.typ (display the first file in the directory of .typ)

The display - or printout - can be stopped with any of the
Delete/Backspace/Rubout keys. That returns you to CP/M. A temporary
stop is achieved with Λ S as for many other 'rolling screen' commands. (And
any other key - such as*S again - to restart.)

So DU MP allows you to inspect any f île/program on the screen. The layout of
the 'hex' display is illustrated below.

0000 21 00 00 39 22 15 02 31 57 02 CD C1 01 FE FF C2
0010 1B 01 11 F3 01 CD 9C 01 C3 51 01 3E 80 32 13 02
0020 21 00 00 E5 etc.

The four digits on the left (our italics, not 'DUMP's) are a byte count - the
number of the first byte on that line, numbering from zéro at the beginning of

81

CP/M The Software B us (a programmera companion)

the file. The counting is also done in 'hex', so the rows are numbered — 0080
0090 00A0 00B0 etc.

Then the contents of the first sixteen bytes are shown in 'hex'. The next row
has the next sixteen and so on.

7.2 LOAD and HEXCOM

Versions 1.4 and 2.2 of CP/M use the 'LOAD' transient, version 3.1 uses the
HEXCOM transient. They fulfil exactly the same function. We will refer to
LOAD, but you could substitute HEXCOM for LOAD in what follows, and it
would be perfectly correct.

LOAD is a program which simply converts an assembled file - produced by
ASM (see later) which will be in INTEL format HEX, to the COM file in binary
which you can run on your machine. The command is -

LOAD ufn

The ufn may omit the '.typ' because it must be .HEX, and is assumed to be
.HEXif you omitit. You use ASM (or MAC etc) first, to produce the HEX file,
and then use LOAD to produce the COM file. ASM takes your file called, let
ussay, YOURFILEand produces YOURFILE.PRN (which is a source listing,
with line numbers) and YOURFILE.HEX (which isin INTEL format). To create
the 'runnable' program, you enter -

LOAD YOURFILE< Rt>

and YOURFILE.COM is produced. If a drive is specified, the .COM file is
produced on the same drive as the .HEX version.

Now you can use the YOURFILE command to run that program, just as you
do with PIP or MBASIC or whatever.

DDT and the developments of it (version 3.1 of CP/M has SID) are a little
beyond the 'fundamental' level.

7.3 DDT

This is the 'assembler level’ programmées monitor in versions up to and
including 2.2. It is absolutely essential, contains ail kinds of useful facilities,

82

YOURFILE.COM

Chapter7 DUMP, LOAD, DDTandSID

and looks pretty incompréhensible in the manuals, until you réalisé what it is
actually for.

We will cover SID (the version 3.1 de-bugger) after this section.

If you write a program in Assembler Language, (we will call it 'asm' from now
on) then you have your source program - the asm code that you write - and
you have to use ASM to "assemble" the object code which is in 'hex'. Fine -
but it is a little confusing thatyou cannot run yourasm program, and you may
not find it easy to read your assembled program in hex, either.

So the DDT program sits in the memory of the machine, and allows you to
load your hex program, and then run it, alter it in hex or asm, display it either
in hex (like DUMP) or in dis-assembled form (back to the original asm code)
and also inspect the contents of registers (like the counter which contains the
address of the next instruction to be obeyed).

However - although you can 'patch' your program in hex or asm, and save it
as a COM program, to continue testing - you still have to go back to your
original asm, and alter that. DDT allows you to alter the object code - but you
still have to actually modify the asm yourself - perhaps using ED - and then
re-assemble with ASM.

Invokïng DDT

DDT stands for the Dynamic Debugging Tool. You load it into memory using
the command -

A> DDT< Rt>

and after announcing itself, the DDT prompt (which is a the hyphen or
minus sign) will appear on the screen.

Alternatively, you can give DDT a filename for the program which you want
to load, at the same time as invokïng it, thus -

A> DDT FRED.HEX< Rt>
or

A> DDT FRED.COM< Rt>

83

CP/M The Software Bus (a programmera companion)

In the first case, the .HEX file will be converted to binary, and in the second,
the program will simply be brought into the transient program area as it is.

In either of these cases, the screen would show the announcement of DDT,
followed by two Iines of information, like this -

64k DDT ver 2.0
NEXT PC
0120 0100

The number (in hex) under NEXTisthe next byte location after the end of the
loaded program - the first unused location, in other words. The number
shown under PC is the current value of the Program Counter - the address at
which the program would start execution if you entered a G (goto)
command.

Invoking DDT alone, with no file, suppresses those two items of information.
So a sample display could actually show this -

A>DDT
DDT ver 2.2

with the cursor sitting immediately after the DDT prompt, the hyphen.

Nowtoload a program (a file, presumably ending in .HEX or .COM) you first
put the name of your program into the 'file Control block' with the I
command, and then read it into memory with the R command. The
équivalent to the command DDT FRED.HEX above would be -

A>DDT
DDT ver 2.2
-IFRED.HEX
-R

While you are doing this, incidentally, you can use any of the CP/M line
editing commands which we mentioned in the first Chapter, to correct or
wipe-out a line or character.

There are twelve commands which you can use in DDT, and we will cover
them in order in a moment, but having mentioned 'display' a few paragraphs
back, wewill say nowthatthe command forthis is D. The 'dump' (D) startsat
the current address - or can be given an address - and dumps 256 bytes to the

84

Chapter 7 DUMP, L OAD, DD T and SID

screen. The format issimilarto that we showed for DUMP, and also contains
sixteen ASCII characters which repeat the content of the sixteen bytes
displayed in hex, as if they were ASCII. Where a non-ASCII (or at least, a
non-graphie) code is encountered, the D command puts a décimal point in
the display. To start from the beginning of the file, which is now in the
memory, we need not give D any 'start address' - but if we wanted to, we
could say (knowing that the file is in memory starting at 01 OOH (that is the
257th byte))

-D0100

and the response might be -

Hex ASCII
0100 21 00 00 39 22 15 02 31 57 02 CD C1 01 FE FF C2!..9''..W........
0110 1B 01 11 F301 CD 9C 01 C3 51 01 3E80 32 13 02......... Q.>.2..
etc

Not very meaningful at this point in the program we hâve dumped, but lower
down, we corne across this line -

0200 4C 45 20 50 52 45 53 45 4E 54 20 4F 4E 20 44 49 LE PRESENT ON DI

which as you can see contains printable characters - and is one of the screen
displays - or part of one - used by that program. The 20 character (that is20H,
in hex) is often a useful one to recognise, even in a DUMP, because it is the
'space' character.

The full list of DDT command characters is

A Assemble - enter assembler code
D Dump - display the contents of memory in hex and ASCII
F Fill - put a specified constant in memory from/to address
G Goto - Start program execution from address
H Hex - display hex
I Input - input the FCB for an R command
L List - list the dis-assembled contents of memory from/to
M Move - move a block from/to addresses to a new address
R Read - read the file specified by I command into memory
S Substitute - put new content instead of existing at address

85

CP/M The Software Bus (aprogrammers companion)

T Trace - execute instruction(s) with register list at each
U Untrace - execute instructions with register list after last
X examine - examine or alter registers (all, or specified)

If you get the ? response, it means that DDT cannot obey your command.
Likely reasons could be - command incorrect or unknown - file cannot be
opened - checksum error found in Hex file - assembler or disassembler has
been overlayed and is not therefore accessible.

Several of the DDT commands can be used alone (but not A F or I) or with
parameters, so the full details of each follow here.

A command.

A < start-address> Accept assembler code from the keyboard starting at the
hex address specified. The DDT system displays each line number (in hex)
ready to accept entries, and if you enter an empty line (just a 'Return'), that
exits from the A command, without affecting the previous contents of that
address. Notice that you are not prevented from over-writing the actual
assembler/dis-assembler, and if you should happen to do this (large
programs or small memories I), then you will get the ? response, as noted
above. Line editing works in the usual CP/M way. Note that the address is
specified in hex, but does not have the H after it, as we use in these notes.
03 FO is correct, not 03 FO H.

D command.

D Dump from the current address register location to the monitor, in hex and
ASCII, for 16 Iines. Immediatelyafter R (reading) afile, thiswill bethefirst256
bytes of the file. A second D command displays the next 256 bytes, and so
on. If the address register does not contain a multiple of 16, (1 OH) then the
first line will be shortened to make ali succeeding Iines match the normal 16
byte boundaries.

D < start-add> Dump 16 Iines as above, starting from the specified start
address, which is in hex, but is simply entered as the number - eg 01 FO is
correct, not 01 FO H.

86

Chapter7 DUMP, LOAD, DDTandSID

F command.

F<start-add> ,<end-add> ,< constant> Fill both thestart-address and the
end-address specified, and ali the bytes between, with the hex constant
specified. The constant must be a 'byte' - that is two hex characters - eg 20
wouldfillwith ASCII spaces, FF would set ail'bits'to 1. Note that the from/to
is inclusive, which is not very common. Therefore F0160,0170,20 actually fills
17 bytes with spaces. To fill sixteen, use F0160,016F,20.

G command.

G Start program execution from the address currently in the program
counter. This form of the command hands control over to your program, and
you can onlyget it back into DDT ifyou either have a 'breakpoint' (Assembler
language RST 07) in your program (see below) or if you press 'Rubout' or
'Delete'.

G< start-add> This is the simple extension to G - the specified 'start-address'
is placed in the program counter, and the program then executes from there.

G,<break1> The comma shows that this is a command to start from the
address currently in the program counter, and 'breakl' is the address at
which you want to stop and return toDDTif that instruction is reached. (Ifthe
program counter ever equals 'breakl ', the G command stops and the '-'
prompt re-appears.)

< start-add> ,< break1> ,< break2> You may specify a maximum of two
breakpoints in the command, and a start address as well, if you wish. There
may be many other break points actually in the code (asm RST 07), any of
which will interrupt the run, but you can specify a maximum of two additional
ones in the G command. The run stops and command is returned to DDT if
either of the specified breakpoint addresses is found in the program counter.

GO This is G (goto) 0 (zéro) - in other words, it is a 'warm boot', returning to
the first location in memory, which is the start of the CP/M loader. Very
useful to get you out of DDT and back to CP/M, but without changing the
contents of memory. If you have a 'patched' program in there, it is still there
ready to 'SAVE' after the G0 command.

87

CP/M The Software Bus fa programmer companion)

H command.

H,a,b Hex Arithmetic. Display a + b and a-b in hex.

I command.

/ < fHename> Input to the File Control Block at 005C the filename given,
readyforan R (read) command (see below).

L command.

/.List in asm (after dis-assembly) the next 12 Iines of the program starting at
the current position of the Program Counter (PC).

L< start-add> Dis-assemble and display the 12 Iines starting at the given
address (and including that address).

L< start-add> ,< end-add> Dis-assemble and display from start-add to
end-add, both addresses included.

M command.

M< old-adcf> ,< end-add> ,< new-add> Move the block of program
currently in memory, which starts at old-add and ends at end-add, to the
Storage locations in memory starting with new-add. The addresses given are
inclusive (what was at end-add moves). This is the only form of the M
command.

R command.

R Read the file identified in the FCB at005C (put there bythe I command) into
the memory, starting at location 0100 (hex). After this command has been
obeyed, the NEXT and PC values will be displayed, with, as mentioned
above, the value under the word NEXT showing the first unused location,
and the value under PC showing the 'current address' stored in the program
counter. Usually this will say 0100, if the R command has been given no
parameters.

88

Chapter7 DUMP, LOAD, DDTandSID

R< offset> Read the file into memory starting 'offset' bytes on from 0100.
This would allow you to load a part program into unused memory space,
higher (numerically) than a part program previously loaded by an R command
without parameters. Clearly the NEXT and PC values would beappropriateto
the size of the program and the size of the offset. Offset is, of course, stated
as a number of bytes, in hex.

S command.

S<start-add> Substitute the value entered at the keyboard, in hex, for the
value currently held in the location 'start-add'. After accepting the value
(indicated by 'Return'), you are offered the next byte location in ascending
sequence, and so on. After typing the command, the byte location and
content are displayed, and the cursor stays on the same line, expecting
input. If the 'Return' key is pressed (no input), then the byte is unaltered. This
makes the S command a 'Substitute or Inspect' facility. If a '.' (period) is
entered (followed by'Return'), Control returnsto DDT, without affecting the
byte then displayed. The display is simply one byte with the address and
value shown in hex, thus

0110 1 B and if you press return, you get the next, like this
0111 01 and so on until you enter the period (.) and press Return.

Pressing two keys (any numbers or A thru' F) stacks the two hex characters
into the byte.

T command.

T Exécuté a single instruction, at the location given by the current value of
the Program Counter (PC), and display the contents of the registers after the
instruction has been obeyed. See the X command below for the type of
display obtained.

Tn Exécuté 'n' instructions, as above, displaying the register contents after
each. ('n' defaults to 1). See the X command below for the register display.

89

CP/M The Software Bus ia programmera companion)

X command.

X Display the contents of various 'flags' and registers. There are five 'flags',
which may have values 0 or 1 only, and six registers.

Flags
Cis the carry flag
Z isthe zéro f lag
M isthe minusflag
E is the even parity f lag
I is the inter-digit carry f lag.

Registers

Aistheaccumulator(arithmetic)andis2hexdigits
B isthe BC register pair, four hex digits
D is the D E register pair, four hex digits
H is the H L register pair, four hex digits
S is the stack pointer, again four hex digits
P isthe program counter, also four hex digits.

In the full display, shown below, the contents of the location in P (program
counter) are shown dis-assembled, and follow the counter value. In this
example, ali the flags are zéro (the flag name is followed by the value) A, B, D
and H are zéro, the stack pointer and program counter are showing the start
of program, and the instruction at that location is a JU M P to location 0107 (in
hex, of course).

Example of display after entering the X command -

-X

C0Z0 MO E010 A = 00 B = 0000 D = 0000 H = 0000 S = 0100 P = 0100 J M P0107

X< r> Each of the flags and registers can be examined individually, and if
required, altered, by following the X with the letter denoting that flag or
register, from the list above. As for the S (substitute) command above, the
current value is shown, and the cursor is positioned after it. If a valid value is
entered (and then Return is pressed), the flag or register will be altered
accordingly. If Return only is pressed, the value is unaltered.

90

Chapter7 DUMP, LOAD, DDTandSID

7.3.1 An Informative Illustration.

The best way to understand the use of the various DDT commands is to
follow an actual run of DDT. The DDT Users Guide which is provided with
versions 1.4 and2.2 of CP/M hasa most informative illustration, starting on
page 12 of the guide, andfinishingon page 19. Pages 10 and 11 also show the
process of 'assembling' a program, as you will see, and page 18 shows the
use of ED (Chapter 8) to alter the source code before re-assembling.

7.4 SID

The version 3.1 équivalent of DDT is the Symbolic Instruction De- bugger -
SID. It works in a very similar way to DDT, amd is loaded using the same
command options.

SID
SID filename.typ
SID filename.HEX

loads SID and it is then in command mode,
loads SID and puts the file into the ΤΡΑ.
loads SID and the file, but converts the file to
binary first.

SID filename.COM loads SID and puts the specified command file
into the TPA, ready for de-bugging.

When you are working with SID, it responds to the normal line input editing
commands that CP/M 3.1 recognises. Those are defined in Chapter 2.

The SID prompt is the (the 'hash' or 'number' sign). Some Systems use
(the 'pounds' sign) instead, if they hâve been 'anglicised'.

Exactly the same flags and registers, and very similar, though more powerful,
commands are available under SID as those used with DDT. However, since
you are likely to be working with one or the other, not both, we hâve included
a full summary of the SID commands here.

A - Assemble.

Assss Enter assembler code starting at address given by
ssss.

91

filename.COM

CP/M The Software Busfa programmer companion)

C - Call.

Csss Call the subroutine whos start address is given by
ssssin hex.

Cssss va 11 ,val2 Call the subroutine at ssss with val1 loaded into
the register pair BC, and val2 in the register pair
DE.

D - Dump. (or Display.)

D Dump (as the DUMP transient) 16 Iines of the
content of memory, starting at the current
address. The display isin hexand ASCII.

Dssss
Dssss,eeee

Dump 16 Iines starting at ssss.
Dump from ssss to eeee (ssss and eeee are 'start'
and 'end' addressesin hex).

DWssss,eeee The W tells SID to use a 16 bit word format,
instead of the 8 bit byte.

E- Employ. (Usedif you are in SID commandmode and you want to loada file
or a symbol table. I

Efilename
Efileone,filetwo

Load the file for execution/de-bugging.
Load fileone for execution, and filetwo as the
symbol table to be used.

E*filename Load filename.SYM as the symbol table.

F-Fill.

Fssss,eeee,const Fill the memory from location ssss (hex) to
location eeee (hex) with the constant specified -
also in hex. (...,20 would fill with spaces, or ...,00
would fill with nulls.) Don't get ssss and eeee the
wrongway round !

G - Goto. Start program execution from location stored (or
loaded) in the PC.

Gssss
Gssss, break 1
Gssss,breakl ,break2

Load ssss into the PC and then G.
Start at ssss and stop at address breakl.
Start at ssss and stop at either breakl or break2,
which ever is reached first.

92

Chapter7 DUMP, LOAD, DDTandSID

H - Hex.

G,break! ,break2 Start at location in PC and stop at either breakl
or break2. Note the comma after G which
differentiates this command from the command
Gssss,breakl. ssss and breakl etc are hex
addressesasbefore.

H,a,b Display in hex the values a + b and a-b

/ - Input.

(Used to set up an FCB for a file to be read by an R command, or for the
program being debugged.)

Ifilename Set up an FCB at 005C (the default FCB) for the
file specified.

L - List. (disassemble)

L
Lssss
Lssss,eeee

Disassemble 12 Iines from current address.
Disassemble 12 Iines from ssss address.
Disassemble from ssss to eeee inclusive.

M - Move.

Mssss,eeee,nnnn Move in RAM the block starting at ssss and
ending at eeee to a new position in RAM starting
atnnnn.

P - Pass.

(Record the number of times the program executes through a stated
location.)
Ppppp Set the location pppp as a passpoint for

counting.
Ρρρρρ,ϊ Set the location pppp as a passpoint, and put the

value i as the initial value of the counter.

93

CP/M The Software Bus (a programmer companion)

R - Read.

R

Roffset

S - Substitute (or Set)

Saaaa

SWaaaa

T - Trace.

T
Tn

U - Untrace.

Un

V- Value.

V

W- Write.

Wufn,ssss,eeee

X - eXamine.

X

Read the file specified by the previous I command
to the TPA starting at address 0100 H.
Read the file specified by the I command to the
address in RAM given by0100H + offset.

Set aaaa as the memory address at which the
substitution is to start.
As above, but the substitution will be in 16-bit
words.

Execute one instruction, with register dump.
Execute n instructions, with trace.

Execute n instructions with register dump only
after the last. (If n is not specified, 1 is the
default, so that U alone is identical to T alone.)

Display the current values of the SID parameters.

Write the contents of memory from ssss to eeee
to disc, giving the resuit the filename specified as
ufn. (Note that SAVE can be considered as a
spécial form of the W command in SI D.)

Examine (display) the contents of all registers and
flags. The names are the same as in DDT, and are
listed below.

94

Chapter7 DUMP, LOAD, DDTandSID

Xr Examine or alter the content of the register or flag
r. Pressing < Rt> after the display leaves the
contents unaltered and returns to SID command
mode. Enter the new value and < Rt> to alter a
register or flag. The five flags and six registers are
as follows -

C Carry flag
M Minus (sign) flag
E Even parity flag

Z Zéro flag
I Interdigit carry flag

A Accumulator
D Register pair DE
S Stack pointer

B Register pair BC
H Register pair HL
P Program Counter (PC)

Note that the flags are 0 or 1, the accumulator is two hex digits, and ail other
registers are four hex digits.

? - The 'eh ?’ response.

This means that SID has not understood your command, or that the file you
specified cannot be opened (does it exist ?). You will also get the ? response if
there is a checksum error in a hex file, or if you have overlayed the
assembler/disassembler as a resuit of previous commands.

Ali the foregoing refer to SID, the 3.1 debugging tool. the DDT commands
are earlier in the Chapter.

7.5 Summary.

DUMP allows you to see, in hex or (3.1) hex and ASCII, the contents of a file
or program which is on dise.

LOAD and (3.1) HEXCOM convert the hex results of ASM or MAC assembly
into a binary COM version, ready to run.

95

CP/M The Software B us <a programmera companion)

DDT is the programmers main tool for testing, modifying and generally
performing 'hands-on' program development at the assembler level in
versionsof CP/M uptoand including2.2. It happenstoincludea betterdump
command (showing the résulte in ASCII as well as hex) than DUMP itself,
though only in 256 byte blocks.

SID is the CP/M version 3.1 équivalent of DDT.

96

PART TWO-THE SOFTWARE TOOLS.
CHAPTER EIGHT

THE CP/M COMPATIBLE
ASSEMBLERS

8.1 Fundamentals.

If you are using, or are about to use, an assembler, you are well beyond the
fundamental level. If you want a quick overview of programming languages,
you should probably skip to Chapter 9. There is also a discussion of assembler
concepts in section 8.3.1.

However, if you have turned to this page to find - or remind yourself - how to
actually use ASM, MAC or RMAC, we will include them here, together with
the error messages on the console and in the file produced after assembly.

We will cover the assembler supplied with CP/M up to and including version
2.2 first (ASM), and then look at the 3.1 assemblers.

8.2 ASM.

You invoke the assembler (ASM) either with a filename alone, or with three
parameters added to the filename. Each parameter is a single letter, and is
added to the filename after a period (.). This makes it look like a file type
extension. Do not be misled.

The assembler produces two files, a copy of the source with line numbers and
commente, called PRN, and a HEX file ready for LOADing.

The .PRN file could be used as a .ASM file, by using the ED command (see
Chapter 10) to remove the first 16 characters from each line, and then
renaming it.

97

CP/M The Software Bus (a programmer companion)

To invoke ASM, the command is either

ASM filename or
ASM filename. 123 (see details of parameters 1,2 and 3 below.)

The filename is the name only, not the drive or the type. If you have produced
FRED.ASM with an editor, the command is -

ASM FRED

The three parameters allow you to specify the source of the ASM file, the
destination of the HEX file and the destination of the PRN file, like this -

1 - a single drive letter (no colon) indicating where FRED. ASM will be found.
If the parameter list is not used, FRED.ASM is assumed to be on drive A.
2 - a single drive letter (no colon) indicating where FRED.HEX is o be put. If
you put Z as the letter, no hex file will be produced. (Early stages of assembly,
looking for language errors.)
3 - a single drive letter as before, indicating the destination of the FRED.PRN
file. Z causes ASM to skip the PRN file, or X causes ASM to put the PRN file
straight onto the printer.

Thus ASM FRED is exactly the same as ASM FRED.AAA As another
example, the first assemble of FR ED. ASM might bedonewith thecommand-

ASM FRED.BZX

which means that FRED.ASM is on drive B, that you do not want a
FRED.HEX at ali, and that you want FRED.PRN to appear on the printer.

8.2.1 Successful assembly.

If the assembly is successful (it is a two-stage operation), the assembler signs
off with the following messages -

xxxx
yyyH USE FACTOR
ENDOFASSEMBLY

xxxx is the hex address of the first unused byte after the program has been
loaded. (End of program + 1)

98

Chapter 8 The CP/M Compatible Assemb/ers

yyyH refers to the symbol table space, and if divided by OFFH, gives the
fraction used. So if you convert yyyH to décimal and divide by 2.56 (or
multiply by 0.4, roughly), that will give you the percentage of the symbol table
space actually used.

8.2.2 Errors on the Console.

The assembler ASM can fail to complété an assembly if one of the following
error messages is displayed.

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

SOURCE FILE NAME ERROR
SOURCE FILE READ ERROR

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

The file specified in the ASM command
is not on the specified or default dise.
The directory of the disc is full. Erase
files.
Improperly formed ASM file name.
Source file cannot be read properly by
the assembler. Exécuté a TYPE
command on the file to détermine
where the error is.
Output file(s) cannot be written
properly, most likely cause is that the
disc is full. Do a STAT to check and
erase if necessary.
Output file cannot be closed - check to
see if the disc is write protected.

8.2.3 Errors in the .PRN file Iines.

These errors are displayed on the console during the assembly, and are also
embedded in the PRN file.

D Data error: an element in the data statement cannot be placed in the
specified data area.

E Expression error: expression is ill-formed, and cannot be computed at
assembly time.

L Label error: label cannot appear in this context, or duplicate label.
N Not implemented: you hâve attempted to use a feature which

requires a later version of ASM.

99

CP/M The Software Busla programmées companion)

0 Overflow: the expression is too complicated to compute - simplify it.
P Phase error: label does not have the same value on two subséquent

passes through the program.
R Register error: the value specified as a register is not compatible with

the op code.
V Value error: operand encountered in the expression is improperly

formed.

8.3 An Overview of Assembler.

8.3.1 Format of Assembly code.

Each line of assembly code (source code - see below) can have the following
'fields'. A space séparâtes one field from the next:

label: opcode operand(s) ;comment

Assembly source code can have line numbers - these are added at assembly
in any case. Labels muststart with a letter, a question mark (?) ora period (.)
and can be up to sixteen characters long, though the first six are significant,
and must be unique. Dépendent on the command, there may be or there may
not be, a label, which must be followed by a colon. However, if the label field
is used for a different purpose, the colon must not be présent.

Constants in assembler can be entered in Binary, Octal, Décimal or Hex radix
(base 2, 8, 10, 16 respectively). If a radix is not indicated, the constant is
assumed to be décimal. Indicate radix by following the constant with the
appropriate initial letter - viz. - B for binary, Q or O for Octal (Q avoids
confusion with zéro), D for décimal (the default) or H for Hexadécimal. ASM
also expects each constant to start with a valid numeric digit, and since the
indicator succeeds the digits, F000H would be an error. Use 0F000H to avoid
this (leading zéro).

8.3.2 Basic concepts of Assembler level programming.

The basic concepts, and the différences between 'machine code',
'assembler' and 'high level' languages are of fundamental importance, and
the following brief explanation will enable a programmer to put the use and
manipulation of programs into perspective.

100

Chapter 8 The CP/M Compatible Assemblers

In 'machine code' - which in our terms within CP/M means either the INTEL
hex code or the binary équivalent - each instruction performs a spécifie task,
and uses actual memory addresses and registers. The program itself is in the
memory, and soare the locations at which data isstored. Any instruction can
perform just one arithmetic, sequence change, logie, data movement or
input/output operation. That may be 'add the value in memory location
pointed to by an address register, to the value currently in the arithmetic
register' which would be expressed as a code (for 'add to register'). The
address required would have been loaded into the appropriate (HL) address
register before the instruction was obeyed.

Programming in machine code is very detailed, and subject to error, and
requires the programmer to keep track of every location in memory which is
used. Inserting extra code at some point is practically impossible, because
every instruction and Storage location beyond the insertion would need to be
altered. It isusually done, if it is needed, by replacing instructionsimmediately
before the desired insertion with an unconditional branch to a location not
previously used, and at that location, the replaced instruction is coded. Then
the instructions to be inserted are coded in, and the last instruction is a branch
back to the instruction in the main program immediately after the
substitution. When that has been done a few times, the actual logie flow of
the program becomes almost incompréhensible, very tortuous, and to ali
intents and purposes, incapable of being enhanced or amended later in the
life of the program.

Programming in 'assembly' or 'assembler' language is easier, because
symbols are used for both addresses and instruction codes, instead of the
actual hex or binary address/code. The symbols used for instructions are
usually mnemonics or reasonably compréhensible words. Unconditional
branch might be JMP - for 'jump' - add to register might be ADD, and so on.
This is much easier to remember, and to read, and is not as subject to error.
The symbols used for Storage locations can also be short names, which again
can be meaningful. Data Storage locations might be called GROSPY ('gross
pay') orTAXYTD ('tax paid thisyear-to- date'). Instruction locations are also
given names, usually called 'labels'. CALCTX or DISCWR could be labels
used at the beginning of the 'tax calculation' and the 'write to dise'
instructions. Assembler language is often called a 'Symbolic' language,
because of the use of symbols instead of actual codes/addresses.

A program called an 'assembler' (in CP/M terms) translates the instruction
mnemonics to the numeric codes, and allocates actual memory addresses to

101

CP/M The Software B us (a programmera companion)

the labels and data locations. If the program is altered, the symbolic code can
be easily amended, and the assembler will then be run to produce a new
version of the machine code. One other function which most assemblers
offer - or hâve links with - is the definition and incorporation of
'macro-instructions' - "macros" for short. These are sequences of
instructions which are labelled and defined as macros, and which can then be
used as though the label was a symbolic code for a single instruction.
Wherever the macro is wanted in the program, the label is used as an
instruction. At assembly, each such use of the macro label is replaced with
the appropriate group of instructions. If you use a macro 5 times, then the
actual instructions which make up the macro are inserted 5 times in the
machine code program. This is, as you can see, different from 'subroutines',
which are groups of instructions contained only once in the program, with a
mechanism which allows the programmer to 'call' the subroutine (that is
'branch to the subroutine') at any point in the program, and the CPU then
stores the necessary address in the 'stack' to enable returning to the next
instruction in sequence, after the subroutine instructions hâve been obeyed.

The use of low-level language, 'assembler language', implies three things.
First, there must be an assembler to 'translate' the code into machine
language. Second, there must be a program stored in 'assembler' - the
'source' of the program. Third, there must be a translated (assembled)
version of the program - the 'object' code.

DDT or SID, discussed in the previous chapter, work with the 'object code' -
the assembled program. They allow 'patches' to be inserted in the program,
but the patches are only in the version actually in the machine memory, and
unless they are 'SAVEd' to dise, they will be lost when the machine is
switched off. Patches inserted in that way must be re-introduced at the
assembler level, and re-assembled, to preserve the équivalence of 'source
and object' program versions.

Writing assembler programs may be, and usually is, done on paper, and the
programs are then typed or otherwise fed into the machine using some form
of 'editor' (see chapter 10). Then you hâve a file containing your program, in
assembler, which is always required to hâve the 'type' .ASM Your program
called FRED will therefore be put into the machine in assembler called
FRED.ASM

That covers the basic ideas. Now we will move on to the actual CP/M
assemblers. There are numerous assemblers available, and it is therefore
relevant to put them into context before we discuss the details of using them.

102

Chapter 8 The CP/M Compatible Assemblers

8.4 Assemblers available.

Thesimplest developmentsystem available under CP/M issuppliedfree with
CP/M itself (versions up to 2.2). It is -

ASM.COM-the assembler
DDT. COM - the debugger
LOAD.COM-the loader (hex to binary)

This package originated within the Naval Postgraduate School, Monterey,
California. Dr Gary Kildall was responsible for some of it, in its original
version. Some of DDT and ali of the other programs were originally written in
PL/M, and have been modified and developed over theyears. The assembler
itself, in particular, has been developed into Digital's RMAC - the Relocating
Macro Assembler. For fairly small jobs, that are not too complex, the basic
package is quite adéquate, but for more extensive and intensive work there is
a better set (supplied with CP/M version 3.1) -

MAC.COM- the macro assembler
SID.COM - the Symbolic Instruction Debugger
LOAD. COM - the same loader as before.

If you do not require object files (that is, files of assembled machine code)
which can be put into different parts of the memory at different times -
'relocatable' files - then MAC is a fine tool. Is cornes with a good range of
macro files to help the programmer with sequential I/O, to provide spécial
instructions, to provide structured assembly constructs and so on.

MAC is an extended version of ASM which can support macros. M80 or
PASM offer even more comprehensive macro facilities, but MAC is good.
The principal limitation of MAC is that it cannot produce REL (re-locatable)
files. Large programsare thereforetedioustodevelop. When PL1 -80 became
available, MAC was updated to produce re-locatable output, as RMAC.
RMAC and LINK are provided with CP/M Plus - as version 3.1 is being called
on 1983 literature.

RM AC. COM - the relocating macro assembler
Ll NK. COM - the linking loader
SID.COM (orZSID.COM)-the same Symbolic debugger.

SID is in fact of rather limited use with relocatablefiles, because it cannot load
them as object files, and cannot cope with addresses relative to a relocation
base address. If Digital Research were to upgrade SID, the package could
very easily become 'state of the art' in 8080/Z80 assembler packages.

103

SID.COM
SID.COM

CP/M The Software Bus (a programmer companion)

The TDL package came from a separate line of development. Neil Colvin was
responsible for one of the first Z80 assemblers, and this product has now
matured. For some time it was a tape based package, rather than dise based,
but it did eventually become available under CP/M. A linker and debugger
were part of the package. TDL suddenly disappeared, and the package was
then sold as -

MACROII.COM
DEBUG.COM
LINK.COM

After Neil Colvin moved to P.S. A. the assembler re-appeared with two new
and powerful associate programs.

PASM.COM
BUG.COM
PLINK.COM (orPLINKII.COM)

The P.S.A. package is the most expensive, and probably the most versatile
and powerful development package available with CP/M, and even supports
overlays. BUG and PLINKare remarkable products, and if BUGII and PASMII
eventually appear as promised, assembler level programmers will have a
really superb tool. TDL or PASM are more difficult to learn than some of the
simpler products, but amply repay persistence.

The third great assembler came from Microsoft. This is a good product which
is particularly useful for those who prefer the Zilog mnemonics. It has
powerful macro facilities, but does not corne with the macro libraries that are
so useful with RMAC. The Linker is comparatively primitive compared to
PLI N K, because it does not link disc to disc, and overlays are difficult to
produce. The macro assembler M80 lacks a good debugging tool, but
never-the-less, it is probably the best known and most used relocating macro
assembler for CP/M. The package is -

M8O.COM
L8O.COM
LIB.COM

The SD Systems package is yet another, which is unlike the rest in that it uses
only the Z80 ops, pseudo ops and macros. It is both robust (reliable I) and
quite easy to use, but lacks a debugging tool, and does not produce
re-locatable code.

104

MACROII.COM
DEBUG.COM
LINK.COM
PASM.COM
BUG.COM
PLINK.COM
orPLINKII.COM
M8O.COM
L8O.COM
LIB.COM

Chapter 8 The CP/M Compatible Assemblers

One of the most interesting and unusual development Systems is the ML80
package. This is public domain software, fortunately, and it uses completely
different ops and pseudo ops. Considering the fact that it is the only
relocating macro assembler in the public domain, it is surprisingly little used.
Possibly this is because a good manual on it has never been available. It would
certainly be more widely used if someone out there wrote a good one ! The
complété package is -

M L80 The general macro processor
L81 The structured assembly language parser
L82 The code generator
L83Thelinker

There are several more assemblers around, of varying degrees of usefulness.
Mostly they can be found in the CP/M User Library. These are the most
important of them.

/4S/WXThis assembler recognises extended INTEL Z80 mnemonics which
are similar to TDL but not identical. After one or two irritating little bugs are
cured or avoided, it works. It is in the US CP/M user library, vol 16

MACASM We hâve not tried this assembler, and we do not know anyone
who has. ltuses8080 mnemonicsand processes macros. It isin the US vol 16.

Z80ASM This is available in source as well as .COM form. The assembler
recognises Zilog mnemonics. There are a few bugs, and the improved version
still has minor problems with drive sélection and some of the more obscure op
codes. The original is in US vol 16 and an improved version is in UK vol 5.

MILM0N80 If you bought Processor Technology equipment, you used to
be given this free. It is really only of historical interest, because it didn't work
very well. It was a 'monitor- editor-assembler' package, of the type popular
before we had dises. The use of an asterisk (*) in the first character of the
label field (for a comment line) in this package is actually recognised by ASM,
to preserve compatibility. It is in the US vol 17.

RTMASMThis will assemble a sériés of source files into one COM file, and
works well, apparently. It is 8080 only. US vol 32.

LINKASM See US vol 36.

That concludes the background, and shows the range of products which are
available to the assembly programmer under CP/M. Now we will move onto
the actual Assembler language itself.

105

CP/M The Software B us (a programmera companion)

We can only give a summary of the actual language here, to act as a quick
reference guide. If you actually want to learn Assembler Programming, there
are other texts, including the INTEL manual "8080 Assembly Language
Programming Manual".

8.5 SUMMARY OF CONVENTIONS AND SYMBOLS USED
IN ASSEMBLER DIRECTIVES.

The word or symbol(s) on the left are those used in defining the language, the
text on the right provides important rules which apply to the directives. Not all
the conventions and symbols that were specified by Intel actually appear in
ASM, but most of the will be found in RMAC and M80.

There are the three fields indicated earlier, plus the comment field, which
starts with a semicoloni;), in each assembler directive/instruction. We will
concentrate on the three main fields.

Expression Numerical expression evaluated during
assembly; must evaluate to 8 or 16 bits
according to context.

List Sériés of symbolic values or expressions
separated by commas.

Name
Null
Oplab

Symbol name which is terminated by a space.
The field must be empty, or an error résulte.
A label may be used, or may be absent, the
optional label must be terminated with a colon.

Parameter Dummy parameters are symbols holding the
place of actual parameters specified
elsewhere.

String Sériés of any ASCII characters enclosed by
singlequotation marks. (eg'FRED'l

Text
a

A sériés of ASCII characters.
The ampersand is used to concatenate
symbols.

< >

ii

The 'angle' brackets are used to delimit text,
such as lists that contain other delimiters.
Used before a comment in a macro definition
to prevent the comment going into the code
when the assembler expands it to create the
HEX file.

106

Chapter8 The CP/M Compatible Assemblers

! Placed before what would otherwise be a
délimiter, when the symbol is to be passed as a
literal in an actual parameter.

% Précédés actual parameters to be evaluated
immediately when the macro is called.

8.5.1 ASSEMBLY DIRECTIVES.

oplab: DB exp(s)orstring(s) Define 8-bit data byte(s).
Expressions must evaluate
toonebyte.

oplab: DS expression Reserve data Storage area
of specified length.

oplab: DW exp(s) orstring(s) Define 16-bit data word(s)
Strings are limited to 1 - 2
characters.

oplab: ELSE null Conditional assembly.
Code between ELSE ENDIF
is assembled if expression
in IF clause isfalse.

oplab: END expression Terminate assembler pass.
Prog execution starts at
expression. If null then
starts atO.

oplab: ENDIF null Terminate
conditional
assembly block.

name EQU expression Define symbol 'name' with
value 'expression'. Symbol
isnot re-definable.

oplab: IF expression Assemble code between IF
and following ELSE or
ENDIF directive if 'exp' is
true.

oplab: ORG expression Set location counter to
'expression'.

name SET expression Define symbol 'name' with
value 'expression'. Symbol
canbe re-defined.

107

CP/M The Software Bus la programmera companion)

8.5.2 MACRO DIRECTIVES.

'expression'times.

null ENDM null Terminate macro definition

obplab: EX ITM null Alternate terminator of
macro definition.

oplab: IRP dummy param < list>
Repeat instruction
sequence substituting one
character from list for
dummy parameter in each
itération.

oplab: IR PC dummy param,text Repeat instruction
sequence substituting one
character from text for
dummy parameter in each
itération.

null LOCAL label name(s) Specify label(s) in macro
definition to hâve local
scope (not accesible or
used outside the macro).

name MACRO dummy param(s) Define macro 'name' and
dummy parameters to be
used in macro definition.

oplab: REPT expression Repeat rept block

8.5.3 RELOCATION DIRECTIVES.

oplab: ASEG null Assemble subséquent

oplab: CSEG boundaryspec.

instructions and data in the
absolutemode.
Assemble subséquent

oplab: DSEG boundaryspec.

instructions and data in
relocatable mode using
data location counter.
(CSEG is'code segment').
Assemble subséquent
instructions and data in

108

Chapter8 The CP/MCompatibleAssemblers

oplab: EXTERN name(s)

oplab: NAME module name

oplab: PUBLIC name(s)

oplab: STKLN expression

relocatable mode using
data location counter.
(DSEG is 'data segment').
Identify symbols used in
this programme module but
defined in a different
module.
Assigns a name to a
program module.
Identify symbols defined in
this module that are to be
available to other modules,
(see EXTERN)
Specify the number of
bytes to be reserved for the
stack for this module.

8.6 ASSEMBLER PSEUDO-OPS.

(Note - where we have used < > to enclose an 'op', thisdenotesequivalence,
ratherthan exact correspondence. eg < .IF> . Where the Z80 assembler uses
COND, in CDL/PASM, .IF would be used to form the same construct.)

$INCLUDE

M80 Z80 CDL/PASM

ASEG .PABS
COMMON .LOC
CSEG .PREL
DB DEFBDEFM .ASCII or.BYTE
DC .ASCIS
DS DEFS .BLKB
DSEG .LOC .DATA
DW DEFW .WORD
END .END
ENTRY/PUBLIC GLOBAL .ENTRY
EQU =
EXT EXTRN EXTERNAL .EXTERN
INCLUDE

109

CP/M The Software Bus fa programmera companion)

MACLIB ■ INSERT
NAME ■ IDENT
ORG ■ LOC
PAGE *EJECT .PAGE
SET DEFL =
SUBTTL ■SBTTL
TITLE .TITLE

.COMMENT REMARK

.PRINTX .PRINTX

.RADIX .RADIX
■Z80 ■Z80
.8080 .18080
■REQUEST

IF/IFT COND <.IF>
IFf-IFF < ,IFL>
IF1 <.IF1>
IF2 < .IF2>
IFDEF <.IDDEF>
IFNDEF <.IFNDEF>
IFB <.IFB>
IFNB < .IFNB>
IFIDN <.IFIDN>
IFDIF <.IFDIF>
ELSE <][>
ENDIF ENDC 1

.LIST

.XLIST

.SFCOND
TFCOND
.PHASE
.DEPHASE

REPT- ENDM
IRP- ENDM
IRPC- ENDM
MACRO <.DEFINE>
EXITM .EXIT
LOCAL

For ASM programmers who are converting to MAC, and who need to beable
to use RMAC, we include brief details here.

110

Chapter 8 The CP/M Compatible Assemblers

8.7 MAC (supplied with version 3.1)

The input to MAC is a file of assembly language statements which must be of
type ASM. Three files are produced as output, with the same name as the
input, and with types HEX, PRN and S YM. The first contains the Intel hex
format object code, and the second (PRN) contains an annotated source
listing which can be seen at the console or printed out with TYPE and Λ P or
one of the PIP commands. The third file (name.SYM) contains a sorted list of
symbols which are defined in the program.

The input sources and the output destinations are controllable, with options,
and outputs can be suppressed if required.

There are 15 drive names (A, B, C, upto N, O) plus three pseudo drives. Xis a
pseudo drive and directs the chosen output to the console. (Another letter is
required to choose which output is meant, see below.) P is a pseudo drive and
means the printer (the currently allocated LST device). Z is used to suppress
the chosen output (Z = zéro output).

Two sources are possible, the input file (the name.ASM file) and the
macro-library (.LIB) files which may be called by the MACLIB statement.
Three destinations are possible, as indicated above.

The basic command without options is this -

MAC filename

To add options, the dollar sign ($) follows the filename, and then one or more
pairs of letters. The first of each pair désignâtes the input or output file as
follows -

A Thefollowing letter will be the sourcedrive.
L Thefollowing letter will be the .LIB drive.
H The following letter will be the drive to which the HEX file is to be
directed.
P The following letter will be the drive to which the PRN file is to be
directed.
S The following letter will be the drive to which the symbol list
(SYM file) is to be directed.

After one of these file letters, the letter A to O (for a 'real' drive) or X, P or Z for
a pseudo drive will be used.

111

CP/M The Software Bus {a programmera companion)

For example, this is the command to take the source from drive B, to suppress
the HEX file, put the SYM file to the printer, and put the PRN file on the
console. The file is called FRED.ASM.

MAC FRED $AB HZ SP PX

No dise files will be created with that command, but you will have seen the
listing on the screen (interruptible with'' S) and you will have a printed symbol
table.

If a conventional 'assemble' is required, with only the source drive to be
specified, the command could be one of -

MAC B:FRED

or -

MAC FRED SAB

Those two commands are not identical. In the first, ali the output will go to
drive B, but in the second, the output will go to drive A, taking only the source
from B.

The PRN and SYM files can be modified by use of five further options. These
are -

+ L List the input Iines read from macro-library LIB files.
-L (the default) Suppress that listing.

+ M List all macro Iines aö they are processed during assembly.
-M Suppress that listing.
*M List only the hex generated by macro expansion.

+ Q List all LOCAL symbols in the SYM file.

- Q (the default) Omit LOCAL symbols from the SYM file.

+ S Add the SYM file to the end of the PRN file.
-S Do not produce a symbol file at all. (= SZ)

+ 1 This tells MAC to produce a pass one listing for debugging purposes,
to put it in the PRN file.
-1 (the default) Do not produce a pass one listing.

112

Chapter8 The CP/MCompatible Assemblers

You may introduce controls into your actual ASM file, by putting a $ in the
first position of an input line, follovved immediately by the desired parameter.
If you wanted to switch on the listing of LOCAL symbols part way through a
program, one program line would be -

$ + Q

There are a number of fatal errors which can occur during assembly, several
more than with ASM, and these are indicated on the console as follows -

NO SOURCE FILE PRESENT

NO DIRECTORY SPACE

OUTPUT FILE WRITE ERROR

CANNOT CLOSE FILE

SOURCE FILE NAME ERROR

SOURCE FILE READ ERROR

UNBALANCED MACRO LIBRARY

INVALID PARAMETER

If you do not specify the correct
drive, or if your file is not of type
ASM, this will appear. If your
drive spec is invalid, (eg - no drive
exists with that letter) this will also
appear.
Note that this refers to directory
space, not file space. Large files
may consume more than one
directory entry each (see Part
Three, Chapters 11 onwards).
Erase some surplus files.
Either the destination dise is full or
is write protected. Note that in
CP/M 3.1, replaced media are
automatically logged on, so this is
not a resuit of changing the
medium.
Probably arises due to a 'write
protected'dise.
There is an illégal character in your
filename. You cannot use an afn.
If the source file is corrupt (did
you hâve a BAD SECTOR error
when writing it?) this will occur.
Normally this means that you hâve
omitted the ENDM from a macro
definition.
You hâve put in an assembly
parameter in the input line, and
MAC cannot recognise it. Only
use valid parameters !

113

CP/M The Software Bus (aprogrammers companion)

As well as the above errors, there are several 'assemble time' errors which
MAC can detect, and will report. Again, there are many more than with ASM,
so we have included the full set. They will appear on the console, and will also
be embedded in the PRN file. This type of error is denoted by a code as the
first character of the line, which is then followed by the line address, the
machine code, and your original line, made up of 'label mnemonic operand
.comment'. The single letter codes are as follows -

B Balance error. MACRO or conditional assembly does not terminate
correctly.

C Comma was not used correctly to delimit items.
D Data element cannot be placed in the data area. (Too long ?)
E Expression error. (Too long or ill-formed expression.)
I Invalid character. (Usually a non-graphie character.)
L Label error. (Have you defined it more than once ?)
M MACRO overflow error. The internai macro expansion table has

overflowed.
N You have used a directive which is not implemented. (Is it an

RMAC directive?)
O Overflow. (Expression too complex, or more than 9999 labels.)
P Phase error. Label has different values on successive passes, or

has been defined twice.
R Register error. The value is not consistent with the op code.
S Statement/Syntax error. There's a helpful message !
U Undefined label. (Does not exist, apparently.)
V Value error. Usually an improper operand - may be just a typing

error !

At the end of an assembly run, MAC signs off with the usual message-

eeee
sssH USE FACTOR
ENDOFASSEMBLY

114

Chapter 8 The CP/M Compatible Assemblers

The eeee is the hex address of the end of the program/data. The sss, divided
by OFFH, gives the fraction of the table space actually used.

8.8 RMAC.

RMAC assembles ASM files, just as MAC does, but it créâtes REL files which
you can LINK (see below) to create COM files.

The options are almost identical to those we described for MAC, except that
thefirst letter of an option pair can be R (for the destination RELfile) instead of
H (for the destination HEX file). So if you wanted the REL file on the disc in
drive F, your parameter would be$RF. As for MAC, only one $sign isneeded
after the filename and before the list of options.

8.9 LINK.

We have commented on the linking software earlier in the Chapter, and for
completeness we will include a summary of the version 3.1 linker- LINK-80 -
here.

Thefull description of LINK-80 is included in-the programmers Utilities Guide
to CP/M 3, but in essence, LINK combines relocatable object modules such
as those produced by RMAC, BASCOM, PROPASCAL and PL/l-80 into a
COM file or an RSX file or a PRL file, ready for execution.

LINK options follow the file spécifications, and are enclosed in square
brackets [J. Multiple options are separated by commas.

A Additional memory. Reduces buffers and write
temporary data to disc.

B This is the BIOS link in banked CP/M 3.1
Systems. It aligns data segment to page
boundary, puts length of code segment in
header and defaultsto SPR filetype.

Dnnnn Sets the memory origin to nnnn (hex) for
common and data areas.

Gn
Lnnnn Load.

Go. Sets start address to label n.
Change default load address to nnnn. (default
fornnnnisOIOOH.)

115

CP/M The Software Bus ta programmer companion)

Mnnnn Memory size.
NL
NR
OC
OP

Define free memory for MP/M modules.
No Listing of symbol table at console.
No symbol table file.
Output is a COM file. (This is the default.)
Output is a PRL (page relocatable) file for
MP/M.

OR Output RSP (résident System process) file for
MP/M.

OS Output SPR (system page relocatable) file for
MP/M.

Pnnnn Changes default program origin (0100H) to
nnnn.

Q
S
$Cd

Lists ail symbols with leading question mark.
Search filename before the S as a library.
Put console output to d, where d is X (console,
default) or Y (printer, LST device) or Z (no
output).

$ld Source of intermediate files, d is drive A thru P,
default is the logged drive.

$Ld Source of Library. d is drive as for $l. $0d
Destination of object file, d is drive A thru P, or
Z (no object file). Default is same drive as first
file in command.

$Sd Destination of symbol file. As for $0 plus
pseudo drive Y (printer).

Some examples will ïllustrate the uses of the command line and options.

LINK filel ,file2,file3

This takes the three separately combined files, résolves their
externalreferences and produces a single exécutable command file called
file1.COM.

LINK filename = filel ,file2,file3

This is exactly like the previous example, except that filename.COM is
produced, instead of filel .COM.

LINK B:filename[NR]

The option spécifiés 'no symbol table'. There must be a filename.REL on B,
and the linker will produce a filename.COM also on B.

LINK filel ,file2[S]

116

file1.COM
filename.COM
filename.COM

Chapter8 The CP/M Compatible Assemb/ers

The linker will search file2 for the subroutines referenced in filel, and will
combine them with filel to produce an exécutable command file called
filel .COM on the default drive.

8.10 LIB.

The LIB utility will not be defined here, but its purpose is to maintain indexed
(type .IRL) or unindexed (type .REL) libraries of frequently used routines in
spécial files. (Or just one file.) There are several options and modifiers for the
LIB utility, ail defined in the appropriate manual. LIB can delete, replace and
select modules in a library, and carry out some simple 'librarian-type' tasks.
Names of modules and their contents can be listed and displayed.

8.11 Summary.

There are several CP/M compatible assemblers, from the free ones which
cornewith CP/M, and which (with2.2 and earlierversions) neitherre-locates
nor has a macro library - but does have a debugger, to PASM from Phoenix
which has pretty well everything an assembly programmer needs. The
comparative and other details above will act as a memory aid for anyone who
needs a quick reference or reminder. Digital Research took a major step
forward in the production of MAC and R MAC with version 3.1.

117

CHAPTER NINE

THE CP/M PROGRAMMING
LANGUAGES

9.1 Fundamentals.

In this Chapter, we will run through the main high level languages available
under CP/M, and comment where appropriate.

Since CP/M 3.1 (sometimes called CP/M Plus) is upwards compatible with
version 2.2 and with MP/M, the following details apply to ali implemetations
of languages under CP/ M. In the places where we refer to a CP/ M command,
we will cover the different versions where this is needed.

A high level language isan 'English-like' language, which uses Namesfordata
objects (addresses are handled by the software) and which allows the
programmer to construct the machine instructions in a format or a language
appropriate for the task. There are three forms of language available under
CP/M. These are 'interpreted', 'semi-compiled' and 'compiled' forms.

Programs to be run under an interpréter (eg programs in MBASIC) are
created and stored in source code (the code the programmer writes) and at
run time, each instruction in turn is 'interpreted' by the MBASIC software into
the appropriate machine code, which is obeyed. The program never exists as
a completely 'interpreted' version - it only exists in source form. The
implication of this way of running is that it is slow. However, it may be quite
fast enough for programs which require considérable operator interaction,
because the delays in 'interprétation' are completely or partially masked by
the slow speed of even a fast keyboard operator.

118

Chapter9 The CP/MProgrammingLanguages

At the other end of the scale are programs which have been 'compiled'. These
are written in a language (which could still be MBASIC) and then submitted
(like assembler programs) to a compilation process which translates them
into actual machine code. Then you do not need to have the compiler or
interpréter résident in the memory, you can load the 'compiled' (and probably
'linked') program directly, just as though it was a 'transient command' to
CP/M.

Between these two are programs which are written in languages for which
either interprétation (large memory usage) or full compilation is impractical,
so an 'intermediate' version ('semi-compiled') is produced, first, with part of
the complex translation process completed. Then a different piece of
software (the 'run-time' program) is loaded with the intermediate code of
your program, and that interprets the intermediate code at run time.

9.2 The common languages.

We will consider several dialects of BASIC (Beginners All-purpose Symbolic
Instruction Code), ALGOL/M, (ALGOrithmic Language for cp/M), CIS
COBOL (the Micro Focus version of COBOL called the Compact Interactive
Standard for the COmmon Business Oriented Language for
microcomputers), versions of PASCAL, FORTH, ALGOL-60, the C language
and PL/I.

Since there will be minor différences in implémentations of languages on
different hardware Systems, we cannot replace the manuals supplied with the
language for your system. However we can provide a quick référencé to
major features.

9.3 BASIC-E.

This is a subset of CBASIC, and is a 'semi-compiled' language in a single
piece of software called EBASIC. (cf CBASIC, which is in two separate
parts.)

A program is created using an editor (see next Chapter) or even using
MBASIC, and the program isfiled with the file extension '.BAS'. BASIC-E is
invoked with a sélection of options, and the command is -

119

CP/M The Software Busia programmer companion)

EBASIC filename $o

Where 'filename' is the source code (with . BAS type) and 'o' is one or more of
the following options - (only use the $ sign if you do want to specify one or
more options)

A list code produced (for compiler debugging); this is not normally
done unless called for, i.e. it is OFF

B List only the source statements with errors; normally OFF
C Check syntax only, do not produce the .INT file; normally OFF.

(useful to check quickly for errors in source code.)
D Convert lowercase to uppercase; this is normally ON so unless you

specify, convertion will take place.
E Generate line numbers for code; normally OFF

The resuit (unless option C is taken) is that a filename.INT is produced, ready
to run with the command -

ERUN filename

Statements valid in BASiC-E:

FOR NEXT FILE GOTO LET CLOSE
GOSUB INPUT ON PRINT READ RESTORE
RETURN OUT RANDOMIZE STOP DATA DEF
DIM END IF REM ELSE THEN

EXP

Functions contained in BASIC-E:

ABS ASC ATN CHR$ COS COSH
FRE INP INT LEFT$ RIGHT$ MID$
LEN LOG POS RND SGN SIN
SINH STR$ SQR TAB TAN VAL

Functions in CBASIC but not in BASIC-E.

PEEK POKE PRINTUSING LPRINT
CALL (to machine code program)

120

Chap ter 9 The CP/M Programming L anguages

Error messages in BASIC-E.

Most of the error messages, including the 2-letter codes, are those produced
by the CBASIC compiler, which we cover next in this Chapter. See CBASIC
for the details.

9.4 CBASIC.

Like BASIC-E, this is a semi-compiled language, and it may be executed on
any floppy disc based CP/M system having at least 20k bytes of memory.

The major différence between CBASIC and BASIC-E is that with CBASIC
there is a separate run-time monitor which must be loaded, and therefore you
can either use CBASIC - the interpréter - or use CRUN - the run time monitor.
With BASIC-E, both the interpréter and run-time monitor are in EBASIC.

There are two versions of CB ASIC which are in common use - the original one
and the 'Version 2' - which is called CBASIC2, with the monitor called
CRUN2.

Code written for CBASIC can be interpreted by either CBASIC or CBASIC2,
but once interpreted, the correct monitor must be used. An interpreted file
produced by CBASIC will not run under CRUN2.

Another point worth noting is that if software is supplied to a customer
including CRUN or CRUN2, that customer must have a current licence for the
monitor, or must pay the (reduced) licence fee for the monitor.

The enhancements which were added when CBASIC2 was issued in May
1979 were the déclaration of Integer variables, the ability to specify variables
as 'common' when chaining from program to program, some extra
pre-defined functions and a capability for cross referencing using XREF.

Although, aswesaid, CBASIC isan interpreted language, because it requires
a run-time monitor, the CBASIC program itself is actually referred to in the
documentation as a 'compiler' - so to avoid confusion, we will continue the
fiction. We will refer to CBAS2 - the version 2 'compiler' in these notes.
(Version 1 was issued as CBASIC.)

121

CP/M The Software Bus (a programmera companion)

First, as with COBOL and most languages other than interpreted BASIC
(MBASIC), you need an editor to get your program code into the machine in a
file, which should be a .BAS file. The next Chapter contains details of the
main CP/M editors. Having got a BAS file with the code, you can then invoke
the compiler, which must be done with CBAS2 filename

The filename, without extension, (because .BAS is assumed) must follow
CB AS2 in the command. There are six switches which you can set at the time
you invoke the compiler, by following the filename with a space, then a dollar
sign ($) and one or more of the letters for the switches. Ali the switches are
'toggles', that is they refer to an on/off switch, which has an assumed
(default) value, and will take the other value if the toggle name is entered after
the $.

Drive name may be used in the command, as normal, either to point CP/ M to
the disc where CBAS2 is (if not the logged drive), or to indicate where the
BAS file is. With toggle G and with XREF which we shall cover shortly, we
will note a spécial use of the drive name.

The basic command to compile a filename. BAS is this -

A> CBAS2 filename< Rt>

The toggles are B, C, D, E, F and G, so examples of commands are these -

CBAS2JOBCOST
B:CBAS2 A:JOBCOST
CBAS2JOBCOST$B
CBAS2JOBCOST$GEC
CBAS2 JOBCOST $G(D:)

9.4.1 The CBASIC Toggles in detail.

B Suppresses the display of the compiled listing at the console during
compilation, except that errors will still be displayed. If toggle B is
omitted, the listing will be displayed during compilation. Note that
this toggle refers only to the console output, not the printer or dise
output (see F and G).

122

Chapter9 The CP/MProgrammingLanguages

C Suppresses the génération of an INT file. This allows the compiler to
check syntax and display errors without producing a file for use with
CRUN2 (which takes time I)

D Suppresses translation of lower-case letters to upper-case. Without
this toggle, any lower case variable names will be preserved in lower
case, and will be different from any variable with the same name in
upper-case. So with the D toggle set, Amt, amt and AMT are three
different variables. Without the D toggle, they are all AMT.

E This is a toggle which is actually carried into the INT file for use by
CRUN2. If you used toggle E at compilation, then an error message
at run time would be accompanied by the CBASIC line number at
which the error was detected. Without toggle E, CRUN2 messages
do not give the line number in the CB AS IC code. If you use TRACE in
your program, E must be on - included at compile time.

F This tells CBAS2 to output the compiler listing (in CBASIC) to the
current LST: device, during compilation. If you omit the F, then no
printing takes place during compilation.

G This tells CBAS2 to put the compiler listing out onto diskette, and to
call it filename.LST (the same filename as your original BAS file).
This would allow you to list the file later, without delaying the
compilation significantly. If the G toggle is followed by a drive letter
and colon, in parenthèses-for example-$G(B:) then the LST file will
be sent to that drive.

9.4.2 More examples of toggles.

CBAS2 JOBCOST $BCDG - this compiles without an INT file output,
without a printed listing, with the display of errors only on the console, but
with a LST file so that you could print the compiler output later, if you wanted
to. Note that upper/lower case conversion is suppressed.

CBAS2 JOBCOST $BE - this is the fastest compilation, with minimum
output, but with the INT file and the TRACE option set for run-time use. You
might use this if you had had a 'clean' compilation, with a listing, at a previous
run, and wanted to progress to CRUN2.

123

CP/M The Software B us (a programmers companion)

9.5 XREF

There is a separate program called XREF.COM which produces a listing
which can be invaluable. It fulfils the same function as the 'symbol table' in
assembler programming. The program produces a list, in alphabetical order,
of ali the variable names used, ofwhat they are used for (eg Function name or
Parameter or Global variable), and also lists every line number on which each
appears. Note that you will need a 132 column printer, unless you use the D
toggle (see below).

The command can also include a 'title' to be output at the head of each page
of the listing. The title will be truncated to 30 characters (if it is longer) or to 20
characters if the D toggle is used. The title must be the last item in the
command line, and must start with a single quote - the apostrophe (').

XREF assumes that you want a dise file with the stated filename and with the
typeXRF (filename.XRF). The togglesallowyou to modify thisassumption.
You can also tell XREF to put the disc file on a specified drive (other than the
logged drive) by putting the driveletter, colon before the $toggles.

The command is therefore like this -

A> XREF filename driveletter $TTT 'title------ '

The filename may hâve a drive letter - and the type defaults to BAS, as for
CBAS2. Up to three toggles may be used (see below), and the title if présent
must be the final part of the command line.

9.5.1 The XREF toggles.

A Produce a listing (on the LST: device) as well as the disc file.

B Suppress disc output. Dont use B on its own, or there will be no
output at ali !

C Produce a listing and suppress the disc file. That is the same as
toggles A and B together.

D Format the output to fit into 80 columns, instead of the default of 132
columns.

124

XREF.COM

Chapter 9 The CP/M Programming Languages

E Produce only an identifier list, with usage, not including the
functions, paramete'rs.

9.5.2 Examples of XREF commands.

XREF JOBCOST $CD 'PRODUCED ON 12,1,83' - that produces an 80
column listing, no disc file, with the title shown as the heading.
XREF JOBCOST B: $AE- that produces a disc file on drive B, a listing at the
same time, and includes only the identifiers. The listing (and the disc format)
assume 132 column width printer (or wider).
XREF JOBCOST$CD Ί2/1 /83' -thatispossiblythe most common usage,
giving a printed listing only, at 80 column width, and with the date on each
page. You put the correct date in, of course.

9.6 RESERVED WORDS in CBASIC.

This is not a language manual, but it may be useful to note the following list of
reserved words which have spécifie meanings to the compiler.

The symbols ()λ */+-< => have the usual meanings and hierarchy.

ABS AND AS ASC ATN BUFF
CALL CHAIN CHR$ CLOSE C0MMAND$ COMMON
CONCHAR% CONSOLE CONSTAT% COS CREATE DATA
DEF DEF DELETE DIM ELSE END
EQ EXP FEND FILE FOR FRE
GE GO GOSUB GOTO GT IF
INITI ALIZE INP INPUT INT INT% LE
LEFT$ LEN LET LINE LOG LPRINTER
LT MATCH MID$ NE NEXT ON
NOT OPEN OR OUT PEEK POKE
POS PRINT RANDOMIZE READ RECL RECS
REM REMARK RENAME RESTORE RETURN RIGHT$
RND SADD SGN SIN SIZE SQR
STEP STOP SRT$ SUB TAB TAN
THEN TO UCASE$ USING VAL WEND
WHILE WIDTH XOR

125

CP/M The Software Bus (a programmera companion)

Note that CONCHAR% (read one character from the CON: device),
CONSTAT% (return TRUE integer if the console is in the 'ready' State) and
the definition of a sériés of user functions starting with DEF and ending with
FEND (must be numbered line) are the main additions to the more familiar
forms of BASIC. Also the GE operator ("Greater than or Equal to") and GT
etc are useful aids to legibility.

A CBASIC listing will often look unfamiliar to a user of the less powerful
forms, because of the inclusion of line numbers only when needed, and
because of the use of the above - and one or two more - unfamiliar operators.

9.6.1 Error messages from CBAS2.

Both CBAS2 and CRUN2 hâve a substantial set of error messages, some of
which are text, others merely two-letter codes. The set here lists the text ones
first, then the two-letter codes.

SOURCE FILE: filename. BAS
Either the CBASIC command line or an INCLUDE command was unable to
find the specified file on the disc. (Wrong disc ?)
PROGRAM CONTAINS n UNMATCHED FOR/WHILE STATEMENTS
There are n FOR statements or n WHILE statements (whichever is stated)
without the appropriate NEXT or WEND.
WARNING: INVALID CHARACTER IGNORED
The compiler has found a character which it does not recognise and has
replaced it with a question mark (?). This message is included on the line
below that containing the error.
OUT OFDISK SPACE
Either the INT or the LST file (or both) is incomplète, because space was not
found on the disc. Note that a horrifie number of error messages could cause
that (or other) message to be output which may in fact simply be the compiler
giving up. Use STAT to check on this.
OUT OF DIRECTORY SPACE
The compiler cannot insert a filename in the directory, because the directory
is full. In version 2.2 and earlier, check with STAT DSK: for the number of

126

Chapter9 The CP/MProgrammingLanguages

directory entries permitted. In version3.1, SHOW [DIR] tellsyou the number
of free entries. If that is not the problem - it could simply be the sheer volume
of errors found.
DISK ERROR
This could be a 'bad sector' error on read/write, or a disc or file could have
been set to R/O, or any of the 'hardware type' errors.
INLUDE NESTING TOO DEEP NEAR LINE n
An INCLUDE statement in the program being compiled at some point
adjacent to the line number specified, exceeds the maximum number of levels
of nesting permitted. Reduce the number of source files nested in this way,
by writing the code differently. Note that 'near line n' is the closest the
compiler can get, since it is busy with source file handling at that point, not
with interpreting the code actually written into your program.

BF- You have attempted to Branch into a multi-line Function from outside it.
BN - A Bad Number (invalid numeric constant) was found.
CE - Close Error - the INT file could not be closed (DIR or DISK full possibly).
Cl-Close Include - an invalid filename wasfound in a %INCLUDE statement.
CS - Common Statement - COMMON statements must be at the start of the
program, one has been found lower down.
CV-Common Variable - A reference to a subseripted variable in a COMMON
statement is not valid.
DE - Disc Error - this is an error during the read of the filename. BAS file. (The
text message DISK ERROR described above could be anyfile, read orwrite.)
DF-Disc Full - The INT file has not been satisfactorily created, because either
the disc or the directory is full.
DL - Duplicate Line number - You have used the same line number twice or
the compiler is confused and thinks you have ! Some error has caused this,
but it may not actually be DL.
DP - A variable in a DIM statement was Defined Previously. (ie nearer the
beginning of the program.)
EF - A number in Exponential Format was input without any digits following
the E. (Therefore the power is Zéro - so the multiplier of the mäntissä - the
digits before the E - is one.)
FA - Function Assignment. The function name is on the left side of an
assignment statement, but is not in the function itself.
FD - Function re-Definition - You have already defined that function name,
and now you have used it again in a DEF statement.
FE - 'FOR' Error - you have a 'mixed mode' expression in a FOR statement
which the compiler cannot 'unravel'.
Fl-'FOR' Index - the loop index (the counter) in a FOR loop must be numeric.

127

CP/M The Software Bus (aprogrammera companion)

and must not be subscripted. The variable or expression found disobeys the
rules. (String variables, or expressions which evaluate to string variables,
cannot be used, nor can you use an 'array' variable which is subscripted.)
FN - Function Number of parameters. The number of parameters you have
provided to the function is too many or too few. That is an error when the
function is used, not when it is defined.
FP- Function Parameter type. You have used a parameter of the wrong type
(string when it should be numeric, or vice-versa).
FU - Function Undefined. This indicates that you have attempted to use a
function earlier in the code than the 'DEF' for that function - or more likely that
you have used a variable name beginning with FN. (eg DNAME$, ENAME$
and FNAME$ might be logical to you, but the last would give rise to an FU
error !)
IE - IF Expression - the expression following an IF évaluâtes to (or is) a string,
but only numeric or logical 'conditions' are allowed. You can use a string
comparison in the expression, of course, because the resuit of a string
comparison is TRUE or FALSE. For example, the expression
INSTR("YyNn",Q$) évaluâtes to zéro if the content of Q$ is not one of the
quoted characters, or to 1 if it does.
IF - In File. A variable used in a FILE statement is numeric, where a string
variable is required.
IP - Input Prompt. What the compiler takes to be an input 'prompt' string is
not enclosed in the double quotation marks, as it should be. (eg "Enter Date";
not Enter Date;)
IS - Invalid Subscript has been used - usually because you have not
DIMensioned the variable, or not early enough in the program.
IT- Invalid Toggle. A compiler switch (toggle) is not valid. The valid directives
are B to G, as specified above.
IU- Invalid Use. You are not permitted to usea variable name which you have
defined as an array, without subscript. (MBASIC does allow this, assuming
that the use without subscript is a separate and different variable. CBASIC
does not allow it.)
MF- Mixed Format. An expression évaluâtes to type string, when the context
requires a type numeric.
MM - Mixed Mode. An expression contains both string and numeric
variables, in a way the compiler cannot interpret. For example,
X% + LEN(X$) is valid, but X% +X$ is not.
MS - Mixed String. The reverse of MF. You have used an expression which
évaluâtes to numeric, where a string is required by the context.
ND - No DEF FN. A FEND was encountered without a preceding DEF.
NI - 'NEXT' Index. The variable in a NEXT statement does not match any of

128

Chapter9 The CP/MProgrammingLanguages

the preceding FOR indices which are still 'open'.
NU - 'NEXT' Unexpected. There is no FOR statement running at the point
where this NEXT was encountered.
OF-Out of Function. A branch in a multiple line function attempts to branch
outside the function.
00 - ΌΝ' Overflow. Not more than 25 ON statements are allowed in one
program - you have exceeded the limit.
PM - Perform Miracles. (Weil, it must stand for something !) This error code
tells you that a DEF statement has been found within a multiple line function.
You cannot 'nest' function définitions in this way.
SE - Syntax Error. Ali this tells you is that the preceding line contains a syntax
error of a type not covered by one of the other error codes.
SF - SAVEMEM File. SAVEMEM needs a string expression to dénoté the
name of the file. This is numeric. (Would be valid with "quotation marks"
round it.)
SN - Subscripts, Number of. Too many or too few subscripts.
SO - Syntax Overflow. You are pushing the compiler too hard, your
expression is too complex for a single expression. Split it between Iines to
simplify it.
TO - Table Overflow. Not what you might think - it means the program is too
big for the System. Either eut the program down and use chaining, or add
memory and MOVCPM.
UL - Undefined Line number. You have referenced a non-existant line
number.
US - Undefined String. Strings must be terminated with quotation marks.
The Return at the end of the line might be sufficientfor MBASIC, but not for
CBASIC.
VO - Variable name Overflow. Variable names are too long for the statement.
(CBASIC ought to be able to cope, this error message was left in the System,
but should not occur.)
WE-'WHILE' Error. This is the same as IE (above) - the expression after the
WHILE does not evaluate to numeric.
WU - 'WHILE' Undefined. The compiler has found a WEND without an
associated WHILE.

9.6.2 Error messages in CRUN2.

These will occur during program testing, but most of them should beavoided
by the way a program is constructed. Two are text messages, the rest are
codes. The codes fall into two groups, those which are warnings that

129

CP/M The Software Bus la programmer companion)

something has gone wrong - but the run continues - and those which indicate
why the run has stopped. The text messages are first, then the warnings, and
last the list of actual error codes.

9.6.3 Text messages in CRUN2

NO INTERMEDIATE FILE. Either you forgot to put in the name of the file
(program) you want to run, or there is no such file of type .INT on the
logged/specified drive.

IMPROPER INPUT - REENTER. This really should not be allowed to occur.
It is the CBASIC équivalent of MBASIC's 'Redo from start'. If you input to a
string variable, using LINE INPUT or if you use INPUT$, this will accept any
input key(s). The error occurs if the operator puts in more or less fields
separated by commas than he/she should, or puts letters instead of
numbers. If a single field is expected, and the input contains a comma, you
will get this error message.

9.6.4 Warning error codes in CRUN2

DZ- Divide by Zéro. The resuit is set to the largest CBASIC number valid on
your hardware.
FL - Field Length. Morethan255 bytes have beenfound during a READ LINE.
The field is truncated to 255 bytes, losing those at the right.
LN - Logarithm error. The argument in a LOG function must be positive and
non-zero. This one is not. The resuit returned is the actual argument,
unconverted.
NE - Négative number. A négative number follows the~ (raised to the power
of) operator. The absolute value is used (-2 found, 2 used etc).
OF - OverFlow during a calculation. The number which was too large was
replaced by the largest CBASIC number.
SQ - SQuare root error. A négative number was specified in the SQR
function. The absolute value was used (-3 specified, 3 used).

9.6.5 Error codes in CRUN2

AC - A s Ci i error. The string as the argument in an ASC function evaluated to a
null string.
BN - 'BUFF' Number. The value following the BUFF option in an OPEN or
CREATE statement is not between 1 and 52 inclusive. It must be.

130

Chapter 9 The CP/M Programming Languages

CC - Chain Code. A chained program (the code area of it) is larger than the
main program. Not permitted.
CD - Chain Data. The Data area in a chained program is greater than the data
area in the main program.
CE - Close Error. An error occurred during the attempt to close a file. You
cannot assume that the file is correctly closed.
CF- Chain Function. The constant area of a chained program is larger than
the constant area of the main program.
CP- Chain Variable Storage. The variable Storage area of a chained program
is larger than the corresponding area of the main program.
CS - Chain 'SAVEMEM'. The chained program reserves a different amount of
memory with the SAVEMEM statement than the main program.
CU - Close Undefined file. The file number specified in a close statement was
not allocated to an open file.
DF - Defined File. An attempt was made to OPEN or CREATE a file with a
number that was already 'active'.
DU - Delete Undefined file. The file number in a Delete statement was not
active.
DW - Disc Write error. Either the Directory or the actual Storage space was
found to be full when a 'write' was attempted.
EF - End of File. No IF END statement was specified, and a read has taken
place past the end of file.
ER - Error in Record. You have tried to write a longer record than the
maximum you specified.
FR - File Rename. The name to which you were attempting to change a
filename already exists.
FT - File Toggle. A FILE statement was executed when there were already 20
files active.
FU - File Undefined. A read or write statement included an inactive file
number.
IF- Invalid Filename. This would have been picked up at compile time if it had
been a specifed string, so it must be an expression which évaluâtes to an
invalid name.
IR - Invalid Record number. Record numbers must be positive and non-zero.
This one was not.
IV- Invalid Version. You are using CRUN2 but the .INTfile wascreated using
CBAS, not CBAS2.
IX - Invalid Function nesting. A FEND statement was found immediately
before executing a RETURN. You cannot do that !
LW- Line Width lessthan 1 orgreaterthan 133 wasfound in a LINEPRINTER
WIDTH statement.

131

CP/M The Software Bus (aprogrammera companion)

ME- 'MAKE' Error. The disc directory is full, and you are attempting to create
or extend a file.
MP-'MATCH' Parameter. Thethird parameter in a MATCH function mustbe
positive and non-zero. This one was not.
NF- Number of FILE. File numbers must be between 1 and 20 inclusive. This
one is outside the limits.
NM-No Memory. Theprogram islargerthan thememory available. Itwill not
load. Split it and use chaining.
NN- No Number field. A PRINT USING command has no numeric datafields
in it, but you are trying to print a number.
NS - No String field. The reverse of the above. The USING command string
has only numeric data fields, and you are trying to print a string.
OD - Overflow Data. A READ was executed for which there was no DATA
available. (forgot to RESET ?)
OE- 'OPEN' Error. An attempt was made to open a file which does not exist,
and for which no IF END statement had previously been encountered.
ΟΙ - ΌΝ' Index. The expression in an ON ... GOTO or an ON ... GOSUB is
either less than one or greater than the number of line numbers in the list. Put
a 'trap' in to guard against that.
OM - Overflow Memory. During execution, the program ran out of memory.
Watch those subscripted variables, they can soak up space.
QE - Quote Error. You are not allowed to PRINT to a file a string which
contains a quotation mark, but you tried to.
RB - Random 'BUFF'. The BUFF option spécifiés more than one buffer, so
you cannot attempt random access to that file.
RE - 'READ' Error. An attempt was made to read past the end of a record in a
fixed format file.
RG - 'RETURN' without 'GOSUB'. You have allowed the program logic to
GOTO or simply to progress into a subroutine. Trap this by ensuring that ail
subroutines are preceded by an unconditional GOTO (or a THEN and an
ELSE).
RU - Random Undefined. The file from or to which you are attempting a
random READ or PRINT is not fixed format and therefore is unsuitable for
random access.
SB - SuBscript. You have attempted to address an array with a subscript
outside the range for which the arrray was specified.
SL - String Length. A concaténation (eg A$ + B$) resulted in a string longer
than 255 bytes.
SO - SAVEMEM nOt found. The file specified in a SAVEMEM could not be
found on the drive specified (or the default drive).
SS - SubString error. The second parameter of a MID$ function was either

132

Chapter 9 The CP/M Programming Languages

zéro or négative (the start of the select).
TF-Ύοο many Files. As for the FT error, there are already 20 files active, you
cannot have more.
TL - 'TAB' Length. If you want to TAB, your parameter must be greaterthan
zéro and less than the line width which is current. This is outside limits.
(Check for WIDTH statements.)
UN - UNdefined edit string. PRINT USING must have a string of edit
characters. This has none. Insert the string or change to PRINT.
WR - WRite error. You have read from the file, but not to the end, and now
you have attempted a write. You can only do this at end of file (to extend it) or
at the beginning (and overwrite the whole).

That complétés the error code list from CRUN2.

9.7 MBASIC.

MBASIC is the Microsoft version of BASIC which allows you to create
BASIC programs which can then be run under the interpréter which is loaded
when you type MBASIC, or can be compiled with BASCOM. This is a full
compiler, not a 'semi-compiler'.

MBASIC is also referred to a BASIC-80, and is often renamed BASIC when
creating development dises. We will use MBASIC.

The language dérivés from the Beginners All-purpose Symbolic Instruction
Code, which was a very limited, easy to start using, language. Many different
forms of BASIC exist, particularly in the low-cost micro market, and each has
its own foibles and methods of approach. It is a measure of the quality and
range of MBASIC that you will often find other versions compared with
MBASIC as 'the standard'. Because it is easy to learn, easy to use and very
widely available, MBASIC is often looked down on by the professional
programmer or software house. The main criticisms are that it runs much
more slowly as an interpreted language than a 'proper' compiled language,
and that it is all too easy to write programs that are very badly structured,
badly annotated, difficult to modify safely, and generally unprofessional. All
these criticisms are true, but it is equally true that a good programmer can
write programs in MBASIC which stand up to rigorous inspection.

There are many good reference guides to BASIC in general and MBASIC in
particular, so we will approach this discussion of MBASIC in a somewhat

133

CP/M The Software Bus (a programmera companion)

different way from that which we adopted for CBASIC and (see later)
COBOL. We will take each part of MBASIC in turn - the editor, then the
interpréter, and finally the compiler. We will see that there are some spécial
éléments of MBASIC under CP/M, which a programmer needs to know, and
there are also some commands available under the interpréter which will not
compile.

9.7.1 Loading MBASIC under CP/M.

The command MBASIC alone will load the interpréter and editor. Ali the
available memory (that which CP/M refers to as the TPA, or Transient
Program Area) is made available to the programmer, except the part of it
which is actually occupied by MBASIC, of course.

The response to MB ASIC will be a statement of the version and serial number
of your particular program, followed by a statement of the number of bytes of
TPA available after MBASIC is in the memory. The command may be
extended in several ways. If you have a program in MBASIC called
START.BAS (for instance), the command -

MBASIC START< Rt>

will load MBASIC, and will then load and run the program START.BAS. If
you wish to restrict the amount of memory available, you can extend the
command with /M:hhhh and the value which is in hhhh will be the highest
memory location which MBASIC will use for your subséquent work.
(Omitting /M:hhhh allows use of ali TPA up to the start of FDOS.) This will
most often be used when you have assembler subroutines to slot into the
memory, and these will be loaded into the highest available memory, so
MBASIC needs to be restricted.

Also, MBASIC assumes by default that you will not want to have more than 3
files open (file numbers 1,2 and 3) at one time. If you use file number 4 or
greater, you will get an error. To tell MBASIC that you will require more files,
extend the command with /F:nn, where nnis the total number of files that will
be used. The maximum number allowed (in version 5.n) is 15. For each file
assumed or required, an area of 166 bytes of memory is reserved, so the
'memory available' response will be reduced by the appropriate multiple of
166.

134

Chapter9 The CP/MProgrammingLanguages

Finally, there is an assumed random record size of 128 bytes. You can specify
less than this in your program, and the random records will be the size you
specify. If you do not specify a size, 128 is assumed. If you need a longer
random record, then you must extend the original command invoking
MBASIC with a 'size' parameter - /S:250 (if 250 was the size you needed).
However - this new size will also be the default if you do not specify a size
when you open a random file - so it is good practice - and much safer - always
to include the record length as the last entry inanOPEN"R"... statement - like
this -

1250 OPEN"R", ft3,''B:KEYFILE.DAT",124

(The 124 is the sum of the characters allocated in the 'FIELD' statement for
that file)

The full command for loading MBASIC with 5 files, ali memory, and random
records up to 180 bytes long, and loading and running the program
START.BAS on the disc in drive B, say, is

BASIC B:START /F:5 /S:180< Rt>

The sequence of the / M:, / F: and / S: extension is not important, exceptthat
they must follow any program name, and must be separated by a space.

9.7.2 The MBASIC editor.

Every line in an MBASIC program is numbered, usually in tens, but not
necessarily, and line numbers can run from 0 to 65529. The programmer can
key in the line numbers as he/she keys in the program, but there is an
automatic line-numbering facility which is invoked with AUTO. AUTO used
alone assumes you want to start with line 10, and step the line numbers in
tens. To start AUTO at line 2550 and step in multiples of 5, the command is-

AUTO 2550,5< Rt>

If AUTO offers you a line number which has already been input - say you have
a program of 170 Iines, starting at 10, already in memory, and you carelessly
enter AUTO instead of AUTO 1710, then there will bean asterisk (*) after the
line number and before the cursor - thus

10*1

135

CP/M The Software Busta programmer companion)

Eitherescapefrom AUTO with^ C (which doesnot re-boot CP/M), orsimply
press Return, and you will be taken onto the next number without affecting
the content of the previous one.

The MBASIC prompt is OK, and it is displayed, and the cursor positioned
below the O of OK, ready to accept entries.

Editing your program in MBASIC is slightly longwinded - it owes much to ED
(next Chapter), but it does work.

First, you must invoke the editor by typing (when you are in MBASIC) EDIT
nnnn, where nnnn is the line number you wish to edit. You will next see the
line number stated on the left of the screen, with a space, and the cursor
immediately after it. To see the line, press L (for 'list'). The line will be
displayed in full, the number repeated and the cursor repositioned ready for
your command.

The four most used editing commands are the space bar, which moves the
cursor along one character (and displays the one 'uncovered'), The I which
means 'start inserting characters here' (and its terminator, the Escape key -
'stop inserting'), the command nC - 'change the n characters for the ones
keyed in next' and the command nD - 'delete the n charactersfrom the cursor
onwards'. This last one displays the deleted characters enclosed in \ (back
slash) characters. However, the X 'go to the end of the existing line and enter
insert mode' (X = eXtend), the H 'delete all characters from the cursor
onwards and enter insert mode to allow replacement', and the nSc 'find the
n'th occurrence of character c in the line from the cursor position, and stop
with the cursor before the character' are all very useful.

The full set of commands available in EDIT mode are these -

A Abandon. Restore the line as it was, and re-start edit
nC Change n characters from the cursor to those next keyed

in. This is 'over-write'
nD Delete the n characters from the cursor position
E End the edit, save the changes made, do not type out the

rest of the line
H Hack off the line at this point and enter Insert mode -

deleting any characters which followed the cursor
position. See I for exiting from I mode.

136

Chap ter 9 The CP/M Programming L anguages

I Insert characters at the cursor position until either the
ESCape key is pressed (leaving you in edit mode) or the
RETurn key is pressed (displaying the line and exiting
from EDIT)

nKc Kili (delete) ail characters up to the nth occurrance of the
character c (do not delete that occurrance of c)

L List out the rest of the line and re-enter edit at the start of
the line

Q Quit the edit and restore the original line (note that A
above restores the original line, but leaves you in edit
mode at the start of line)

nSc Search for the nth occurrance of character c and leave
the cursor immediately before it (not displayed)

X eXtend the line by displaying the whole line and entering
Insert mode at the end of it

 backspace (opposite of 'space-bar'). Can be used in
Insert mode to delete inserted characters

<ESC>
<RET>

Escape from insert mode, remaining in edit
Escape from edit or insert mode to MBASIC, saving any
changes which have been made

There is one pretty little use of the edit mode keys which is not immediately
obvious, but which can be useful when creating programs. You can, if you
wish, duplicate a line which existe, with a different line number. This allows
you to move a line to a different place, or to duplicate almost identical Iines.
Commonly, one might have a subroutine which contains the detailed
instructions to display some data on the screen, with PRINT USING and a
variety of ; and : characters. You probablyentered it by using the? key instead
of typing PRINT, and nowyou want the subroutine reproduced with LPRINT
instead of PRINT in each place. If the line you want to reproduce is, say, line
1230, and you want a copy of it at line 1500, then proceed like this.

Type EDIT 1230< Rt> When you get 1230 and the cursor on the screen,
immediatelypressE Nowpressa Afcontroland A)andyouwillgeta ! prompt.
Press I (for insert) and type in the new number 1500. Press < Rt> . That is it-
one line copied. Now repeat for the other Iines.

Go through the new Iines in turn with EDIT 1500 etc, L (list) each line out to
checkit, use SP to move the cursor to just before the first P, press IL< ESC>,
then SP again and so on until you have changed the PRINT commands to

137

CP/M The Software Bus (aprogrammers companion)

LPRINT. If SP finds a P which does not want an L in front (like in P% or P$)
then SP again will skip on.

That little sequence EDIT olnum < Rt> Ελ Alnunum< Rt> is probably worth
remembering if you do much MBASIC coding. (One of the editors such as
Wordstar, described in Chapter 10, will also help, but can take time to set up,
as we will see.)

Weintroduced'* Awithoutexplainingit-sonowwewillsaythat^ Aallowsyou
to enter edit mode on the line you are typing, if you suddenly réalisé that you
have skipped something or made some error. It saves re-typing the whole
line, or going through the process of typing in EDIT linenumber.

There are some more spécial characters which apply to the use of the
MBASIC interpréter, and this is the list -

Λ A
-C

Enter EDIT mode on line being typed or last line typed
Interrupt program execution (re-start with CONT) or exit
from AUTO without saving the current line number

-G
-H
Λ I
-0
-s

Ring the bell at the terminal (!)
Delete last character typed
Tab (tabs every 8 columns) if you haven't a TAB key
Halts/Résumés program output
Suspends program execution (also suspends LIST,
LLIST)

~Q Résumés program execution after S (any key résumés
LIST, LLIST)

~ U ογλΧ
< Rt>
< Lf>

Deletes line being typed
End of current line
(Line Feed) Breaks logical Iines into separate physical
Iines on the screen

< Esc> Escape from sub-commands (Ι,Η,Χ and nC) in edit
(a space followed by a full stop/period) refers AUTO,
EDIT, RENUM, LIST and LLIST to the current line. Do
not omit the space. The manuals say 'EDIT.' but they
should say 'EDIT .'

? shorthand for PRINT when preceded by space or
punctuation. (L? is not LPRINT)

name$
name%

a string variable containing up to 255 chars
an integer (whole number) variable -32768 to 32767

138

Chapter9 The CP/MProgrammingLanguages

name (old form name!) 'single précision' variable. Held as a
f loating point number with 7 digits or less and one digit as
theexponent. Effectively, up to seven digits including the
décimal point.

name # 'double précision' variable. Held as floating point with up
to 17 digits and an 8 digit exponent.

NOTE that the tact that MBASIC uses floating point numbers can give rise to
strange results, and lack of précision in the last digit. For instance multipiying
234.567 by 23 gives 5395.04, not 5495.041 as it should. Or you may find a
number printed out with a string of zéros and a 3 (or something) after it. When
you output numerics using the PRINT (or LPRINT) command, you need to be
aware that numerics are printed with a space before and after them unless
you use one of the PRINT USING editing characters And you may get some
very strange numbers, again unless you use PRINT USING. Be careful when
using integers - although they speed up processing, holding a value as a
whole number of pence isvery limiting indeed- less than 327.00 can beheld in
an integer.

9.7.3 The MBASIC interpréter.

Any reference manual and most instruction texts will give you sufficient detail
on the instruction set, so we will confine ourselves to some of the less obvious
area.

For obtaining a password which you do not want 'echoed' to the screen, use
INPUT$(n) where n is the number of characters. n need not be a literal, it
could be an integer variable, which can be altered. For example -

4560 N% =6
4570 PRINT"ENTER PASSWORD";
4580 PASSWORD$ = INPUT$(N%):PRINT

The final PRINT moves the cursor down to the next line.

139

CP/M The Software Bus(aprogrammerscompanion)

Forobtaining a 'MENU'type response, usea singlecharacter length, perhaps
like this -

3450 PRINT "IF CORRECT PRESS 'C', OR PRESS 'R' TO RE-ENTER";
3460 QS = " "
3470 WHILE INSTR("CcRr",Q$) =0:Q$ = INPUT$(1):WEND:PRINT Q$

The final PRINT in this case provides the 'écho'.

For ail other input from the keyboard, you are strongly recommended to use
LINE INPUT to a string. That will avoid the 'Redo from start' message which
would spoil a good screen layout and could be confusing to a user. (LINE
INPUT accepte commas and any keyboard character except < Rt> and « C.
< Rt> indicates end of input and ~ C suspends program execution.)

Random files are often a source of confusion to beginners particularly if you
read from a record to which you have not previously written. You will get
some very strange characters if the disc space has been used before. KILLing
or ERAsing (in CP/M) a random file also has its moments. You do not actually
touch the file itself with those commands, only the Directory entry. So if you
KILL a random file, and then re-open it, you'll possibly find that everything is
still there, where it was before the KILL. Random files do not always PIP as
one expects. If there is any doubt, a genuine 'track for track' copy program
written in assembler, or the slower approach, reading and writing every
record from one dise to another, is an alternative approach to Security
copying.

Since MBASIC does not allow you to extend a serial file (other than by
reading and writing it, then adding to the end of the written version), random
files are sometimes used for this. You will need a separate file - or the first
record of your file - to hold a counter of the record number which you last
used. Then you can write to the 'counter + l'th record and step the counter.

Program chaining in MBASIC is very simple. Your statement is for instance

1230 CHAIN"START"
or

1230 CHAIN"START.BAS"

which is équivalent to an END statement, followed by keying in

LOAD"START"
Ok
RUN

140

Chap ter 9 The CP/M Programming Languages

or the shorter alternatives

RUN"START"
or
LOAD"START",R

You can tell the interpréter where to start a program by including the line
number. If you were to use

1230 CHAIN"START",50

then you would enter the program at line 50. Watch this, though if you are in
the habit of defining functions early in your program. Do not enter after the
DEF FN... statement, or your program will hait if the function is invoked.

There are no restrictions on sizes of the programs, you can go from a short to
a long and vice-versa. You can also carry the values in variables from a
program to a chained program. There are various possibilities, but the one we
will mention here is the one which you can use with the BASCOM compiler.
In each of your programs which are to be CHAINED together, you can include
a COMMON statement. You follow this with the list of names of the variables
you wish to hold their values through a CHAIN. Use commas to separate
them, and specify arrays as below, with nothing between the brackets.

COMMON V$,CLIENT$,MONVAL#(),ANNVAL#,JD%

You can have several COMMON statements, provided the same variable is
not named twice, and the statements can be anywhere (before CHAIN) in the
program. One word of warning. The variable names in the COMMON
statement must actually have been used - must have values in (even if they are
zéro or a space) - before you CHAIN. Otherwise, even though the first
program will happily accept a COMMON statement with empty (and that
means effectively non-existent) variables, the second and subséquent ones
will not ! Once a value is in there and the location has been 'activated', so to
speak, the program need not address the variable(s) at all, but may simply
hold them to pass on to the next CHAINed program.

The other ways of passing variables are the extensions to the CHAIN
statement, such as ALL. CH AIN"START”, ALL means preserve the values of
all variables, and does not need any COMMON statement(s).

It is very common practice - and good practice - for programmers to build up
libraries of subroutines which they have developed These are usually

141

CP/M The Software B us (a programmers companion)

RENUMbered up in the high numbers, and SAVEd as short programs in
ASCII. Then they can be retrieved and merged into subséquent programs.

You might have developed a routine to convert a date to an integer, useful for
date-checking and for Storage in 2 characters on a random file, and you might
refer to it as JULIAN. When you have DELETEd any other code from
memory, you could renumber it

RENUM 65000,1

and then put it on dise as ASCII with

SAVE"JULIAN",A

Then, provided that you do not use the 65000 sériés of numbers in your
program, you can copy it into the program which you are developing with the
command

MERGE"JULIAN"

Merge commands are sometimes slow, so do not be surprised (or panic!) if
the disc drive access light goes out intermittently during a MERGE. Now you
can GOSUB 65000 in your program.

The MBASIC functions ail work exactly as the manuals say, but there is
sometimes confusion about the string returned by the
STR$(numeric-variable) function. VAL(X$) returns the numeric value of X$
as stated, but STR$(X) returns a single space character and then the
characters which represent X. Check it if you like, with this program -

10 INPUT"ENTER NUMBER";X
20 PRINTX,STR$(X),LEN(STR$(X|)
30GOTO10

The number returned for the length of the string is always one more than the
length of the number you input. So if you have a number, and you want the
string représentation of it, without stray spaces, the function is
RIGHT$(STR$(X),LEN(STR$(X)) - 1). The space is for a ' - ' sign.

Error trapping is an important feature of good MBASIC programs which can
otherwise be somewhat inappropriate for use by non- programmers. If the
first statement of your program is

10 ON ERROR GOTO 65500

142

Chapter 9 The CP/M Programming Languages

and at 65500 you have a séries of traps, ending in

65529 ON ERROR GOTO 0

then your program will not only be robust, in so far as you trap the errors, but
it will be informative if an error should occur because that 65529 statement
tells MBASIC to be as informative as possible about the error when the
program is terminated.

You can trap errors with either the error codes (see below) or with the line
number in your program at which they occur.

65500 IF ERL = the line number in your program at which you are trapping the
error, will be followed by some imperatives to get out of the problem, and
then a RESUME nnnn - the line number at which you want to carry on.

For example, if you need / F:5 in your programs, it makes sense to have an
early test for five files like this -

30OPEN”R",#5,"X"
40 CLOSE#5
50KILL"X"

65500 IF ERL = 30 THEN PRINT'YOU MUST ENTER/F:5. RE-START":SYSTEM

And that introduces the method of getting from MBASIC to CP/M The
conventional AC does not work, that, is a command to MBASIC. The
corresponding command is SYSTEM< Rt>, which can be used either in
direct or indirect mode.

Another useful command is FILES. That will display the directory of the
currently logged drive. To display the directory of another drive, you need
FILES"B:*.*" for drive B. In a program you may want to display to the user,
ali the files of type EST which exist on drive A. The statements would be

2450 PR I NT"Estimates currently on file are:-"
2460 FILES"A:*.EST":PRINT:PRINT

The FILES statement leaves the cursor after the last item in the list, unless
there happens to be a full line, hence the extra PRINT statement.

143

CP/M The Software Bus (a programmers companion)

The error codes in the MBASIC interpréter are as follows (the asterisk *
before the message means that the error number and message also apply to
run-time errors in compiled programs) -

Code Number Message
BS 9 * Subscript out of range (or too many/few)
CN 17 Can't continue (attempted CONT)
DD 10 Redimensioned array. (Two DIM statements or

perhaps the DIM follows a default of 10 which has
occurred because the array has been addressed)

FC 5 * Illégal function call. (Parameter out of range)
ID 12 Illégal direct, (can only use in indirect mode)
NF 1 NEXT without FOR
OD 4 * Out of data when READ attempted (forgotten to

RESET ?)
OM 7 Outof Memory. Too big or too many loops/GOSUBs
OS 14 * Out of String space. (CLEAR in versions before 5.n

will allocate more. 5.0 on allocates dynamically - so
this means OM - code 7.

OV 6 * Overflow - too big a number.
SN 2 * Syntax error. (Not very helpful !)
ST 16 String formula too complex. Break it down.
TM 13 Type Mismatch - string/numeric or vice-versa
RG 3 * RETURN without GOSUB (préfacésubroutines with

unconditional GOTOs)
UF 18 Undefined user function (or a name which you have

started with FN... without realising)
/O 11 * Division by zéro. Warning issued and run continues.

The above are in ail versions of MBASIC - large, small, stand-alone etc.The
next set are in extended and disc versions only.

19 No RESUME in an error trapping statement
20 * RESUME without error
21 * Unprintable error ! (No code exists)
22 Missing Operand - operator but no operand
23 Line buffer overflow -O 255 chars)
26 FOR without NEXT
29 WHILE without WEND
30 WEND without WHILE

144

Chapter 9 The CP/M Programming Languages

These folowing next are disc errors.

50 * Field Overflow (too many characters for length of
record stated/implied)

51 * Internai error (Shout for help to Microsoft)
52 * Bad file Number (not open or too big)
53 * File not found (LOAD, KILL or ΟΡΕΝ'Ί")
54 * Bad file mode (wrong file commands)
55 * File already open (attempted OPEN or KILL)
57 * Disc I/O error. (fatal to your program)
58 * File exists (NAME exists)
61 * Disc full (no more file space)
62 * Input past end (use EOF or other trap to avoid)
63 * Bad GET/PUT record number (usually 0, or

>32767)
64 * Bad file name (eg too long)
66 Direct Statement in your ASCII program file. You

cannot have that - the LOAD terminâtes and you are
back in MBASIC command mode

67 * Too many files (directory full)

9.7.4 The MBASIC Compiler.

The MBASIC compiler is called BASCOM, and generates a '.REL' file,which
then needs to be linked to the system using L-80, which produces the '.COM'
file which runs as a CP/M transient.

If you are this far down the line, all you need are the instructions for running
BASCOM, and the details and meanings of the switches. You will find that
BASCOM is more pedantic than MBASIC - for example, MBASIC would
understand PRINTFND$(X%) but BASCOM would require
PRINT FND$(X%).
When you are ready to compile, RENUM the program and SAVE it as ASCII.
(SAVE"PROGNAME",A) Exit from MBASIC to SYSTEM.

Invoke BASCOM with the command BASCOM, and wait for the * prompt.

A suggested command line to get you going is -

*PROGNAME,TTY: = PROGNAME/N< Rt>

145

CP/M The Software Bus (aprogrammers companion)

If you hear the bell and see an error on the screen, Λ S, if you are quick enough,
will allow you to inspect the program, note the area of the fault and the fault
code (see below), and then press any key to continue. At the end it will tell you
how many errors you have. Correct and re-compile until it is clean. You will
now have a file PROGNAME.REL

Now invoke L-80 with the appropriate command (L80 on many dises). You
will again see the * prompt, and a suitable starter command line for L80 is -

*PROGNAME/E,PROGNAME/N< Rt>

When you have your '.COM' file (ie PROGNAME.COM) you can save space
by erasing the '.REL' file (ie ERA PROGNAME.REL), and your program is
ready to run. If you have several programs which CHAIN together, you need
all of them compiled, of course.

Now for the BASCOM command line switches. The switches follow the
source file name after the = sign. Each letter has it own /.

/E If your program includesON ERROR GOTO with RESUME and a line
number, then you need the module which this switches in. (It is left
out if no switch).

/X If you have used RESUME 0 or RESUME NEXT, thenyou'll need this
module.

/N This switches off the listing of generated code (and is the one we
used above). You get the display of the source code on the screen.

/ D This switches on the génération of debug/checking code at run time
/S With this switch, quoted strings of more than 4 characters are

written as they are encountered.
/4 The compiler is told to recognise Microsoft Basic ver 4.51

conventions (not 5.n)
/C If line numbers are not sequential, accept this. You may not use /4

and /C together.

If you get compile-time warnings, they will be one of these two -

ND Array not dimensioned (a default array has been assumed)
SI Statement ignored - not compiled.

146

PROGNAME.COM

Chapter9 The CP/M ProgrammingLanguages

Compile-time Error messages (which are fatal, and you cannot Link your
'.REL' file) are as follows -

SN Syntax error
SO Sequence error
TC Too complex a statement - simplify
LL Line Length too great
OV Overflow - arithmetic statement invalid
OM Out of Memory
TM Type Mismatch (string/numeric)
BS Bad Subscript
UC Unrecognisable Command
/O Division by zéro
DD Array already DIMensioned
FD Function already Defined
WE WHILE/WEND error
FN FOR/NEXT error
UF Undefined Function
/E You should have used the /E switch
/X You should have used the /X switch

And that is it. Terse, perhaps, but probably adéquate.

At run-time, there may be errors. These will be reported with numeric codes,
and they are exactly the same codes as we listed for the Interpréter. In fact,
we put an asterisk against each one which is also a Compiled Run Time error.

Details of L80 - the linker - switches are listed below, but the important point is
that you must include the /N if you want a filename.COM Without the /N,
the program will be in memory, and you may then save it to dise with

SAVE nn filename.COM

where nn is the response you will get from L80 after it has successfully
created the memory image. In CP/ M 3.1, the SAVE command is entered first,
see Chapter 2.

Switch Function
/R Reset - initialise the loader
/Eor/E:label Exit from the linker. If label included, that will be taken

as the program start address

147

filename.COM
filename.COM

CP/M The Software Bus (aprogrammers companion)

/Gor/G:label
/U
/M

/S

/N

Go. Start program execution (at label address)
List ali undefined référencés
Map. List ail référencés and if they are defined, give
their values, otherwise asterisk
Search the filename preceding this switch to satisfy
référencés
New program 'SAVE'd with a default type of
'.COM'when the linker exits.
Note that / E and /G both give three numeric responses
at the console-

aaaa bbbb nn

Where aaaa and bbbb are the start address and next free byte (beginning and
one after the end) and nn isthe number 256 byte pages occupied. That is the
source of the nn in the SAVE command which you will need if you do not use
the /N switch.

Now you can see that the command line we suggested was

L80 relfilname/E,comfilname/N

which means, load the linker, locate the program relfilname.REL in memory,
making the necessary address adjustments, exit from the linker. Then SAVE
the memory image onto the disc and file.COM specified in comfilname.

This linker is used for .REL files produced not only by BASCOM, but also
those produced by F-80 (FORTRAN) and M-80 (the MACRO language
compiler). These are mentioned later in the chapter. LINK is the version 3.1
équivalent of L-80, and was discussed in Chapter 8.

9.8 ALGOL/M (Public domain software in the CP/M Users'
Group)

This version of ALGOL (the ALGOrithmic Language) produces a
semi-compiled program which is referred to as 'pseudo-code'. An editor has
to be used (see next chapter) to create a source code file (with extension

148

file.COM

Chapter 9 The CP/M Programming Languages

.ALG). This is then semicompiled using ALGOLM and run by using
RUNALG. The semicompiled form is called 'pseudo-code'.

Although ALGOL/M is based on ALGOL-60, which is.the published
language, and for which a very large library of software exists, it was not
created as a formai sub-set. This short decription fulfils three tasks. First, it
gives the new ALGOL/M user a quick guide to the compiler options and the
compile and run commands. Second, it provides ali ALGOL/M users with a
list of compile and run-time error and warning messages. Third, for the
ALGOL-60 user, it provides a summary of the Reserved Words and of the
general structure and capability of ALGOL/M.

9.8.1 ALGOL/M Compile and Run.

You need an editor (see ED etc in the next Chapter) with which to create a
source code file called filename. ALG

To compile it, use -

ALGOLM filename $AE (or $A or $E or blank)

This produces the Algol intermediate file filename. AI N. The options are $A to
generate a listing at the terminal and $E to set Trace mode for execution under
RUNALG. Neither, one or both may be used.

To run your filename.AIN program, enter -

RUNALG filename

9.8.2 ALGOL/M Errors and Warnings

ALGOLM compiler errors

AS Function or Procedure on left side of assignment statement
BP Bound pair subtype must be integer.
DE Disc Error - program/system cannot recover.
DD Double déclaration of identifier, label, variable etc.
FP Wrong file open statement
IC Special Character which is invalid
ID Incompatible subtypes (you cannot assign décimal values to integer

variables etc)
IO Integer overflow (too large, more than 16383)

149

CP/M The Software Busfa programmer companion)

IT Identifier is not declared as a simple variable or function
NG No file '.ALG' found.
NI Not integer subtype - and it should be
N P No applicable production exists
NS Not string subtype - and it should be
NT In a For..Step..Until, clauses and expressions must beof same type-

all integer, or all décimal. These aren't
PC Parameter count in call does not match déclaration
PD Parameter not declared
PM Parameter does not Match declared type
50 Stack overflow (no more memory)
51 Subscript must be of subtype integer
TD Subtype must be integer or décimal, not string
TM Subtypes do not match or are incompatible in context
TO Symbol Table overflow
TS You have subscripted a variable wihout declaring it
UD Undeclared Identifier
UF Undeclared File/Function
UL Undeclared Label
U P Undeclared Procedure
US Undeclared simple variable
VO Varc table overflow - possible caused by too many long identifier

names

RUNALG Error Messages

AB Array subscript out of specified range
CE Disc file Close error (important - not closed, no file)
DB Input field length greater than buffer size
DW Disc file Write error.
ER Variable block size write error
10 Integer overflow (> 16383)
IR Incorrect Record number - or random file not initialised
ME Disc file création error (of some kind)
NA No'.AIN'file found
OV Décimal register overflow
RE Attempt to read past end of record on blocked file
RU Attempt to random access a non-blocked file
SK Stack Overflow (no more memory space)

150

Chapter 9 The CP/M Programming Languages

RUNALG Warning Messages

AZ Attempttoallocatezerolengthdecimalorstring. Systemgivesyoua
default length of 10 digits/chars

DO Décimaloverflow-variablesetto 1.0-run continues. Beforenext
run, increase variable size allocation

DI Disc file variable format error
DZ Décimal division by Zéro - resuit set to 1.0
EF End of file on Read
IA Integer addition or subtraction under or overflow. Resuit set to 1.0
Il Invalid console input - re-input
IR Record number incorrect or random file not initialized
I IntegerdivisionbyZero-Divisorsettol and division continues (not

like DZ see above)
NX Négative exponential - exponentiation not done
SO String overflow - characters lost

9.8.3 ALGOL/M General description

Three types of variable are supported - integer (-16383 to + 16383), décimal
(up to 18 digits of précision, default 10) and string (up to 255 characters,
default 10). Décimal and string variable lengths can be given integer variables
allocated values at run-time. Arrays can be declared with up to 255
dimensions, each dimension can be 0 to + 16383. The maximum address
space will naturally limit arrays to something less than the maximum
theoretically possible. The contents of arrays can be any of the three types,
and the dimensions can be integer variables, with values assigned at
run-time.

Arithmetic is either integer or binary-coded décimal. Integers can be used in
décimal expressions, and are converted to décimal at run-time. The
comparators < => are available, used singly, or in combination. Logical
AND, OR and NOT are available.

Control structures are BEGIN..END, FOR, IF..THEN, IF..THEN..ELSE,
WHILE, CASE and GOTO. Function and procedure calls are supported.
Block structuring uses BEGIN..END and nesting up to nine levels isallowed.
Local variables declared within a block are only available within the block.
Storage is re-allocated if Control moves out of a block in which local variables

151

CP/M The Software Bus ta programmer companion)

are used, so that values are not preserved. Recursion is allowed, and
Functions return an integer value, while procedures do not return a value.
Parameters of ail types may be used with procedures or functions.

WRITE (new line) and WRITEON (continue on same line) output to the
console, the write list being contained in parenthèses (). The write list may
contain string constants which are enclosed in quotation marks. Any
combination of variable types and expressions evaluating to different types
can be included in a write list. When WRITE or WRITEON fill an 80 character
line, new line is given automatically. TAB and the displacement issupported.

READ is the console input statements. The read list is enclosed in
parenthèses, and contains any combination of variables. A space in the input
indicates that the next character keyed starts the next variable entry. To enter
spaces to a string variable, the actual keyboard entry must be enclosed in
quotation marks. Thus THIS WEEK would be put in two string variables, and
you must input "THIS WEEK" to put it into one. Wrong type/number of
inputs gives the II error (see above) and the program remains halted until a
matching set of inputs is provided. < Rt> is the end of input to a READ.

READ and WRITE are also available for dise I/O. READ/WRITE folowed by a
standard CP/M filename.typ, with or without drive letter and colon, is the
method. Random files are accessed by following the filename by a comma
and the integer or integer variable containing the record number. Such files
must be blocked by including the record length in the file déclaration. Files not
so declared will be unblocked serial/sequential.

The Reserved Words in ALGOL/M are these -

AND ARRAY BEGIN CASE CLOSE DECIMAL
DO ELSE END FILE FUNCTION GO
GOTO IF INTEGER NOT OF ONENDFILE
OR PROCEDURE READ STEP STRING TAB
THEN TO UNTIL WHILE WRITE WRITEON

152

Chapter 9 The CP/M Programming Languages

9.9 CIS COBOL

CIS COBOL produces semi-compiled programs. An editor (see next Chapter)
is needed to create the program source on a file with the extension .CBL The
compiler has several overlays, and loads in each overlay as required from the
logged drive. The compiler consists of the following programs -

COBOL.COM
COBOL.101
C0B0L.I02
COBOL.I03
C0B0L.I04

There is a separate run time system which runs the intermediate code
produced by the compiler, called -

RUNA.COM

CIS COBOL is also usually supplied with CONFIG.COM to configure COBOL
to match the terminal and other peripherals in use, and with simple
démonstration programs which show ways of screen handling, which may be
unfamiliar to 'main-frame COBOL' programmers. There is also a run-time
subroutine, named CALL, which is suplied in .ASM .HEX and .PRN forms.

Optionally, there is also a FORMS-2 package which allows screen création
and the handling of files which contain the screen content without actually
writing the data and procedure divisions to do this. This cornes in 13
programs, plus CONFIG.

The COBOL command line format is -

COBOL filename directives

where 'filename' is the name of the .CBL source file (eg WRSCGDAT.CBL)
and 'directives' are none, one or several of the valid compiler directives,
which are simply entered after the filename in any sequence, with at least one
space between them and before the first. 'Return' complétés the command
line. Note that the use of '.CBL' as the type is not actually recognised as a
default by the COBOL program, and must be specified in the command line,
but it is recommended for ease of récognition in a STAT or DIR display.

153

COBOL.COM
RUNA.COM
CONFIG.COM

CP/M The Software Bus (a programmers companion)

In the explanation of the directives which follows, "source-name" is the
name of the ,CBL file created with the editor. Where rounded brackets are
used 0 they and their content must be présent.

Some directives are mutually exclusive, and these will be listed after the
explanation of the directives themselves.

The directives are -

FLAG(level) This spécifiés the output of validation flags at compile time,
relating to the features at different levels of compiler certification of GSA
(General Services Administration)

The 'level' can be one of the following -

LOW Produces flags for ail above Low Level
L-l Ail above Low-lntermediate
H-l Ail above High-lntermediate
HIGH Ail above High Level
CIS Only for CIS extensions to standard COBOL 1974

NO FL AG No flags are listed by the compiler - this is the default if FLAG is
ommitted.

RESEQ If included, the compiler will generate sequence numbers
incrementing in 10s, and re-numbering if necessary. If this is omitted, line
numbers are ignored and treated as documentation only.

NOINTNo Intermediate file is produced. Used for syntax checking.

NOLISTNo list file is produced. Default is that a full listing is produced. Used
for fast compilation of a 'clean' program.

COPYLIST The contents of any file nominated in a COPY statement are
included in the program listing.

NOFORM No form feeds or page headings are included in the list file. The
default is that the listing is paginated for 66 line pages, and each page is
headed.

154

Chapter9 The CP/MProgrammingLanguages

ERRLISTOnïy Iines containing errors are included in the listing. The default is
that ali Iines are listed.

INT(name) The 'name' will be the name of the intermediate file. The default is
source-name.INT

LIST(name) The 'name' will either be the name of the .LST file or can cause
direct listing using LST: (to the printer) or CON: (to the console). Example -
LIST(CON:) LIST(LST:) will show the compiler output on the console and
simultaneously print it on whatever device is the current LST: device.

FORM(integer) This 'integer' spécifiés the number of COBOL Iines per page
of the listing (minimum 5, default 60).

NOECHO Error Iines are echoed on the console unless this directive is
included.

NOREF The four-digit location addresses which are normally printed on the
right hand side of the listing will be suppressed by this directive.

DATE(string) If the program being compiled has the DATE-COMPILED
entry, then the information following it will be replaced by the contents of the
string. This is then printed at the head of each listing page.

The directives that exclude others are listed below. If the first is included, the
ones following may not be.

Directive
NOLIST

Excluded directives
LIST NOFORM FORM RESEQ COPYLIST ERRLIST
NOREF

ERRLIST RESEQ COPYLIST NOREF

Numbering your COBOL source can be achieved by using the three directives
NOREF NOFORM RESEQ. This will givea listfile which isexactly thesame as
your source, but with the sequence number field in columns 1 to 6. Thefirst is
000010 the second 000020 and so on.

During a compilation run, the console will show the following information -

155

CP/M The Software Bus (aprogrammers companion)

COBOL filename directives

**CIS COBOL Vv.r (version and release)

directive ACCEPTED (or REJECTED)
directive ACCEPTED (or REJECTED)

for each directive in turn.

filename COMPILING

will then appear, and if the source-file specified as file-name cannot be
opened (does not exist, for example) the message -

filename FAILED TO OPEN

will appear, and the compiler aborts and returns to CP/M.

After completing the compilation, the console contains the following details -

**ERRORS = nnn DATA = non CODE = nnn DICT=mmm:nnn/ppp GSA FLAGS = nnn

ERRORS dénotés the number of errors found
DATA dénotés the size of the data area required
CODE dénotés the size of the program area (not including data)
DICT has three values.

mmm is the number of bytes used in the data dictionary
nnn is the number of bytes remaining unused
ppp is the total of mmm and nnn

GSA FLAGS gives the number of flags encountered, or shows OFF if he
NOFLAG directive was given (or assumed by default)

A list of the error codes which may be printed in the listing after an erroneous
line is included below, and the command structure for a "RUN" follows the
list.

156

Chapter 9 The CP/M Programming Languages

9.9.1 CIS COBOL Error Codes

(note that 'missing' could simply mean 'mis-spelt')

01
02
03
04
05
06
07
08
09
10
22
23
24
25
26
27
28
29
30
31
32
33

34
36
37
38
39
40
42
43
44
45
46
47
48
49

Compiler Error (fault in the compiler!)
Illégal format of data-name
Illégal format of literal
Illégal format of character
data-name declared twice
Too many names (data and procedure)
Illégal character in col 7
COPY is nested (illégal) or file not found

missing
statement starts in wrong area of source line
'DIVISION' is missing
'SECTION' is missing
'IDENTIFICATION' is missing
'PROGRAM-ID' is missing
'AUTHOR' is missing
'INSTALLATION' is missing
'DATE-WRITTEN' is missing
'SECURITY' is missing
'ENVIRONMENT' is missing
'CONFIGURATION' is missing
'SOURCE-COMPUTER' is missing
There is an error in one (or more) of the MEMORY SIZE,
COLLATING SEQUENCE or SPECIAL-NAMES clauses
OBJECT-COMPUTER' is missing
'SPECIAL-NAMES' is missing
SWITCH clause is in error
DECIMAL-POINT clause is in error
CONSOLE clause is in error
Illégal currency symbol
'DIVISION' is missing
'SECTION' is missing
'INPUT-OUTPUT' is missing
'FILE-CONTROL' is missing
'ASSIGN' is missing
'SEQUENTIAL' or 'INDEXED' or 'RELATIVE' is missing
'ACCESS' is missing on indexed or relative file
'SEQUENTIAL/DYNAMIC' missing

157

CP/M The Software Bus ta programmera companion)

50
51
52
53
54
55
56
62
63
64
65
66
67
68
69
70
71

72
73

74

75
76

77
78
79
81
82
83
87
88
89
90
91
92
101
102
103

Illégal combination ORGANISATION/ACCESS/KEY
SELECT clause phrase unrecognised
RERUN clause syntax error
SAME AREA clause syntax error
file-name missing or illégal
'DATA DIVISION' is missing
'PROCEDURE DIVISION' is missing, or unknown statement
'DIVISION' is missing
'SECTION' is missing
file-name not specified in SELECT statement
record size integer is missing
illégal level number - (01 -49) - or 01 level required
FD qualification contains syntax error
'WORKING-STORAGE' is missing
'PROCEDURE DIVISION' is missing, or unknown statement
data description qualifier or '.' missing
SIGN/USAGE is illégal with a COMP data item, or with
unsigned PIC data, or is incompatible with other qualifier
BLANK is illégal with non-numeric data item
picture clause is too long. Max numeric 18, max numeric edited
512, maxalphanumeric8192
VALUE clause not allowed with non-elementary data item, or
truncation, or wrong data type
'VALUE' in error, or illégal for data type
FILLER/SYNCHRONISED/JUSTIFIED/BLANK not allowed for
non-elementary item
level has more than 8192 bytes or zéro bytes.
REDEFINES of unequal fields or different levels
data Storage exceeds 64k bytes
data description qualifier is inappropriate or repeated
REDEFINED data name not declared
USAGE must be COMP, DISPLAY or INDEX, no other
BLANK must be replaced by ZERO
OCCURS must be numeric, non-zero and unsigned
VALUE must be a literal, numeric literal or figurative constant
PICture string has illégal precedence or character
INDEXED data-name missing or already declared
numeric edited PICture string is too large
unrecognised verb
IF...ELSE mismatch
Wrong data-type or data-name not declared

158

Chapter 9 The CP/M Programming Languages

104 Paragraph name used twice
105 Paragraph name used as data-name
106 Name required
107 Wrong combination of data types
108 Conditional statement not allowed in this context, must be an

imperative statement
109 Subscript wrongly formed
110 ACCEPT/DISPLAY wrong
111 Illégal syntax for l-O
116 Too deep nesting if IF statements (too many levels)
117 Incorrect structure of procedure division - for example, sections

outof order.
118 Obligatory reserved word missing
119 Too many subscripts in one statement
120 Too many opérande in one statement
141 Inter-segment procedure name duplication
142 IF...ELSE mismatch at end of Source Program input
143 Wrong data-type or data-name not declared
144 Paragraph name not declared (eg GO TO unknown paragraph)
145 Index name declared twice
146 Faulty cursor Control. AT clause wrongly specified
147 KEY déclaration missing
148 STATUS déclaration missing
149 Faulty STATUS record
150 Undefined inter-segment reference
151 PROCEDURE DIVISION in error
152 USING parameter not declared in linkage section
153 USING parameter is not level 01 or 77
154 USING parameter used twice in parameter list
157 Incorrect structure of procedure division - for example, sections

outof order
160 Too many operands in one statement (as 120)

In addition to any of the above errors, which are reported during compilation
and inserted in the listing after the offending line, the compilation may be
terminated by a 'disc full', 'directory full' or other input/output error
condition.

If that does happen, the message

FATAL l-O ERROR: filename

159

CP/M The Software Bus la programmers companion)

will be displayed. If you get that message, you will not have a useable
intermediate (.INT) file.

One other important, but far from obvious, condition which will cause the
FATAL 1-0 ERROR message is if you have a line in your source program
which is longer than permitted. You may have 72 characters of 'sequence,
continuation, areas A and B', followed by the'Carriage Return and Line Feed'
characters, but no more than these. If you have allowed your line to be
overlong, you will get 'FATAL 1-0'.

You should also take note - you'll soon find problème if you don't - that CIS
COBOL only accepts simple conditions. That means just one comparison. IF
A-1 > B-1 0RA-2> B-2 GOTO — isnotallowed. Thatparticularexamplewill
'fall out' at the OR - because the rule is that a simple condition must be
followed by an impérative. When you have a 'clean' compilation, you are
ready to attempt to 'run' the program.

9.9.2 COBOL 'RUN' command line.

There are several options available to the programmer at run time, including
the linkage of the .INT file to the Run Time System, so that the program name
can simply be entered as though it was a fully compiled program.

The items in the square brackets are optional.

The full command format is -

RUNA [load param] [(switch param)] [link param] filename [progpars]

The simplest form is just -

RUNA filename

but the parameters allow you to add considerably more to your run-time
command.

[load param] iseither + D or-l ('add Debugging' or'omitthe Index-sequential
module')

160

Chapter 9 The CP/M Programming Languages

When you load the Run Time System, you can choose whether or not to
include the optional 'Debug' module, which invokes the interactive debug
facility. The default is not to include it.
If you want it, enter, say, -

RUN + D filename

There is a list two pages further on of the options available under interactive
debug.

There is a module which handles Indexed Sequential files, which is normally
loaded with the Run Time System, but which can be omitted (saves space
and time) if you do not require it for the program in work. To omit it, type

RUNA-I filename

The choice is threefold. You can have neither optional module, or the l-S one
but not the Debug one, or both.

RUNA-I neither Debug nor l-S
RUNA l-S but not Debug (the default)
RUNA+D both.

[switch param] is the way in which you set switches at run-time which can
then be tested by the program. According to the settings, the program will
carry out the tasks coded for that circumstance.

These switches are on/off only, and are all 'off' (négative value) by default.
They may be set 'on' (positive value) by entering the switch number and a +
sign. As many of the switches, which are numbered 0 to 7, may be set as
desired. For example, (+ 1 +2 + 3) sets the three switches 1,2 and 3 'on'and
the rest remain 'off'.

As well as the 8 numbered switches, there is a D switch, switched 'off' by
default, and switched 'on' by entering D on itsown. This isthe standard ANSI
COBOL 'debug', not the 'CIS COBOL interactive debug'. You may have
either of the debug facilities, or both, or neither. They are quite Independent.

Examples of load and switch parameters are -

RUNA + D (D +1 + 2) filename CIS debug and ANSI debug are both
on, also switches one and two. The rest
are off.

161

CP/M The Software Bus (a programmer companion)

RUNA(+1, +2 +0) filename Switches 0, 1 and 2 are ali on, the rest
are off. note that sequence is not
important, and that spaces may be used
for clarity. Commas are ignored, but are
better omitted.

RUNA-I (+ 1 -1) filename Switches may be switched off with the
- sign, and the last occurrence of the
switch number is effective. That is just
the same as having no switch
parameters. Index Séquentiel module is
omitted.

[link param] has just one value, the 'equals sign' = . What it does is to tell the
run-time system to SAVE onto dise a binary image of the run-time system as
loaded, together with your (.INT) program. When you enter -

RUNA = filename

the memory image is dumped to dise, with the filename 'SAVE'. If you want
to re-run, you must now re-name that file as a .COM file, and you will then be
able to re-run as though it was a fully compiled program. If we had our
filename FRED, westarted byereating FRED.CBL (and probably FRED.BAK)
with the editor of our choice (see next Chapter).

Then we entered COBOL FRED.CBL, and that produced FRED.INT and
FRED.LST - the intermediate code and the listing. Now we can type -

RUNA = FRED

and the program will be loaded, but before the run actually takes place, the
memory will be dumped to dise as SAVE. After the run, we re-name SAVE as
FRED.COM with the command -

REN FRED.COM = SAVE

and we have the full set of files like this -

This last file allows us now to enter FRED as a command to CP/M as though it
was a transient command, but remember that FRED.COM actually contains

FRED.BAK
FRED.CBL
FRED.LST
FRED.INT
FRED.COM

the previous version of our source code
the version we compiled
the annotated listing produced by COBOL
the intermediate code
the simulated 'COM' program made up of the run-time
system and the INT program.

162

FRED.COM
FRED.COM
FRED.COM
FRED.COM

Chapter 9 The CP/M Programming Languages

RUNA with or without the optional modules, so watch the copyright
situation. It is very convenient for an installation developing programs for use
on that installation only.

Clearly, the 'link' parameter will not be used until there is a clean, fully tested
program.

[program param] is the place in the command line (after the filename) where
you enter values expected by the ACCEPT verb. This is very similar to the
XSUB facility with SUBMIT. If the first two data items required by the
program, and asked for with ACCEPT, are the day and month, then you could
enter the two values in the command line, separated by spaces and separated
from the filename by one or more spaces. For example -

RUNA filename 27 7

would give your program the values 27 and 7 for the first ACCEPTs.
Subséquent ACCEPTs would still require keyboard entry as usual.

9.9.3 Interactive Debugging.

The D switch simply treats line with a D in column 7 as statements in the
program, whereas omitting the D treats them as comments. This is the ANSI
debug facility.

The +D parameter invokes a rather more powerful module. Ifyouuseitinthe
command line, then you are entered into a System roughly like DDT. The
interactive Debug prompt is ?. Fourteen different command keys are offered,
and the following is only a brief summary of the functions. See the CIS
COBOL mabual for full details.

P Display the current program counter (in hex)
G hhhh Exécuté from current program counter to the breakpoint

specified as hhhh (an address in hex)
X Exécuté one CIS COBOL statement
D hhhh Display the contents of the specified byte and the next

fifteen bytes, in hex and ASCII (if printable)
A hhhh nn Replace the content of hhhh with the hex character nn or

the ASCII character after the " (eg "A or41 are the same.)
S hhhh Set a working register with address hhhh

163

CP/M The Software Bus fa programmers companion)

/ Display the first byte at the address held in the working
register (and add 0001 to the register)

.nn Replace the content of the address held in the working
register with hex nn (and add 000 to the register)

T hhhh Execute from current program counter to hhhh and print the
address of each new paragraph encountered

L Output a single 'Carriage Return/Line Feed' on the CRT
M $ define the start and end of a macro (see manual)
C allows a macro to output a character to the console
; is the macro comment marker (put before the comment)

9.10 Pascal/MT.

Pascal, like COBOL above, cornes as a semi-compiler with several overlays,
and a Run-Time System. Unlike COBOL, it also cornes in two versions,
dépendent on the type of arithmetic that is performed. REAL numbers are
implemented internally in either floating-point or binary-coded-decimal,
dépendent on the version chosen. The sets of program are as follows -

Floating point.

Compile time -

FLTCOMP.COM
P2/FLT.OVL
P1ERRORS.TXT
P2ERRORS.TXT

Run time -

Binary coded décimal.

BCDCOMP.COM
P2/BCD.OVL
P1ERRORS.TXT (same)
P2ERRORS.TXT (same)

PASCAL/F.RTP PASCAL/B.RTP

In either case the source file (yes, you need an editor) must have the type
'.SRC' OR '.PAS', since one of these is the assumed type which is not input in
the command line. Line lengths must not exceed 80 characters and must end
in the < Rt> character (which is Carriage return and Line Feed)

Options are not specified in the command line, but incorporated into the
source file (see below). Two directives can be used in the command line,
either of which has the value Y or N. N isthe default assumed for both - so in
the second is required as a Y, the first must also be stated explicitly.

164

FLTCOMP.COM
BCDCOMP.COM

Chapter 9 The CP/M Programming Languages

The first directive controls the inclusion of the debugger in the compiler
output file (which is a '.COM' file). The second controls the production of a
'.PRN' file (which is a listing).

Valid command Iines for the source file called MYPROG.PAS (or
MYPROG.SRC) are these -

FLTCOMP MYPROG
FLTCOMP MYPROG.Y
FLTCOMP MYPROG.NY
FLTCOMP MYPROG.YY

neither debugger nor list file
debugger but no list file
no debugger but list file req'd
both debugger and list file

Note the period (décimal point) before the directives. If the BCD version is
required insted of FLT, that would be invoked in exactly the same way. It is
common practice to re-name the Compiler program as PASCAL (for the FLT
version).

9.10.1 Compile-time Options.

These are indicated in the source program as spécial comments of the form

*$opletter details or $opletter details

The opletter (option letter code) and relevant details if any are listed here -

$lfilename
$L+ or$L-
$P
$D + or $D-
$C +
$Cn
$0 $hhhh

$R $hhhh
$Z $nn00
$X $ssss
$S + or$S-
$Q+ or $Q-

Include filename.SRC into the source stream
Turn listing on (the default) or off
Insert form feeds into the .PRN file
Debug code on (the default) or off
Use CALL instruction for real operations
Use RST n for real operations (n = 0 to 7)
ORG (origin) of program at run time at address hhhh
(default origin is 10OH)
ORG RAM data at hhhh
Set run-time size to nn (hex) pages of 256 bytes
Set run-time stack space to ssss (default 200)
Turn on or off (default) recursion handling
Enable (default) or disable verbose output

165

CP/M The Software Bus (a programmers companion)

9.10.2 Input and Output in Pascal/MT.

READ, READLN, WRITE and WRITELN statements are standard for the
console device, and in addition WRITE and WRITELN can address a built-in
file called PRINTER to access the CP/M list (LST:) device. For instance, you
could say WRITE(PRINTER,'Hello').

There are extensions for file handling, which are summarised below, using
the conventions -

fcbname = variable of type TEXT (array 0 to 32 of CHAR)
title = ARRAY [0 to 11] of CHAR with -

title[0] = disc select byte (0 = logged, 1 = A etc)
title[1 to 81 = filename (normal CP/M)
title[9 to 11] = type (note absense of '.')

resuit = integer to contain returned value
buffer = ARRAY[0 to 127] of CHAR
relativeblock = optional integer 0 to 255
extent-number defaults to 0

The extensions are -

OPEN(fcbname,title,result{ ,extent-number});
CLOSE(fcbname,result);
CREATE(fcbname, title, result);
DELETE(fcbname);
BLOCKREAD(fcbname,buffer,result{ ,relativeblock});
BLOCKWRITE(fcbname,buffer,result{ ,relativeblock});

9.10.3 PASCAL/MT spécial routines.

The following routines are supported in PASCAL/MT, and more details will
be found inthe PASCAL/MT 3.0 Guide (pp32, 33).

PROC MOVE(source,dest,length-in-bytes);
PROC EXIT;
FUNC TSTBIT(16-bit-var,bit}}):BOOLEAN;

166

Chapter 9 The CP/M Programming Languages

PROC SETBITfVAR 16-bit-var,bit #);
PROC CLRBIT(VAR 16-bit-var,bit#);
FUNC SHR(16-bit-var, #bits):16-bit-result; (shift right)
FUNC SHL(16-bit-var, ftbits): 16-bit-result; (shift left)
FUNC LO(16-bit-var): 16-bit-result;
FUNC Hl(16-bit-var): 16-bit-result;
FUNC SWAP(16-bit-var):16-bit-result;
FUNC ADDR(variable-reference):16-bit-result;
PROC WAIT(port-num:constant; mask:constant; polarity:boolean);
FUNC SIZEOF(variable-or-type-name):integer;

9.10.4 Pascal Debugging facilities.

There are two categories of debugging facility. You can Control program
flow, and you can display the content of variable(s).

While the debugger is executing, there is a ?< Rt> command which will
display all the commands available.

The debugger works at source statement level, and program controls allow
the usual go/continue with/out breakpoint, trace and
setting/clearing/displaying of breakpoints embedded in the program. The
following summary will allow ready reference.

T{ integ r}
{ -} E

{ -} s

-P
Pline-number
Pproc/func
Dglobal-var
Dproc/func:local-var
Dfunc
Dpointer

Trace - execute 'integer' Iines of the program
Engage display of names of procedures/functions
entered. -Edisengages it. Disengaged on entry
Slow execution. Allow set of Fast/Medium/Slow
speed. -S disengages (normal speed)
clears permanent breakpoint

set permanent breakpoint at line number or name

Display the name(s) listed as encountered
Display last variable requested (with D etc)

167

CP/M The Software Bus (a programmera companion)

+ n
- n

Display variable n bytes forward from last
Display variable n bytes backward from last

9.10.5 Reserved Words in PASCAL/MT

ABS ADDR AND ARRAY BEGIN BLOCKREAD
BLOCKWRITE BOOLEAN CASE CHAIN CHAR
CHR CLOSE CLRBIT CONST CREATE DELETE
DISABLE DIV DO DOWNTO ELSE ENABLE
END EXIT EXTERNAL FALSE FILE FOR
FUNCTION GOTO Hl IF INLINE INPUT
INTEGER INTERRUPT LABEL LO MAXINT MOD
MOVE NIL NOT ODD OF OPEN
OR ORD OUTPUT PACKED PRED PRINTER
PROCEDURE PROG RAM RANDOMREAD RANDOMWRITE
READ READLN REAL RECORD REPEAT RIM85
RND SETBIT SHL SHR SIM85 SIZEOF
SQR SORT suce SWAP THEN TO
TRUE TSTBIT TYPE UNTIL VAR WAIT
WHILE WRITE WRITELN

Additional notes about the PASCAL/MT variants from Pascal.

Hex values may be specified as in the option list above, $hhhh. For example
1 AH may be specified as $1A in PASCAL/MT.

Ail standard type définitions are supported with the exception of ARRAY,
which has a spécial form. Instead of ARRAY...OF ARRAY... you specify
ARRAYf.with a maximum of three dimensions. Type TEXT is
ARRAY[0 to35]OFCHAR

PROCEDURE INTERRUPT[i] proc; issupported, where i isthe re-start vector
number (0 to 7).

CP/M V2.x random file access is supported by RANDOMWRITE and
RANDOMREAD.

Pages 37-39 of the Guide explain the use of INLINE to insert machine code,
constant data and assembler code.

CHAIN(filename); is supported, as is re-directed I/O (Guide pp 42-43)

168

Chapter 9 The CP/M Programming Languages

9.11 The language C

Several versions are available, BDS C is one of the better ones.

Under CP/M, the C language produces actual object code. The compiler is a
genuine compiler, and CLINK produces a '.COM' file which isa genuine8080
machine code file.

The following general comments about C will explain the process of
compilation, give a very brief comment on the content of the language. You
are referred to the C Manual for more details.

Although there appear to be two passes of the compiler, there are actually
about eight, in two main phases. There are 4 exécutable programs in C, a
standard library file, and a skeleton run-time subroutine file.

The first half of the compiler (CC1.COM) loads the entire source into memory
at one go, and produces an encoded version of the source, together with the
symbol table, as a file. The name will be the same as your original, with the
type '.CCI'. Your source file may have any name and type, and must be stated
fully in the compiler call (unless you are using a SUBMIT file which assumes
type '.C'). If any errors are detected during that first phase, the '.CCI' file will
not be written.

There are options which can be introduced after a '-' in the command line,
such as the '-s' which allows the compiler to set undeclared variables as
integer where possible. Normally C does not accept defaults. Also the size of
the symbol table can be set by following the s (or the -) directly with a hex digit
(from 4 to F), the digit being the table size in K bytes. -A is 10 K, and -sF is 15 K,
and default to integer variables.

If a drive letter is specified as the location of the source file, the '.CCI' file will
also be put on that drive.

The second half of the compiler (CC2. COM) expects a '. CCI' file as input, and
writes a '.CRL' file if no errors are found. (CRL is the équivalent of REL, and
means C ReLocatable.) If the CRL file is written, the CCI file is deleted
automatically.

Once the re-locatable code existe in a CRL file, it is submitted to the linker
CLINK. If this succeeds, the resuit is a '.COM' file ready to run as a CP/M

169

CC1.COM

CP/M The Software Bus (a programmera companion)

transient command. Linkage offers the opportunity to combine several CRL
files, and/or library routines. You can also rename the combined program (-o
option), leave clear space between BDOS and your program (-t), print out
sizes and other load statistics (-s) and indicate that chaining between
programs will be required (-c).

There are other useful routines available to C programmers, such as a
librarian, to maintain .CRLfiles and allow transfer of functions between files.
To see the full list of librarian commands, invoke CLIB and reply 'h' to the
prompt, which is an *.

The C language has gained importance recently, since Digital Research have
announced that they will be using it for some CP/M work, to improve
portability.

9.12 FORTRAN under CP/M.

The most commonly used FORTRAN compiler under CP/M is F80 - and is, as
the C compiler, a true compiler producing a relocatable file which only needs
to be linked using L80 to produce a true '.COM' file.

The L80 linker was describer earlier in this Chapter, under MBASIC, where the
B ASCOM compiler was described. That description applies equally here, and
will not be repeated.

The F80 compiler is invoked with (or without) an argument list which refers to
the places where the various outputs are to be directed. There are also (as in
BASCOM earlier) a number of switches, each of which is preceded by a /,
and must be at the end of the command line. If F80 is invoked without
argument list, the * prompt will ask for details.

The arguments are

a,b = c

where a is the '.REL' file, b is the'. PRN'file and cis the'.FOR'source file; The
comma is needed if b is included, and the equals sign must be présent.

You may specify a dise drive (A: or B: only - no other) and filename, or a
device such asTTY: or LST: or HSR:

170

Chapter 9 The CP/M Programming Languages

If you omit the entry before the comma, no '.REL' file will be produced. Omit
the entry after the comma, and no list file will be produced (fast compile of a
clean program) . Omit both and it falls off the perch !

For example, you can enter

*NEWNAME,B:MYLIST = OLDNAME

and that will tell F80 to compile OLDNAME.FOR on (probably) drive A:,
calling the relocatable file NEWNAME.REL also on A: and putting the
program listing out as MYLIST.PRN on drive B:.

There are seven switches which may follow the arguments, and each switch
is preceded by a / (eg /N/L)

The switches are -

O All addresses on the listing in Octal
H Ali addresses on the listing in Hex (that is the default)
N Do not list the generated code.
R Force génération of an object file (even with errors)
L Force génération of a Listing file
P Each /P allocates an extra 100 bytes of run-time stack space
M Tells the compiler to produce the generated code in a form which

can be loaded into ROM

Logical Unit Numbers

Each LUN in FORTRAN below LUN 11 is pre-assigned. 11 up to 255 are user
assignable.

1,3,4,5
2
6, 7, 8, 9, 10

assigned to CON:
assigned to LST:
assigned to dise files (these are re-assignable)

9.13 MACRO-80

The MACRO-80 compiler (M80) is invoked in exactly the same way as F80
above, has the same arguments and switches, produces '.REL' files for
submission to L80 in the same way, and is therefore not discussed further.

171

CP/M The Software Bus (a programmers companion)

9.14 Summary.

There is little that can sensibly be said to summarise ali the foregoing, except
that it is always worth-while really exploring the potential of your particular
language and its implémentation. There is the school of thought which says -
don't push the limits, the compiler might go wrong. There is also the
opposing school which says - try it, and if it works, use it !

If the version of a language which you are offered under CP/ M is not up to the
standard to which you think you are entitled, then look around for another
version, produced by someone else. There will almost certainly be one !

If you use MBASIC (for instance), and you want to edit your program with a
full text editor (next chapter), then your program will have to be saved in
ASCII. The command is SAVE"MYPROG",A and the save and load will be
slower, because the binary form of your program which MBASIC usually
produces is smaller. Small changes to a program will probably not justify the
time to load the program, save it in ASCII, exit to CP/M, find and invoke the
editor, and so on. Global changes, and searches, however, usually do justify
the use of a good editor. Watch your line lengths and formats if you use an
editor, it is easy to go over the limits, and this may give rise to some rather
obscure error messages.

172

CHAPTER TEN

THE CP/M EDITORS

There is always a need to enter text into a file, either for program entry, ready
for compilation, orfora SUBMIT file, orforsimply typing in text which can be
retained on file, displayed or printed out, used as a data file by a program, or
whatever is required.

It is appropriate to differentiate between 'text editors' - which can be pretty
basic, with the absolute minimum of facilities - and 'word processors' - which
have most if not ali of the facilities that typists expect.

As in the previous Chapter, there is no need to differentiate between the
various versions of CP/M. The editors work in the same way, under
whichever version they are available.

We will look at the extremes, ED, which is the basic text editor which cornes
with the CP/M system (very basic) and Wordstar, the MicroPro word
processing software which has become almost as much of an 'industry
standard' as CP/M has. Many reviews of new or different word processing
Systems and packages actually take Wordstar as the 'standard' against
which the other is compared. We will also look at developments of ED such as
TED and PEDIT.

10.1 ED - the CP/M text editor.

This can be somewhat confusing, unless you have understood howit works,
and therefore what happens when you give a command or enter text.

First, you can only enter ED by including the file name of the file you want to
create or alter. The command is -

173

CP/M The Software Bus (a programmers companion)

ED filename

(A small diversion here. If you have CP/M 86 or CP/M 3.1, the command
could include a second filespec which would be the identity of the newly
edited file, (eg ED oldspec newspec.))

You can give the file a .typ extension if you want to (or if you are editing an
existing file which has a 'type'), and you may specify any drive for the file. ED
assumes that it is on the logged drive unless you give a drive letter.

If this is a new file, then NEW FILE will appear on the screen. This is a useful
check, because if the file exists on a different drive, and you omitted the drive
letter, ED would look on the logged drive only, and if your filename was not
there, it would open a new file. Similarly if you forget the 'type'.

Then you will get the ED prompt, which is an asterisk. The screen so far looks
like this -

ED filename
NEW FILE

If you want to give ED a command, you must have the * prompt on the screen
to the left of the cursor. If you are in the middle of entering text, the way to get
back to ED is to enter «· Z (Control and Z).

10.1.1 Simple command set.

ED uses a 'character pointer' (CP), which moves around the file in memory
according to your commands. You cannot see it, and itwilloften not bein the
position of the cursor, in relation to the text shown on the screen. For
instance, if you tell ED to display a page of text, the cursor will be at 'the end'
of the text, but the character pointer will be at the beginning of that page ! If
you gave the insert command as the next command, the insertion would be
before that page, not after it as you might perhaps think. To get you started
there are three or four simple commands which you can use. We will cover
these in detail, first, and then go through ali the commands, afterwards.

Commands can be given to ED one at a time (when the asterisk is on the
screen, remember), or in a string of commands, as we will see.

The $ symbol means that you want 'the largest number available'.

174

Chapter 10 TheCP/MEditors

Commands.

B This command moves the character pointer to the beginning of the
file in memory.

-B This command moves the character pointer to the end of the file in
memory.

(Neither of these commands actually put any of your file on the screen.)

ftT This types the specified number of Iines onto the screen, starting
from the character pointer. Because you have specified 'as many
as possible', the whole file in memory (from CP onwards) will be
displayed, and you can stop and start the scrolling display with
-S.

I This command says 'insert the following characters into the file
starting from the CP'. To add to the end of your file, combine
two commands, like this -

-B I That moves the character pointer to the end of your file, and puts
you into 'insert mode'. The asterisk will have disappeared. Now
any characters, including carriage returns, which you type, will
be put into your file. To get back to ED, so that you can give a
command, you type~Z.

ftA A means 'append'. If the file you specified to ED was an existing
file, then you want to bring the file into memory before you start
using it. ^A means 'bring ali the file into memory' or 'fill the

buffer'. The CP will still be at the beginning of the file.

^A^T-BI As a first command, to add to the end of an existing file, this will
read the whole file into memory, type it ali on the screen, move
the CP to the end, and put you into insert mode, ready to enter
your additional text.

E This is the command to 'end the edit' and it will write everything in
the memory to your new file, including the changes/insertions, and
close the file. ED is terminated, and you are back in CP/M.

At the simplest level, to alter a line, you can give the line number, followed by
a colon (:),and then give the K (kili line) and I (insert line) command and

175

CP/M The Software Bus (a programmer companion)

re-type it, including the carriage return. You use~ Zafter the carnage return to
get back to ED. So if you want to change line 23 (say) to contain the words
" DATA DIVISION." instead of what it now says, you would type the
following « Rt> means 'carriage return') -

23:KI DATA DIVISION.< Rt>‘Z

And you could then check this with the type command, either with

23:0T (zéro T means 'the current line to left of the pointer.)

or

23:0TT (OTT means current line to left and right - whole line.)

or, to see the whole file,

B#T

Notice that you insert a line before an existing one, by using

26:1

which will give you a new line 26 (assuming that you end the insertion with a
< Rt>) and push the rest down. The text which was line 26 becomes line 27
when you enter < Rt> .

Now you have enough to allow you to create a new file, save it, re-open it to
alter or add to it, and save the alterations.There are many more, and more
powerful, commands, which you can experiment with as you need them.

10.1.2 Back-up Files.

ED does not actually alter the file you start with, if it is an existing file. What it
does do is to open a new file with your filename and the type $$$, and write
from the memory into that file (when you use Έ' for instance). Then it will
delete any existing file called filename. B AK, rename the original file to the
name filename. B AK, and rename filename. $$$ to the filename. typ which you
originally specified to ED. (In later versions of ED you may actually supply an
output filespec as well as a source filespec, in which case these would be
used, and the source file would not be renamed '.BAK'.)

The biggest single différence between ED and a word processor is that you
have to tell ED to 'append' the existing file to memory, and you have to tell ED

176

Chapter 10 The CP/M Editors

to write the contents of memory out to a file. A word processor usually
assumes that you want to do both those things, and simply keeps a memory
buffer for you, with space to add what you type. As that buffer fills, the word
processor writes some of the contents to your file, releasing more space. It
also keeps the character pointer where the cursor is. So if you move the
cursor, the character pointer moves with it. More about that shortly.

10.1.3 Line numbers in ED.

In the later versions of ED, which you probably have, whenever you are in
insert mode, the screen displays a line number. If the character pointer is
within the file (not right at the end, that is) then the line number where it is is
also shown, just before the asterisk. If no line number appears, try 'switching
on' the line number facility with the V command. (-V switches it off.) In the
earliest versions of ED, there is no line number facility.

That line number is not part of yourfile. It is only a line count maintained by ED
during the edit. Your file is only the text which you put in through the
keyboard, orfrom existing files. If you want line numbers in yourfile, then you
have to put them there. You can do it as you enter text, or you could do it
using the N parameter of PIP (see chapter 4). If you are typing a program for
CIS COBOL (see previous chapter) then the compiler has a numbering facility
built in (the directive is RESEQ).

10.1.4 The full set of ED commands.

Now we can look at ali the commands which ED obeys. Some have been
added in later versions, so not ali the commands work for the earliest issues of
ED. Try them out for yourself, they are not quite as logical as you might
expect, and you will get some results which may surprise you ! Rememberthe
CP !

nA Append n Iines from the file to the memory
buffer. If n = 0 half the buffer will be used. If
n = $ this gives ali the file.

B Move the CP to beginning of file
-B Move the CP to the end of file
nC Move the CP forwards n characters (towards

end of file)
-nC Move the CP backwards n characters (towards

beginning)

177

CP/M The Software Bus (a programmera companion)

nD
-nD
E
nFstring^ Z
x::yFstring^ Z

H

x:l

n Jast r~ Zbstr^ Zcstr

K
nK
x:K
x::yK
x:#K
nL

-nL

OL
nM commands
M commands
x::yM commands

nNstring^Z
O

nP

-nP
Q

R

x:R

I

Delete n characters forwards
Delete n characters backwards
End the edit, close file, return to CP/M
Find the n'th occurrence of 'string'
Find the first occurence of 'string' between line
numbers x and y (both inclusive)
End edit, move CP to start of file in buffer ready
to continue with a new edit, having saved the
work so far.
Insert characters following the command at the
position of the CP until a λΖ is encountered.
listring^ Z)
Move the CP to the start of line x and enter
insert mode
Find astr, put bstr after it and erase until cstr is
encountered, n times.
Kili the current line
Kili n Iines, starting at CP
Kili line x leaving the CP where line x was
Kili Iines between and including x and y
Kili line x and all following Iines
Move CP n Iines forwards (opposite direction
to B, note)
Move CP n Iines back (opposite direction to -B,
note)
Move CP to start of current line (zéro L)
Execute commands n times (M = multiple)
Execute commands until error or end file
Execute commands repeatedly between x and
y
Find n'th occurrence of string or end of file
(letter O) Ignore all editing done this run and
restart the edit
Display (print) n pages starting from CP. A
page is 23 Iines long.
Display previous page and n subséquent ones
Quit the edit without altering the original input
file and return to CP/M
Read temporary file (see X command) into
buffer at CP
Read temporary file into buffer at line x:

178

Chapter 10 The CP/M Editors

• · v '■·' · ·· V-T iv. c. Ά—M ■< ’ v- » x. ·.

(Note that the temporary file allows block movement within a file by allowing
'write block to file' and 'read from file', as stated in the R command above.
The Iines still have to be deleted if they are not required in their original place.
This is 'block copy', rather than 'block move'.)

Rfilename Read filename.LIB into buffer at CP. If you end
the filename with < Rt>, the 'read' is
performed. If you want to continue with more
commands on the same command line, use~ Z
to signal 'end of filename' and continue with
the command line.

x:Rfilename
nSoldstP' Znewstr

Read filename.LIB into buffer at line x
Substitute newstr for next n occurences of
oldstr

nT
-nT
OT
T
OTT
x:T
x::yT
F
u

Type n Iines on the screen
Type the n Iines before the CP
Type from start of current line to CP (zéro T)
Type from the CP to the end of the current line
Type the whole of the current line
Type line x
Type Iines from x to y inclusive
Type from CP to end of the file in the buffer
Change lower case to upper case for ail future
entries

-U Disable the case change. (Note that U^A
changes lower case to upper case while
appending a file to the buffer)

V
-V
ον
nW
nX

Enable line numbering
Disable line numbering
Display free space/buffer size (zéro V)
Write n Iines from start of buffer to file
Append the next n Iines to the temporary file
X$$$$$$$.LIB creating the file if necessary,
and leaving the Iines also in memory.

OX

S

Delete the temporary file X$$$$$$$.LIB (zéro
X> ! i -1 1 !■

nZ
n
< Rt>

Pause for n/2 seconds. (Snooze I)
Move forward n Iines and type one line
Move forward one line and type a line (Return
only)

179

CP/M The Software Bus laprogrammers companion)

Move back one line and type a line
x: commands
:y commands
x::y commands

Move to line x and obey commands
Perform commands from CP to line y
Move to line x obey commands until line y

10.1.5 Further examples of combination commands.

B#T
-B-T
-3L7T

Type the whole buffer (CP left at start)
Type the last line of the buffer
Type the line you are at, plus the three Iines
above and below it

-uv#
AB^T-BI Disable upper case conversion, enable line

numbering, append whole file to buffer, type it,
move to end and enter insert mode.

BMSoldstr'' Znewstr" ZOTT

BM0L5D0TTL

Move to start of buffer, replace oldstr with
newstr in ail file and type each amended line. (If
used with Λ P the command also prints the
Iines)
Erase the first 5 characters of each line

x::yXBzLR
x::yMX0TTK

throughout the buffer, displaying the resuit.
Copy Iines between x and y to z (do 0X first I)
Transfer ali Iines between x and y to the
temporary buffer file, typing and then deleting
each line as it is transferred.

BM-B-LXOTTK Copy the buffer to the temporary file in reverse
line sequence and read it back, thus completely
inverting the line order, and type each line as it

B73M0LI -Z0TTL
is processed !
This allows you to key in a COBOL program as
though columns 1 to 7 did not exist, and then
run through ail 73 Iines of your program
inserting the seven spaces (before the λΖ)
before you submit your program to the
compiler. If you omit the 'no of Iines' - 73 in the
illustration - then a new last line will be added to
your program which will be repetitively loaded
with 7 spaces, and then 7 more and so on until
you stop itwith'' Z. If you do this, you can easily
nn:K that superfluous line.

180

Chapter 10 The CP/M Editors

And so on - now try developing your own concatenated commands.

10.1.6 ED error indicators.

? You have typed an unrecognised command
> The buffer is full, write some Iines to the file (W)

ED cannot obey the command the number of
times specified

O Cannot open the .LIB file in R command (not
there ?)

10.1.7 ED Control characters.

~C

-E

-H

ΛI
~ J
λ L

-M
-U
-X

Rubout
Break

Abort, re-boot the system and lose all text in
buffer
Physical < RtLf> sequence (obeyed on
screen, not put into command - use for long
commands)
Delete last character typed (destructive
backspace)
Logical tab.
New line (line feed)
Logical< RtLf> used in search (S) and find (F)
string spécifications to match with the actual
< RtLf> in the text.
New line (carriage return)
Delete a line (command line)
Delete a line and backspace
String terminator ('escape' to ED)
Character delete and echo the deletion
Discontinue the ED command now being
obeyed

10.1.8 Summary of ED.

Since ED is provided free with CP/M, and since on most machines a word
processor costs a significant amount of money, many people use ED
whenever they need an editor for their program or for a '.SUB' file or
whatever, and through familiarity, can make use of the commands in a
powerful and flexible way. There is no need for any other editor. The
shortcomings of ED, when compared with a word processor, are that the

181

CP/M The Software Bus (aprogrammers companion)

screen does not automatically display the 'environment' of the character
pointer - though with the right commands it will do so - and the system does
not either automatically read from your input file or write to your output file.
Neither of these represents a real problem when writing programs, since a
program normally fits completely within the memory buffer (particularly an
interpreted program) and since a programmer is quite capable of memorising
and using the edit commands. However, for large text files, ED does not offer
quite the facilities needed.

10.2 Wordstar.

The word processing package which is used by more people than any other,
under CP/M, is Wordstar, the MicroPro package. It has features which are
the envy of operators of 'dedicated' word processors, and can 'drive'
practically any printer which can be attached to your machine.

The programs which make up Wordstar are as follows -

WS.COM
WSMSGS.OVR
WS0VLY1 .OVR
WS3.COM

The main program and loader
The overlay which contains ali the 'help' text
One of the processing overlays
The program which allows you to run other
programs within Wordstar

WSU.COM The basic Wordstar from which your WS is
installed

INSTALL.COM The program which installe Wordstar for your
terminal and printer

MAILMRGE.OVR
The overlay which allows you to use a file as the
source of additional text to be incorporated in
the printed results, the merging being done at
print time. (Earlier version called
MERGPRIN.OVR) There is also a spelling
dictionary and program, which allows you to
build up a list of your own terminology.

Wordstar requires ali the programs to be on drive A, but files can be on drive

182

WS.COM
WS3.COM
WSU.COM
INSTALL.COM

Chapter 10 The CP/M Editors

A or any other. (To be précisé, Wordstar requires ali the programs to be on
the same drive and requires you to log onto that drive before you enter WS.)

Two types of file can be created with Wordstar, one of which is entirely under
the Control of the operator, with no 'format' implied, and the other of which
contains various 'defaults' which allow the operator to type a document
without considération of the various requirements for margins and
pagination.

Wordstar, in the 'document' mode, recognises two kinds of 'carriage return'.
Since margins are set (either by default, or as changed by the operator)
Wordstar can handle 'word wrapping' from the end of one line to the start of
another, quite automatically, with no need for the operator to décidé when to
start a new line. Wordstar inserts 'soft' < Rt> characters, which it can move
or remove as necessary if the text is revised at a later time. At the end of a
paragraph, however, the operator does need to indicate where this is to be,
and this is shown by pressing the < Rt> key. This is a 'hard' return, isretained
in that position by Wordstar, and is shown on the right edge of the screen as a
< symbol.

Word-wrapping, hyphenation, 'find' and 'find and replace', tabbing, margin
setting, justification or non-justification are just some of the many things
which Wordstar handles. Text can be entered at draft spacing and printed
that way, and then with a single command, altered and reprinted at final
spacing. Margins can be set and re-set before, during or after an edit, as can
other features, such as print character width, line height, page offset, page
numbering and so on.

There are four levels of 'helpfulness' which Wordstar offers, from the most
helpful (Level 3) to the fastest (Level 0). At level 3, part of the screen displays
the most commonly used commands ali the time, and displays other
descriptive text at any time the operator wants to see it, during editing. At
level 0, ali the screen is used to show the text being input, and there are no
delays caused by overlays being fetched from disc.

Wordstar can be entered exactly like ED, with the command -

WS filespec

or alternatively the operator can simply enter -

WS

and the 'no file' menu will be offered. This gives various file handling facilities
as well as the edit and print sélections.

183

CP/M The Software Bus (aprogrammer companion)

You can have Wordstar printing one file while you are (rather more slowly
than normal) editing another file. However, you cannot use~ P in WordStarto
echo your keystrokes to the printer. λ P is actually a Wordstar 'part
command'. Also, you cannot print the file you are actually editing. To be
absolutely précisé, you can print the last completed edition of it, but not the
one containing the changes you are currently making.

Wordstar commands fall into three types. There are 'single letter' commands
ali of which (except 'delete' or 'rubout') require the Control key as well as a
single letter. There are 'two letter commands', in five groups, each of which
starts with one of the five letters P Q O K J. And finally there are 'dot
commands', so called because they start with a dot (.) in the leftmost column
of the screen (column 1).

Many commands are called 'toggles' or 'switches', because the featuresthey
Control are 'binary', so a single 'switch' command either enables or disables
the facility, according to its previous State.

The following list covers each group of commands in turn.

10.2.1 Single letter commands.

Cursor movement. (these are in a diamond shape on the keyboard,and are
ofter referred to as the 'cursor control diamond')

λ S Character to left.
λ D Character to right.
λ a Word to left.
« F Word to right.
λ E Line up.
«X Line down.

Scrolling. (moving the text on the screen)

*Z Text one line up.
~W Text one line down.
aC Text moves one screen up.
λ R Text moves one screen down.

184

Chapter 10 The CP/M Editors

Deleting.

DEL Delete character to left of cursor.
λ G Delete character at the cursor position.

T Delete the word or part word at and to right of cursor.
λ Y Delete whole line containing cursor.

Miscellaneous one-letter commands

| Tab (used if your keyboard has no TAB key).
B Paragraph reform from the cursor to after the next hard

carriage return (used after margin changes, or deleting or
adding text, also to get you to the end of the text in the
current paragraph).

λ V Switch insert ON or OFF (toggle). When OFF, new text
entered where text is already displayed will over write that
displayed text. When ON, the line will be moved along to
make space for the inserted keystrokes.

λ L Find/replace again. This allows repetition of a previously
entered find or replace command, without going through
the entry again in detail, (see Λ QF,~ QA)

RETURN End of paragraph - 'hard' return.
λΝ Newline. Insertareturn,andleavethecursortotheleftof

the return so that new text can be entered in that line.
(Pressing the RETURN key leaves the cursor to the right
of the return.)

λ U Interrupt a command and return to the previous state.
(This is useful if you start to give a command with several
steps, or give a command which has a 'global' effect, and
then change your mind, or remember something you
should have done first.)

10.2.2 Two-letter commands.

With ali the two-letter commands following, using the space bar as the
second 'letter' cancels the 'prefix' (the first letter).

The 'Q' commands. (Q = Quick - commands which speed up other 'single
step' commands, or perform 'global' actions.)

185

CP/MTheSoftwareBus(aprogrammerscompanion)

Display Ό' menu, at help levels 3 and 2 only.

-QE
-QX
~QS
~QD
~QR
aQC
λ QO to ~ Q9
~QB
~QK
-Q
-QV
~QF

Λ A

~QY

- Q'DEL'
-QQ

Cursor to top of screen (cf λ E - up one line).
Cursor to bottom of screen (cf Λ X).
Cursor to Start of line.
Cursor to enD of line.
Cursor to start of file (~ KS is quicker for long files).
Cursor to end of file.
Cursor to numbered place marker (set with λ KO to* K9).
Cursor to start of marked Block (set with Λ KB).
Cursor to end of marked blocK (set with « KK).
Cursor to Position before last command.
Cursor to last BlocK handled, or last Find/replace.
Find. Cursortofirst occurrence of string (the actual string
is entered in response to a question, and also search
parameters are put in, to search back/forward and to
ignore case, search for whole words only etc).
Find And replace. Strings and parameters are entered in
response to questions displayed.
Delete character at cursor position, and ail characters to
the right hand end of the line.
Delete ail characters to the left of the cursor on line
Repeat the next keystroke (command or text entry) until
the space bar is pressed. (eg* QQ~ B reformstoend file)

The Ό' commands. (O = Onscreen. These commands Control some of the
functions visible on-screen during editing - eg Margins)

-O Display Ό' menu, at help levels 3 and 2 only.

λ OI Set tab at position keyed in. If position is preceded by the
sign, a numeric tab stop, for alignment of décimal

points in columns of figures, is set. If the ESC (escape)
key is pressed, instead of the entry of a column number,
the tab will be set at the column position where the cursor
was before the ~ 01 command, and which is shown in the
prompt line at the top of the screen.

a ON Clear tab at position keyed in. A for position means 'clear
Ail tabs currently set'.

186

Chapter 10 The CP!MEditors

-OF

-0C
- OLn
- ORn

- OSn
-OX

-OJ
-OT
-OH
-OP
-OW
-OV
-OG

-OE

-OD

Sets ruler (margins) from length of line containing cursor.
Any ! or * characters in the line are set as tabs. Space
characters at the start or end of the line are ignored when
setting the margins.
Centre text in the existing line (for headings etc)
Set Left margin to column number n
Set Right margin to column number n (can be outside
screen width - early Wordstar showed 2 screen Iines for
each text line, later Wordstar scrolls screen sideways)
Set line spacing (n = 2, double - n = 3, treble)
Margin release toggle. Margins relock when cursor
re-enters margins (exactly as typewriter key)
Toggle for justification (right justified/ragged)
Toggle for 'ruler' display (margins/tabs) ON/OFF
Toggle for Hyphen-help (during para reform - B)
Toggle for page break display ON/OFF
Toggle for Word-wrap
Toggle for vari-tab (logical/physical tab)
Set paragraph tab one tab position to the right,
temporarily changing the left margin until a < Rt> is hit.
Indenting to second tab position is- OG - OG and so on.
This does not affect the right margin.
Soft hyphen toggle. Any hyphen (minus sign) entered
when soft-hyphenation is on will appear on the screen,
but will be suppressed at print time unless it is needed for
word-break. This allows long words to be used in text
which may be subsequently reformed, and the words can
contain one or more suitable break points to avoid
wrapping the whole word, and giving an untidy layout.
Toggle for print display. Some commands enter extra
characters in the text, to be obeyed at print time. If this
obscures the appearance of the document, they can be
suppressed with - OD to allow the actual layout to be
studied.

The K' commands. (K = blocK. Ali commande which refer to a block of
text - either a whole file or just part of a file are in this group.)

Λ K Display the 'K' menu at help levels 3 and 2 only.
Λ KD Done this edit. Save the work done but stay in Wordstar

187

CP/M The Software Bus (aprogrammers companion)

-KX
-KQ

-KS

-KP

-KJ
-KL
-KE
-KO
-KF
-KO to-K9
-KB
-KK
-KV
-KC
- KY
-KH
-KN
-KR
-KW

Doneedit. Save work done and exit to CP/M (= E in ED)
Quit the edit. Do not save the current editing, but return
to the state before this edit started. Asks the question
'ABANDON EDITED VERSION OFfilename (Y/N)' if any
changes have been made. Stays in Wordstar.
Save and continue/resume edit. (= H in ED) Allows
return to point where the command was given with - QP
or to end of file with - QC. USE FREQUENTLY WITH
LONG DOCUMENTS. Avoids possible loss of text if dise
or hardware malfunction, or if dise space becomes full.
Print a file during the edit. (Generally takes priority of
cpu/disc access over an edit, so edit slowly !)
Erase file during edit (as CP/M ERA command)
Change logged drive during edit.
rEname file during edit.
cOpy file during edit (names prompted for).
Display (part) directory during edit. Toggle.
Insert place marker (numbered) at cursor position.
Mark start of Block at cursor position (or remove mark).
Mark end of blocK at cursor position (or remove mark).
moVe marked block to cursor position.
Copy marked block to cursor position.
Delete marked block.
Hide (un-display) or re-display block markers.
Set/release columnar move toggle (see note below).
Read whole of file (name prompted for) to cursor posn.
Write marked block to file (name prompted for)

Note on - KN. Earlier versions did not offer this facility. When columnar move
is OFF, the whole of the text between the < B> and < K> markers (or the
highlightedtext) isaffected. If columnar move is ON, the < B> marks the top
left of the block, and the < K> marks the bottom right. Any text to the left of
the < B> position, even on Iines between the < B> and < K> is left
unaffected. Any text to the right of the < K> is similarly unaffected. If a
column is moVed or deleted (Y), text to the right is moved over to the left to
join up with any text on that side, and so on. Try it.

The 'P' commands (P = print-time. These commands are inserted into the
text, but not obeyed until the document is printed. Often called the 'print
enhancements’. Where these are 'toggles', they are used twice, once before
the text to be enhanced, and once after. The ’P itself is not put into the file.

188

Chapter 10 The CP/M Editors

but the second letter of the command is, with the '" ' symbol. Some of these
commands have no effect on 'matrix' printers, and only work on
'daisy-wheel' printers.)

Λ P Displays the 'P' menu at help levels 3 and 2.

Λ PS underScore (underline) toggle. Does not underscore
the space character.

" PB Boldface toggle. Each character is struck twice, and
the print head is moved slightly between strikes.

Λ PD Double strike toggle. As boldface, but no movement
between the two (or more) strikes.

Λ PX Strike-out toggle. (eg Strike—out)
Λ PV Subscript toggle.
* PT Superscript toggle.
Λ PY Ribbon colour toggle.
"PC STOP print at this point (allows change printwheel

etc).
Λ PA Change to Alternate pitch (usually 12 cpi).
Λ PN Change to Normal pitch (usually 10 cpi).
Λ PK Left/right heading/footing control. (Omit following

spaces if page number is even.)
Λ PF 'Phantom space' - dépends on printer or printwheel,

sometimes a currency sign - pounds or cents.
Λ PG 'Phantom rubout' - dépends on printer/printwheel.
Λ PO 'Non-break space' prints as space, but will not allow

word séparation at line end.
Λ PH Backspace. Allows multiple printing in same position.
Λ PQ Λ PW ~ PE PR allow and need spécial definition for your system
" P< Rt> Set overprint line. Useful for embedding a non-print

ruler in text, and for continuous underline.

The 'J' commands. (J=jog your memory. This set of commands allows
you to display on the screen, during editing, an abbreviated form of the
Wordstar manual, with explanations and hints about ali the facets of
Wordstar.)

λ J Display the 'J' menu at help levels 3 and 2 only.

λ JH Displays help menu and asks for sélection of level.
"JF Explains flags (at right edge of screen).

189

CP/M The Software Bus (aprogrammers companion)

« Jl Displays command index (not on menu).
λ JB Displays details of reforming text («B).
λ JD Details of print directives and 'dot' commands.
Λ JM Details of margin controls and settings.
λ JS Explanation of 'status' line (top line of screen).
λ JR Explanation of ruler line (~ 0 commands).
Λ JV Details of how to move text (Λ K commands).
* JP Explanation of 'place' markers (~ Kn and λ Qn).

10.2.3 The 'DOT' commands.

Each starts with a full stop (dot) in column one at the left edge of the screen.
Even if the left margin is at some other column, the 'dot' holds in column one.
These commands occupy a line on the screen, but not in the text. They take
effect at print time, but they do also affect the screen display. For example,
the dot command for page length (.pl nn) affects the position of the page
break display as text is entered or edited.

There are default settings for ail these commands.

The commands for character width and line height set the character size, and
ail other commands relating to page size are calculated from these two. The
page length is stated as a number of Iines, the margin at the top is a number of
Iines within that page length, as is the bottom margin. Headings and
footings are within the top and bottom margins, and can be positioned with
the heading and footing margins, which State the space between text and
heading/footing. The page offset adds the stated number of columns to the
left margin position, so that paper can be loaded in the printer with the left
edge on column 1, and the text will be offset to the right to give a blank filing
margin.

..comment

.IGcomment

.CWn

.LHn

.POn

.PLn

.MTn

.MBn

Any characters after the .. are ignored.
As above.
Character Width in 1/120" (default 12 = 10cpi).
Line Height in 1 /48" (default 8 = 6 Ipi).
Page Offset in columns (default 8).
Page Length in Iines (default 66).
Margin at Top in Iines (default 3).
Margin at Bottom in Iines (default 8).

190

Chapter 10 TheCP/MEditors

.HMn Heading Margin in Iines between text and heading
Margin in Iines between text and footing (def 2).

.HEtext Text printed every following page as heading, with as
page number (see also^ PK).

. FOtext

.OP

.PNn

Text as footing. Page number is default text.
Omit Page numbering.
Page Numbering on, starting with n as page number. If n
is omitted, starts at 1 at beginning of file, or at page
number in status line at that point. This number can be
used to select pages to be printed at print time.

.PCn

.PA

.CPn

.SRn

.BPn

.UJn

Page number column position (defaults to centre).
PAge change now (unconditional).
Change Page if less than n Iines remain on this page.
Sub/superscript Roll in 1 /48" (default 3).
Bidirectional Printing OFF (n - 0) or ON (n = 1).
Microspace Justification at print time OFF/ON (0/1).

Merge-Print DOT commands.There is a further set of dot commands
which are ignored by the Wordstar print routines, but which are handled by
Merge-Print. A data file may be specified, and it must be created so that all
records have exactly the same number of fields. Wherever a field is to be
printed, it is placed in the text using the name given in the. RV command, with
an ampersand (&) at each end of it. Spaces may be used between the field
name and the &'s. Merge-print automatically reforms text to suit variable
length insertions either from the file or through the keyboard, unless you
suppress this.

.DFfilename

.RVnamestring
Data File to be used.
Read Variables into names in string (commas used to
separate names). eg - .RVA, B, C reads three fields from
file. These are used in the text as &A& or &B& or &C& or
& C a.

.RP Repeat reading the data file to end. Only required if
several reads needed in one document. If one read per
printed letter (say), then the .RP is not needed.

.SVname, text Allows you to set the name and the value of the variable in
the document. Wherever anamea appears, the text will
replace it. Text can also include variables read from file.

191

CP/M The Software Bus (a programmer companion)

.AVname Ask for Variable to be input from the keyboard at print
time. The input will then replace &name& where it
appears in the document.

.DMtext Displays the Message in text (which can include names
read from file or keyboard) on the screen at print time.

.CS Clear Screen. Clears any .DM or other screen messages
previously displayed.

.Flfilename File will be printed in the position of the command at print
time. Can be used to make the printing 're-entrant', by
calling the document which contains the .Fl command.

.PFxxx Print-time re-Form (xxx = ON/OFF/DIScretionary).
AllowsControl of re-forming at printtime. Default is DIS.

.IJxxx Input Justification (xxx = ON/OFF/DIS). Allows control
of justification at print time. If DIS is entered, the
justification which was set at input of the text is
preserved. Default DIS.

.OJxxx

.LSn

.LMn

.RMn

As above for Output text at run-time.
Line Spacing reset at print time. (as* OS)
Left Margin reset at print time.
Right Margin reset at print time. None of the above five
commands or this one affects the stored files.

Any name included in ampersands for 'content printing' may be extended by
/O (alpha 0). This will suppress the whole line if the name is empty and
nothing else needs to be printed on that line, (eg in an address, &district/0&
with nothing else on the line will not print a blank line if 'district' is blank, but
will omit the line altogether.)

For record purposes, you can take a print of your file with embedded dot
commands and names in ampersands, with the commands actually printed,
not obeyed, by answering Y to the question SUPPRESS PAGE
FORMATTING (Y/N) which appears during the spécification of the ordinary
Wordstar print command.

Two commands which can speed up processing are « R and the ESC
key. When you are asked for a filename, use of R will enter the last filename
used for that purpose (= Repeat). After entering a filename for printing,
instead of pressing the RETURN key, which will initiate a sériés of questions,
you can 'escape' from the questions by pressing < ESC> . The later versions
of Wordstar also allow you to 'escape' part way through the list of questions.

192

Chapter 10 The CP/M Editors

10.2.4 Wordstar Summary.

There are clearly very many more commands in Wordstar than in
ED.However, this requires no feat of memory, because the only command
you need to know is~ JH3. Using this command allows you to bring up any of
the menus, and in particular the 'help' menus, during text editing. It must be
re-stated that the preceding sections are not a replacement for the manual, or
for a training course, but will help as a quick reference summary, if you use it
irregularly, or are not yet familiar with the System.

10.3 BASIC line editors.

Within MBASIC and some other languages, there are simple - rather crude-
line editors. These require you to specify the line to be edited (MBASIC is
'EDIT linenumber'). Then you have a small set of edit commands which allow
you to change your existing text. The set below is the MBASIC set - others
tend to be very similar. (See also the section in chapter 9 on MBASIC.)

L List the line on the screen and return to the start for
editing.

X eXtend the line. List it, put the cursor at the end of the line
and enter 'Insert mode'.

nC
nD

I

Change the next n characters to the ones keyed in.
Delete the next n characters and show them within the
'back slash' symbols (\.)
Insert characters from the keyboard until either the ESC
key or RETURN is pressed.

RETURN end line edit - display the remainder of the line and return
to MBASIC command mode.

E
'space'

As RETURN but do not display the rest of the line.
pressing the space bar steps along one character at a
time, displaying the character 'uncovered'.

nSx Search along the line for the n'th occurrence of the
character x, and stop with the cursor to the left of it.

nKx
A

As search, but deleting ali characters passed over.
Start the line edit Again, ignoring what has just been
done.

Q Quit the edit, do not save changes, return to MBASIC
comand mode.

193

CP/M The Software Bus (a programmera companion)

H Delete all characters to the right of the cursor and enter
'insert' mode.

To enter EDIT during the original entry of text, use Λ A. This puts you in
editmode in the line you are/were typing.

One warning, attempting to 'insert' (I) long strings of underline
characters!__) can confuse the MBASIC editor, and you may find that you
have succeeded in actually truncating Unes, rather than extending them. List
the line again if in doubt.

10.4 Other Editors.

There are numerous dérivations of the basic editor (ED), such as TED and
PEDIT. If you have one of these, you will find it's operation very similar to the
operation of ED itself - and you'll also find considérable overlap in the
commands and how they perform. Once you know how the different levelsof
editor work, the précisé operation of a particular one should be reasonably
transparent.

10.5 Spooling the Printed Output.

It is relevant here to make a brief mention of the availability of print spoolers
and de-spoolers. These are programs which résidé up near the top of
memory, and which can intercept LST: device outputs, transferring them to
one or several files. They can also be set up to empty 'spool' files onto the
printer during the gaps when the system is doing nothing else.

There isa de-spoolerfrom Digital Research, which résides in the memory just
below the FDOS, and which will copy a file to the LST device whenever
CP/M is waiting for input. (DESPOOL)

If you use M P/ M, you will find that there is a spooler and de-spooler provided
with the system - obviously much more necessary when several users are
working at once, and ali may be calling for the LST device

There are also proprietary products which work quite happily, but some of
them require that you make some modifications to your CBIOS. The detailed
instructions are provided - and even the most rudimentary understanding of

194

Chapter 10 The CP/M Editors

DDT will suffice to enable you to perform the mods. There is sufficient
Information on the use of MOVCPM and DDT within these pages to enable
you to follow the instructions.

Why might you want such a utility? If your system is print-bound, because
you have a lot of output or a slow printer or both, then the printing can
continue while you get on with someting else. If your printer is not only slow
but noisy, you might want to print at times when it will not distract you or
other people. Essential? No. But it might be very useful.

10.6 Summary

Some languages contain editors which allow you to key in your program and
manipulate it before submitting to compilation or interprétation. Most,
however, do not. Therefore you need an editor. ED cornes free with CP/M,
and with a little practice is acceptable and perfectly usable. Wordstar costs
money, as do the other CP/M word processors, but offer vastly enhanced
facilities. When considering the purchase of an editor/word processor, check
the facilities offered. Some, for instance, have ali the commands embedded
in the text, and do not show the actual 'page layout' until print time. This is
less easy for a typist, but can easily be learned.

Many Systems are now available which attempt to bridge the gap between the
word processing package and the dedicated word processing system.They
do this by providing additional keys on the keyboard which are wired to give
one of the single or two-letter commands. Interestingly, most seem to choose
Wordstar as the software. There is always a disagreement between those
who like to use the commands directly from the main keyboard, and those
who prefer spécial 'function' keys. the function keys are faster, when you
have found the right key. Using the main keyboard is fast, for mnemonics,
because the typists fingers fall naturally on the keys. The argument is
usually resolved by the marketing organisation which says 'pretty keyboards
sell better'.

Spooling and De-spooling is a useful adjunct to any system which handles
extensive amounts of text to be printed. Wordstar contains a limited form of
de-spooler, in that it allows you to edit one file while printing another. In effect
- the way Wordstar handles its files is just like a sophisticated spooler!

195

CHAPTER ELEVEN

The structure of CP/M.

11.1 FUNDAMENTALS

All of this Chapter is fundamental to the rest of the book - but it might help if
we started with a very brief verbal description, before we get down to details.

First, the internai Storage of your microcomputer may be referred to with a
variety of names - 'core' is one which cornes from the use of magnetic cores
strung together in a matrix, this was one of the first electronic, non-volatile,
Storage methods. We will use 'memory', because it also covers current
microcomputer Storage, which needs power to retain the content.

CP/M is the operating system, and some of it is résident in the memory at all
times. We will taik principally about CP/M 1.4 and 2.0, for clarity, and
introduce the CP/M Plus (3.1) variants as they arise later in the Chapter.

At the 'bottom' of the memory - in the bytes with the lowest numbers,
starting from0000H - isä page (256 bytes, uptoOOFFH) which is reserved for
the 'system parameters'. The program which you load - either a 'transient
command' or a program or whatever - sits above that in the 'transient
program area', which usually starts at 01 OOH - the start address of many
programs. The system parameters are the link between your program in the
TPA (the 'transient program area' - starting at 0100H) and the résident
programs of CP/M. These - the résident CP/M routines - are at the other end
of the memory, in the highest numbers.

Right at the top is the BIOS - the Basic Input Output System. This is the one
which conforms to the CP/M 'skeleton form' - but actually contains all the
routines needed to handle your particular hardware. Next to it - below it in the
memory - is the BDOS - the Basic Disc Operating System. This is standard.

196

Chapter 11 The Structure of CP/M.

The two parts we have just mentioned - BIOS and BDOS - are often referred
to as one, under the name FDOS - the Full floppy Disc Operating System.
FDOS (BIOS + BDOS) must be résident in the memory while you are using
the System.

Below FDOS in a smaller area of the memory is the CCP - the Console
Command Processor. This is a complété program - in fact in CP/M 3.1, it is
actually a file on dise called CCP.COM - and it has the group of instructions
which handle your keyboard editing commands, the résident commands like
DIR, and one other simple routine. That routine looks for any keyboard entry,
signalled by the pressing of the < Rt> key, and picks out the first word - the
characters up to the first space. If that word is not a command built into the
CCP, it assumes that it is the name of a file on the logged drive (or the stated
drive if d: is at the front of the word) called by that name with the extension
(.typ) of'.COM'. Anyotherwords-followingthefirst-arenothandledbythe
CCP, they are left for the program to deal with. The file with the stated name
and the '.COM' extension is loaded into the bottom of the TPA. The words
following the transient name are moved to location 0080. CP/M attempts to
'format' them into filenames at 005C and 006C. Then, Control is passed to
location 0100H (the 257th byte).

From that moment, the CCP can be overwritten, if need be - because it will
have no further part to play until the A> (or B> etc) is on the screen. And the
action of re-booting reloads the CCP - as well as one or two other things we
will mention soon. One other point about the CCP - it assumes a default
extension of'.COM'-you must notsupplyit. Ifthe'.COM' file is not found the
word is echoed back to the keyboard with a ? after it. Of course, if you callone
of your programs or files a '.COM' file, and enter it as a command to the CCP,
them CCP will try to load and run it. Users of CP/M 3.1 will note that we
covered the SETDEF command earlier - which allows the CCP to search for
.SUB as well as .COM files, and on more than one drive.

That is the introduction over. You now have the picture. System parameters
in the very bottom page of memory, FDOS at the top, and CCP just below it.
Pressing < Rt> invokes the CCP which searches for a file who's name is the
first word typed after the 'prompt' and who's type is '.COM'. The memory
between the Parameters and the FDOS - including that occupied by CCP after
each re-boot - is available for your invoked program to use, and is called the

197

CCP.COM

CP/M The Software B us {a programmera companion)

TPA - Transient Program Area. If your command (COM filename) also
includes a drive letter, the disc on that drive will be searched for the
command.

Now let us go into a little more detail.

11.2 CP/M in memory.

CP/M 1.4 up to2.x can be installed in any memory sizefrom20K bytes up to
64K. 1K bytes, to be précisé, is 1 X 1024 bytes, not 1000. The majority of
implémentations actually have the full 64K, so we will assume that. Smaller
implémentations work in the same way, but leave less space available in the
'centre' of the memory for the TPA, as we will see. Memory is usually
numbered from 0 (zéro) upto64X 1024 -1 (= 65535). One byteis eight'bits',
each capable of representing only 0 or 1. Référencés to the 'top' of memory
refer to the high numbered bytes. The 'bottom' of memory starts at byte 0.
(We will indicate the way CP/M 3.1 uses banked memory with more than
64K, shortly.)

One byte (eight bits) may contain an alphanumeric character according to the
ASCII code (The American Standard Code for Information Interchange), or
may contain a pure binary number from 0 up to 255, or may be used in other
ways. If two bytes are considered together, they can be regarded as forming
four groups, each of four 'bits'. Each group of four bits can hold from 0 to 15,
or one of the digits used to count in 'hexadécimal'. The hexadécimal digits
from (décimal) 10 to (décimal) 15 are usually represented by A to F. Counting

and so on .

in flexaideciimal ('hex') goeis likie thiis

0 1 2 3 4 5 6 7 8 9 A B C D E F (single digit)
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20

E0
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF (two digits)

The addresses of the 'bottom' and 'top' of a 64K memory are often referred to
as 0000H and FFFFH - the Ή' indicating that 'hex' is being used.

198

Chapter 11 The Structure of CP/M.

CP/M contains some résident software, which stays in the memory, or which
is re-loaded at every 'boot', and some transient software which is held as
separate programs, and is loaded on demand, as we will see. The memory
map of the résident software in a 64K machine looks like this.

64 K
(max)

256

0

0100H

0000 H

FFFH

STRUCTURE OF CP/M IN A 64K MEMORY

The five régions of the memory shown above are used as follows:

1. BIOS - Basic I/O System
The BIOS sits between the BDOS and the hardware, and contains the
lowest level interface between the standard commands and data
handling of the BDOS (basic disc operating system) and the spécial
requirements of the peripherals of the computer. A standard BIOS is
supplied by Digital Research, together with explicit and detailed
instructions for re-configuring the BIOS to match practically any
hardware environment. Defining and implementing this part was the
principal reason behind the current success of CP/M.

2. BDOS - Basic Disc Operating System
This, as implied above, is the standard part of CP/M which is the real
'heart' of the system. The two parts together form a logically complété

199

CP/M The Software Bus (a programmers companion)

unit, called FDOS by Digital Research. FDOS is the résident part of the
operating System which is in memory while a users program is being
executed. If parts of FDOS are not required, they may be 'overlayed' by
user code, but the program which does so must 're-boot' on
completion, to re-instate the résident FDOS. The FDOS - and in
particular the BDOS - will be examined in detail later.

3. CCP - The Console Command Processor
This is a distinct program which uses FDOS to allow the operator to
access information held and catalogued on the backing Storage. The
CCP reads a user command put in through the console. The CCP
contains some built-in commands, which execute programs fully
contained in CCP, and it recognises transient commands and uses
FDOS to get them from disc and loads them into the transient program
area. It then executes them. This is one of the standard parts of CP/M,
and we have studied the résident and some transient commands in
Chapter 2. It is also worth noting that when the System is re-booted - or
booted for the first time - the CCP looks first for a partly used 'SUB' file -
which will have the filename $$$.SUB on the logged drive. If such a file
is found, the next command is taken directly from it.

4. TPA - The Transient Program Area
This area is where user programs and transient CP/M commands are
executed. It includes the CCP, which may be over-written, (and
re-loaded at program completion), since CCP is never required during
program execution. In version 3.1, résident System extensions (RSX
files) are loaded at the top of the TPA.

5. System Parameters Area
This region is the first 256 bytes at the bottom of the memory (from 0000 H to
OOFFH) and is a reserved area for System information (it contains the 'jump to
warm boot' instruction, for instance). It contains the numbers of locations in
FDOS which are needed by the user program, and it also has information put
into certain locations by either FDOS or a user program for the use of the
other.

In this and subséquent chapters, we will study the content,alteration and use
of these areas in more depth.

The System Parameter Area is thefirst256 bytes of memory-from 0000H to
OOFFH. The transient program area startsatOWOH, and ru ns right through to

200

Chapter 11 TheStructureofCP/M.

the start of the FDOS. FDOS is BIOS and BDOS considered as a unit, and
must be résident when it is used,it cannot be invoked and loaded when
required, like a transient command.

We have repeated that information in several ways, and in at least three
places, because it really is essential to your further compréhension. Now we
can move on to consider elements of CP/M directly.

11.2.1 The System Parameter area.

You can inspect the content of this area by loading DDT, and then entering
D0< Rt> . You will also need a D< Rt> to show the full 256 locations.

The main areas that we are concerned with are the first 8 bytes and the last
164. In the first byte (00) and the sixth byte (05) you will find the machine code
J MP instruction. This requiresan address in the following two bytes, and the
addresses you will find in bytes 01,02 and 06,07 are the address in BIOS of the
'warm start', and, usually, the lowest numbered location of FDOS - the part
immediately adjacent to the CCP. However, as we will see in a moment, if you
have loaded DDT to look at the addresses, then you will get an unusually low
number.

These are the contents of the first 8 bytes

OOH the JMP instruction
01H the first byte of the address of the warm start
02H the second byte as above
03H the IOBYTE (maps logical to physical peripherals)
04H the current default disc drive number (0 = A,1 = B etc) and user

number
05H the JMP instruction
06H the first address byte of FDOS (but see below)
07H the second

The warm start routine is in BIOS - that is the part of CP/M which is tailored to
the hardware. BIOS is not re-loaded when a warm start takes place. BDOS
and CCP are re-loaded.

We will discuss the IOBYTE later in this Chapter.

201

CP/M The Software Bus (a programmers companion)

The current default dise drive number is fairly clear - CP/M 1.4 only accepted
0 to 3 for this (drives A: to D:) but 2.x accepts 0 to 15 (F in hex) as A: to P:.
Version 3.1 also accepts 16 logical drives, of course. ('Logical', because you
can treat one physical drive as two or more logical drives, for example with a
Winchester.)

The address in 06H and 07H has two purposes. First, and obviously, it is the
address in the BDOS to which ail callsto CP/M from a transient program are
made. (As we will see, the code currently in register C is inspected by BDOS,
to find out what it is supposed to do !) Second, it is a higher address than any
TPA program is allowed to use - to prevent a program from overwriting the
BDOS. However, DDT is aware of that, and the authors of DDT decided to
stack a lower value in there, to prevent the user of DDTfrom overwriting DDT
itself, while 'charging about in-the memory'. That is why, if you use DDT to
inspect the first 8 bytes, you will get a false value in 06H/07H.

The area between 07H and 5CH need not concern us here.

From 5CH to 7FH inclusive - 36 bytes - are the default FCB's, or File Control
Blocks.

From 80 H to FFH inclusive -128 bytes - is the Default dise buffer. The content
of a File Control Block, and the reason for a dise buffer of 128 bytes will be
developed in the next few pages.

11.2.2 The Bootstrap.

A hardware facility - possibly invoked with a particular key depression or just
by 'power on' - reads the first sector of the first track on the first drive (A:) into
the bottom of the memory, and transfers control to whatever is in there. What
is in there will be a small program to read the CCP, BDOS and BIOS from the
disc into the memory, and to transfer control to the CCP.

That is 'cold boot' - everything from the lowest location of CCP to the top of
(assumed) memory is loaded. If you are wondering why we put 'assumed'
mqmory, remember what we said earlier about MOVCPM (Chapter 6) which
can take a smaller or larger version of CP/ M and re-organise it for the memory
size you want. Now that you understand what goes where in the memory,
you can get a better idea of what MOVCPM does. If you 'boot' a 32K version
of CP/M into a 64K memory, the FDOS is loaded in the bytes up to 7FFFH -

202

Chapter 11 The Structureof CP/M.

and bytes 8000H up to FFFFH are inaccessible to the programs and the
System.

'Warm boot' is somewhat different. For one thing, the content of the TPA is
unaltered (which would not be the case if you powered down and then
powered up again) and for another - the program which performs 'warm boot'
is in BIOS - at the top of the memory. So the 'warm boot' reads a reduced
number of sectors off the disc, and only re-loads CCP and BDOS before
handing over Control to the Console Command Processor, CCP.

You may find, for instance, that your screen is blanked out by a 'cold boot',
but left unaltered by the 'warm boot'. This is logical, since the handling of
your screen must be contained in BIOS, and that is the area of the memory
which is not reloaded with a 'warm boot'.

11.2.3 The Disc Directory.

In order to discuss the File control block, we will first establish how files are
actually recorded and controlled by CP/M.

If your dises are 'soft sectored' - see disussion in the next chapter - you will
have had to 'FORMAT' any new dises. This is the process of writing spécial
sector start/end markers before and after each sector of 128 byte capacity
which will be used for your data. In the process of 'formatting', the 128 bytes
are filled with E5 hex characters. Hard sectored dises do not need to be
'formatted' - but the E5 character is still significant, as we will see.

Ail dises have a fixed number of sectors following the 'system track(s)' for a
directory of the disc - rather like the contents pages in a book. Each CP/M
sector has 128 bytes, as we said, and each directory entry needs 32 bytes.
Thus, if you have a dise which allows for 64 directory entries, that means that
the directory of that disc is the first 16 sectors after the 'system'.

Whenever you 'manipulate' either a file itself, or just its directory entry, the 32
bytes of the directory are copied into the memory, and 'manipulated' there.
Only after the file is closed, or the manipulation is complété, is the entry
written back onto the disc from the image in memory.

If you are using one of the transient commands like REN or STAT - then you
only handle the directory entry. If you are reading from or writing to a file -

203

CP/M The Software Bus (a programmera companion)

such as a data file - then the directory image in memory is kept up-to-date with
what you have done - but the directory on dise is not - not until, as we said, the
file is closed. Then, and only then, is the directory on dise replaced with the
image from memory.

Now you can see why it is so vital that you close a file properly before
unloading a dise.

If we look at the content of the directory entry, much of the detail of how ER A
works, how files are identified, how they are marked for user areas and/or
with $SYS attributes and so on will become clear. This applies to all versions
of CP/M, including 3.1, unless you have invoked the password/date
stamping. We noted earlier that password/date stamping in version 3.1
requires the use of INITDIR to reformat and extend the directory space first,
and then you may use SET to actually initiate passwords/date stamps as
required.

If you have looked at a published table of ASCII codes and their meanings,
you will have seen that the table which is presented is always eight rows by
sixteen colunms - and that therefore the binary coding requires only three bits
by four, not the four by four which are actually available in a byte. That
missing bit - called the 'high order' bit, is used by CP/M.

The directory entry is in two halves - the file identity half - called FNT or File
Name Table, and the half in which actual dise sector allocation is recorded -
the RBT or Record Block Table.

11.2.4 The File Name Table

This table contains the following data:

Byte Name Content
00 ET Entry type. If this contains E5, the directory entry has not

been or has been ERAsed. If it contains 00, the file exists in
USERO. Any other number isa USER number. (eg03isUSER
3.) To 'unerase' a file after an unintentional ERA - before you
do anything else, find the entry and stack 00 in this byte
instead of the E5. You can write a program for this. Entries
otherthan E5 or00areonlyfoundinCP/M2.x +. 1.4 did not
support USER.

204

Chapter11 TheStructureofCP/M.

01-08 FN File name. Up to eight characters supplied by you, made up
toeightwith20H -theblankorspacecharacter. If CP/M has
created the filename, it will be in upper case only. If you
created it with, say, a SAVE command in MBASIC, it may
include lower case as well, but then will not be found as a ufn
by any CP/M command - since CP/M translates l/c to u/c.

09-0B FD File Type. Up to three characters, with 20H filling any gaps
at the right. The high order bits of these three characters are
used for signais. The 'h-o-b' of the first character is normally
zéro, but if set to 1 means that the file is set to 'Read Only'. In
the second character of type, the 'h-o-b' set to one means
that the file has the $SYS attribute. See Chapter 3. These
only apply to CP/M 2.x, because CP/M 1.4 did not havethe
$SYS facility.

OC EX Extent number. Here any additional 'extents' - which are
units of 128 by 128 bytes (16K) - which may be needed for
files larger than 16k are recorded. Each directory entry is
thus, actually an 'extent' entry, not a 'file' entry. This is
usually 0.

OD Not used in CP/M 1.4 or 2.x
0E S2 Not used in CP/M 1.4, but used for part of the'extent count'

by 2.x (how many extents).
OF RC Record Count. An extent can have upto 128 of what CP/M

calls 'records' -128 byte units. The number of records which
are used in the extent represented by this directory entry is
included here. When you look at a STAT listing, this is the
number (for a single extent file) listed under 'Recs'. If this is
the first entry for a two extent - or larger - file, the value here
will be 128. (represented by 7F in hex.)

Notice that we have slightly over-simplified the 'extent' picture. What we
have said is correct for a standard 8" IBM format single sided dise. Higher
capacity dises may have a slightly different way of handling the extents,
which results in a single directory entry for more than one extent.

Although you must always enter a filename with extension with a full stop
(period) between the two parts, this is automatically translated into a full
eleven characters by CP/M, by padding either or both parti with space

205

CP/M The Software B us ta programmers companion)

characters at the right as needed. What you enter as FRED.COM is actually
held in the directory as FREDBBBBCOM (where the 'β' is a space).

That complétés the description of the FNT - File Name Table - and you will
already have seen how many of the commands we discussed in earlier
chapters actually work.

11.2.5 Record Block Table

Now for the RBT - Record Block Table. These are the bytes, continuing on
from OF. (We are still numbering them in Hex.)

Byte Name Content

10-1 F DM Disc Map. This isa table of bytes or words which area
list of those CP/M logical blocks which are in use by
the file. If a particular block contains part of the file, it is
listed in the table.

That is the end of the directory entry, but one further character is held inthe
File Control Block-the FCB - held as the memory image for that file. In CP/M
2.x, there are four more bytes used in the memory image.

20 NRorCR Next Record. The next record number to be read or
written in a sequential file. In a closed file, this will be
zéro.

21-23 Three bytes added to the Directory entry which we
have described above - these are used for random
access record number.

11.2.6The IOBYTE - Input/Output Device mapping.

There are four logical devices (CON: RDR: PUN: and LST:) understood by
CPM. Each of these can be allocated to one of four values - as we saw in
chapter 4 - the four physical devices available for each.

This byte is best considered in four parts, with each pair of bytes in the part
taking values 00 to 11 - four values. As you will see from the table, if bits 2 and

206

FRED.COM

Chapter 11 TheStructureofCP/M.

3 are set to 01, that means that the PUN: device (bits 2&3) is set to PTP: (the
second possible value).

Bits Ref to Values 00 01 10 11
6&7 CON: = TTY: CRT: BAT: UC1
4&5 RDR: = TTY: PTR: UR1: UR2
2&3 PUN: = TTY: PTP: UP1: UP2
0&1 LST: = TTY: CRT: LPT: UL1 :

11.2.7 Sector Allocation by CP/M.

All disc reads and writes are actually direct access - though they look like
sequential access because of the way CP/M handles it. If a disc write
instruction is received by the BDOS, then it looks at its table of space
allocation for that disc, and allocates the next available sector. The block
containing that sector is marked in the FCB for the file (in memory) and will
eventually be written out to the disc directory as the entry for that file.

Although it appears to you that all files are simple sequences of sectors, in
fact, CP/M will allocate 'next available' space to your file, and thus your file
may be scattered through the area of the disc. If a file is deleted, this allows
re-allocation of sectors which were used for it, to other files, when a 'write' is
carried out.

One of the effects of this that you can see for yourself is in the display of
entries by the DIR command. The entries are listed on the screen for you
(without the '.' between name and type, and if you look back a couple of
pages, you'll see that the '.' is not held in the directory) in the sequence in
which they appear in the disc directory. Deleting a file not only makes space
available in the file area of the disc, but it also makes space available in the
directory. So your newly written file may appear in the directory, not at the
end, but in the first available space.

That is not the whole Story, however. Much CP/M software makes use of a
'.$$$'file type. If, during development in MBASIC or during a PIP command,
for instance, you indicate that you want a file to be overwritten, what actually
happens is that a new directory entry is created in the next available space,
the new file is written with filename of name.$$$, and when it has been
completed and the new file closed, the old file is then deleted, and the new
one re-named to name.BAS or whatever. As a resuit, repeated SAVEs of a

207

CP/M The Software Bus (aprogrammers companion)

BASIC program will not only keep shuffling the location of the file name in the
directory, but will probably also use different areas of the disc each time.

11.3 Memory Disc - MDISC.

While we are in this introduction to CP/M, we need to introduce the concept
of 'bank switching' to allow the use of more memory than the 64K which
CP/M can use with its two-byte addresses. The way we will do this is to
discuss the advantages and disadvantages, and the method of
implémentation, of MDISC. Then we will look at version 3.1, which
incorporâtes 'banked memory handling'. If you use non-banked CP/M 3.1 in
a 64K memory, everything works in the way we havedescribed so far. With a
banked system 3.1 contains the necessary routines, and the banked memory
is not handled as 'pseudo disc', as we will now describe for MDISC.

There are various names for the 'device' - MDISC, SILICON DISC, RAM
DISC for instance - but they ail have two things in common. They are handled
by CP/M as a dise, but the 'medium' is actually Random Access Memory -
RAM.

The costs are higher than comparable Storage on 'floppies' - but the speed
advantages are breathtaking. The price of a floppy disc drive of, say 500k
bytes would probably buy not much more than 100k bytes of MDISC. The
costs are certainly higher - byte for byte - than the costs of Winchester
Storage - but there are benefits which may outweigh the extra costs.

For example, on a Winchester dise, it is very tempting to use lots of USER
areas in different drive numbers to partition the disc amongst different
development jobs - and very rapidly indeed, the development programmer
will find he has the most enormous labelling and indexing and accessing
problem. The advantage of a 'floppy' is that you can quickly and easily label
and re-label it. What can you do with a Winchester ? That doesn't apply to the
user who simply needs large file space for large files in a stable, running
system, of course - but it could apply to you.

Have you tried handling a 60 page file, using Wordstar ? If you have, you'll
know just how long it takes to do a 'Save and Résumé'. And of course, the
longer the file gets, the more important it is that you do keep an up-to-date
back-up. With MDISC, that process takes only a second or two.

208

Chapter11 The Structure of CP/M.

Another important benefit of MDISC, which might seem a disadvantage at
first, is that it is volatile, and it will be cleared by a 'power-off' or even a cold
boot. That means that the development programmer gets into the habit of
taking a 'floppy copy' of any updated program or whatever, before
attempting to run it. That is, of course, good practice, but it is easy to get
slip-shod. When a program under test runswild and crashes the system, and
you réalisé that a) the only copy you have of the program as it is, is in the
MDISC, still, and b) that the only way to regain Control of the machine is to
'cold boot' - which will wipe the MDISC, then you will réalisé that absolutely
rigorous archiving and Security copying are valuable.

The main uses to which you will be able to put MDISC - though perhaps not ail
at once unless funds are available for a large MDISC - are these -

a) Simulate large arrays in MDISC which can give very fast handling of large
volumes of data. This becomes a sort of 'pseudo virtual memory'.

b) Spool files, submit files, work files of ail kinds will be handled very quickly
indeed in MDISC. The Wordstar example was such a one as this.

c) Highspeed access to dises. If you first copy a dise file to MDISC, and then
access it there - that will be much faster than accessing on the floppy. It does
not take a large amount of file accessing to outweigh the 'overhead' of having
to copy in (and perhaps copy back out).

11.3.1 Adding MDISC to a CP/M system.

Clearly, what is needed is a way of adding memory and of paging that
memory. Systems which use bank switching normally use fairly large pages -
typically 16k- but memory-mapped Systems tend to work with smaller units -
typically 4k, called 'granules'. 4k is common because, apart from any other
reason, one byte can address 256 locations, and if each location is a granule
identity, you have 256 x 4K = 1 Mega Byte.

In a memory mapped system, what tends to happen is that the processor
address (two bytes, remember) is split into two parts, the bottom 12 bits
being unaltered, but the top four being used to address a high speed memory

209

CP/M The Software Bus (a programmées companion)

bank which returns a single byte for the four bit address. The address is thus
the 12 original 'low' bits, plus the new 8 bits retrieved by the four original
'high' bits.

If you have version 3.1, you have ali the necessary routines. If you do not, how
you actually do the job is a matter of choice, convenience, cost and
compétence. One way is to buy the add-on complété, another is to write your
own code for the disc addressing. If that sounds a formidable task - do not be
put off the idea, because the actual code itself occupies less than 256 bytes.
The concept and the idea of what you are trying to achieve is the diff icult part -
the code is not so difficult.

We will include, here, a summary of what will be required - but this will only
makesense if you understand about customising a BIOS, and are reasonably
familiar with the activity. Never-the-less, though it may be out of sequence
(see following chapters), this is the logical place for it.

First, define the disc parameter block for the MDISC. Because you are
simulating a disc drive, you need to define 'sectors' and 'tracks'. The obvious
sector size is the standard 128 bytes. Anything else would require some
'de-blocking' code which would waste space and execution time. (As well as
being more code for you to write !) The most convenient track size is the
'granule' size, as we used it a moment ago. The granule is the smallest
amount of memory which can be addressed in the bank switching or memory
mapping. Each granule then resembles a track, and a change in track
corresponds to a change in memory bank. Also, as a bonus, the track number
then becomes the memory bank or granule number, when you are writing
your BIOS code. The disc parameter definition will then simply include a track
offset which is the actual main memory of 64k. (With a 4k granule, the first
'track' of the MDISC is the seventeenth granule in the addressing.)

When you are defining a dise parameter block for 'floppies', there are various
standards to which you must adhéré. With the block for MDISC, you have
complété freedomof choice. A datablockshold be kept to the minimum of 1 k
(unlessyour RAM is likely toexceed 256k). Thisalso meansthatyour number
of filedirectories will bea minimum of32 (32x32 = 1024, or 1k). Since there is
no permanent Storage in MDISC, you are unlikely ever to need more entries
than that !

210

Chapter 11 The Structure of CP/M.

Examples of MDISC parameters for two widely different granule sizes are
these -

Granule size 1k 16k
Sector size 128 bytes 128 bytes
Sector per track 8 sectors 128 sectors
Datablock 1k 1k
Sectors per
datablock 8 sectors 8 sectors
Directory entries 32 32

The actual read and write with these examples is then a single transfer
between the DMA (Direct Memory Access) address and the actual memory
address, once the banked memory is switched in. The track - which is also the
memory granule number - is selected, and the address is given by 128 times
the sector number from the start of the granule.

The actual switching of the memory granules is hardware dépendent. With
some Systems, the 128 byte record must first be copied into the BIOS
'common' area. Then the MDISC memory granule can be swopped with the
lowest program memory granule. The record is then copied from the BIOS
common area to the MDISC RAM. Reading would take place in reverse. The
steps required to write a record to MDISC in a 16k memory banked system are
these -

WRITE TO MDISC - the 'subroutine steps'.

Copy record into BIOS data area.
Switch first 16k to bank specified by track number.
Calculate memory address (sectnum x 128).
Copy record in BIOS into memory bank.
Switch back the first memory bank replacing the MDISC bank.
RETURN

This, as you can see, représente a fairly simple coding task - dise sélection and
initialisation are rather more substantial.

211

CP/M The Software Bus (a programmers companion)

11.3.2 A use of MDISC.

Since it is possible (details later) to include routines so that a SUBMIT file is
invoked at cold boot, you may, when you have installed MDISC, wantto use
such a facility to set up in MDISC the programs you most use, automatically.

A software programmer who regularly uses, say Wordstar, RMAC and LINK
would probably configure the system to load these into MDISC automatically
at switch-on. You may have a different set of requirements.

Incidentally, if you have an option during linking to store the symbol table on
dise-why not allocate it to MDISC ? And if yourgymnasticsin BIOS areupto
it, why not call the thing drive M: - even if you have only two other drives ?

212

CHAPTER TWELVE

Hardware.

12.1 Fundamentals.

In this chapter we will include some comments about hardware, and how the
complété hardware and software package influences what you can do and
how you do it. We will concern ourselves largely with dises, but will mention
other features. It is usef ul to know what is meant by some of the terms you will
meet - like 'sector skewing'. Each of the topics we will cover - and there is no
particular sequence to the topics, because they are not related other than
their general 'hardware' bias - will have its own heading. You could regard this
chapter as a group of short notes, ail related to 'hardware' and
implémentations, rather than to the nature of CP/M itself.

12.2 Dises.

As we have said, there was originally an 8" disc, recorded on one side only, at
a recording density and track séparation which was decided by IB M when the
product was first created. Now there is a smaller dise - usually called a
'diskette' - which is five and a quarter inches in diameter. Recently, smaller
dises again have been announced - and there are at least two sizes vying for
popularity. Disc drives have now been constructed with reading heads on
both sides - so that 'double-sided' dises can be used, in either of the two
common sizes. Hard sectoring - lots of holes in the disc to be detected as they
pass the hole in the cover, and Soft sectoring (one 'start of track' hole in the
disc) are available in a range of sizes and data capacities. Track séparation has
been reduced, and the actual recording density per track has been increased,
so that there is a very wide range of drives and dises available. Some of the
draft material for this book was originally written at the keyboard of a machine

213

CP/M The Software Bus (a programmer companion)

with the standard 8" single sided, single density dises - later drafts were
produced on double sided, double density diskettes.

There is, with any dise System which uses either hard or soft sector
read/write, a potential problem of speed of reading or writing. To put the
problem at its simplest, one could say that having written one sector, there is
not enough time for the CPU to note that the write has finished and to présent
a further 'sector full' of data to the drive and to get that written on the next
physical sector. The disc is spinning continuously, and there is simply not
time to write a file on contiguous sectors. If you actually wanted to do that,
you would have to wait for the latency of the drive (the time for one
révolution) plus a bit, before you could write the second sector. Toget round
that problem, the idea of 'sector skewing' was introduced.

At its simplest, this is a decision to allow one or more sectors to pass under the
read/write head before writing the next logical sector. Skip overfive sectors,
so that file sectors one and two are on physical sectors one and seven, and
that gives you the rough idea. Naturally, nothing is that simple.

Ali CP/ M files are actually split into 'extents'. This is principally for addressing
purposes. Also, there are maximum file sizes for the different versions of
CP/M.

The maximum size of a file under version 1.4 is4 M bytes (4 megabytes) That
israthermorethan4millionbytes,because 1 Kbytesis 1024,not 1000,sol M
bytes is 1048576 bytes. Under version 2.2, the maximum size of a file is 8 M
bytes, and under version 3.1 (CP/M Plus) the maximum file size is 32 M
bytes.

In all cases, whatever the maximum file size, an 'extent' is 16 K bytes.

In the simplest case, a file with, say, three extents (numbered 0, 1 and 2)
requires three entries in the directory, one for each extent. However - there is
something called 'extent folding'.

We can best explain this - having introduced the terms and given a general
idea of what is involved - by following through the effect of extents and extent
folding in the different versions of CP/M.

Under 1.4, each extent requires a directory entry. The second and further
extent entries are slightly modified versions of the original entry.

214

Chapter 12 Hardware

Normally, you would not know, or need to know, anything about extents -
they are 'transparent'. DIR does not mention multiple extents, and such
transients as PIP cope with them quite happily. However, the STAT
command contains an 'extent' column - as we saw in Chapter 3. If you have a
low limit to your number of directory entries (STAT DSK: will show you the
number), and several large files, you could run out of directory entries even
though the DIR command indicates that you have fewer than the maximum
number of files. Incidentally, the STAT command in both 1.4 and 2.2 shows
'extent' - but none of the replacement commands in 3.1 show it ! However -
the DIR command under 3.1 shows the total number of directory extents
used.

If you are a 'user' - you now have ali the information about extents you are
likely to need.

If you are a programmer, you may need a little more. If you use 1.4, and you
want to use direct access, you have to set the extent number in the FCB. If
you use 2.2, the FCB has a three byte record number, and you can use the
random disc access functions 33 and 34 (see the following chapters). To use
these, the 'ex' field of the FCB is simply set to zéro.

If, in your program, you want to use functions 17 and 18 to sean the disc
directory ali through, you may find that there is more than one entry for a
given filename. If the reason for the sean is to display a complété - or a partial -
directory, that could be confusing. So you want to remove the duplicates
before you display. Under CP/M 1.4, itseasy-you look for only those entries
with a zéro in the 'ex' field in the directory FCB entry.

U nder 2.2, it is not quite that easy. There may be no entries with zéro, or there
may be more than one ! If your file exceeds half a megabyte, you use more
than 32 extents. But the extent number only runs from zeroto31. Sothe33rd
extent is numbered zéro again - with an overflow bit set in 's2'. There are only
5 overflow bits in version 2.2 - so the maximum file size is 8 M bytes, as we
said. There are 7 in version 3.1 - allowing a 32 M byte maximum file size.

If there is no zéro 'ex' in the directory, this will have been caused by 'extent
folding'. Now we need to introduce the idea of 'logical' and 'physical' extents.

If a program reads a file sequentially, it will be able to see the FCB changing
each time a 16 K byte boundary is crossed. However, if the same program
searches the directory tracks, it may not find a directory entry for each of

215

CP/M The Software Bus (a programmers companion)

those 16 K extents. During a file access, the FCB which is pointed to by
register pair DE in the BDOS call will be updated by the 'logical' FCB which
satisfies the filename and extent number specified. If a file is opened directly
(by an OPEN function call), or by implication when a 16 K boundary is
crossed, the FCB will describe a logical extent of 16 K. In the FCB, the 'ex' will
contain the extent number, and the 'rc' will specify the last 128 byte record in
that extent.

A program which searches through the directory using the SEARCH
FIRST/NEXT function, will of course sean the physical extents. The BDOS
returns an offset (from 0 to 3 in CP/ M 2.x) with which the program can extract
the searched FCB from the copy of the 128 byte directory record (sector) held
in the current Direct Memory Access (DMA) buffer.

Under 1.4, physical and logical extents are the same. The only différences
between the FCB in the directory and the FCB returned to the program which
is reading it is in the two bytes 'dr' and 'cr'.The program FCB uses the 'dr' byte
for the drive number, but the directory FCB uses itto show if the FCB isempty
(valueOE5H) or (under CP/M 2.2) to specify User Number. The 'cr' byte is not
in the directory FCB.

Under2.2, a physical extent may actually describe more than 16 K bytes. (16,
32, 64, 128 or 256 K may be specified.) The disc parameter block holds an
Extent Mask byte (EXM). The disc parameter block (DPB) also holds related
attributes such as the Block Shift Mask (BSM) and Disc Storage Maximum
(DSM), as well as the physical characteristics of the drive. The EXM holds one
of five values, dépendent on how many logical extents (how many 16 K
records) the physical extent contains. This is what is called 'extent folding'.
The values of the EXM are these -

No of Size of Value Disc Block Size
Folds Extent of EXM -byte- -word-

1 16k 0 1024 2048
2 32k 1 2048 4096
4 64k 3 4096 8192
8 128k 7 8192 16384
16 256k 15 16384 n/a

A disc may actually be split into tracks and sectors, but as far as the FCB is
concerned, itispartitioned into data blocks. On the standard IBM 8" disc, the
data block size is 1024 bytes - in other words, eight consecutive 128 byte

216

Chapter 12 Hardware

sectors (which may be part on one track and part on another). There are
therefore, on that disc, 243 data blocks - two blocks are reserved. The data
blocks are numbered from 0 to 242. Since there are less than 256, the data
block number can be completely specified in one byte. With larger capacities,
two bytes (a 'word' in the table above) are used to number the data blocks.
The value of DSM (which is the number of the highest possible data block -
242 in our 8" example) also indicates whether a byte or word is needed.

As you can see, any physical extent must be at least 16 K bytes. So if the DSM
is greater than 255, the smallest BLOCK is 2048 bytes. If 1024 bytes was
allowed, and there are eight sectors in an extent, we said, so an extent would
be 8 times 1024 - 8 K bytes. This is less than the minimum - so all blocks must
be 2048 bytes (if the DSM is greater than 255). On the dises being used to
record this text, the DSM is over 255, and the STAT command shows that
any file has a minimum allocation of 2 K bytes, the smallest block - as you
would now expect.

Obviously, too, the physical extent must be capable of being unpacked into a
16 K logical extent. So the block size cannot be greater than 16 K bytes.

Now we have the rules for a PHYSICAL EXTENT -

1. Maximum BLOCK size of 16k.
2. Extent folding must be 1 (no fold), 2, 4, 8 or 16 (max).
3. The minimum block size for data blocks with BYTE numbering is 1024 bytes
- and for data blocks with WORD (two byte) numbering is 2048 bytes.

We could devote a whole Chapter to further details of extent folding, and the
exact différences between the PHYSICAL FCB (in the directory) and the
LOGICAL FCB - extracted from the physical FCB and presented to the
program which has opened the file. We will simply summarise with the
following example.

Crossing an extent boundary with the 'random read' (say) causes the
programs FCB (logical) to be updated by the BDOS from the directory FCB
(physical) if extent folding is used.

There are few references to other publications in this book - for the simple
reason that this is itself a fairly detailed référencé book. However - this book
cannot replace the absolutely up-to-the-minute information which is
published by the CP/M Users Group (UK). There are all kinds of relevant.

217

CP/M The Software Bus (a programmera companion)

compréhensible 'goodies' in the Journal of CPMUGUK. And if you have
bought this book, you may well wish to be kept as up-to-date as possible.

12.3 Screen Handling.

The screen handling on your particular machine will be specified for you in the
hardware manual - but you will usually find that there is some kind of direct
screen addressing.

What is notalways clear is howyou actually invoke thataddressing. If you are
in CIS COBOL, that is normally done by using the AT extension to the
ACCEPT and DISPLAY verbs. AT is always followed by four numbers, the
first two being 'line' (from 01 at the top of screen) and the second two being
'column' (from 01 at the left). So you could say -

DISPLAY"ENTER DATE (DDMMYYK >"AT1220.
ACCEPT DATE-IN AT 1241.

In some implémentations of MBASIC there are similar ROW/COLUMN
facilities.

However, almost any VDU will move the cursor to a given position if you send
a suitable character sequence to the display. That is the point of this brief note
- the fact that when a cursor control sequence is specified, you use it by
actually sending a character string to the display.

In the manual for the machine being used to enter this text, there is a 'grid'
showing what character is required for each line, and what character for each
column. There is also a little incantation along the Iines of -

"To move the cursor to a desired position on the screen use the command
ESC, Y, r, c where r and c are the characters indicated by the grid."

That may be just a little opaque to someone new to computers. If you look at
the characters along the sides of the grid, you will probably find that they
represent a sequence of ASCII décimal codes, starting somewhere after the
'non-printable' characters. On this machine, column 1 and row 1 are both
indicated by the 'space' character - ASCII 32. So for row 14, you use the
character ASCII (31 +14). The ASCII character for ESCape is 27, so the

218

Chapter 12 Hardware

function in MBASIC which allows you to specify cursor positioning on this
machine could be -

50DEFFNC$(R%,C%) = CHR$(27) + "Y" + CHR$(31 + R%) +
CHR$(31 +C%)

and you could move the cursor to row 12 column 40 with the instruction -

5010 PRINT FNC$(12,40);

(Note the semicolon which in MBASIC leaves the cursor in position. Without
it, the cursor would automatically jump down to row 13 column 1.)

12.4 Non-functional and missing characters.

Many hardware implémentations contain 'traps' or spécial interprétations of
some keys - particularly 'Control and ..." keys. There is little or nothing that
the programmer can do about them, except to make sure that they are not
used in software which might be run on that hardware.

Two examples will suffice to illustrate this point.

The Apple II, with one of the CP/M boards, is fairly common, at the time of
writing. However, an unmodified Apple II has no 'shift' key. To change from
upper case to lower, and vice versa, you use~ A. (Control and A.) (The Ile does
have upper and lower case.)

Therefore - the λ A editing command is simply not available. If you try to run
Wordstar, you will find that you cannot use the 'word right' facility. Editing in
MBASIC, similarly, is inhibited.

On most SuperBrains, theλ W has no effect. This is less important than ~ A,
perhaps, but irritating at times. Since the 'configuration' programs with
CP/M 2.2 for the SuperBrain allow the user to redefine the meanings of
several of the keys, you can get round it by re-specifying one of the cursor
Control keys to perform this function.

Also, there is a problem with all CP/ M machines, that you can 'lose' or appear
to lose a single character, when typing ahead. This is only a problem if you do
not know the reason.

219

CP/M The Software Bus la programmers companion)

In the BDOS there is a single character buffer, which is used to look ahead to
any console input. This is provided so that you can use~ S to suspend console
output-andλ C to abandon thecurrent job and return to CP/M. Fine - but if
the program which you are running ends, and re-boots, then as we have said
before, the BDOS is re-loaded. Any character in the buffer is lost. Some
programs (some commands) do not actually re-boot - they simply RET to the
CCP. STAT, for instance, is small, does not overwrite the CCP, and so can
RET directly. No character is lost. PIP will use ali the memory it can get - and
always ends with a 'warm boot'.

There may be a time when your Λ S seems not to work, to suspend output.
That is almost certainly because you have accidentally or deliberately pressed
another key first. If you did, and the key is not a command, that character
stays in the look ahead buffer, and blocks you from putting a λ S in there.

We have said previously that even a warm boot reloads the BDOS (though
only a cold boot reloads the BIOS). This could be regarded as unnecessary,
but is a safety device. Obviously a program could, by chance, corrupt the
BDOS. There is a better reason. Sometimes, programs take the BDOS entry
point as the top of the TPA. This is not strictly accurate, because the first 6
bytes of BDOS contain the CP/M serial number, which is checked
occasionally by the CCP. If an invalid serial number is found, the system will
hait. Naturally, you will only re-activate the CCP when you re-boot. If BDOS
was not reloaded at the same time as the CCP, the system might crash. If you
had overwritten the first 6 bytes with something totally unlike a serial number,
and BDOS was not re-loaded, it would crash !

If you need more information about the oddities of your particular hardware -
whatever it is - then there may be a magazine or users group letter devoted to
your system - and the CPMUGUK Journal has a wealth of this kind of detail,
often from members who have written in. (Beware - they may not understand
CP/M as well as you do - so there might just be the odd mis-conception !)

220

CHAPTER THIRTEEN

Using the FDOS

13.1 Fundamentals.

Some programmers never progress beyond their high level language into
'assembler level' work, but even they will occasionally feel the need to carry
out some particular task which is either very long-winded, or even
impossible, in the particular language they use.

Also, there will often be occasions when a particular program would benefit
from 'tuning' - improving the speed at which certain often repeated tasks are
carried out.

Similarly, an application may demand something which can only be done as
an assembler routine, called into the main language program.

Even if none of these apply, if a programmer wants to inspect some compiled
code, either to identify a 'bug' or simply to find out exactly what a high level
statement compiles into, the programmer will need to be able to read and
understand the way in which the CP/M facilities are invoked.

And the assembler programmmer will certainly need to address CP/M
directly.

In ali these cases, it is only necessary to know where, and how, to transfer
Control to CP/M, to give the programmer full Control of the way a program
works. And that is simplicity itself.

To transfer Control from your programme to CP/M, ali you do is to JMP to
location 0005H, having first put appropriate values in Register C, and
sometimes also in the DE pair.

221

CP/M The Software Bus (a programmers companion)

If, for some reason, the system parameter region, at the bottom of memory,
has been moved up, then the address to jump to is the BOOT address
(normallyOOOOH) plus0005H. (BOOT + 0005.)

That address itself contains a JMP instruction, and the next two locations
contain the FDOS entry point - which is the same for ail transfers to FDOS.

You put into Register C a numeric code which is interrogated by FDOS,
which is effectively an instruction to FDOS to perform some spécifie task.
The codes are called 'functions'.

If the task requires an address, FDOS will look for that address in the Register
pair DE. That is it. That is how you enter, and use the facilities of, FDOS.

Actually, you are entering BDOS - which, as we saw in Chapter 11, is the
standard part of FDOS - the 'non-customised' part.

The remainder of this chapter will be concerned with the different functions
and their meaning.

13.2 The Function Codes.

For quick reference, we include here the standard list of CP/M codes. It is
always worth checking your own CP/M manuals to ensure that your version
of CP/M does actually cover ail these. The asterisk (*) against some of the
codes indicates that the code has been added or altered since the issue of
CP/M 1.4. If you have 1.4 - or even earlier versions, not ali of the codes apply
to your system. However the BOOT + 0005H certainly does !

Where we have put two asterisks (**), the function has been added or
amended in version 3.1.

There are two sets of functions, the Basic Input/Output set - and the Disc
Input/Output set. We have listed them separately. We have also included a
note for each function, of the parameters needed to be input to FDOS and
the parameters (if any) returned by FDOS after the completed function. The
parameters are ail passed through registers, lettered A to L. Ail these are
explained in greater detail further on.

222

Chapter 13 Using the FDOS

In the first set, the 'basic I/O fuctions', Console, Reader, Punch and List
devices are referred to. These are the logical device names (CON:, RDR:,
PUN: and LST:) which are allocated to physical devices by the IOBYTE
(chapter 11). The read buffer contains a binary number in the first byte, which
is the maximum length of the buffer - and if values are returned in the buffer,
the second byte contains the actual length (the 'current buffer length'), and
the data which is returned follows, up to the stated number of bytes. This first
set of FDOS calls are actually carried out by BIOS - the part of FDOS tailored
for your hardware - but the entry point is the same for BDOS or BIOS calls.

Basic I/O Functions

(* means added/altered in 2.x; ** means added/altered in 3.1; 'character' is
abbreviated to 'char' throughout)

Console Status 11

Function and Number Input Parameters Output Parameters

System Reset 0 None None
Read Console 1 None ASCII char in A
Write Console 2 ASCII char in E None
Read Reader(Auxin) 3 None ASCII char in A
Punch(Auxout) 4 ASCII char in E None
Write List 5 ASCII char in E None
Direct Con I/O 6* ASCII char in E I/O status in A if reg

E = 0FFH
Auxin status 7 None A = 01H if ready or 00H

if not
Auxout status 8 None A = 01 H if ready or 00H

if not
Print buffer to
console 9 Address in DE of the

string which is
terminated by$

None

Read to buffer from Address in DE of start
console 10* of the read buffer The Read buffer is f iIled

None The least sig bit of A is 1
if there is a character
ready, Oifnot.

223

CP/M The Software Bus (a programmera companion)

Basic Disc (and other) Functions.

Function and Number Input Parameters Output Parameters

Getversionno. 12 * None H = 00 if CP/M, H =01 if
MP/M L = 00 if v1.x,
L = 2x if v2.x (L value in
Hex, upto2F)

InitBDOS 13 None None
Reset dise 13 ** None All drives to r/w, def to

Log-in Drive 14
ΛΑ

Reg E = 0, drive A: None
= 1, drive B:
= 2, C: etc

Open file 15 * Address of FCB in DE Offset mult'r to address
of FCB if found, 0FFH if
not. Mult'rvalues0to3.

Close file 16 Address of FCB in DE Offset mlt'r to add FCB
if found, 0FFH if not.

Search forfirst 17 ** Address of FCB in DE Offset mult'r to add of
FCB if found, 0FFH if
not.

Search for next 18 ** Address of FCB in DE Offset mult'r for next
FCB if found, 0FFH if
not.

Delete file 19 ** Address of FBC in DE Offset mult'r for FCB if
found, 0FFH if not.

Read next record 20 ** Address of FCB in DE A is 0 = successful read
1 = read past EOF higher
values are errors.

Write next record 21 ** Address of FCB in DE 0 = successful write
1 = error in extending
2 = end of dise data
255 = no more dir space
other error values in 3.1

Make file 22 ** Address of FCB in DE Offset mult'r for FCB or

Rename File 23 Address of FCB in

255 if no more dir space.
Password création under
3.1

DE Offset mult'r for FCB or
255 if no match

*

224

Chapter 13 Using the FDOS

Return Login Codi
Read Drive No

e 24
25

* None
None

Login vector in HL
Number of logged drive
(0 = A:, 1 = B:,2 = C:
etc)

Set DMA address 26 Address of 128
byte buffer in DE

None

GetAllocvector 27 None Alloc vector address in
HL

Write prot disc 28 * None None
Get R/O vector 29 * None HL = R/O vector value
Set file attrib 30 * Pointer to FCB in DE DIR code in A Physical or

ext. error in H
Get disc params

Set/Get USER

31 * None HL = Disc Param Byte
address

code 32 * for Get, E = 0FFH
for Set, E = code

For Get, A = current code
for Set, no value.

Read Random 33 * Address of FCB in DE A = return code, as
follows -
1 = reading unwritten data
2 = (not used)
3 = cannot close curr
extent
4 = seek to unwritten
extent
5 = ** random record no
out of range
6 = seek past end of disc
10 = media change
occurred

Write Random 34 * Address of FCB in DE A = return code, as
follows -
2 = no data block
3 = cannot close curr
extent
5 = out of dir space
6 = random recno
o/o/range
10 = media change
occurred

225

CP/M The Software Bus ia programmers companion)

Set Random Rec 36 * Address of FCB in DE Random Record Field is
set.

(NOTE - versions 1.4 - 2.x contained only those functions which are listed
above. The following are MP/M and /or CP/M Plus (3.1) functions)

Reset Drive

Access Drive

37** 16 bit drive vector None
in DE

38 MP/M only-not available under CP/M

Free Drive 39
Write Random with 40 **

MP/M only
Address of FCB

Zéro fill in DE

Test and Write 41 ** Add of FCB in DE

Lock Record 42 ** Add of FCB in DE

Unlock Record
Setmulti-sector

43 ** Add of FCB in DE
44 ** No of Sectors in E

Count
Set BDOS err mode45 ** Err mode in E

Getdisefreespace 46 ** Drive in E

Chaintoprog 47 ** Chain flag in E

As fn 34 but prev
unalloc
data block is zéro filled
before writing
Test not used in CP/M
but used in MP/M to
check that original rec is
unchanged
No action in CP/M,
used in MP/M when
more than one prog has
r/w access toafile.
As 42 above.
Logical record blocking

E = 0FFH means Return
Error
= 0FEH is Return and
Display
= other is normal default
First 3 bytes of DMA
buffer is binary count of
free sectors (128 byte
recs)
None

226

Chapter 13 Using the FDOS

Flushbuffers 48 **

Get/SetSCB 49 **

Direct BIOS call 50**

LoadRSX 59**

CalIRSX 60**

Free Bocks 98 **

Truncatefile 99 **

Setdirlabel 100 **

Return dir label 101 **
Read stamps and
password mode 102 **

Write XFCB 103 **
Settime/date 104 **

OFFH in E to purge

Add of SCB in DE

BIOS PB Add in DE

FCB Add in DE

RSX PB Add in DE

None

FCB Add in DE

FCB Add in DE

Drive in E

fcb add in DE

FCB Add in DE
TOD Add in DE

Forces write of pending
recs in internai buffers -
purge clears them to
force read verify to read
from disc not buffer.
Access to System
Control Block. Not
supported in MP/M.
Used for ali BIOS
functions except
Console I/O and List,
which can be called thru
the BIOS jump vector.
A contains err code if
any
A contains err code if
any
Temp allocated blocks
are released. Close files
before using and before
warm boot, to avoid loss
of data.
Set last record of a file
to the recno in the FCB.
File must not be open.
Label values détermine
use of password and
time stamps. Note that
in non-banked 3.1, the
file DI R LB. RSX must be
résident, or reg H will
retu rn error code OFFH.
A contains dir label

The information on the
directory is loaded into
the FCB specified.
Dir code in A.
Starts at Jan 1 1978.
Two byte day
counter.Hrs and Mins

227

CP/M The Software Bus {a programmers companion)

Gettime/date 105 **

Set def passw'd 106 **
Return Serial No 107**

Get/SetProg 108 **
Return Code

Get/Set Con
mode 109 **

Get/SetOutput 110**
Délimiter

Print Block 111 **

List Block 112**

Parse Filename 152 **

TOD Add in DE

Passw'd add in DE
S/No field add in DE

DE=FFFFH (Get) or
= Return Code (Set)

DE=FFFFH (Get) or
= Console Mode (Set)

DE = FFFFH (Get) or
= Character (Set)

Add of CCB in DE

Add of CCB in DE

Add of PFCB in DE

are one byte each.
As stated, plus seconds
in A
None
puts the CP/M Serial
Number in the 6 bytes
starting at address in
DE.
Used to pass codes
onto chained programs,
or to CCP.

Sets or gets the mode
parameter
(enable/disable^ C~ S
λ Q ~ P etc)
Used to set or get
the output délimiter,
(default is $)
Send char string at CCB
to current CONOUT.
Obeys Con Mode setting
(~ P etc).
As for 111, but to LST
dev.
Looks for delimiters in
filename to set up
correct FCB, with
password etc correctly
identified.

Now we can investigate the details of each of the above, identifying any
places in which a function code has altered from version 1 .x to the functions
listed abovefor 2.x and showing how3.1 differsfrom the previous versions.

Function 0 - System Reset

This is exactly the same as a tranfer to location 0000 H - the 'boot' instruction.
Control is passed to the CCP which re- initializes the dises by selecting and

228

Chapter 13 Using the FDOS

then logging in drive A:. In version 3.1, this does not reset the dises - it does in
earlier versions.

Function 1 - Console Input.

This reads a single character from the console - normally the keyboard. If the
character is* S, this stops any scrolling output. If * S has been detected - the
release character is looked for. Also, * P for echoing of the output to the LST:
device is detected if présent. Any character which has a 'graphie' - that is it
can be displayed on the screen or printed on the console printer - is output to
the CON:, asaresuch as the Carriage Return and Line Feed. If* I is detected,
this is expanded to 'tab' along in 8 character columns. Ifno character is found,

then FDOS does not return Control to the program in the TPA, and this stops
execution of the system - until an input is received. Any character found is
placed in register A. Note that* Q is required in CP/M 3.1 to restart after a
*S.

Function 2 - Console Output.

This is the reverse of function 1, in that any character in register E is sent to the
CON: output device. Again, the checks for* P and* I etc are made and acted
on.

Function 3 - Reader Input.

This is exactly like function 1, except that the character is sought from the
device allocated to RDR: by the IOBYTE (Chapter 11). When one is found, it
is placed in register A. There is no 'écho to console output', of course.
Version 3.1 refers to this as 'Auxiliary Input' - losing the 'old-fashioned'
reader/punch image.

Function 4 - Punch Output.

A character in register E is sent to the device currently allocated to PUN: by
the IOBYTE. Version 3.1 uses the term 'Auxiliary Output'.

Function 5 - List Output.

An ASCII character in register E is sent to the device currently allocated to
LST: by the IOBYTE.

Function 6 - Direct Console I/O
If register E contains FFH, the function is to input a character from the
console, into register E. If register E contains some other value, that value is
output to the console.

229

CP/M The Software Bus (a programmera companion)

There are no checks οηΛ Sor^ P etc, there is no 'echoing' to the display of an
input character, you are completely on your own. f you have any programs
written under CP/M 1 .x which dive straight into BIOS to perform this typeof
I/O, you are recommended to alter them to use this function - so that your
programs will be compatible with current and future releases of CP/M and
MP/M.
This is, as an example, the function used by INPUT$(n) in MBASIC to obtain
keyboard input without screen écho.

Function 7 - Get IOBYTE (Versions up to 2.2)

The current State of the IOBYTE is copied to register A. We identified the
IOBYTE as the fourth byte of the System Parameters at the bottom of
memory (byte 03H), and the table of values and their meanings which is in
Chapter 11 is repeated here for convenience.

Function 7 - Auxiliary Input Status. (Version 3.1 only)

Bits
6&7

Ref to Values 00 01 10
CRT: BAT:

11
UC1CON: = TTY:

4&5 RDR: = TTY: PTR:UR1: UR2
2&3 PUN: = TTY: PTP: UP1: UP2
0&1 LST: = TTY: CRT: LPT: UL1:

This is, as you can see, a radical alteration. If a character is ready for input
from the auxiliary input device (which used to be called 'reader') then the least
significant bit of register A will be 1. If no character is ready, the bit will be
zéro. (A has value OOH.)

Function 8 - Set IOBYTE (Versions up to 2.x)

Whatever set of values (bit pattern) you have set up in register E is copied into
the IOBYTE. The previous content is lost, unless you retrieved and stored it
prior to the code 8 function.

Function 8 - Auxiliary Output Status. (Version 3.1 only)

As for function 7 above - A = OOH means the device is not ready to receive,
A = 01H means it is ready. The device which used to be called 'punch' is now
referred to as the 'auxiliary output device'.

Function 9 - Print String

This is an extended (and useful) form of function 2. The 'print' is to the
console. Whatever is in register pair DE is taken as the start address of a
string of characters to be output to the current CON: device. The system

230

Chapter 13 Using the FDOS

checks for~ P, ~ S and~ I (tabs, extended as the output takes place) and looks
for a dollar sign ($) which terminâtes the function and returns Control to the
user program in the TPA. The $ is not output. Note that in version 3.1, the
délimiter, the $ sign, can be altered to some other character with function
110. Also, version 3.1 expectsλ Qto release the 'suspend output' caused by
-S.

Function 10 - Read Buffer (the C register contains OAH, for 10)

This is the extension to function 1, allowing a string of characters to be input.
The buffer into which the string is input may be from 1 to 255 characters long,
and the address for the input buffer to which register pair DE points actually
contains the maximum buffer size allowed in that input. The next character
will, when input is complété, contain the actual numbers of characters from
DE +1 (where the actual length is) to the end of the string. If no carriage
return/line feed sequence isdetected before 256 characters have been input,
the 256th is ignored, and the function terminâtes with the buffer full, and 255
in both the first and second byte.

In versions 2.x+ , ali the line editing commands described at the end of
chapter two are suported by this function - which was not the case for earlier
versions. Also, in earlier versions, the line editing commands which did
operate and which returned the cursor to the start of line, returned to the
actual line start - column 0, whereas in version 2.x +, the cursor returns to the
position under the first input character - after the position of the 'prompt'. If
the buffer already contains the input values when the function 10 is called, it
may end with a 'null' (binary zéro), in which case further input charcters can
be added. If it ends with a 'linefeed' or 'return' (Λ J or~ M), the string can be
edited. Pressing 'return' accepte the string as it is at that point. In version 3.1,
if you are using it unbanked, the edit is normal, but in banked versions, there
are additional edit characters.

Function 11 - Get Console Status. (C = 0BH)

This allows a program to inspect the console input port to see if a character is
there or not, before issuing a 'read'. If the content of Register A is FFH, then
there is a character waiting. Normally, register A contains 00H if there is no
character waiting. If you wantyour program to run until a character istyped -
this is the command you use to keep checking the console status. If you used,
say, function 1, the program would besuspended until an inputtook place. In
version 3.1, the 'character waiting' signal is01 H (not FFH). Also, in3.1, you

231

CP/M The Software Bus (a programmer companion)

can set the console status to accepta Conly, and in that case, only the^ C will
return the 01H in A.

Function 12- Return version number. (C = 0CH)

In CP/M 1.4, this was the 'lift head' function which actually did nothing
except putOOOOH into register pair HL. Now, in versions 2.x +, the registers
H and L contain values to indicate which version of CP/M or MP/M you are
using. If you find 00 and 00 in the registers, your program is running under
version 1.4, and you cannot use the random file access functions of 2.x +. If
you know in advance that your program may be required to run under 1.4,
this check will enable you to switch to code which does not use any of the 2.x
functions.

The actual values returned are 00 in H for CP/M and 01 in H for MP/M.
Register L contains 00 (aswesaid) for versions before 2.x, and contains 2nH
for later versions. If L contains22H, you are running under version 2.2, and if
it contains 31 H, you are running under CP/M Plus (version 3.1).

Functions 13 ff.

These functions, under 2.x +, use a reserved area for directory operations,
which does not affect the 'write buffers'. In 1.4 directory operations did
affect the write buffers. (Functions 17 and 18 are an exception to retain
compatibility upwards from 1.4)

The File Name Table was described under the directory entry section in
Chapter 11, and the entries in the File Control Block are exactly the same as
the entries described for the disc directories except for the first byte, which
contains a drive code in the FCB, not the Entry Type and User number. (If the
user number was not current, there would be no FCB - because you cannot
manipulate a file which is not in your curent user area, without skull-duggery.)
The drive code in the first byte is slightly different from ali other drive code
entries in other places, in that OOH means the default drive, which is stored in
the system parameter area inthefifth byte (04H). Values01H upto 10H take
the meaning A: to P:. Watch this one, because in byte 04H of the SPA and
elsewhere, values OOH to 0FH take the meanings A: to P:. The one or three
byte extensions to the directory entry (according to version) are as described
in Chapter 11.

232

Chapter 13 Using the FDOS

A summary of the FCB contents is included here, for easy reference.

Décimal Hex Content
0 00 Drive code
1-8 01-08 Filename
9-11 09-0 B Filetype
12 OC Extent number (used during I/O)
13 0D not used
14 0E n/u in 1.4 - part of ext count in 2.x +
15 0F Record count (how many in this extent)
16-31 10-1 F dise map of block utilisation
32 20 current sequential read/write record number
33-35 21-23 Random record number (0-65535) with 21
containing the lower byte of the number, 22 the higher, and 23 acting as
overflow.

Function 13 - Reset disc system.

This resets dises to Read/Write status, and is familiar to MBASIC
programmers as RESET. It allows change of disc(s) and re-logging of new
one(s) while a program is running, so that ali dises will accept 'write', but
without system re-booting. Under 3.1, if you are in CP/M, re-logging is
automatic on disc access, but you still need this function within a program.

Function 14 - Select Disc.

This ought to be called 'Select Drive'. The value in register E when this
function is encountered is placed in the SPA in byte04H, and the directory of
that drive (0 = A:,1 = B: etc) is activated. If the disc medium is changed, with
no subséquent reset, boot etc, then any access to that drive will perform
function 28 (see below) and the drive will be set to Read Only. An attempted
write operation will be blocked.

The value 00 H in the first byte of an FCB tells FDOS to look in byte 04H for the
drive code. Booting the system sets byte 04H to 00H - drive A:

Function 15 - Open File.

This is 'open an existing file'. (Seefunction 22 for 'open a new, previously
unknown file'.) The directory of the referenced disc is brought into the

233

CP/M The Software Bus la programmers companion)

transient buffer in the SPA (bytes 0080H onwards), one 'record' (that is 128
bytes, or four directory entries) at a time, and the filename and type are
compared with the filename and type in the FCB set up by the programmer (or
in some cases CCP). "Wild card" characters (the '?' or 3FH) in the FCB match
any character. If a match is found, the offset in units of 32 bytes is returned in
register A. (If the third entry in the particular record in the SPA matches, then
register A will contain 02H.) The offset is called 'directory code' in the CP/M
manuals, and has to be used to get at the directory entry like this -

Address of directory entry = 0080H + 'dir code'* 32

If the disc directory does not contain a file match, the search is abandoned,
and register A contains 255 (FFH).

When a match is found, the disc map is copied into the FCB in memory. If
your program is going to start reading from the first record - sequential read -
make sure that the 'current record' pointer is set to zéro. (Byte 20H.)

Note that in version 3.1, if the file is password protected in read mode, the
correct password must have been put into the first 8 bytes of the DMA or
must have been set as the default password. Also, if the current user is not 0
(zéro), and the file is not found in the current user number, user 0 is also
searched. If you find the file under user 0, when you were in some other user,
you can only read from the file, not write to it. Access time and date are
recorded for the file (extent zéro only) if those were required by the CP/M
INITDIR command.

Function 16 - Close file.

This will close any file which exists - but is not strictly necessary for files from
which you have only read. It is essential for anyfile to which you have written.

As for function 15, a failure to find the file résulte in FFH being returned in
Register A, and a match both returns the offset multiplier (see fn 15) and
copies the FCB from memory onto the disc.

In version 3.1, you can set one of the interface attributes (f5') to 1 instead of

234

Chapter 13 Using the FDOS

zéro (normal) and this will update the directory with the State at that time, but
will leave the file open.

Function 17 - Search for First

This function will search for the first file in the directory of the specified or
default logged drive (specified in the FCB) which matches the name and type
in the FCB. Any '?' replacing a character matches any character in the
directory.

If a match is found, the offset multiplier (see f n 15) is returned in register A but
no other action is taken. The file is not opened.

If no match, then 255 is returned in A.

If the drive code in the FCB is a '?', then the search takes place on the default
drive (indicated in SPA byte 04H) and matches any file of any user number. If
the drive code is a '?', then the extent number (byte OCH) is not zeroed -
otherwise it is.

You must usefunction 17 beforeyou use 18. Thisfunction'initialises' the next

one.

Function 18 - Search for Next

This is exactly like function 17, except that it carries on the search through the
directory from the last match found. A function 18 is assumed to bepreceded
by a function 17.

Function 19 - Delete file.

This is a directory search, as the previous functions, and searches the records
(each of four entries) which make up the directory of the specified drive ('?'
not allowed for the drive) for any record which matches the FCB name and
type. Any ocurrence of '?' in the FCB (not drive) is allowed to match any
character. If no file is found, register A returns the value 255. For any file that

235

CP/M The Software Bus ia programmers companion)

is found, the first byte of the directory entry is set to E5H (an impossibly high
user number, and the 'format' character) and the record is re-written to the
disc. The delete file command returns the offset multiplier (see fn 15) of the
last file found and deleted.

In version 3.1, if the attribute f5' is set to 1, the search will be only for XFCB's.
Since non-banked CP/M 3.1 does not supportXFCB's (orpasswords), a call
to function 19 in non-banked 3.1, with f5' set, has no effect.

Function 20 - Read Sequential.

Provided that the FCB addressed has been 'activated' - by a function 15
(open) or 22 (see below) - this command will look at the value in the 'next
record' byte of the FCB (20 H) and use that to read the record from the current
extent at that position. Then the 'next record' byte is stepped on. If the 'next
record' value overflows (exceeds one extent), then it is set to zéro and the
extent number is stepped. The 'next record' byte is then ready to read again if
required.

Register A contains OOH if the read was successful, and a non-zero value if
the read was not successful (eg read beyond end of file).

The record is read into memory at the current DMA address - either the
transient file buffer in the SPA or some other location if you have modified the
DMA.

Since version 3.1 can handle multi-sector reads - the function also looks at
the count (see function 44) for the number of records to be read. (The count
can befrom 1 to 128.)

Function 21 - Write Sequential.

Provided that the FCB addressed in register pair DE has been activated by a
function 15 (open) or 22 (see below) and the file is not R/O, the value in the
'next record' byte of the FCB (20H) will be used as the pointer to the next
record position and the record of 128 bytes, starting at the current DMA
address,is written. The 'next record' pointer is stepped on, and if it overflows
(exceeds one extent), then the next extent is opened, the 'next record'
pointer set to zéro, and ail is left ready for a subséquent write. At this level of
operation, you are permitted to write to an existing file, and the previous
contents of the record are overwritten. Register A contains 00H after a

236

Chapter 13 Using the FDOS

successful write operation, or is non-zero if the write failed because the disc
was full.

If the directory calls for update time/date stamping, and if there has been no
previous write (or 'make') for this file - the time/date stamp is updated.

Function 22 - Make File.

This is the operation to open a file which does not currently exist (or has been
erased) on the specified (or default) disc. FDOS created the file and created a
blank FCB and directory entry, except for the file name and type. You, the
programmer, must ensure that the name is not duplicated. A 'deletefilename'
(see fn 19) will be sufficient to ensure this - and the prior existence or

otherwise of the file will be indicated by the value in register A after the
'delete', if this is useful to you. The content of register A after the 'make file'
will be the offset multiplier (see fn 15), if itsucceeds, or will be255 (FFH) ifthe
directory is full, and the 'make file’ fails. The FCB created is activated as
though the 'open file' (fn 15) had been given, so it is not necessary to 'open'
as well as 'make'.

If the drive has a directory label which requests Création time/date stamping,
then this is performed under version 3.1. Similarly if update stamping is called
for.

Function 23 - Rename file.

You have to put into the FCB the existing filename in the first 16 bytes (as
usual, including the drive and pointers) and the new filename into what
would otherwise be the disc map - the second 16’bytes. The function then
changes the name of the file to the new name, and re-writes the directory
record. If there is more than one occurrence of the filename, ail are re-named
and re-written. The value in register A will be the offset multiplier (see fn 15)
of the last re-name, if successful, or will be255 (FFH) if unsuccessful - name
not found. Again, as with 'makefile' (fn 22), you must take care that the new
filename which you use is unique, not already on the directory.

Function 24 - Return log-in vector.

This enables you to test (with a mask) whether or not a drive is 'logged in'.
The value returned in register pair HL is a binary pattern, where zéro means

237

CP/M The Software Bus (a programmera companion)

'not logged in' and 1 means ’logged in', with drive A indicated by the least
significant bit of L, and drive P indicated by the most significant bit of H.

The appropriate mask with an AND operation will give you a non-zero resuit
if the drive specified by the single 1 bit in the mask is logged in.

Function 25 - Return current dise.

This simply reads location 04H in the Sytem Parameter Area, and places the
value in register A. Zéro is drive A:, 1 isB: andsoon upto FH (15) for drive P:.

Function 26 - Set DMA address.

The DMA (direct memory address) is taken to mean the location of the first
byte of a 128 byte record which is to be written to, or has been read from,
disc. The default location for this, and the location in which the offset
multiplier (fn 15 ff) is used, is byte 0080H, in the System Parameter Area
(SPA). If the BOOT jump instruction is located somewhere other than the
very bottom of memory, the DMA will be BOOT + 0080H.

Using this function allows you to re-direct dise I/O to a different area of
memory, and the new DMA set by this command will remain in operation
until another fn 26, or a cold or warm boot, or a system reset (fn 0). The
address for the new DMA is stacked into register pair DE before the function
is invoked.

Function 27 - Get Allocation vector address.

The disc map which indicates where a file has records on the disc is a subset
of the full dise allocation vector maintained in the memory for each dise
currently logged. You can get the address of the vector for the currently
logged drive with this function. However, although Systems programs use it,
be careful, because if the medium has been changed since the drive was
logged on, although it will be marked 'read only', the disc allocation will not
have been renewed to the new disc directory until a reset or boot has taken
place. That, of course, is why the disc is marked 'read only'. The address of
the allocation vector is found in register pair HL after the function is
performed. Function 14 allows you to change the current default drive to a
different one. To check for R/O, use function 29.

238

Chapter 13 Using the FDOS

If you are using banked CP/M 3.1, the allocation vector could be placed in
bank0. If so, a transient program cannotaccess it. However, there isfunction
46 (see below) which returns the number of free 128 byte records on a disc.
(DIR and SHOW both use fn 46.)

Function 28 - Write protect drive.

This is the command invoked by the STAT n:R/O command (versions up to
2.2) and by SET n:[RO] (version 3.1) and simply sets the drive to read only,
until this is reset - or a boot takes place.

Function 29 - Get Read Only vector.

Two bytes are reserved for a bit map which indicates which - if any - drives are
R/O. The sixteen bits are returned to the register pair HL, with drive A
corresponding to the least significant bit of L, and drive P to the most
significant bit of L. A1 bit indicates that the drive is R/O, a zéro that it is R / W.

These bits are set either by function 28, or by FDOS when you change
medium, and are reset by booting or resetting the drives. You can, of course,
reset a drive to R/O with the STAT (or SET) command.

Function 30 - Set file attributes

In CP/M 2.x, seven high order bits of the characters used for the
filename/type are reserved as file attributes. The seven are the last four of the
name, and the three of the type. We indicated the use of two of the seven bits
earlier, in Chapter 11, under 'File Name Table'. These were the h-o-b of the
first letter of type - which is used as a Write Protect which is not reset at boot
or system/drive rest, and the h-o-b of the second letter of type, which is used
to hold the $SYS attribute. In version 3.1 the h-o-b of the third letter of 'type'
(t3') is the Archive marker.

The other four high order bits are available for your use, if you want to make
spécial use of them - as for example MBASIC does when you SAVE a
program with the P option - protecting it from being listed or edited.

The register pair DE point to an FCB which contains the ufn which you wish
to modify, with the appropriate h-o-b's set. The function searches for a
matching drive/filename/type, and then replaces a found one with the one in

239

CP/M The Software Bus (a programmers companion)

the FCB. The register A returns either an offset multiplier (see fn 15) or 255
(FFH) if the filename is not found in the directory.

The five h-o-b's which are reserved but not used, are for versions of CP/M
beyond 2.x. For example, in 3.1, f6' spécifiés whether or not the last record
byte count isto beset by this function. (f6' = 0 do not set, f6' = 1, set the byte
count.)

Function 31 - Get the address of the disc parameters in BIOS.

The disc parameters are held in a block in BIOS, and the addressOf the start
of that block will be returned in register pair HL. ♦

You may use the values for space calculations or (in 2.2, they are used in
STAT DSK:) for display. You may also alter the values during a transient
program, if perhaps you want to simulate a different dise environment.
However, remember that the BIOS is only re-loaded when a cold boot takes
place - so take care.

Function 32 - Set or Get User Code.

If register E contains FFH, the function will take the value currently in the
record of 'current user' and stack it into register A. This is, as user numbers
are, 0to31 (1FH).

If register E contains any other value then the current user is set to the value of
the least significant five bits of E. (Mod 32 of E, or 'the remainder after
dividing E by 32') Register A does not contain a value after the Set User
function.

Reading and Writing Random Records.

This set of functions was introduced at CP/M 2.0 and allowsyou to specify a
record number in a file and read from or write to it directly. The functions use
the set of three bytes at the end (top) of the FCB. As you will have seen with
the previous read and write functions - the actual disc access is a direct one
anyway - but it looks like sequential access, because the mechanism is to set a
record number within extent to zéro, and then step it on as part of the read or
write function. With the Random Record functions, you specify the record
number within file, and the functions do not step the record number.

240

Chapter 13 Using the FDOS

A file must be opened or made first, with the extent set to zéro, so that the file
has a correct FCB and the directory has a conventional entry - although you
do not actually need to put anything into that (or any particular) extent.

This is how the record number is handled. The last three bytes in the FCB
(21H-23H) are used to contain a number in the range 0 to 65535. Byte 21H
contains the least significant bits, 22H the middle and 23H the most
signigicant bits. However - if 23 H is not zéro, the file is full - because each byte
can hold 256 values, and 256 x 256 = 65536.

In fact the third byte (23H) is always zéro, but is used by function 35 (qv). As
you can see, a record number up to 65535 as in version 2.2 gives you access
(with 128 byte records) to an 8 Megabyte file.

One of the aspects of the STAT command, which we discussed in Chapter 3
was the facility to add a 'size' column to the list of file statistics. That size, for
a random file, is the size that a sequentially written file would have been, in
order to reach the record number of the last record. However - if only high
numbered records are written in Random mode - there will be large gaps -
non-allocated block or extents, so the size column will appear unnaturally
large. The space utilisation of a file which is only written in Random mode can
be seen, very roughly, from the différence between the 'Size' and 'Recs'
columns.

Every time you 'read randomly' or 'write randomly', the extent and record
number within extent are re-calculated, and the values recorded. But these
values are not stepped on by the 'random read' as they are by the sequential
read.

You can change from random read to sequential read, if you wish, but notice
that you will always re-read the last record read randomly - and you must do
that, in order to stçp the counters correctly, taking charge of 'end of extent',
for example. We will discuss what happens when you change from one mode
to the other, after we have described the functions.

The functions themselves are these -

Function 33 - Read Random.

The value in the FCB 'last three bytes' is taken as the record number and the
record from that place on the file is written to the DMA location (unless the

241

CP/M The Software Bus (a programmera companion)

file is R/O or the disc is full). The extent and record within extent are
re-calculated.

If the read is successful, then register A will be zéro. If not, there are six error
codes. These apply to random read and write, except for code 5 - so we have
tabulated them once only, here.

Error code
01H

Meaning
You have attempted to read from a block which has not
been previously written.

02H Used during 'write' attempts only. The System has tried to
allocate a new data block, and there are none left.

03H The FDOS cannot close the current extent. Try re-reading -
or re-open extent zéro. If the disc is 'write-protected', (with
or without the 'notch' covered) then you cannot close any
extent, but nor should the error occur.

04 H Seek to extent which has not been created. This is
effectively the same as code 01 but refers to an extent,
instead of a block.

05H This cannot occur in a read, but after an attempted write, it
tells you that the directory is full, and you cannot write to the
new extent, because it cannot be created.

06H Under version 2.x, this will occur when the third (highest)
byte of the address is non-zero. By implication, you have
attempted to write beyond the physical end of dise.

10H
255H

Media change has occurred.
Physical error - refer to reg H for BDOS error.

Function 34 - Write Random.

The content of the 128 bytes starting at the DMA are written into the file at
the position indicated by the record number. If the extent is a previously
unused one, it is allocated before the write takes place.

As for the 'random read', the extent and record within extent are calculated
and recorded, but only of the record actually written - there is no automatic
stepping to 'next'.

Error codes (or OOH for no error) are as above for the 'read'.

242

Chapter 13 Using the FDOS

Function 35 - Compute file size.

This sets the three 'random address bytes' of an FCB to the value one greater
than the highest numbered record previously written. The DE register pair
contain the address of the FCB, as usual, and the ufn in the FCB is used for the
directory sean. It is the 'three bytes' in that FCB which are set by this
function.

If you have a sequential file, and you want to open it and add to the end of it,
(eg COBOL OPEN EXTEND') then ail you need do after opening it is to
perform this function once, and then random write to the file - step the
counter yourself - random write again - and so on.

Take care that you have not written to the file before using this function,
because if you have, you may get a wrong file size. However, since a file does
not have to be open when you use this function, a 'close' will ensure that you
get the correct size.

Function 36 - Set random record number.

A file which is read or written randomly has the 'sequential' counters of
extent and record calculated automatically each time a 33 or 34 is performed.

A file which is read or written sequentially does not have the random record
count calculated automatically. So to change from sequential to random, at a
particular point in the file, you need this function to calculate where you are.

Changing from Random to Sequential and vice versa.

From random to sequential, first. Since the sequential record number/extent
is always kept in step with the last record read or written, changing from
random read to sequential read inescapably repeats the last record read
randomly as the first read sequentially. Changing from random write to
sequential write is equally straightforward, but again the last randomly
written record is re-written sequentially. There is no other way than
performing a read or write sequential, of correctly and automatically stepping
on the sequential counters.

From sequential to random, now. After sequential read, say, you perform fn
36, because (to retain compatibility with version 1.4, not because it is
difficult) the random record number is not stepped on with the sequential

243

CP/M The Software Bus la programmera companion)

ones. Then you can step the counter by one - and off you go -
no duplications. Similarly after sequential write - perform a fn 36, step the
counter and off you go.

Functions unique to Version 3.1 (CP/M Plus).

Function 37 - Reset Drive

Use this in your program to reset one or several drives to R/W.

Function 38 - Access Drive.

This is actually only available in MP/M - it is included here for compieteness.

Function 39 - Free Drive.

As function 38.

Function 40 - Write Random with Zéro Fill.

This is very like f n 34 above, except that a previously unallocated data block is
filled with zéros before the new record is written. Creating a file with this
function allows détection of unused (unwritten) random record numbers (all
zéros). Use of the fn 34 leaves the blocks unchanged from what they were
before-uninitialized.

Function 41 - Test and Write Record.

This is an MP/M function, in which a copy of the original record read is kept,
and compared with the record currently on the disc. If they are the same, the
write takes place. If not, another program has altered the record since the
read took place, and the updating must be repeated on the new record
content. Since only one program can be active at one time with CP/M 3.1,
the test phase is not implemented.

Function 42 - Lock Record.

Again, this is an MP/M function, since only one program can be active under
CP/M 3.1, but it is included in the CP/M set so that programs can be
compatible between MP/M and CP/M environments.

244

Chapter 13 Using the FDOS

Function 43 - Unlock Record.

As function 42.

Function 44 - Set Multi-sector Count.

This is the function which allows you to specify how many 128 byte physical
records make up one logical record - to be read or written with a single
operation.

Function 45 - Set BDOS Error Mode.

There are three modes in which BDOS errors can be handled. In the two
'Return' modes ('Return' and 'Return and Display'), a BDOS error is noted in
register H, and Control returns to the program, instead of the 'default' mode in
which the program is terminated. The 'default' and 'Display' modes both
display the error at the console.

Function 46 - Get Free Disc Space.

After this function, the first three bytes of the DMA buffer contain the count
in binary of the free sectors on the drive specified in E.

Function 47 - Chain to Program.

Before giving this function call, a command line must be set in the default
DMA buffer, and it must end with a OOH (null). This enables Control to be
passed directly to another program without re-booting.

Function 48 - Flush Buffers.

If you have any internai blocking or de/blocking buffers, this empties them
onto the file. You can also 'Purge' the buffers to ensure that a file 'read after
write' actually reads the file, not merely the buffer content.

Function 49 - Get/Set System Control Block.

This-unlikemostotherfunctions-isin CP/M3.1 only-andisnotin MP/M,
for example.

245

CP/M The Software Bus (a programmers companion)

The System Control Block (SCB) is 100 bytes in the BDOS containing flags
and data used by the BDOS, the CCP and other parts of the System. You
access it, with fn 49, through a parameter block which carries the necessary
offset and whether a word or byte is being set, as well as the new value (set).

Your CP/M 3 Programmers Guide has the table of offsets and the meanings
of the different values.

Function 50 - Direct BIOS Calls

This allows you, again with an offset in a parameter block, to call BIOS
directly from your program.

Function 59 - Load Overlay or Résident System Extension.

Transient programs which have an RSX header in them can use the program
load function. The RSX header forces the loader to remain résident after the
load.

Function 60 - Call RSX.

This isa spécial function to be used when calling RSX's. RSX's filter ail BDOS
calls, and handle ail they can. If they cannot - and there is no other RSX
résident that can, the call is simply passed through to the BDOS.

Function 98 - Free Blocks.

If there are any blocks which have been allocated as a resuit of a write
operation, but have not been recorded in the directory, this function returns
them to free space. The CCP uses this call after a warm start so make sure
that you close your files - particularly if you have written to one or more -
before using fn 98 or before re-booting.

Function 99 - Truncate File.

If you have a file which you want to shorten for some reason, then make sure
it is closed, that there is data in the region where you want to truncate to, and
set the random record number of the record you want to be the last in the
FCB. Then fn 99 will perform the truncation for you.

246

Chapter 13 Using the FDOS

Function 100 - Set Directory Label.

Once you have used the CP/M 3.1 INITDIR command, an SFCB is written in
as every fourth directory entry, ready for time/date stamping and password
protection. Each disc has a label, which indicates what form the date/time
stamp and password protection is to take. This function writes that label onto
the disc.

Function 101 - Return Directory Label.

If you use this function, you get the value of the specified disc label in register
A. (Provided there is such a label..)

Function 102 - Read File Stamps and Password Mode.

This refers to the files - not the disc. After the call, the FCB will have the
password mode (read/write/delete) marked, and will have the time/date
stamps from that file. Note that you cannot have passwords in a non-banked
CP/M 3.1, so the password mode will always be zéro. In a banked system,
the password mode will be zéro if you have not set the mode.

Function 103 - Write File XFCB.

This function writes a new XFCB or updates the old one. If you use the
function in non-banked CP/M 3.1, it will always fail, because there is no
password protection.

Function 104 - Set Date and Time.

After you have set up four bytes with the date and time in the correct format,
you can use this function to set the system time and date to the values in the
four bytes. These values will be used in all subséquent time/date stamping -
the clock runs, of course, from the moment this function is complété,
starting at zéro seconds.

The first two bytes (0 and 1) contain a 16 bit binary number which is the
number of days since January 1st 1978. The next byte is two BCD digits of
Hours, and the fourth is two BCD digits of Minutes.

247

CP/M The Software Bus la programmera companion)

Function 105 - Get Date and Time.

This is the opposite of fn 104 - the date/time are put into the four bytes
starting with the address you specify in DE.

Function 106 - Set Default Password.

Tell the System where the password is (address in DE) and whenever you
subsequently try to manipulate a password protected file, both the DMA and
the default password are checked. If either contains the correct password,
access is permitted. So this function allows you to set up the default.

Function 107 - Return Serial Number.

The first 6 bytes of the BDOS - as we said in the last Chapter -contain the
serial number of the particular copy of CP/M you have. You can interrogate it
with this command.

Function 108 - Get/Set Program Return Code.

If you are running a batch of jobs - or chaining programs - you can set or get a
return code which contains an error code or value. The CCP will set the return
code to zéro, unless you chain programs, bypassing the CCP.

Function 109 - Get/Set Console Mode.

The Console mode is a 16 bit parameter which contains information about the
way the console functions under certain conditions. This was mentioned
before in Function 11. See your manuals for the values of the various bits and
their effects.

Function 110 - Get/Set Output Délimiter.

Function 9 (print string) expects a $ sign as the string terminator, unless you
change the expected délimiter with this function. You can see what the
current délimiter is by using the 'get' facility of this function.

Function 111 - Print Block.

While function 9 prints a string to the console from a specified location, this
prints a string identified by the Character Control Block specified. The

248

Chapter 13 Using the FDOS

différence is that the first two characters of the CCB are the address of the
character string, and the second pair are the length of the string. No délimiter
is assumed.

Function 112 - List Block.

This is exactly like fn 111, except that the string is directed to the LST device.

Function 152 - Parse Filename.

Since filenames under 3.1 can have drive, name, type and password, with a
whole range of délimiter characters with spécial meanings, this function is
used to 'unpack' the filename and initialise the FCB accordingly.

13.3 Summary.

You now have the full set of calls to FDOS - the ones which are performed by
routines in BDOS - the standard CP/M ones - and the ones which may need
some spécial routines in BIOS instead of - or in addition to - the ones provided
in the skeleton BIOS. Each of the calls requires a numeric value in register C -
the number of the function. Many also requirea valuein Eoran address in DE,
or return an address to HL, and most single byte replies are found in register
A. It may be worth noting that for compatibilty between 1.4 and 2.0+ ,
register A isalways returned equal to register L, and similarly B = H. Version
1.4 and earlier only expected the responses to be in A and B or the BA pair.

The wide range of extra functions available under 3.1 is somewhat restricted
if you use 3.1 in an unbanked memory. With the banked memory, you can
have bigger programs, too, since a single program may have access to up to
60 K bytes of TPA.

249

CHAPTER FOURTEEN

Using the BIOS.

14.1 Fundamentals.

This is not a 'fondamental' Chapter - since it is concerned with assembler
programming access to the actual routines in the BIOS - the part of CP/M
which is normally produced by the hardware manufacturer or supplier. The
Chapter starts with a discussion of the early problème which made
programmer access to BIOS a useful feature, explains the standard approach
to this, and gives detailed guidance as to the method and results of the
approach. Thisapplies, of course, totheearly versionsof CP/M upto 1.4. With
later versions up to 2.2, the method needs to be modified, so a modified
method isexplained, using a BIOS jumptable. With version 3.1 (CP/M Plus),
there is a direct call to the BIOS contained in the functions which we
discussed in the preceding Chapter.

The remainder of the Chapter is concerned with various facilities which you
will find useful under versions up to 2.2, such as access to ali the peripherals
implemented in BIOS - not only the four apparently available. Access to, and
the meaning of the disc parameter tables and the disc directories is explained,
with the code needed.

14.2 How to call BIOS routines.

Since the BIOS is only included as a skeleton by Digital Research, for
completion by the hardware manufacturer or supplier - or some sofware
house with the need and the skills - it came as something of a surprise to
Digital that programmers did actually want to access the BIOS routines
directly from their programs, without being restricted to the functions
available through FDOS calls. Therefore, there was no convention in the

250

Chapter 14 Using the B/OS

original 1.4 manuals. As a result, everyone used their own method -
sometimes rather tortuous - and not everyones method worked if a
MOVCPM or a different version of CP/M were used. Now, however, the
routine which Digital themselves use - or one very close to it - is in common
use. Here it is, called BIOS -

BIOSjENTRY TO THIS SUBROUTINE HAS OFFSET IN DE
LHLD 0001 H ;GET BASE ADDRESS FROM SPA

PUSH D
DAD D ;ADDTHEOFFSETYOUPLACEDINDE
POP D
PCHL ;AND JUMP TO THAT ADDRESS

Note that this works well with - but only with - version 1.4.

It may be relevantto note why there was any confusion. First, as we said, the
BIOS is unique in CP/M, and is one of the reasons why CP/M has been
successfully implemented on so many machines. Digital Research have
provided the 'skeleton' - but have written relatively few complété BIOS's.
CP/M is an operating system for computers with any of the following
processor 'chips' -8080,8085,8086,8088 orZ80. Thisdegree of promiscuity
makes it essential that ail I/O to and from CP/M is channelled through the
BIOS - leaving the BDOS, the CCP, in fact ali the résident and transient parts
of CP/M absolutely standard.

So that BDOS (FDOS if you like) and BIOS can communicate effectively
there is a jump table sited in the base of BIOS - which is in the top of the
memory, as we indicated in Chapter 11. Access to BIOS is through a chosen
element of this table - the 'jump vector'. The actual address of the table will
vary according to the BIOS and the size of memory (or the size used by the
version of CP/M then résident I).

Most programmer activity is handled quite adequately by standard FDOS
calls with the set of functions we described in the previous Chapter.
However, there are occasions when this is not enough. For example, a
programmer trying to implement a 'password' entry, without echoing the
entry from the keyboard to the screen, could not do that with the functions in
CP/M 1.4. Implementing a database program which bypasses the standard
CP/M relative sector addressing - whether for speed or simplicity - needs
direct BIOS entry. Some directory manipulations are just not possible

251

CP/M The Software Bus (a programmers companion)

without absolute sector addressing. It is even possible to use a different dise
operating system which uses BIOs only, provided that BIOS is accessible.

The routine we spelt out on the last page is the one which is in, for instance,
SYSGEN, which accesses BIOS directly. Now we have to list out for you the
values which you should stack into register pair DE, in order to get at the
routine you want. Notice that the offsets ail relate to the address contained in
the system parameters at location 0001H and 0002H. This, as you will know if
you have been with us so far, is the address of 'warm boot'. Location 0000H
contains a C3H (JUMP) instruction, and the two bytes following are the
address to which the JUMP takes place. Ail we are doing in the routine,
therefore, is taking the 'warm boot' address, adding an offset address to it -
which takes us directly to the jump vector we want - and so to the actual
routine we want in BIOS. Notice that whatever size each routine is, in BIOS,
that 'jump vector' must be correct, because FDOS uses it and so do routines
like SYSGEN. Incidentally, if you are going to access the BIOS - it is a
convenient convention to use the actual names of the BIOS routines in your
program - because this makes your program intelligible to others -
communication !

14.2.1 Where the BIOS routine calls are.
The table of offsets, with the CP/M routine name and a description of the
CP/M 2.x routine follows here -

Offset Name Routine

-3 BOOT (Cold Boot) This routine is put in for completeness,
though you must never access it. The cold start
loader is the only routine to access BOOT. If
implemented, it sets the IOBYTE in the TPA to its
default value and prints the sign-on message.
BOOT may also initialise the hardwade
components of the system. In common with
WBOOT, the jump table and the rest of the
parameters in the TPA (page 0 of memory) are set,
CCP, BDOS and BIOS are loaded, and the routine
transfers Control to the CCP, ready for a keyboard
input. If you have set up your own automatic
sign-on system, (see next chapter), this will be
entered.

252

Chapter 14 Using the B/OS

O WBOOT

3 CONST

6 CONIN

If your BIOS keeps the default drive/user number at
the fifth byte (0004 H) of the TPA as is normal - then
by setting a value in there, you can dictate which
drive and user is to become active when CP/M is
loaded. (If the byte is 'null' - all zéro bits, this is user
0, drive A, as we explained in previous chapters.)

(Warm Boot) This reads the CCP and the BDOS
from the system track(s) of the disc. In CP/M 2.0
and following versions, the writer of the BIOS can
specify the number of reserved tracks used for this
purpose. Although the system is normally read off
drive A the BIOS can be altered to warm boot off a
different drive. The 'stack' is reconfigured in the
TPA, and Control passes to the CCP. The BIOS sets
register C to the default drive/usr before jumping to
the CCP. The CCP reads the content of register C
on entry and sets the logged drive accordingly. In
CP/M 2.0 +, the top four bits of register C hold the
current user number after the 'set logged drive'
routine.

(CONsole STatus) This is the function 11 routine
exactly. If the currently defined console (CON:)
device has a character waiting, CONST returns
with -1 in the A register (OFFH) - otherwise it returns
with 0 in the A register. Unless speed is absolutely
essential, use function 11 rather than addressing
this routine directly.

(CONsole INput) This was a very useful routine to
use in versions 1.4 and earlier, because it gave the
only way of taking a character from the console
input, without console output écho. In fact, it was
for this reason more than any other that direct
BIOS calls were used in application progams. The
routine when entered, loops, polling the keyboard
or console status until a character is detected, then
puts it into the A register, and returns. The
character does not appear on the console. Note

253

CP/M The Software Bus (a programmera companion)

9 CONOUT

12 LIST

15 PUNCH

18 READER

21 HOME

that the system is completely blocked until a
character is entered, once you have invoked this
routine.

(CONsole OUTput) The character in register C is
output to the console. Some BIOS's may zéro the
parity bit as part of this function. FDOS function 2 is
the same except that function 2 will sent the
character to the printer as well, if λ P is in operation,
whereas this routine will not écho to the printer.

(Write character out to LST: device) This routine
sends the character in A to the current LST: device -
usually the printer. It assumes that the character is
in ASCII, with the parity bit zeroed, but does not
alter the character, thus allowing graphies or other
spécial characters through unchanged. This is
identical with function 5 - so use that instead.

(Write character out to current PUN: device) Since
'punches' are not common on today's micros, you
may find that this function is not even implemented
in your BIOS. If it is, it will usually access a spécifie
port. In any case - it is identical with function 4

(Read next character from RDR: device) As with the
'punch', this was more used when a paper tape
reader was a common input method. The character
is retumed in A. The parity bit on the character in A
is set to zéro. If the end of file on the reader has
been reached, * Z is returned in A. Just as PUNCH is
function 4, this is function 3, in the list of FDOS
calls. If the function is not implemented, the BIOS
should return a λ Z.

(Move the head to track 0) This was originally
intended to be used to move the head physically to
track zéro, and calibrate the disc controller.
Currently most BIOS's perform the calibration either

254

Chapter 14 Using the BIOS

either through the disc select routine, or as part of
the physical READ or WRITE.

HOME has an important function as part of the
deblocking algorithm. It is called whenever the
directory is scanned from the beginning. If
deblocking is not used, the HOME may simply
return. Some versions of SYSGEN may require a
HOME call to be translated into a call to SETTRK
with register BC set to zéro.

24 SELDSK (SELect DiSK drive) The contents of register C are
used to set the currently selected drive. 0 = A,1 = B
etc up to 15 = P. The routine returns the address of
the disc parameter header in HL, or returns zéro in
HL if the drive to be selected does not exist. This is
accessed through FDOS call 14. The BIOS should
validate the value in register C against the allowed
range. In versions after 1.4, the SELDSK command
also passes a bit in register E to indicate whether or
not this is the first time the drive has been selected
after a warm boot or a disc reset. If the least
significant bit (bit 0) of E is a one, the drive in C has
already been selected. If the bit is a zéro, the drive
has not been selected since a reset/boot. The
SELDSK function may use this bit to carry out
initialisation of the Disc Parameter Block or Disc
Parameter Header. The bit is also used to initialise
the deblock buffer for a 'first time' select.

27 SETTRK (SET the stated TRacK number). This routine
selects the track to be used for a subséquent read or
write to disc. A valid track number must be in
registers BC before you enter the routine. (0-76 on
a standard 77 track IBM single sided 8" disc.)

30 SETSEC (SET the stated SECtor number) This is the only
way, in CP/M, to set the sector number for the next
read/write. The sector number must be in BC, and
must be valid. (1 - 26 on the standard system.)

255

CP/M The Software Bus (a programmers companion)

Naturally, you will use SETTRK, SECTRAN and
SETSEC together before a read or write for which
you do not intend to use the FDOS routines. No
commun ication takes place with the disc drive
controller when these routines are used - the heads
are not positioned. The communication is made
when the actual read or write is given. Ideally, if the
Digital Research de-blocking algorithm is used,
SETSEC should reduce the sector count by 1 (see
SECTRAN below).

33 SETDMA

36 READ

39 WRITE

42 LISTST

(SET the Direct Memory Access address) The
register pair BC must be loaded with the base
address of the 128 byte buffer which is to be used
for all subséquent dise transfers. Until you change it
again, the DMA will remain at the value set here.
The default buffer in the TP A starts at 80H.

(READ the sector selected by the last SETTRK and
SETSEC into the 128 byte buffer starting at the
address set by SETDMA) If the read works, the
accumulator will be setto zéro. If itwent wrong, the
accumulator will contain 1.

(WRITE from the buffer starting at address set by
last SETDMA to the track and sector set by
SETTRK and SETSEC) If the write was good, the
Accumulator will contain 0, if not it will contain 1.
Under CP/M 2.x, the deblock information must be
passed in register C when the WRITE function is
called.

(Return the LIST device STatus) This routine was
not specified for BIOS routines before version 2.0 -
but it is useful. It returns in A the value OFFH if the
assigned LST: device is ready to accept a
character, and it returns zéro if not. This is used by
such routines as DESPOOL and Wordstar, which
can perform quasi 'background' printing. (You can
be running a foreground program at the same time

256

Chapter 14 Using the BIOS

as a print routine. For example in Wordstar you can
fill the 'waiting' time while the keyboard is being
used with LIST commands. This slows down the
foreground program - since with two devices
competing for disc access, there is often a great
deal of lost time during head movement. It also
makes the print rather 'spasmodic'.

45 SECTRAN (TRANslate the logical dise address to the physical
SECtor address). This routine is only specified and
only necessary in CP/M versions 2.0 +, where the
'skew' table was moved from within BDOS to
within BIOS. This made alteration to hard dise, or
to 5 1 /4" drives much easier. SECTRAN should be
called before any SETSEC call. SECTRAN takes the
logical sector number in DE and the address of the
skew translation table in DE, and produces the
physical sector in HL. If the skewing is contained on
the disc, SECTRAN should return the physical
sector = logical sector + 1. In practice, most
BIOS's return physical sector = logical sector, as
the deblocking algorithm supplied by Digital
Research expects the sector numbering to start at 0
- whilst the normal dise controller begins with sector
1. This can cause problème, and the best way out is
for the SETSEC to reduce the sector number by one
for the deblocking algorithm. Then, after
deblocking, the physical sector is incremented by
one. However, because of the variations, any
program making direct BIOS calls for READ or
WRITE must use SECTRAN, if only to détermine the
base sector numberfor use with SETSEC.

48 + +
CP/M 3 has an extended BIOS table which is not of
real use to the programmer. Some implémentations
of BIOS contain only the essential éléments listed
above. Others contain various enhancements unique
to the particular machine or range of machines.
These extra routines are not accessed directly by
CP/M, and therefore are always addressed by the

257

CP/M The Software Bus ia programmera companion)

always addressed by the programmer directly. The
usual way of addressing them is simply to extend
the BIOS jump table that we have been inspecting,
so that they are accessed as though they were
standard BIOS routines.

14.2.2 BIOS extensions.

Some of the common extensions to the BIOS are these -

Provide additional console I/O editing
Provide a clock
Insert a 'cold start' command
Provide I/O port Control (eg baud rate/char size/parity)
Read n sectors with incrementing DMA
Write n sectors with incrementing DMA

The machine on which this Chapter is being written, under Wordstar, has the
second, third and fourth of that list, but not the others.

14.2.3 BIOS enhancements.

Often, there is a trade-off between what might be désirable, and what is
reasonable in view of the fact that the more BIOS you have, the less available
TPA there is. In fact, every effort is made to write very 'dense' code -
achieving the maximum in the fewest instructions - so that many Systems
have substantially extended the scope of the BIOS and implemented ail kinds
of tricks and devices to speed up a disc-bound machine - or to implement a
device that was neither invented nor even envisaged when CP/M was
written.

These are some of the common enhancements -

Implement the IOBYTE
Implement interrupt on peripheral I/O
Provide I/O handshaking for high speed data transfer
Implement a double density dise drive
Implement a double sided dise drive

258

Chapter 14 Using the BIOS

Change the record size for a 5 1 /4" disc drive
Implement a Winchester hard disc drive
Implement a pseudo-disc using memory banking (see MDISC, Chap 11)

14.2.4 Before and after CP/M 2.2.

Inadapting the BIOS torso many different hardware contexts CP/M upto2.0
began to lose some of its uniformity. This was obviously undesirable, so
Digital Research were pressured by their own success into producing version
2.2. Before 2.2 two main techniques had evolved. Either the BIOS was so
written that CP/M could believe that it was still handling the conventional
peripherals, or CP/M itself was modified, either by direct patches, or by
inserting a BIOS routine that performed the patch on booting.

When 2.2 came out, it was much easier to differentiate between the 'logical
machine' of CP/M and the actual disc and other hardware. The range of
possible enhancements and extensions was increased without loss of
standardization, and even the 'basics' were simpler to implement, because of
the increased clarity of the distinction between 'logical' and 'physical'
machine.

However, having said that, it is not easy to make spécifie, universally
applicable comments about the BIOS in the way that one can about, say, the
FDOS calls. All responsible hardware manufacturers (which means that the
Authors have corne across exceptions) supply listings of their BIOS, so that
the programmer can make use of the BIOS facilities. You can always get
partial information about the BIOS with DDT, but that does not give you quite
as much useful information as an assembler listing would. If you are going to
make any use of the BIOS extensions, or the enhancements by accessing
BIOS directly in your programs, study the listings.

14.2.5 BIOS calls.

There are several approaches which you can take to accessing BIOS routines
directly. The important points are that your code must be compréhensible,
and must not crash if the memory size is altered. (MOVCPM etc.) If you are
only intending to access a few of the BIOS routines, then it is adéquate to use
the method we covered above. For instance, if you are going to use the

259

CP/M The Software Bus la programmera companion)

SETTRK routine in BIOS, write the following routine (also called SETTRK as
we said earlier) into your code.

SETTRK: LHLD
LXI
DAD
PCHL

0001H
D,001BH
D

That subroutine willthen access the BIOS SETTRKforyou. (ThevalueOOl BH
is 27 in décimal - the required offset - see table above.)

However, if you are intending to make extensive use of the BIOS routines,
rather than coding up every access separately, you can construct a 'BIOS
Jump Table' of your own. A simple block move will do what is necessary. For
example - this routine sets up the base address and offsets, and moves the
appropriate one into the required registers.

JMP
DS

GETTAB
42

WBOOT: EQU $
CONST: EQU WB00T+3
CONIN: EQU WBOOT+6
CONOUT: EQU WBOOT+9
LIST: EQU WBOOT +12
PUNCH: EQU WBOOT+15
READER: EQU WB00T+18
HOME: EQU WB00T + 21
SELDSK: EQU WBOOT+ 24
SETTRK: EQU WBOOT+ 27
SETSEC: EQU WBOOT+ 30
SETDMA: EQU WBOOT+ 33
READ: EQU WBOOT+ 36
WRITE: EQU WBOOT+ 39
LISTST: EQU WBOOT+ 42
SECTRAN: EQU WBOOT+ 45

GETTAB: LXI D,WBOOT

LHLD 0001H ;L
• D

MVI
/D

B,48 ;LO>
MOVEIT: MOV A,M

;LOAD THE ADDRESS OF
;THE TABLE BASE IN DE
AD THE ADDRESS OF BIOS
OT IN HL
D BYTE COUNT INTO B

260

Chapter 14 Using the BIOS

STAX
INX
INX
DCR

D
H
D
B ;UNTILALL BYTES HAVE BEEN

;MOVED
JNZ MOVEIT

With this table set up, the subroutines named can then be called just as ifthey
were in your TPA.

14.3 Stack Requirements.

CP/M BDOS function calls consume one level of the stack - but direct BIOS
calls vary in the amount of stack they require. Some of the more advanced
BIOS's with deblocking and/or interrupts and/or direct screen memory
mapping may require a large stack.

In general, the stack provided by the CCP cannot be guaranteed to be
sufficient in ail instances of direct BIOS calls. It is safest to provide at least 24
levels of stack in any portable software wherever a direct BIOS call is made.

14.4 Interlacing.

We have commented on skewing and extent folding earlier - but this is an
appropriate point to re-introduce the topic of skewing. If you step through a
program, checking the sector numbers as you do so, you'H find that the
sequence appears jumbled. This is because in the early days of CP/M, which
werealso the early daysof dises, the IBM standard wasadopted. At that time,
to attempt to read two sectors which were next to each other would have
meant waiting for a full révolution of the disc,because the controller had not
time to accept end of sector and re-initiate read in time for the next So the
software device called interlacing was created which, for CP/M, means that
there is a standard 'skew' of six sectors between two logically contiguous
sectors in a file. Read sector 7, say, and the sector which contains the next
data for that file might be 12.

This form or sector skewing is often called 'soft' skewing, because it is
performed by the software. With sectors numbered 1, 2, 3, etc and the

261

CP/M The Software Bus (a programmers companion)

standard 6 sector skew, the translation from logical sector to physical is like
this -

LOGICAL 0 1 2 3 4 5 6 ...
PHYSICAL 1 7 12 19 25 2 8 ..

More recently, hard skewing has been adopted on many dises - except th IB M
standard. With hard skewing, the skew is written on the disc in the sector
number held in the index for each sector. Adjacent sectors on the disc may be
numbered 1,7,12,19,25 etc. The SECTRAN will then perform the logical to
physical translation like this -

LOGICAL 0 1 2 3 4 5 6 ...
PHYSICAL 1 2 3 4 5 6 7 ...

In both the examples above, the sector is read from the same position on the
disc.

The advantage of 'hard' sector skewing is that the skew can be altered
without affeeting the compatibility of the disc. A 'soft' sector skewed IBM
disc must always have a skew of 6 if it is to be read by another CP/M system.
In contrasi, a 'hard' skewed disc can use any skew without causing
compatibility problems. The skew can then be optimised for the hardware
and the application - to give maximum speed of data transfer overall.

Now, with technology improvements, the speed advantage of 'soft' sector
skewing seems minimal. The standard still exists, but it is there to solve a
problem which has largely gone away - or at least altered significantly. In fact,
one of the reasons for using direct calls to the BIOS may be to avoid the
standard interlacing and test out different 'skew' factors until you find the one
that works fastest. Which may be 'none at ali'. If you are developing database
software, this will be a near-essential.

CP/M 1.3 and 1.4 had the IBM 8" skew table built into BDOS, forconverting
logically 'next' to physically 'farther on'. In subséquent versions, the skew
table was left out, sothatthe writerof the BIOS had to write the skewtable. It
is accessed by the SECTRAN routine, normally called by BDOS. However,
this does mean that the skew on your system may need to be investigated
before you assume any particular 'offset' between logically contiguous
sectors.

262

Chapter 14 Using the BIOS

14.5 The IOBYTE - Input/Output Device mapping.

The IOBYTE is an optional feature in CP/M - is not supported in MP/M or in
CP/M 3.1 - and therefore must not be assumed in any portable software.
However - if the IOBYTE is implemented in your system, and you are not
writing portable software, the IOBYTE is simple but powerful.

The section on the IOBYTE in chapter 11 said this. There are four logical
devices(CON: RDR: PUN: and LST:) understood by CPM. Eachof thesecan
be allocated to one of four values - as we saw in chapter 4 - the four physical
devices available for each.

This byte is considered in four parts, with each pair of bytes in the part taking
values 00 to 11 - four values. As you will see from the table, if bits 2 and 3 are
set to 01, that means that the PUN: device (bits 2&3) is set to PTP: (the
second possible value).

Bits Ref to Values 00 0! 70 77
6&7 CON: = TTY: CRT: BAT: UC1:
4&5 RDR: = TTY: PTR: UR1: UR2:
2&3 PUN: = TTY: PTP: UP1: UP2:
0&1 LST: = TTY: CRT: LPT: UL1:

Clearly, although at any one moment only four physical devices can be
accessed - the four selected by the values in the IOBYTE -the programmer can
readily alter the IOBYTE during program execution, as many times as
necessary.

This table could be used to access a total of 16 different ports - provided that
TTY: on CON: is different from TTY: on RDR: and so on. If there is only one
TTY:, you could access up to 12 devices. Also, in practice, the physical
assignment actually used can vary from that suggested by the names. For
example, a system might assume that TTY: is the default for the logical
device. In that case, CON: TTY: is the console CRT, LST: TTY: is the serial
printer. Alternatively, a system might use the IOBYTE to define the four
physical ports denoted by the IOBYTE values 0, 1, 2 and 3. Since these
variations exist, we can only illustrate, we cannot 'define'. Use the IOBYTE
with caution, until you are sure of the way the system uses it.

The mnemonics for the logical and physical peripherals refer in some cases to
obsolescent devices. It is mostappropriatetothinkof a RDR (Reader) device

263

CP/M The Software Bus (a programmera companion)

as any device which can tramsmit data to the computer one byte at a time.
Similarly a PUN (Punch) device is one which can accept data from the
computer, one byte at a time in a serial stream.

Many BIOS's take advantage of the facilities in PIP.COM (see Chapter 4) by
implementing the IOBYTE. This means that the BIOS contains many more
than the four routines which a single IOBYTE can access. The kind of
connections which are made in this way include plotters, digital tape
recorders, card readers, paper tape punches, Analogue/Digital hardware,
many kinds of data capture device, cash registers, 'floppy tapes', alternative
printers, modems, acoustic couplers and other computers large or small. The
connections can made made much more easily by use of the IOBYTE than
any other way, and also, because the BIOS uses standard CP/M facilities in a
standard way, the software is much more portable.

14.5.1 Altering the IOBYTE.

A simple way to change the IOBYTE would be to put the new values you want
in a byte we'll call NEWBYTE, and do this -

MVI A,NEWBYTE
STA IOBYTE

However, that is more than a little clumsy for two reasons. First, you have to
set up a complété byte, even to change one assignation. Second, the
SYSTEM page should not be altered directly in that way. It should only be
altered through a B DOS call. If you want Independent assignments, then this
is better -

LDA IOBYTE
XRA B ;WHERE B CONTAINS THE FIELD

;ASSIGNMENT IN THE CORRECT BIT
;POSITION, THE OTHER BITS CAN BE
;GARBAGE

ANI MASK ;WHERE THE TWO BITS OF THE DESIRED
;FIELD ARE ZERO, THE OTHER ARE ONE

XRA B
STA
R ET

IOBYTE

264

PIP.COM

Chapter 14 Using the BIOS

An even better routine would use the stack and PUSH and POP from and to
B, using function 5.

The mask for LST: would, for example be 00111111 B or03FH, and the mask
for PUN: would be OCFH and so on. This can be elaborated in the code, so as
to make the whole thing completely automatic. Remember, as we said
earlier, that if you access a BIOS routine or any standard element of CP/M,
use the standard name in your routines which are used in CP/M, because this
will make the logic compréhensible to you (later, when you have forgotten
what you intended) and to anyone else.

14.6 Disc Parameter Block.

You may want to access the disc parameter tables within the BIOS, probably
for the purpose of reading the DPB (Disc Parameter Block) for the current
drive. In CP/M 2.2 (we said earlier that previous versions of CP/M handled
this differently) and later versions, the information is held in a block of data for
each drive. Any program which needs to compute file sizes, access the
directory directly or otherwise discover the précisé details of their drives and
disc formats can do so by reading this block. The block is arranged like this -
we have inserted some typical values for an IBM 8" SS/SD disc -

SPT: DW 26
BSH: DB 3
BLM: DB 7
EXM: DB 0
DSM: DW 242
DRM: DW 63
ALO: DB 0C0H
AL1: DB 0
CKS: DW 16
OFF: DW 2

; Sectors per track
;Data Allocation Block Shift Factor
; Block Mask
; Extent Folding Mask
;Data Storage Max (no. of blocks-1
;Directory Maximum -1
;Directory allocation bit map - Low
;Direct’y allocation bit map - High
; Directory Check Size
; Reserved Track Offset

The size of the unit of disc Storage - a mandatory 1 k in CP/ M 1.4, is calculated
by the expression -

128*(BLM + 1) orby 128*2*BSH

so your program can calculate the disc Storage capacity, just as STAT DSK:
does.

265

CP/M The Software Bus (a programmers companion)

There are default values in program memory - so the most convenient
approach is to move the entire table into memory from the BIOS, ove the top
of the defaults. (In CP/M 1.4, do not use the subroutine, use the default
values.)

Here is a dummy table, and the routine which writes the values from BIOS
into the locations reserved

SPT: DW 26
BSH: DB 3
BLM: DB 7
EXM: DB 0
DSM: DW 242
DRM: DW 63
ALO: DB OCOH
AL1: DB 0
CKS: DW 16
OFF: DW 2
SPD: DW 16

;Call this routine immediately after a BDOS function call 31
;as HL will then point to the base of the current DPB

MVI C,31
CALL 5
LXI D ,STP ;DE points to base of dummy table
MVI B,15 ;now we do a block move (17 in 3.1

LOOP: MOV A,M ; of the whole table
STAX D ; on top of our default table
INX D
INX H
DCR B
JNZ LOOP

And there are the actual values for the current drive in your table, ready for
whatever manipulation you require.

266

Chapter 14 Using the BIOS

14.7 A complété illustrative subroutine.

The code which follows is a routine which includes a BIOS call, because it
needs to. The subroutine either reads the image of the entire directory into a
buffer, or write the entire directory back into the directory track from a
memory buffer. Although the routine itself is quite simple, it may not be
immediately obvious. It uses the fact that BIOS should remember the last
sector or track set. You should also be aware that the BDOS function which
searches the directory alters the FCB given to it as a parameter, and you will
see that the subroutine compensâtes for this. This subroutine only applies to
versions 1.4 and 2.2 - in CP/M 3.1 you cannot rely on the BIOS remembering
the last sector or track. If your software is portable, and you want to use this
routine, you should put in some Iines of codeto test for version number, only
allowing 14 and 22, andto call the BDOS labelled in the first line of this code,
to set the DMA.

;directory ?

BDOS: EQU 0005H
DBUF: EQU 0080H ;default CP/M directory buffer insert

;version test here
PUTDIR: XRA A ;enter here to replace directory from

; buffer
DCR A ;A register is true
JMP ON

GETDIR:
XRA A

;enter here to read directory into buffer
;A register is false

ON: STA PUT ;store A in flag describing operat'n
; required

MVI A,"?" ;make sure first byte of FCB is Ok
STA DUMMY ;and is not altered by any previous call
LXI H,BUF
SHLD BUF.PTR ;initialise buffer pointer
MVIC 11H ;search first function parameter

BACK: LXI D,DUMMY ;specify our FCB
CALL BDOS ;call to 0005H
CPI OFFH ;was it the end of the directory ?
JZ END ;if so, job done
ANA A ;if it referenced first match of sector
CZ MVIT ; then its time to act
LDA DBUF+1 ;are we somehow past end of the

267

CP/M The Software Bus la programmers companion)

CPI
JZ
MVI

JMP

0E5H
END
C,12H

BACK

;then it's time to stop !
;otherwise search again BDOS
; parameter
;and loop again

MVIT: LHLD
XCHG

BUF.PTR

LXI H,DBUF ;Directory window pointed to by HL
;(0080H)

MVI B,128 ;number of bytes to move
LDA PUT ;are we reading or writing ?
ANA A ;set flags
JZ MOVE ;jump if reading ('getting')
XCHG ;if not swap p'ters so info goes other

;way

MOVE: MOV A,M ;do a block move
STAX D
INX H
INX D
DCR B
JNZ MOVE
LHLD BUF.PTR ;bump buffer pointer by one sector
LXI D,128
DAD D
SHLD BUF.PTR
LDA PUT
ANA A
RZ ;return if a read operation
MVI C,1 ;signal a directory write operation
CALL
R ET

WRITE ;do a directory sector write

END: LXI H,BUF
SHLD BUF.PTR ; reset buffer pointer
MVI C,0DH ;reset CP/M to update Directory

information
JMP BDOS ;and return from subroutine

268

Chapter 14 Using the BIOS

WRITE: LXI
D,39

LHLD 0001 H
DAD D
PCHL

DUMMY: DS '????????????' 0,0,0

BUF.PTR: DW 0000H
PUT: DB 00H
BUF: EQU $;set this value to base of buffer as req'd

14.8 Summary.

In this chapter you have considered a mechanism for calling BIOS routines,
using the jump vector in the base of BIOS. You have established what each
BIOS routine in the minimal standard set does, and seen how this set might be
enhanced, and extended. You have followed some useful mechanisms for
IOBYTE manpulation, for accessing the disc parameter tables, and finally you
have seen the use of calls to the BIOS in the case of a routine which has two
entry points, and setsa flag (PUT) to true orfalse for use in the routine. The
routine reads or writes the whole of a dise directory into the memory starting
at a base specified by you in place of the $ sign in the B U F statement at the end
of the routine.

You are now in a position to access the parts of BIOS which we have
identified, and to inspect the listing of the BIOS which your
manufacturer/supplier should have provided, to find out how the standard
requirements have been met, and whetheror not there are extensions to your
BIOS, over and above the standard.

269

CHAPTER FIFTEEN

Configuration

15.1 Fundamentals.

This is a short Chapter, giving general ideas rather than spécifie code.

At this level, when we taik about 'Configuring' your system, we refer to the
facility that is usually provided with the Customised BIOS to select one of a
choice of options. You will find a program called - almost always -
CONFIGUR, on your system disc. You load it like any other transient, and it
displays for you the current State of the BIOS, listing what the choices are,
and which ones have been selected.

The kind of choice you may have - particularly inCP/M2.2and later versions -
covers the items we mentioned in Chapter 14, as well as a number of others.

For example, you may have the choice of having ali 'write to disc' operations
verified. This means that after a sector is written, the system waits until it
cornes round again, and reads it back, comparing what it reads with the
original buffer from which it was written. Only if there is complété agreement
is the 'write' considered successful - anything else will give a system error.
Function 48 (Flush Buffers) in CP/M 3.1, used with the 'Purge' facility, makes
this a very simple operation.

You may have a (battery powered) clock and calendar in your system - or you
may not, but either way you may have the option of a clock display on the
screen - usually top right corner of the screen.

The main configuration sélections you do have to make are those concerned
wih the 'ports' on your particular system. In CP/M 3.1, there are SET
commands which allow you to alter these and other sélections at any time -

270

Chapter 15 Configuration

useful if you have more than one printer, but only one printer port, for
example.

In versions before 3.1, you use CONFIGUR for this. For example, you might
have a port used for the printer, and it might be a 'serial' port. If so, you have
to teli the BIOS how many start and stop bits are to be sent, how many bits
make up a character, whether parity is odd, even or not used, and how fast
the printer expects to recieve characters.

This last is the 'baud rate'. At one time, line speeds were quoted in 'bits per
second'. The idea was that if you could send 100 characters of eight bits down
the line, that would be an 800 'bit per second' connection. And if that was
exactly what you were doing, that would also be an 800 baud connection.
However, not ali the characters sent down a line are 'information bits', there is
always an overhead of some kind. For instance, there are the start/stop bits in
an asynchronous line - and there are 'f il 1er' characters to keep the two ends 'in
step' in a synchronous line. Also - the way that information can be sent down
a line using phase and/or amplitude modulation - means that the actual
capacity of a line may be much higher that the apparent 'bits per second'. The
term 'baud rate' was coined to remove the inconsistency and apparent
inaccuracy of the 'bit per second' values. It means the number of 'changes of
State' per second which are theoretically capable of being transmitted. This is
a much truer measure of information carrying capacity. How it affects you is a
matter of what system and peripherals you are using.

If you have a serial printer, say a 'daisy wheel', then you will be printing at,
perhaps, 45 characters per second. That is 360 bits per second. However,
there is probably much more information than just your printed characters
being sent - so you would be wise to think in terms of at least 600 baud. And
your daisy wheel printer probably has some 'memory' inside it. Fine - now you
can send short bursts of characters, faster, to keep the printer memory filled
up, and to allow the printer to run at full speed without pauses to interrogate
the cpu. So most daisy wheel printers are interfaced with a 1200 baud line.

If you have a matrix printer which actually prints at, say, 130 cps, that is 1040
bits per second - and a 1200 baud line will probably not be supplying the
printer fast enough to keep it running at full speed.

This is ali very general - and there are parallel as well as serial connections, as
well as a wide range of other facilities which you may be able to invoke

271

CP/M The Software Bus (a programmers companion)

through your own CONFIGUR program. We cannot be more spécifie,
because CONFIGUR is, like the BIOS, hardware dépendent. How
CONFIGUR works in practice is again hardware dépendent, but a typical
method of operation is like this.

You load CONFIGUR, and the program takes a copy of the BIOS and holds it
in the transient program area. This will be the version which will be altered,
notthe one in high memory which isactually 'in use’. If your CONFIGUR also
modifies the SPA (bottom page of memory), the CCP or the BDOS, these are
also held in the TPA. When you invoke changes, the changes are made to
that version in the TPA, not to the 'live' versions. When you have made ali the
changes you want to, you will indicate this to CONFIGUR, and the memory
image you have created is written to the System tracks. Then the screen
usually invites you to do a 'boot'. Since you have been changing the BIOS,
principally, and since that is the one area which is not altered by a 'warm
boot', you naturally have to perform a 'cold boot'. This is the 'reset' key - or a
power off/power on sequence, depending on your system.

Now you are working with the 're-configured' version of CP/M.

15.2 CP/M Installation.

The previous paragraphe assume that you have a working version of CP/ M - it
may be at 60 hz instead of the UK standard of 50 hz (the modem name for
'cycles per second') - so the screen may présent an unsteady picture - but at
least you can run through the CONFIGUR options and very quickly have an
appropriate, running system.

However - if your BIOS does not have appropriate routines for the peripherals
you want to drive, then you have to 'patch' the BIOS with those routines.
Even worse - you might bebringing up a new version of CP/M from scratch -
in which case the problem covers a wider area.

The distribution version of CP/ M that is supplied by Digital Research works as
it stands with the INTEL MDS-800 micro development system. We will
consider the two aspects of modification separately- patching the BIOS first,
and then initial installation.

272

Chapter 15 Configuration

15.3 'Patching' the BIOS.

You will have the BIOS code for your system, as supplied (or at least it should
be supplied) by the hardware provided or software house. If you have not -
you will either have to work from the memory image that DDT will give you -
or you will have to get the code.

At least you will have the CP/M system alteration guide. That includes two
versions of BIOS - the MDS-800 version we mentioned above, and a 'skeletal'
version.

If you have your BIOS, then it is no major task to write in the appropriate new
code, and use SYSGEN and MOVCPM to construct the revised version on
the system tracks. There are no 'généralisations' about this task - it is totally
dépendent on your current system, and what you want to do to it.

This is called by Digital Research 'second level régénération' - where you have
a working system, and can use the facilities of that working system to create a
different (working) system using the same dises. However- when you do not
have a working version - then you are into 'first level régénération'.

15.4 First-time installation of CP/M.

If you are constructing CP/M on the same hardware as it will run - then you
need to be able, at the very least, to develop and run assembler code on that
hardware. If you do not even have that facility, then you have no choice but to
generate a working system on some other - disc compatible - hardware.

Assuming that you can develop and run programs, there are two programs
which you need to create first. These are GETSYS and PUTSYS. They fulfil
the rôles of MOVCPM and SYSGEN, in that the first will read the system
tracks into memory - so that you can patch the system. The second
(PUTSYS) writes from memory onto the system tracks, so that you have a
'cold start loader' at the beginning, which will then load the rest of the
system. You will in fact need two versions of GETSYS - one to load the
existing version of CP/ M into memory, and the second to act as the 'cold start
loader', which will be stored at the start of the system tracks, and which will
then 'start' the new system automatically.

273

CP/M The Software Bus (a programmers companion)

The System Alteration Guide (or in MP/M, the User's Guide) which is
supplied by Digital Research will be your start point. In there you will find
minimal versions of both GETSYS and PUTSYS, which will form the basis -
or will at least give you the structure - of your new ones.

Normal practice is to call a new version of BIOS which you have created
'CBIOS' (Customised BIOS). You would - as we described in chapter 8 -
create a HEX or PRL file which can be LOADed or Linked (L80) to give you the
necessary COM file.

It should be obvious, of course, that any such program which you create will
need careful testing !

CHAPTER SIXTEEN

Networking and Multi-User Systems

16.1 FUNDAMENTALS.

Now we are moving into the area of CP/M and its descendants which covers
the sharing of facilities. CP/M, as we have seen so far, is an operating system
which handles a single console, and one task at a time. There can be a
number of 'users' (chapter two ff) but only one can be 'logged on' at once.
CP/M itself, however, is only the first in a family of operating Systems which
have been, and are being developed by Digital.

The family is split into two areas - the operating Systems for 8 bit machines,
and the operating systems for 16 bit machines.

Within each of these, we can consider the following -

Single console, single task, 'local' Storage, (eg CP/M)
Single console, multiple tasks, 'local' Storage, (eg Concurrent CP/M)
Several consoles, each single or multiple task, with local and/or shared
Storage media, (eg CPNET)
Several consoles, one central processor and shared facilities. (eg MP/M)

We have been considering CP/M itself, so far, and this chapter is principally
concerned with Networking and MP/M. However, we will include a brief
description of each system here.

There is 'Concurrent CP/M', for example, which allows a single user at a
singe console to initiate up to three tasks in addition to the one currently using
the console. If the memory will contain sufficient programs, and there are
peripherals to support them, four jobs can share the processor, with Control
passing from one to another according to the current demande. The user at

275

CP/M The Software Bus (a programmers companion)

the console can 'switch' the console to one or other of the running jobs, as
appropriate to the task.

Then there is the area of 'networking', where several Independent
processors, each running under its own CP/M, can share a physical device,
such as a Winchester disc. The processors cannot (unless the protocol has
deliberately or accidentally permitted it) access files of other processors, but
the speed and volume advantages of a Winchester can be made available to
several users, without the need to provide each with an Independent
winchester. There are, as we'll see, other advantages of a network system.

And last there is the full multi-user system, with a central processor handling
several consoles at the same time, and allowing various interactions between
them.

Networking usually means the création of a large file Storage system -
probably a Winchester dise, or several - which contains a processor for I/O
scheduling and Control. Two or more Independent micro computers can then
be connected to the processor/disc system, and can run quite
independently, but share access to the disc. So you have several separate
micros, each of which may have its own 'floppies', but which also has access
to space on the 'big disc'. Each of the micros runs CP/M - in one version or
another.

Multi-user Systems are those which connect two or more terminais to a
central computer, and the central computer does ali the resource allocation
and contains ali the memory for the system. The terminais may be micros -
but more often are simply consoles - a keyboard and screen, say. If a terminal
is a micro - then it behaves like a 'dumb' terminal while it is logged onto the
Multi-user system

16.2 NETWORKING.

As an illustration, we'll describe one spécifie set-up, in which a set of 12
micros share a 20M byte Winchester. What follows is a description of a
typical system - and there are many variations.

The first thing that a CP/M userfinds is that there isa program between him
and CP/M. This isthe networking program. It provides a standard 'protocol'
for communication between the Independent machines and the disc system.

276

Chapter 15 Configuration

CPNET is such a program. It has a range of functions, as we will see, but the
noticeable element to the user is that you have first of ali to identify yourself
with a user name. This will be a name fed to the network program and stored
with others in a file which is only accessible through the 'System Manager' -
the interaction between one specialised user and the network program. The
specialised user is the supervisor or controller of the system.

The user name may be echoed on the screen as you type it. Then you may be
asked for your password. This will have been allocated, as with the 'user
name', by the system manager. Normally the password is entered 'blind' and
the user has to key the correct number of correct characters without any
system response. There will often be a short pause after the correct number
of characters have been keyed, to encourage the 'would-be intruder' to key
more characters than the number required - which could be an error in itself.

Once over the 'user name and password' hurdle, you may be dropped
straight into CP/M, or there may be an alternative system. Naturally, you
choose CP/M. At this point you will have the SPA, the CCP, the BDOS and
BIOS loaded into the memory of your local micro - and the CCP will display
the A> prompt, waiting for your command.

Now you have a perfectly normal CP/M system, used in exactly the way we
have been describing ali through the book. The one différence is that you
now have the Winchester disc.

On the system we are describing - there are many variations between Systems
- the supplier has chosen to call part of the Winchester 'drive A:', to keep ali
the 'system' software on that drive, and to make it 'Read Only' to ali users
except the 'system manager.'By 'system' software we mean CP/M itself, and
ali the transients like PIP and STAT, the editors (ED etc) the compilers and
interpreters, (MBASIC COBOL RUNA etc) and the usual items like CONFIG,
MOVCPM and so on. Ail of that software is on drive A:, and is accessible to
any of the 12 micros (subject to delay if the disc is actually being read at the
time of the request) but none of it can be written to, nor can that drive be
written to.

Again, on this system, user drives have been allocated from D: upwards.
Each user will have been allocated a 'volume' on one or more of the drives
from D: up. These are normally R/W, of course, unless the user alters the
attributes of his/her 'volume' on the spécifie drive using the STAT
commands.

277

CP/M The Software Bus la programmera companion)

Since any of the attached micros can (in this case) have one or two 'floppy'
drives on - any which does have them will be able to use them directly, as
drives B: and C:. In the system, you may have micros which used to stand
alone, but which are now attached to the network. If so, the drives may be
actually marked A: and B:, but they are handled as B: and C:. (A has become
B, and B has become C.) No other micro in the network can access the floppy
disc files on the drives attached to your machine. Each user on a machine can
READ from drive A, can READ and WRITE from/to drive D: orwhichever has
been allocated by user name, and both of these are the 'shared' facilities.
Each user can access his/her own floppies which are physically attached to
his machine - but cannot access floppies on other machines.

This has some interesting effects, when you corne to use the system. For
example, most software such as CIS-COBOL and Wordstar has overlay
segments which are called by the 'root' segments as required. The calling
commands which are built into the software do not specify the drive - so
CP/M automatically goes to the 'default' drive - the one onto which you are
logged. For many purposes, it is more convenient to log onto drive D:, so that
any file handling which you do automatically uses drive D - unless you specify
otherwise. However, you cannot run software with overlays that way. If you
have the D> on the screen, and you type in the following -

D> A:COBOL MFSETUP.CBL

then you will get the 'root' segment of COBOL correctly, and your file of
source code will be sought from drive D correctly - but you will get a very
rapid error response which says something to the effect that COBOL.IO1 is
notfound on the drive. It means, of course, that CP/M has looked for it on the
default drive - which is D.

Therefore, obviously, you must be logged onto drive A, if you want to run any
overlay software which does not (and most does not) specify the A drive in its
'overlay' commands. The command is then -

A> COBOL D:MFSETUP.CBL

and that command will automatically put the INT and LST files onto drive D,
uniess you use one or more of the directives - see Chapter nine.

If you have been used to using a stand-alone miero, and you are moving onto
a network system as we have been describing it, it makes good sense to avoid
the 'default' drive as much as possible, and to get into the habit of defining
the drive in every program or console command for file handling.

278

Chapter 16 Networking and Multi-user Systems

Note that this description is merely illustrative - other network Systems vary
from this in one way and another.

There are no 'extra' commands in CP/M when used as we have described for
networking - the only extras are the user name and password which you need
to key in to persuade the networking package to allow you in !

You could, of course, copy any of the drive A software into your volume of
any drive that is accessible to you - but that would simply clutter up your
space un-necessarily.

It is perhaps relevant to note here that you may hear people tell you that 'you
must run XYZ package from drive A'. Well, that may be so - but more likely
what they mean is that you must run the XYZ package from the drive on
which you are logged when you invoke the package. This section of chapter
16 for example, is being typed using Wordstar from drive B. The command
was -

B>WS A:CHAP16

and the whole of Wordstar is on drive B, overlays and ail.

There is also the point that you may want to use ED, with its temporary 'block
move' file. (Commands X and R - see chapter ten.) This is written onto the
default drive - so although you could use ED from drive A like this -

A> ED D:MYSOURCE.PAS

you would not be allowed to use the X command. Better, in case you do want
to use it, to enter ED from D like this -

D>A:ED MYSOURCE.PAS

Get the idea ? In a network environment, you need to control what you would
normally leave to the defaults in a stand-alone environment.

16.3 MULTI-USER SYSTEMS.

The MP/M prompt - the équivalent of A> etc in CP/M is this -

0A>

279

CP/M The Software Bus ia programmers companion)

where the 0 in front of the 'logged drive' is the current USER number. You
use USER just as in CP/M, to change to another, so you might have your files
recorded under user 3, say. You type in -

0A>USER3

and the system responds with

3A>

To begin this section, we will cover, briefly, the three new commands that are
in MP/M, but not in CP/M. The MP/M équivalent of SYSGEN will be
described, and we will then go on to indicate how different versions of MP/M
have been developed, to improve the facilities on offer.

16.4 MP/M Commands.

There are three spécial commands, ail concerned with file conversion - or 'file
transformation'. We will deal with these first. Page Relocatable files (which
will be programs, probably written in a low-level language) have type'.PRL'.
As we have seen, files which the CCP will accept as transient commands
must be of type '.COM'. Original 'just translated' programs (files) will be of
type '.HEX'. Since MP/M runs different programs from different consoles
simultaneously (allocating resources and swopping control between
programs as necessary) you can see that the assembler programmer needs
the facility to generate a file of one type from a file of another type. These are
the commands -

GENMOD sourcefile.HEX destfile.PRL

or

GENMOD sourcefile.HEX destfile.PRL $hhhh

or

GENMOD sourcefile.HEX destfile.RSP (with or without $hhhh)

Sourcefile isa HEX file (drive name may be specified) which is treated as two
concatenated hex files with the second offset from the first by one page
(100H bytes). The destfile (again drive name may be specified) is a Page
ReLocatatable version. The optional hexadécimal number ($hhhh) must be
started with the $ sign, and indicates that the new program will require
additional memory of the size indicated.

280

Chapter 16 Networking and Multi-user Systems

Files of type RSP are 'résident system processes'.

Note that the command does not require an ' = ' sign - which will serve to
remind you that the 'direction' of the conversion is the opposite to that
normally used in commands such as PIP and REN.

If you have a '.COM' file which needs to be converted to type '.PRL', then
you must first convert it to HEX before you can use GENMOD. This requires
the second command -

GENHEXfilename.COM

or

GENHEX filename hhhh

This takes the COM file and produces a HEX version with the same filename
(drive may be specified, and applied to the COM and HEX versions). The
hhhh (no $) is an offset in hexadécimal. A two page offset (512 bytes) might
be required when converting file D:SETUP.COM and would be specified like
this -

0A> GENHEX D:SETUP.COM 200

assuming, of course, that GENHEX.COM or GENHEX.PRL is on drive A, and
that both files are accessible to user 0. In fact, an offset of one page is much
more commonly required.

Finally, you may have a '. PRL'file, which you want to locate absolutely in the
TPA - in other words, you want a '.COM' file. To convert from PRLto COM -
use the command PRLCOM (how do they think of the names ?!) - like this -

PRLCOM namel .PRL name2.COM

Namel and name2 may be the same or different, and may or may not contain
the drive letter. There is a small safety net in this command, in that if you
convert a PRL file to a COM file with a name that is already used for a COM
file, you will be asked whether you want to overwrite or to abandon the
command.

Now some of the other MP/M commands.

First, it is always useful - sometimes essential - to know the status of the
various processes within the system (running under MP/M). There is a

281

GENHEXfilename.COM
D:SETUP.COM
D:SETUP.COM
GENHEX.COM
name2.COM

CP/M The Software Bus (a programmers companion)

command which bears no relation at ali to the ST AT command we covered in
chapter three, but which is, never-the-less, called MPMSTAT.

16.4.1 MPMSTAT

The display which results from this varies to some extent from system to
system, but in outline it covers a complété list of ail processes which are
'active', and groups them according to whether they are waiting for
messages from queues, or waiting to send messages, whether they are
waiting for CPU time or polling a terminal/device, and so on. It isfairly heavily
coded, so check your system manual for a sample output.

16.4.2 ERAQ

This is regrettably not available under CP/M (up to and including 2.2) - it
means ER A plus 'Query each délétion first'. We have seen that a comparable
feature does exist in 3.1 - ER A afn [Cl.

You use it exactly like ERA (see chaptertwo). You would normally specify an
ambiguous file reference, and the system would respond by listing each
matching filename followed by a '?' and asking for a Y or N answer for each
file. Y means 'Yes - erase it'.

16.4.3 CONSOLE

MP/M hasa numeric code (0 upwards) for each console on thesystem. This
is not the same as the USER number. Since the MPMSTAT command refers
to console numbers, you need to know which console you are using. Type
CONSOLE, and the reply

CONSOLE=n

will tell you. (n runs from 0 upwards)

16.4.4 ABORT

This is vicious ! Any user, at any console, may terminate the run of any
program, whether on the same or any other console.

282

Chapter 16 Networking and Multi-user Systems

The command is simple -

ABORT progname n

If n is omitted, the default is 'the program was initiated from this console'. If n
is specified, it is the console number from which the program was initiated.
You do not specify the COM or PRL file type - just the name.

16.4.5 "D

This might not look like a command - but it is. 'Control D' will 'detach' a
program running at your console. Provided thatthere is something which the
program can get on with, it will contine to run. You, in the meantime, can
initiate or re-attach (see below) some other process. If there is a program with
only intermittent demands for input from the keyboard, it can usefully be
detached while it is computing and filing or printing, releasing the console for
other work.

16.4.6 ATTACH

This might be a normal 'ATTACH.PRL' file, or it could be a 'ATTACH.RSP'
file (résident sytem process). Either way, provided it is accessible to you
under the user number which is current at your console, this is the command -

ATTACH progname.PRL

- and the progname.PRL program will take over the console. However,
progname. PRL must have been a '« D' detached before you can re-attach it!

16.4.7 DSKRESET

With MP/M - ali the facilities of the hardware are shared, and may be made
available to an process from any console. Fine - but you want to change a
disc, and it contains a file which may be being updated by another user at
another console. At the moment you look at it - it may not be actually
seeking, reading or writing, so you cant tell. What you do is to give the
command to write ali directory segments to ali dises, to remove a disc. The
command is DSKRESET. What happens is that a message appears at each
console asking if the disc system can be reset.

283

CP/M The Software Bus la programmers companion)

Confirm reset disk system (Y/N) ?

appears on ail consoles. If any one or more answers N then the disc reset is
denied, directory segments are not reinstated to the up-to-date position, and
you remove a dise at your péril! In fact, you do not do it.

16.4.8 SPOOL and STOPSPLR

The device currently addressed by the LST: functions - which may be one of
several, re-directed either within a program by altering the IOBYTE (chapters
eleven and fourteen) or at the console by using STAT (chapter three) - can,
under MP/M, have a queue of files waiting to be LSTed. This is called a
'spool' or 'spool queue', and you attach a text file (in ASCII) to the spool
queue with the command -

SPOOL filename.typ

and several filenames can be included in a single SPOOL command -

SPOOL filel ,typ,file2.typ.

Notice that an extension must be specified if it exists. You may also specify
the drive, of course.

T o cancel the queue of waiting files, and to abandon the output to the LST :
device you can use

STOPSPLR

If SPOOL.PRL is used to invoke a spool queue, then it can be stopped from a
different console. If you were on console 2, say, and you invoked SPOOL
from a PRL file, rather than a RSP file, then someone on another console
could enter

STOPSPLR2

and dump you off the LST: device! In fact, it can ali get quite nasty if a proper
protocol is not observed ...

16.4.9 TOD

Another MP/M command which needs co-operation between users is the
TOD, or Time of Day command.

284

Chapter 16 Networking and Mu/ti-user Systems

If you enter just -

TOD

the system will respond, perhaps,

Sat 2/18/83 09:05:55

which shows you the day, date (month/day/year) and time of day to the
second as it is currently understood by MP/M. Fine - you can use that to
schedule work to be run at some future time, with SCHED (see below). But
an equally valid TOD command would be this -

TOD 2/19/83 22:10:00

and the system would respond with something like -

Strike a key to set time

The moment you touch a key, that date and time is/are stacked into the
system, and that is the date and time understood by MP/M until someone
changes it.

And any work SCHEDuled for the intervening 13 hours will not be run!

16.4.10 SCHED

This is the command which allows you - if you have confidence in your fellow
users - to load the program called SCHED into the memory, and to give it a
date and time and a program name. If you do, SCHED will sit in the memory,
checking the TOD command for itself until it gets a match, and it then loads
and runs the specified program. The command is -

SCHED mm/dd/yy hh:mm progname

where progname is a PRL or COM program - the type is not included in the
command.

16.5 GENerate and LoaD an MP/M system.

There are two commands which are in MP/M but not in CP/M - their
functions are loosely similar to SYSGEN and BOOT. The commands are
GENSYS (generate an MP/M system with attributes as specified) and

285

CP/M The Software Bus (a programmera companion)

MPMLDR (load the GENerated SYStem into memory). GENSYS enablesthe
userto create a tailored version of the system in a file (M PM. SYS), which can
then be loaded into memory with the MPMLDR command.

When you invoke GENSYS you are asked to complété a questionnaire
related to your configuration and to the files on the system. Have you realised
yet that in order to invoke GENSYS, you must have a CCP asking you for
input ? In other words, there must be a CP/M or MP/M system loaded
already,before you can invoke this command.

The questions are fairly straightforward - how much RAM have you got
(answerzero, and MP/M will begiven 'thelot') - howmany consoles-where
do you want the Breakpoint restart to be (you can not use 0) - do you intend to
use CP/M '.COM' files as transient commands (if so, answer Y to the 'user
stacks' question) - where do you want the user address banks to start (FF
terminâtes the list of up to eight) - and which '.SRP' files do you want to hold
in memory as résident commands. For this last, GENSYS will first ask if you
want any (Y/N) and if Y it will list each System Résident Process (SRP) and
ask if that one is to be résident. These are the basic set of GENSYS questions
but it does dépend on which release of MP/M you have, what the questions
are. Use your MP/M User Guide to help.

Once you have a file MPM.SYS created by GENSYS, you can simply enter
the command MPMLDR (for MP/M LoaDeR).

Ail this assumes that you have a complété MP/M, including the XIOS (the
MP/M eXtended BIOS). Just as for CP/M, this is the interface which is
produced for each hardware set-up. The standard CP/M BIOS for an
MDS-800 is held as LDRBIOS.COM, and is used by MPMLDR to locate (and
transfer Control to) the new MP/M. You can use your CP/M SYSGEN
command to save the new MPMLDR.COM with the new BIOS which you
have created, after 'patching' it in the memory.

16.6 Priority within MP/M.

There are several ways in which MP/M can allocate priorities between tasks.
If a task is running, it continues to run untiloneof a nmberof eventsoccurs. If
a resource is being used, say a record is being written to disc, then the task
holds onto that resource until the transfer to disc is complété. Once the disc

286

LDRBIOS.COM
MPMLDR.COM

Chapter 16 Networking and Multi-user Systems

system is released, the 'dispatcher' of MP/M décidés whether the same task
should continue to run, or whether another should be allowed to take
precedence. Each task has a 'descriptor', which not only contains a priority,
and which is therefore what the dispatcher handles, but also contains various
'state' records which tell the dispatcher what the condition of the task was
when it was last interrupted. Other ways in which a task can lose control of
the processor are through interrupts, or when it issues a system call, or when
the real-time clock moves on. If tasks are allocated different priorities, the
dispatcher will inspect the descriptors and décidé which of the competing
tasks should be allowed to run. If the tasks are ail given equal priority, a 'fifo'
system is used - the one that has been waiting longest runs next. The tasks
are 'queued' or 'spooled' - sequential additions can be made to the end of the
queue or spool while items are removed sequentially from the start of the
queue by being run.

There is also a way of using 'flags' which can be set by one task and examined
by another, to synchronize the running of two or more processes,
independently of any other interrupt mechanism. For example, one task
could be carrying out a sériés of operations, and setting a flag when a fixed
number have been performed, while the other, perhaps carrying out an
'averaging' or a display task, cannot run until the flag is set. Then, even if the
dispatcher offers control to the second task, if the flag is not set, it wil be
returned instantly to the dispatcher.

16.7 MP/M Version 1 versus Version 2.

Ail that we have said so far has been concerned with the 'basics' of MP/M.
The concept of MP/M is by no means 'basic', of course - a full
mulitiprogramming operating system on an 8-bit micro is a tremendous
advance in itself. However, as with any new product, users are always
looking for something better. Version 2 offers much that was thought to be
restrictive in Version 1. The following descriptions identify the main areas in
which Version 2 has advanced.

16.7.1 Record Locking in shared files.

Clearly, if two processes are allowed to update a single file, there can be
problems. It would be possible, for instance, for two processes each to read a

287

CP/M The Software Bus (a programmera companion)

record, and then each to update it, and write it back. This could resuit, if no
précautions were taken to prevent it, in the update provided by the first to
write being completely lost, because the second version would overwrite it
without the process even knowing that it had happened. The obvious way
out - though not the one adopted - would be to lock any record and prevent a
second process from reading it until the first had released. This can lead to
'record lock' or 'deadly embrace' - where process A has record N and wants
toread record M, but process B hasalready read record M (so it islocked) and
wants record N. Both processes are suspended indefinitely. All kinds of
devices are adopted to provide a 'soft' exit from such a situation, in database
and other software Systems, but MP/M version 2 has been able to capitalise
on the way CP/M actually handles records to avoid the situation altogether.

A process reads a record, and keeps a copy of the original record and créâtes
a second copy of the new updated version. Both are passed to MP/M when a
write is issued, and there is a 'test and write' function which first teststo see if
the record on the disc has altered since it was read. If it has not, the write
takes place. If it has - the write is refused, the new State of the record is
returned, and the process attempting to write can re-update (or do whatever
is needed) and try again. In Chapter 13 we identified the FDOS function which
performs this. Incidentally, of course, the mechanism allows for logical
records which are not exactly 128 bytes - the physical read/write unit.

16.7.2 New FCBs.

There are two new FCBs in Version 2. XFCB is the first. This is an optional
FCB in addition to the standard one, and contains a password and two date
markers. The two dates held can be selected from

date created
date last accessed
date last altered (updated).

Adding password protection gives a substantial measure of Security against
deliberate intrusion, which 'user number' (which any user can select) did not.
The dating of file création/access is accessible to the programmer, and
allows Control of 'générations' and Security or back-up copies without the
confusion which can sometimes occur !

288

Chapter T6 Networking and Multi-user Systems

The second FCB is not optional, is also in addition to the standard FCB, and is
normally completely transparent to the user. It is in effect a directory FCB
which records whether or not the XFCB has been invoked, and other MP/M
parameters.

16.7.3 File Structure enhancement.

In version 2, the maximum file size is now 32M bytes. This allows larger scale
database types of application without the need for the complexities of
multi-volume working.

Also, the new file structure allows for up to 16 'dises' each of which can have
a maximum of 512M bytes. Eight thousand million bytes of on line Storage-or
eight 'gigabytes' if you like !

It might be worth commenting that you are actually unlikely to use this much,
since it is quite possible for your ALLOC vector table to fill the whole of 64K
bytes of RAM ! Actually, the 32M byte file size is likely to be of more
immédiate usefulness.

The design of BDOS for the new file structure makes the random access I/O
very much more efficient than sequential I/O - even for sequential files. We
therefore recommend that you use random access unless there is some valid
reason for using sequential.

16.7.4 Special additional dises.

If you read the 'networking' section in the early pages of this chapter, you will
have noted the use of a 'system' disc in the example we described - a dise
which contains software (etc) accessible to ail users, but in R/O form.

MP/M Version 2 allows you to specify a 'system' dise as part of your system
génération. The only restriction is that ail files on that disc must have the
$SYS attribute.

The previous version of MP/M (and the USER facilities of CP/M) required
you to hold ali the software which you needed in an area accessible to you. So
in a twelve user system, you would have twelve copies of PIP, twelve of

289

CP/M The Software Bus la programmers companion)

STAT, twelve of the compiler or interpréter, twelve of ali the commonly used
COM, SRP and PRL files. Nasty. Now, with version 2, you may have your
own copy of any command file (etc) which you need, because MP/M will
always search your area first, but if it does not find the file, it then looks on the
spécial 'system' file.

This is a good point at which to mention, in passing, that if you have long
directories - and larger 'dises' inevitably lead to larger directories - the time it
take MP/M (or CP/M) to search the directories can become significant.
Since directory search is always sequential from the 'top' - you will notice an
improvement in performance if your most frequently used files are at the top
of the directory. Since, from preceding chapters, you know that the directory
is not a 'push-up stack' - so deleting and rewriting a file will not necessarily
re-position it in the directory - you will need to ensure that you load the files
into the directory in the most advantageous sequence for your operations.
The next 'additional disc' will also have a bearing on this point.

If you do use the 'system' dise, you maybe confused when MP/M readsfrom
an unexpected dise - since this is reported on the screen as an extra line under
your command line, containing the disc identity, the full ufn, and the date.
This display can be suppressed, but is usually left active if the system disc is
also invoked.

As well as the 'system' disc, you can now allocate a 'temporary' disc.

The principal reason for this is that the SUBMIT command always créâtes a
temporary 'submit' file on drive A: In a system with Winchester or other mass
Storage (eg MDISC see chapter eleven) it can be very irritating to have the
temporary SUB file created and used through the slowest (floppy) disc in the
system. And often that is exactly what happens. So you can now specify a
'temporary' disc on any drive of your choice, and the SUBMIT command will
use that designated disc as its location for the temporary SUB file.

If you have MDISC, of course, you will naturally designate that as the
temporary disc - it is inherently 'temporary' - and is the fastest possible disc.
You may also like to use that MDISC as the repository of ali the current
directories. Naturally, you will still have to write to the actual disc every time
an entry changes - but think of the speed of directory search !

290

Chapter 16 Networking and Multi-user Systems

Small is beautiful (?).

MP/M has grown. Version 2 is bigger in total than Version 1.

However, the structure of MP/M Version 2 is now such that you can allocate
it between résident and banked Storage in 4k units, if you have a 4k bank
system. So you can actually have less of MP/M fully résident.

How this is inmplemented will obviously dépend on the supplier of the
complété system, and it is assumed (not unreasonably) that anyone
constructing MP/M will use memory switching to allow access to more than
64k of RAM or will opt for the 16 bit version MPM86.

In a memory bank system, a major objective is to eut down the amount of the
operating system which has to be permanently résident to a minimum. Early
memory bank Systems used 16 banks, and it was quite difficult with MP/M
version 1 to keep the résident portion down to 16k. And even 16k is a big
chunk to loose. Many powerful programs which were required to run would
not fit in the remaining 48k. Newer memory bank Systems tend to use 4k
banks, which give much greater flexibility.

For example, if you have a 128kbyte system, you could apportionitintoa 12k
résident MP/M in half of the memory, leaving 52k transient program area,
and a 12k system bank in the other half, leaving again 52k. Soyour24k MP/M
will be split between résident and banked portions in the same proportion as
the rest of memory. Even the XIOS can be split, RESXIOS and BNKXIOS are
the names used for the two portions. XDOS must be wholly résident - that
cannot be split, but even so, it is not unreasonable to get the whole of the
résident portion into the 12k suggested in the example above. That means
that the user gets up to 52k of TPA, not much less than the 56k which is
available under CP/M. Of course, the designer who finds that this is still too
restricting has the option of going for the 16 bit version MPM86. This allows
up to 1024k byte direct addressing, instant program re-location, and removes
the need for bank switching, which is the major task in any implémentation
MPM80. There really is little comparison between MPM80 and MPM86 - the
use of the 16 bit machine removes practically all the limitations of MPM80 -
and in a sense MPM86 could have been named CPM86 - plus multi-tasking. It
can be used as CPM86 is, as a single user system, and thus to some extent
replaces CPM86.

291

CP/M The Software Bus fa programmera companion)

An interesting advance which is becoming apparent is that when version 2 of
MPM86 is implemented, it will not only incorporate ali the improvements of
MPM80 version 2 (as we have been describing above), but it will add many of
the features previously unavailable under MPM80 - because of space limits -
but which were available under UNIX. The author of this new MPM86 version
2 had not worked with micros before - he had been with Unix Systems.

16.8 Conversion from '80 to '86.

Intel supply a code convertor which will take a program written for the 8080
processor, and convert it to run on the 8086 processor. The resulting program
will not normally run any faster - and it will usually be larger than the original.
Digital Research have an improved version of this - called XLT86 - which
works on the source code rather than the object, and which carries out
extensive data flow analysis, and removes any redundant code. This also
optimises the sélection of 8086 counterparts of the 8080 code.

16.9 Summary.

In this chapter, we have looked at the different ways in which multi-user
Systems can be constructed, and have added the basic MP/M commands
which are not available in CP/M. A discussion of the improvements available
under MPM80 version 2, and comments on MPM86 completed the survey.
Any product list is bound to be rather like an organisation chart - the Story
goes that if you have a printed organisation chart, the one thing you can
guarantee is that it will be out-of-date! However, now or in the near future,
this is the probable appearance of the full set of Digital Research operating
Systems for 8 and 16 bit use.

8 bit 76Ô/Ï
cpm2.2 if you do not need

more features.
CPM Plus (3.1) CPM86 v2 replacing v1
CPNET80 v2 CPNET86 v2 The network

operating system
CPNOS80 v2 CPNOS86 v Diskless slave

network os
MPM80 v MPM86 v2 as described above
MPMNET80 v2 MPMNET86 v2 Multiple master

network
MPNOS80 v2 MPNOS86 v2 Diskless MPM slave

network os

292

Chapter 16 Networking and Multi-user Systems

Itseems that in future releases, '.REL'files will be made more use of, and SID
RMAC and LINK will replace DDT and SAVE.

It also seems likely that the new manuals will be much improved from earlier
ones - from MPM onwards. They will probable be in sets of three, a user
manual, a programmers manual and a system manual, from which you can
select according to the depth of the information you need.

293

CHAPTER SEVENTEEN

CP/M on the 8086

17.1 Fundamentals.

CP/M was initially produced for eight bit processors, such as the Intel 8080.
We'll refer to ali the 8 bit products as CP/M80 in this Chapter. Now that an
increasing number of sixteen bit processor based machines is becoming
available, Digital Research have produced CP/M86 - the CP/M80 look-alike
for the 8086 processor. The 8086 has an équivalent for every instruction on
the 8080, and its considerably improved performance cornes from the
additional instructions which are available.

Although CP/M was produced for the 8080 - it was equally available for the
eight bit Z80. However, CP/M86 is not available for the Zilog Z8000 16 bit
processor.

CP/M86 has been designed to look and to perform like CP/M80, with an
identical directory system. Software products for the 16 bit machines are, of
course, in rather shorter supply than those for the 8 bit machine.
Never-the-less, CIS-COBOL and Microsoft MBASIC are available - among
others - so interest in the 16 bit Systems is growing apace. There are
'prophets' who say that the 32 bit processors will be available so soon that it is
hardly worth bothering with the 16 bit - time alone will tell !

This Chapter tells the Story of the implémentation of CP/M86 on an existing
machinewith an8 bit processor, to which a 16 bitprocessorwasadded. Many
of the features and benefits of CP/M86 are introduced and explained. The
speed of the 16 bit processor is, perhaps surprisingly, concealed by the fact
that most programsare peripheral bound, even with CP/M80. Butthevastly
increased availability of TPA makes a tremendous différence to tasks which
needed to be 'shoe-horned' into the TPA available under CP/M80.

294

Chapter 17 CP/M on the 8086

17.2 The initial hardware.

There is nothing magical about the hardware described - it is simply that
which was available when CP/M86 was to be implemented. What was done
with this system could equally well have been done on others - though
probably slightly differently.

The DSC4 is a Z80 based machine, and has a Zilog DMA chip. It has memory
mapping up to 500k bytes in 4k banks, and the main memory is available on
separate Multibus (An Intel trademark) boards addressable from 0 to 1024k.

The main advantage of this machine is its memory mapping. This is a
technique to map the top four bits of an address into the top eight bits of the
multibus address line. Each time a 16 bit address is output from the Z80, the
top four bits are decoded by a set of high speed memory registers into the top
8 bits - making a 20 bit address. The time taken for this mapping is so small
that it does not interfère with the normal timings. Memory mapping like this
effectively partitions the absolute memory into 256 units each of 4k - like a
bank of memory. This gives considerably greater flexibility over the more
common memory bank switching, as we will see. In the DSC4 there is at the
moment a restriction that the memory mapping can only address 128 units of
4k - a maximum of 512k bytes. Actually, when you have been used to 64K,
512k does not seem too restrictive.

One way of approaching the CP/M86 implémentation would have been to
replace the Z80 card with an 8086 card. However, the processor card with the
Z80 also contains the floppy disc controller, the Winchester disc interface,
the RS232 ports and the high speed RS422 port. There were obvious
advantages to retaining the original processor board, and adding an
additional 8086 processor, so producing a combined 8 and 16 bit computer.

17.3 The design decisions.

Initially, the prime purpose was to bring up CP/M86 as simply as possible. If
ali I/O was handled by the Z80, as it was before the change, this would
represent a saving in complexity. There would have to be the minimum of
hardware development on the 8086 board.

295

CP/M The Software Bus (a programmera companion)

One of the main appeals of CP/M to users is the availability of a wide range of
software. This was another factor in retaining the Z80.

Having decided to keep the actual I/O on the Z80, the outstanding question
was at what point, and how, to effect the transfer from CP/M86. If the
original processor had been an 8080, on which the powerful 'block move'
instructions of the Z80 are not available, the decision might have been
different.

In this case, because the clock speed of theZ80 and 8086 arenotsignificantly
different, and because Z80 dise transfers are performed partly using the DMA
chip, and partly using the 'block move' instructions, it was decided that litle if
any speed advantage would accrue from performing the I/O processing on
the 8086. The spécifications of the BIOS for 8 bit working (BIOS80) are
practically identical to those for the 16 bit (BIOS86). Thisis not unexpected,
since the disc structure is identical and ali the BIOS80 calls could be translated
into BIOS86 calls.

17.4 BOOT86

Once it was decided that the I/O processing and transfers would be handled
by the Z80, ail that was needed was a way to convert calls to BIOS86 to calls to
BIOS80. The problem of implementing CP/M86 becomes principally one of
designing the interface to a known and tested BIOS80, rather than the much
larger problem of writing a BIOS86. This interface actually consists of a small
amount of code in the BIOS86, and a program running on the 8 bit which we
have called BOOT86.

To establish how the transfer between processors should be effected, each
BIOS I/O call has to be considered.

It seemed that character I/O should be simple, requiring a common data area
for access by both processors, in which register contents could be written
and read as appropriate. In actual operation, when CP/M86 make an I/O
BIOS call, the 8086 transfer the register contents to the common area, with
the vector number of the BIOS80 call, and a flag. BOOT86 notes the setting
of the flag, copies the register contents from the common data area to the
Z80 registers, and makesa direct BIOS80 call. On completion of the BIOS80
operation, BOOT86 collects the return values and flags the 8086 to tell it that

296

Chapter 17 CP/M on the 8086

transfer is complété. BIOS86 takes the return values and copies them into the
8086 registers - and makes a normal return from the original BIOS86 call.

Disc I/O seemed less simple - since an équivalent idea would require a 128
byte common area, with a large time overhead in copying in and out character
by character. However, the memory mapping on theZ80 processor board can
be used to map a 16 byte address to the actual area of memory. The Z80 with
its DMA chip can then transfer disc I/O to anywhere in the 8086 memory.

The BIOS disc table which describes each logical disc, and the uninitialised
data area associated with it, need to bedesigned. They are, of course, already
in the BIOS80 - but CP/M86 cannot use the 8 bit table directly-and even if it
could, thehigh usage of the areas by CP/M86 makes it important to duplicate
them in BIOS86. For full compatibility they should be identical. In the first
implémentation of CP/ M 86, the disc tables are defined at assembly time - but
the tables can be constructed dynamically from the CP/M80 tables.

Using the 16 address bits, the Z80 can only address 64k - but the memory
mapping allows this to be mapped into any region of the 512k memory bus.
The upper limit of 1024k is reduced because the top bit is used to select the
RAM and ROM onboard memory or the bus. An important feature of the
memory mapping is that each of the 16 blocks of 4k can be mapped anywhere
- they could ali addressthe same4k, if that was wanted. Thisfacility is used to
compress the CP/M80 memory requirement down to 20k (from 64k), once
CP/M86 is loaded.

The idea used in the memory mapping to enable CP/M80 to transfer I/O
anywhere in the 512k CP/M86 memory is to create a 'window' at a fixed
address in the 64k, and to map this 'window' to any location of the 512k. Thus
CP/ M80 can see through the 'window' into any part of the 'outside world' of
CP/M86. To complété the disc transfer, the absolute address known by the
BIOS86 is converted to an address which can be used by the window of the
BIOS80.

17.5 Loading CP/M86

BOOT86 has a second function - in addition to the interfacing we have talked
about. It has to load CP/M86 into memory, from a file. First problem,
CP/M86 is designed to go where CP/M80 is. The interrupt vectors of

297

CP/M The Software Bus la programmers companion)

CP/M86 are in the first 256 byte of memory, and that is not something that
can be changed. Therefore, CP/M80 must be moved away from the start of
memory. The 64k it uses cannot start at 0000H. Memory mapping make it
possible - and BOOT86 actualy moves the 64k - including itself - after creating
the 'window' from 1000H to 4FFFH (16k).

From here, we will use four digit addresses to refer to the 16 bit address of the
Z80, and five digit addresses to refer to the absolute address of the multibus
and the 8086.

The top 20k of CP/M80 is copied to the top of memory in two steps. The
diagram below shows this for a 256k bye total memory.

The top 20 K
of 64KCP/M80
is copied to
the window.

3FFFFH

3B000H

OFFFFH

---<---
v

--->---

00000H

20 K

20 K

Window

TOP
—<

FFFFH Λ

Window
points
to top
20k

4FFFH
—>—

1000H

0000H

After the top20kis copied, the bottom 4k bank is then copied - but again into
the same area - at the bottom of the 20k. This keeps CP/M80 configured as a
64k system, but it only occupies 20k of actual memory.

The memory mapping of a system such as that above would be -

Z80 Relative 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4k bank I I I I I I I I I I I I I I I I

Absolute 4k
memory bank 59 --window- *456 7 8 59 60 61 62 63

298

Chapter 17 CP/M on the 8086

The * indicates the 4k bank pointing to the local 1 k RAM which holds part of
the BOOT86 program.

The Z80 relative 4k banks are set pointing to low memory, to help in
debugging the CP/M86 system.

The 20k allowed for CP/M80 leaves space for BOOT86 and also for DDT.
Without DDT, other utilities can be loaded and run inder CP/ M80, even when
CP/M86 has been booted.

For debugging, this configuration makes it feasible to boot CP/ M86 from the
CP/M80 debugger (DDT). With the help of the window to point to different
areas of memory, one can monitor BOOT86, check that the CPM86. CMD file
is loaded correctly, and then monitor the actual operation of CP/M86. If your
imagination is up to it - you could then envisage loading DDT86 and using that
to monitor the Z80....I

17.6 Processor conflict.

The multibus is designed to allow more than one master to share the bus,
although the usual 8 bit configuration does not use the bus for memory
access, because each master has its own local on-board memory. To access
512k, (theoretically 1024K) the 16 bit must use the bus. Now we have added a
second processor - and both could be fighting for memory. If there was any
conflict - this would resuit in delay, and would destroy at least some of the
advantages of the whole exercise of having the two processors.

Toavoid wasteful access to the bus, the design of the interface between the
two BIOS's (the BOOT86) makes use of the local 1k of RAM on the Z80
processor board. When the 8086 processor is active, theZ80 loops within its
own 1 k on board memory, which does not require bus access. When the 8086
flags the Z80 to processa BIOS call, the 8086 performsa H ALT and waitsfor
the Z80 to interupt when it has completed the BIOS processing. The only
time that both processors are active is during the I/O interrupts - an
insignificant amount. For the whole of the rest of the time, only one of the
two processors is active - so there should be no conflict, and no dégradation.

299

CP/M The Software Bus (a programmera companion)

That is all very well in the set-up we are describing, but there would need to be
much doser study of the potential conflicts for the bus if you were looking at
a multi-tasking environment. The problem may not be too severe, as a resuit
of a feature of the 8086. The processor can fetch instructions in advance,
from memory into its own FIFO buffer. This means that if there is a
contention of the multibus, the 8086 can continue to run the instructions in
the FIFO buffer, which would at least reduce the timing penalty of the
conflict. Hardware must have priority over processing, and the Z80 is
assigned the highest priority when requests for the bus are considered.

Provided we make sure in the design that any processor avoids using the
multibus when it is idling, the contention should be minimal, even in a
multi-tasking environment. It is likely that the majority of the Z80 active time
will be waiting for hardware.

The BOOT86 program may sound complex, with its use of memory mapping,
but once it has actually loaded CP/M86, it requires only a few instructions to
read a requested BIOS call from the 8086, and create a call to BIOS80 at the
required jump vector. For dise I/O, CP/M86 passes the number of the bank in
absolute memory, with the byte offset to the start of the 128 byte block.
BOOT86 points the window starting at 1000H to this bank, ready for a Z80
transfer into the relative bank starting at 1000H.

17.7 BIOS86

Once BOOT86 was designed and tested, BIOS86 was very much simpler. No
deblocking was needed, because BIOS80 does that. Any BIOS86 call which
does not involve I/O (such as SELDSK and WBOOT) is done within the
BIOS86. The IOBYTE calls address the same byte as the BIOS80 IOBYTE
calls.

On an I/O call, the necessary registers and the BIOS jump vector are written
totheZ80 address starting at 0103H ontheZ80. On completion, the BIOS86
reads the resuit from the same Z80 data area at 0103H. For some of the BIOS
calls, there was also a need to convert addresses from the 8086 'SEGMENT
and OFFSET' form (more about that in a moment) to 4 bit MEMORY BANK
NUMBERS plus 16 bit ADDRESS for the Z80.

300

Chapter 17 CP/M on the 8086

There is actually very litle processing required in the BIOS86 - but there is a
new version of assembler to cope with. Although the 8086 has an équivalent
for each 8080 instruction - the 8086 is naturally rather differentfrom that of the
8080, and the instruction set is correspondingly different.

An address on the 8086 isin two parts-the SEGMENT and the OFFSET. The
offset is easy, that is simply a value from 0 to 64k, and that provides the 8080
compatibility. If your program fits within 64k, then the segment does not
change. In the BIOS86, you need to address the data area of the Z80 - which
as we have shown it is at the top of memory - so you need the SEGMENT. In
the early version of the assembler - using the SEG operator corrupted the
symbol table, by incrementing ali subséquent entries by 3 each time it
appeared. Nasty ! Digital Research say that the new version does not have the
problem.

Three major additions were made to the sample code of the BIOS as suplied
with CP/M86. These were -

8259 Interruptcontroller
Implémentation of the IOBYTE
I/O performed through BIOS80

The8086supplies256 vector interruptlocationsaswe said (in the very bottom
of memory) which provide more than enought space for a fully vectored 8259
Interrupt controller.

The actual byte used to hold the 8086 IOBYTE is the same as that for CP/M80.
That simplifies port mapping, since both processors use the same. There is
just one problem - and you usually find some problem with a brand new
product - which is that STAT86 does not address the correct byte in memory -
so the IOBYTE, although implemented in the BIOS86, cannot be used.

Now we can see the full memory map of the way CP/M86 and CP/M80 were
implemented. As before, the five digit addresses on the left are 8086
addresses, the four digit addresses are the Z80 ones. The CP/M80 allocation
is shown within the | marks, and the total memory and CP/ M86 is shown with
| marks.

301

CP/M The Software Bus (a programmera companion)

Top

Top-16K

Top-20K

02E00H

02900H

00Β00Η

00400H

00000H

FFFFH

EDOOH

DF06H

D700H

1
1
1
1
1
1
1

BIOS80 I
I
I
I
I
I
I

BDOS80

CCP80

1
1

1K RAM

I
I

Window

1-----
1
1 Common Data

I
1

1
1 System

1
1

1
1

Parameters 1
___ 1

[Region 0 j

1 1
1 BIOS86 1
1 I
1 BDOS86 '
1 1
i 1
1 CCP86 i
| — 1
I Interrupts 1
l_____________________ _ _______ 1

5000H

1000H

0100H

0000H

302

Chapter 17 CP/M on the 8086

17.8 Using CP/M86

This is where, if everything has gone well, there is something of an air of
anticlimax. CP/ M86 cold boots quite normally - with a version of the CP/ M80
sign-on message. The A> appears, and entering DIR or STAT give you a
screen display exactly like the one you would get with CP/M80. After ali the
complexity of the memory mapping and the use of two different processors, it
is difficult to believe that the CP/M86 is actually running at ali. There is no
speed improvement - the console and the disc speeds mask any change
completely.

This is all very reassuring, of course. CP/M86 is, as we said at the start, a
CP/M80 iok-alike-and it reallydoes ! The user would quite likely beunaware
of the fact that CP/M86 is there at all, unless the '.CMD' rather than the
'.COM' filetypes are noticed.

The system programmer will notice the différence, once DDT86 is loaded.
The same single character commands as in DDT80 are retained, but the very
different processor begins to make its effects felt when you look closely at the
responses. For instance - a 'D'request shows the SEGMENT and OFFSET of
the address, instead of just 'the address'. Also, of course, the command
which need an address have to handle both segment and offset - so you may
find it safer to specify each separately, rather than using the simple 'G100'
type of command.

'GO', if you are used to DDT80, can have unexpected résulte - because itdoes
not exit from DDT86. The interrupt vectors are in the bottom of memory, if
you remember. CP/M86 does not use 'CALL 0' as an entry to BIOS86 -
instead there is (like in CP/M3) an extra BDOS call for direct BIOS calls. Entry
to BDOS is not through the 'CALL 5' instruction - but instead a spécial
reserved software interrupt is used. These changes are a necessary part of the
move up to a larger address range, with the conséquent split of the address
into segment and offset. However, DDT86 does still respond to a ~ C to exit.

17.8.1 The Advantages of CP/M86.

Principally, unless you are doing some very substantial 'number- crunching',
the advantage is more 'space' than 'speed'. If your programs are heavy users

303

CP/M The Software Bus (a programmers companion)

of the console and peripherals you are unlikely to see much speed
improvement, because the processor spends most of its time 'idling'.

There is a speed advantage, of course - and Systems programmers are Iikely to
notice it more than 'peripheral-bound users'. The actual BIOS86 program
which was developed as we have described above, took two and a half
minutes using the 8 bit Z80 cross- assembler, but only one and a half minutes
on the 16 bit assembler. That was using a Winchester dise in both cases.

The newer versions of CP/M86 will certainly include many of the
improvements which were incorporated into CP/M 3.1 - and provided that
the 'pundits' who forecast that the 32 bit Systems will supercede the 16 bit
ones are wrong, there is clearly a great future for CP/M86. Many of the 16 bit
Systems now becoming available are - like the one we have described here -
twin processor. That means that the range of 8 bit software will still be usable -
until suffirent 16 bit is around to make a real impact.

304

CHAPTER EIGHTEEN

'Bug Fixes'from Digital Research

In this last Chapter, we are including, with the permission of Digital Research,
a set of Application Notes which allow you to perform various gymnastics
with CP/M, to achieve things which the issued versions do not offer, or to
correct errors. There are more available than we can include here - but these
are the most likely to be helpful. If you want to get more, you could try Digital
Research themselves, or, as we have mentioned before, the Journal of the
CPMUGUK.

The following information is copyright 1982 by Digital Research, Inc., Pacific
Grove, CA 993950 and is proprietary to Digital Research.

18.1 CCP AUTO-LOAD.

CP/M versions 1.4, 2.0, 2.1 and 2.2

Program to be amended - CCP.

Normally you interact with the CCP after the prompt. (A> etc.) If you use the
CCP Auto-load feature, CP/M will execute an initial program immediately
after loading the operating system.

Under normal operation, the CCP receives Control from the BIOS after a cold
or warm boot. The beginning of the CCP contains a two-element jump
vector, and a command line which take the following form.

CCP: JMP CCPSTART ;STARTTHECONSOLE
.-PROCESSOR

305

CP/M The Software Bus (a programmers companion)

JMP CCPCLEAR ;CLEARTHEINITIAL
,-COMMAND

DB 127 ;MAXIMUM COMMAND
; LENGTH

DB 0 ;COMMAND LENGTH
DB / / ;8 BLANK CHARACTERS
DB / f ;8 BLANK CHARACTERS
DB 'COPYRIGHT...' COPYRIGHT NOTICE

If control is transferred to location CCP (which is address 3400H in a 20k
CP/M), the console processor examines the command length at location CL
(3407H in a 20k CP/M). If that byte is zéro, you receive the prompt and the
CCP waits for input. If the byte is not zéro, the CCP assumes that an initial
command has been entered. It will execute the command on each cold or
warm boot - if control is transferred to location CCP. However, if control is
transferred to CCP + 3 (JMP CCPCLEAR), the initial command is cleared and
the program enters CCP at command line level, displaying the default drive
prompt as usual.

To put your initial command in, you specify the length of the command (not
including the CL byte itself, or the terminating zéro) in the CL byte. Then you
specify the command in the folowing bytes. Although only 16 blank bytes are
provided - a length of 15 (OFH) plus the zéro - you can move the Digital
Research Copyright notice for more spaces.

You can initialise the command line on the operating system track(s), or in the
re-locatable image within the MOVCPM data area.

In MOVCPM.COM, or following SYSGEN and SAVE commands, the CP/M
memory image is saved above the cold boot loader code starting at location
980H. If the system boot routines need more than 80H bytes, the CCP code
maybeginatlocation0A00H. Modifying MOVCPM issimilartomodifyingthe
CCP. The différence is that the CCP starts at location 0980H (or 0Α00Η as
above), after DDT reads the CCP into memory.

The procedure following uses DDT to modify the CCP to execute the initial
command 'DIR' after each cold or warm boot. The screen displays from the
System are in normal type, and the entries which you make are in bold type.
The first display is to confirm that you have actually found the start of the
CCP.

306

MOVCPM.COM

Chapter 18 'BUG FIXES' from Digital Research

A> MOVCPM *.*

CONSTRUCTING 64K CP/M Vers 2.2
READY FOR "SYSGEN" OR
"SAVE 35 CPM64.COM"

A> DDT CPM64.COM
DDT VERS 2.2
NEXT PC
2400 0100
-D980
0980 C3 5C E7 C3 58 E7 7F 00 20 20 20 20 20 20 20 20 ..x...
0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 COPYRIGH
09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (CO 1979.DIGI
09B0 54 41 4C 20 52 45 53 45 41 52 43 48 20 20 00 00 TAL RESEARCH

09C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00...................
-S987
0987 00 3
0988 20 44
0989 20 49
098A 20 52
098B 20 0
098C 20
-D980
0980 C3 5C E7 C3 58 E7 7F 03 44 49 52 00 20 20 20 20...x...DIR.
0990 20 20 20 20 20 20 20 20 43 4F 50 59 52 49 47 48 COPYRIGH
09A0 54 20 28 43 29 20 31 39 37 39 2C 20 44 49 47 49 T (C) 1979,DIGI
09B0 54 41 4C 20 52 45 53 45 41 52 43 48 20 00 00 TAL RESEARCH ..
A>S
09C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00....................
-G0
A>SYSGEN
SYSGENVER2.0
SOURCE DRIVE NAME (OR RETURN TO SKIP)
DESTINATION DRIVE NAME (OR RETURN TO REBOOTJB
DESTINATION ON B, THEN TYPE RETURN

307

CPM64.COM
CPM64.COM

CP/M The Software Bus (a programmera companion)

18.2 Reversing the functions of the Backspace and Rubout
(Delete) keys

CP/M versions 2.1 and 2.2

Program to be amended - BDOS

In the code segment procedures which follow, the addessses given are hex
offsetsfrom the base of the CP/M system. The CCP (see previous section) is
normally located at 980 H but may be at A00 H if a two sector boot is required.

You can assemble the patch for your size of memory. The CPMBASE will
equal the BDOS entry point address at locations 6 and 7 in the base page of
memory, minus 806H. Take care, because this entry point address is
changed when DDT or SID is loaded. Under these programs, you must follow
the jump at location 5 until an address is found with a significant digit of at
Ieast6. In the example which follows, the CPMBASE would be E506H-806H
or DD00H.

0005 JMP CD00
CD00 JMP D3A4
D3A4 XTHL
D3A5 SHLD E452
D3A8 XTHL
D3A9 JMP E506

To reverse the functions of Backspace and Rubout, patch into the SYSGEN
or MOVCPM image exactly asyou would patch in a new version of your BIOS
using the DDT T command followed by the 'R' command. Use the same
offset as your customised BIOS and install the following code.

CPMBASE EQU ? ;SUBTRACT 806H FROM
;ADDRESS AT
;LOCATION6H

ORG CPMBASE + 0A02H
CPI 7FH ;WAS CPI 08H
ORG CPMBASE + 0A16H
CPI 08H ;WAS CP17FH

308

Chapter 18 'BUG FIXES' from Digital Research

Alternatively, you can install the above procedure directly into MOVCPM if
you have MOVCPM.COM on your system disc. The patch will be applied
automatically to any size system which you build using MOVCPM. Make sure
that you have a back up copy of MOVCPM before you make the following
changes.

S1403

A> DDT MOVCPM.COM
DDT VERS 2.2
NEXT PC
2700 0100
-L1402

1402 CPI 08
1404 J NZ 0A16
1407 MOV A,B
1408 ORA A
1409 JZ 09EF
140C DCR B
140D LDA OBOC
1410 STA 0Β0Α
1413 JMP 0A70
1416 CPI 7F
1418 JNZ 0A26

1403 08 7F
1404 C2 .
-S1417
14177F8
1418 C2 .
-GO

A> SAVE 38 MOVCPM1 .COM
A>

The new program MOVCPM 1 is used instead of MOVCPM. The backspace
and rubout keys will now have their functions reversed for any CP/M System
generated with MOVCPM1 .COM.

309

MOVCPM.COM
MOVCPM.COM

CP/M The Software Bus la programmera companion)

18.2.1 Make Rubout (Delete) identical to Backspace.

The early comments about the previous section also apply here.

Before you install this patch, the code at CPMBASE + 0A1BH should read -

MOV A,B
ORA A
JZ CPMBASE + 09EFH
MOV A,M
DCR B
DCX H
JMP CPMBASE + 0AA9H

Patch into the SYSGEN or MOVCPM image exactly as before, using the DDT
T and then 'R' commands. Use the same offset as your customised BIOS,
and install the following code.

CPMBASE EQU ?

!

ORG CPMBASE + 0A1BH

MVI A,8H
JMP CPMBASE + 0A07H
END

As an alternative, you can install the above procedure directly into MOVCPM
if you have it as a COM file. The patch will then be installed automatically in
any size System that you buildwith the new version. Make sure that you have
a back up copy of MOVCPM.COM before using DDT as follows.

A> DDT MOVCPM.COM
DDT VERS 2.2
NEXT PC
2700 0100
-L141B
141B MOV A, B
141C ORA A
141D JZ 09EF
1420 MOV A,M
1421 DCR B

310

MOVCPM.COM
MOVCPM.COM

Chapter 18 'BUG FIXES' from Digital Research

-A141B
141 B MVI A,8
141D JMP A007
1420 .
-GO

A> SAVE 38 MOVCPM2.COM
A>

The new program MOVCPM2.COM is used instead of MOVCPM.COM. The
generated system will have the Rubout and Backspace key function identical.

18.3 BIOS Error Return Code Options.

CP/M version 2.2

Program to be amended - BIOS

Normally, CP/M responds only to a zéro or a non-zero value as the return
code from the BIOS READ and WRITE entry points If the value in register A is
zéro, CP/M assumes that the disc operation was successfully completed. If
the value in register A is non-zero, then the BDOS displays the message
"BDOS ERR ON x: BAD SECTOR". You can then choose to press return -
and ignore the error - ογλ C and re-boot.

This routine inserts three extra return codes, making a total of five.

0 - Successful READ or WRITE.
1 - Bad Sector, indicates permanent dise error.
2 - Select Error, indicates the drive is not ready.
3 - R/O, the disc is Read Only (used by the 'WRITE').
4 - File R/O (this is not normally used).

In the code segment which follows, addresses given are hex offsets from the
base of the CP/M system. The CCP is normally locatedat980H but may be at
AOOH if a two sector boot is needed - see earlier in this Chapter.

You can assemble the patch for your size of memory system. The CPMBASE
will be at B DOS entry point address minus 806 H. See the note on this near the

311

MOVCPM2.COM
MOVCPM2.COM
MOVCPM.COM

CP/M The Software Bus {a programmers companion)

start of the chapter, which includes an example of how to follow the jump
vector to find the actual CPMBASE, and the use of DDT T and 'R'
commands.

Before installing this patch, the code at CPMBASE + BBDH should read -

LXI
JMP

H,CPMBASE + 809H
CPMBASE+B4AH

The above code is replaced by the following code -

CPMBASE EQU ?

ORG CPMBASE + BBDH

LXI
JMP
END

H,CPMBASE + 807H
CPMBASE + 83AH

Alternatively you can install the above procedure directly into MOVCPM if
you have the file MOVCPM.COM. The patch will then be installed in any size
of system you build with MOVCPM. Make sure you have a back up of
MOVCPM before you use DDT to carry out the following -

A> DDT MOVCPM.COM
DDT VERS 2.2
NEXT PC
2700 0100
-L15BD

15BD LXI
15C0 JMP
15C3 LHLD

H,0809
0B4A
15EA

-A15BD
15BDLXI H.807
15C0JMP83A
15C3.
-GO

312

MOVCPM.COM
MOVCPM.COM

Chapter 18 'BUG FIXES' from Digital Research

A> SAVE 38 MOVCPM3.COM
A>

The new program MOVCPM3.COM is used in place of MOVCPM.COM.
Additional error return codes for the BIOS READ and WRITE routines will be
supported in any CP/M system generated with MOVCPM3.COM.

18.4 Error when using the optional block/deblock
algorithms.

The modification following affects only those CP/M Systems which use the
optional blocking and deblocking algorithms listed in Appendix G of the
System Alteration Guide. When updating a file under Systems using the
algorithms with no data added to the file, the last block of updated records is
not written to that file. Contact Digital Research or your CP/M distibutor if
you are not certain whether or not this patch applies to your system.

Patch Procedure.

Make sure that you have a back-up copy of MOVCPM.COM before using
DDT to make the following changes. Use the Assemble command (A) and the
Set command (S). After making the changes, return to the CCP using the G
command and save the modified memory image on disc. Be certain to update
the memory image on the system track(s) by executing the new MOVCPM
and integrating your customised I/O system.

A> DDT M0VCPM.C0M
DDT VERS 2.0
NEXT PC
2800 0100
-A1CD2
1CD2 NOP
1CD3 NOP
1CD4 LXI H,O
1CD7

-G0
SAVE 39 MOVCPM.COM

(The instructions were DCR CI DCR CI JNZ 12DF)

313

MOVCPM3.COM
MOVCPM3.COM
MOVCPM.COM
MOVCPM3.COM
MOVCPM.COM
MOVCPM.COM

CP/M The Software Bus la programmera companion)

18.5 Phase error wrongly generated in ASM.

ASM occasionally generated an erroneous phase error when the identifier in a
SET statement appears within an expression from another statement.

For example- X SET 1
Y EQU X

END

This patch applies to versions 1.4 through to 2.2.

Back-up ASM.COM before patching !

A> DDT ASM.COM
DDT VERS 2.2
NEXT PC
2100 0100
-L1DAD

1 DAD CALL 1352
1DB0 CPI 05
1DB2 CNZ20DD

-A1DAD
1 DAD CALL1B8D
1DB0 .
-L1B8D

1B8D NOP
1B8ENOP
1B8F NOP

-A1B8D
1B8D CALL 1352
1B90ORA A
1B91JZ 1DB5
1B94 RET
1B95 .
-C

A> SAVE32ASM.COM

314

ASM.COM
ASM.COM
SAVE32ASM.COM

Chapter 18 'BUG FIXES’ from Digital Research

18.6 Improving the~S function.

CP/M version 2.2

Program to be amended - BDOS

We mentioned earlier that if you type a character before you enter S, the
earlier character blocks the look-ahead buffer and prevents S from being
effected. This is a way to avoid that problem.

In the following code segments procedures, addresses given are hex offsets
from the base of CP/M. This is explained early in the chapter, as is the method
of following jump vectors to arrive at the position of CPMBASE. Also as
before, you should patch into the SYSGEN or MOVCPM image using DDT
commands T and 'R'. You use the same offset as your custom BIOS. The call
at CPMBASE + 950H should be CPMBASE + 923H before installing the
folowing code -

CPMBASE EQU ?

ORG CPMBASE + 950H

CALL
END

CPMBASE+92AH

As an alternative, you may install the above procedure directly into MOVCPM
if you have it as a file. Back-up MOVCPM before you change it, using DDT like
this -

A> DDT MOVCPM.COM
DDT VERS 2.2
NEXT PC
2700 0100
-L1350

1350 CALL 0923
1353 POP B
1354 PUSH B

315

MOVCPM.COM

CP/M The Software Bus (a programmera companion)

-A1350
1350 CALL92A
1353 .
-GO

A> SAVE 38 MOVCPM4.COM
A>

18.7 Error in PIP when Start and Quit strings are the
same ength.

To correct this error, use DDT as follows (back-up PIP first).

A> DDT PIP.COM
DDT VERS 2.2
NEXT PC
1E00 0100
-L1168

117A .
-GO

1168 LDA 1F62
116B STA 1DF7
116ELXI H,1F62
1171 MVI M,00
1173 LDA 1DF9
1176 INR A
1177 STA 1DF8

-Al 168
1168 LXI H.1F62
116B M0V A.M
116CSTA 1DF7
116F MVI M,0
1171 LXI H.1DF9
1174 M0V A.M
1175 MVI M,0
1177 INR A
1178 DCX H
1179 M0V M,A

A> SAVE29PIP.COM
A>

316

MOVCPM4.COM
PIP.COM
SAVE29PIP.COM

Chapter 18 'BUG FIXES' from Digital Research

18.8 Using XSUB and SUBMIT with PIP.

We identified in Chapter 5 that you cannot include an exit from PIP in a
SUBMIT file - because a SUBMIT file must not contain an empty line, (with
just a carriage return) and the exit from PIP is just that. This patch modifies
PIP to accept a period (.) as an exit instruction. Then you can put a single
period in the last entry of a sequence of commands to PIP, and PIP will exit
correctly.

Back-up PIP first, then use DDT like this -

A> DDT PIP.COM
DDT VERS 2.2
NEXT PC
1E00 0100
-L1168

054F CPI 00
0551 JNZ 055E
0554 LHLD 1DFC

-A54F
054F CPI 2
0551 JNC55E
0554 .
-G0

A> SAVE29PIP.COM
A>

18.9 $$$.SUB file created on wrong drive.

If you run SUBMIT when A: is not the default drive, the $$$.SUB file will be
created on the default drive, and will not be présent on drive A: when
required. Therefore, as it stands, you cannot run a SUBMIT job from any
other drive than A:. If you make the following alterations (after backing up
SUBMIT.COM) with DDT, the $$$.SUB file will always be created on drive
A:.

317

PIP.COM
SAVE29PIP.COM
SUBMIT.COM

CP/M The Software Bus la programmers companion)

A> DDT SUBMIT.COM
DDT VERS 2.2
NEXT PC
0600 0100
-D5BB
05BB 00 24 24 24 20 .$$$
05C0 20 20 20 20 53 55 42 00 00 00 1A 1A 1A 1A 1A 1A SUB...
05D0 1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A....

-S5BB
05BB00 1
05BC24 .
-GO

A> SAVE5SUBMIT.COM
A>

18.10 PIP Object file transfer problem.

There is a problem which occurs when using PIP object file transfer options
when copying file to file. Back up PIP before making the following changes
with DDT.

A> DDT PIP.COM
DDT VERS 2.2
NEXT PC
1E00 0100
-L0713

0713 LDA 1F5E
0716 LXI H,1E04
0719 ORA M

-A0713
0713 LDA 1E04
0716 LXI H,1F5E
0719 .
-L1099

1099 LDA1E04
109C RAR
109D JNC 10B2

318

SUBMIT.COM
SAVE5SUBMIT.COM
PIP.COM

Chapter 18 'BUG FIXES' from Digital Research

-A1099
1099 LDA1F5E
109C .
-L164O

1640 LDA 1E04
1643 RAR
1644 JNC 1652

-A164O
1640 LDA1F5E
1643 .
-G0

A> SAVE29PIP.COM
A>

18.11 Using 'CTRL and n' characters in '.SUB' files.

SUBMIT does not accept Control characters in submit files. It should accept
the two characters 'up arrow' and 'Z' <ieλ Z) as 'control Z'. Back up SUBMIT
before making the following changes with DDT.

A> DDT SUBMIT.COM
DDT VERS 2.2
NEXT PC
0600 0100
-L0441

0441 SUI 61
0443 STA 0E7D
0446 MOV C.A
0447 MVI A,19
0449 CMP C

-S442
0442 61 41
0443 32 .
-G0

A> SAVE 5 SUBMIT.COM
A>

319

SAVE29PIP.COM
SUBMIT.COM
SUBMIT.COM

CP/M The Software Bus (a programmera companion)

18.12 Allowing PIP to copy to the PRN: device.

When PIP is used to copy to the logical device PRN:, the LPT: physical device
is always selected. This patch disables the automatic sélection of the LPT:
and allows the PRN: logical device to be used without affecting the current
IOBYTE setting. Back up PIP before altering it with DDT as follows.

A> DDT PIP.COM
DDT VERS 2.2
NEXT PC
1E00 0100
-LC66

0C66 LXI H,0003
0C69 MVI M,80
0C6B JMP 0C71

-AC69
0C69 NOP
0C6A NOP
0C6B .
-GO

A> SAVE29PIP.COM
A>

18.13 A Sample BIOS for a Serial Printer.

CP/M versions 1.4, 2.0, 2.1, 2.2

Program affected - BIOS

The code fragment which follows will drive Diablo serial interface printersor
other serial devices which use the X-ON/X-OFF protocol for synchronisation.
A device which uses this protocol receives data faster than it can print. The
devicetramsmitsa^ StoCP/Mwhenitsinputbufferbecomesfull,anda~ Qto
receive more data after the buffer has been emptied. (Note the use of λ S and
Λ Qasimplementedinversion3.1 -ratherthanthe^ Sandanycharacterwhich
versions 2.2 and earlier accept.)

320

PIP.COM
SAVE29PIP.COM

Chapter 18 ‘BUG FIXES' from Digital Research

LIST$STAT
LIST$DATA
IN$MASK
OUT$ MASK
LIST:

EQU 00H
EQU 01H
EQU 02 H
EQU 01H

CALL LISTST ! JZ LIST
M0VA,C ! OUT LIST$DATA
RET

LISTST:
;return list status (0 not ready, FF if ready)
LXI H,LST$FLAG
IN LIST$STAT ! ANI IN$MASK ! JZ NO$INPUT
IN LIST$DATA ! ANI 7FH ! CPI 'Q'-'@' ! JNZ S?
MVI M,0FFH

S?: CPI 'S'-'@' ! JNZNO$INPUT
MVI M,0

NO$I NPUT: IN LIST$STAT ! ANI OUT$MASK ! ANA M ! RZ
ORI 255
RET

LST$ FLAG: DB 255 ;must be 255 initially

18.14 Changing the 'P' (page) length in ED.

CP/M version 2.2 and v 2.2 4200H

Program to be amended - ED. COM

This modification alters the number of Iines scrolled by the 'P' command in ED
from the normal 23 to 14 - useful for short screens, or if you want the reduced
scroll so that your most recent previous commands are not scrolled off the top
of the screen. If you have a 4200 H based system, add 4200 H to each address
shown below. Back up ED.COM for safety before using DDT as follows -

A> DDT EDD.COM
DDT VERS 2.2
NEXT PC
1B00 0100
-L17DA

321

ED.COM
EDD.COM

CP/M The Software Bus (a programmera companion)

17DALXI H,0017
17DDSHLD 1D1C
17E0 RET

-S17DB
17DB 17 E (note - this is the line count of the scroll)
17DC00 .
-C
A> SAVE 26 ED.COM
A>

18.15 Nested SUBMIT Files.

CP/M versions 2.1 and 2.2

Program affected - SU B MIT. COM

The SUBMIT program allows a '.SUB' file to contain another SUBMIT
command. However, control does not return to the original '.SUB' file after
executing the nested SUBMIT command. (The exiting method of
implémentation issimilartoa 'GO TO’ rather than a 'PERFORM'.) To change
this, use the following code. You should first create the program shown, with
an editor, and call it SUBPATCH.ASM.

SUBFCB: EQU 5BBH
BDOS: EQU 5
OPEN: EQU 211H
r

ORG 22DH ;submit erase
;subroutine

OPSL: LDA SUBFCB + 15 ;f île open ok if ext not
;full

RAL
RNC
LXI H,SUBFCB + 12 ;try next extent
INR M

OPS: LXI D,SUBFCB ;open extent

322

ED.COM

Chapter 18 'BUG FIXES' from Digital Research

CREATE:

ADI 1

JMP CREATE

ORG25DH ;submit create
;subroutine

CALL OPEN
INR A
JNZOPSL Joop if open ok
LXI D,SUBFCB
MVI C,22
CALL BDOS

RET

the following code calls the routines above

ORG 4FEH

CALL OPS ;open the $$$.SUB file
JC 517H ;jump if not opened ok
LDA SUBFCB + 15 ;set current record to

;end
STA SUBFCB + 32
JMP 51DH ;jump if open ok

ORG SUBFCB
DB 1 ;force $$$.SUB file to

;A:

END

Assemble the above program SUBPATCH.ASM to create the
fileSUBPATCH.HEX. Then use DDT to insert SUBPATCH.HEX into the
SUBMIT.COM program as follows -

323

SUBMIT.COM

CP/M The Software Bus (a programmera companion)

A> DDT SUBMIT.COM
DDT VERS 2.2
NEXT PC
0600 0100
-ISUBPATCH.HEX
-R
-GO

A> SAVE 5 SUBMIT.COM
A>

18.16 Configuring CP/M for Page boundaries.

CP/M Version 2.2

Program to be altered - MOVCPM. COM

Earlier, we discussed memory banked Systems, and identified the
improvement in memory usage which we could obtain if CP/M was
configured to use memory in 256 byte pages, instead of the normal kilobyte
boundaries. This is a patch from Digital Research which does exactly that.

The new version of MOVCPM will be called PGMOVCPM.COM, and the first
argument to the new version (see chapter 6 for the normal arguments) is
optional, but if it is used, it désignâtes the size of the new system to be
constructed in pages. It must lie between 64 and 255 pages (décimal).

Back-up MOVCPM.COM before making the following alterations using
DDT.

A> DDT MOVCPM.COM
DDT VERS 2.2
NEXT PC
2700 0100
-L165

0165 CPI 10
0167 JC 0172
016A MVI L,00
016C MOV H,A
016D DAD H

324

SUBMIT.COM
SUBMIT.COM
PGMOVCPM.COM
MOVCPM.COM
MOVCPM.COM

Chapter 18 ‘BUG FIXES' from Digital Research

-S116
0166 1040
0167 DA .
-A16D
016D NOP
016ENOP
016F .
-L1A2

01A2 ANI
01 A4 MOV
01A5 PUSH
01A6 LHLD

-A1A2
01A2 ANI FE
01 A4 .
-G0

FC
H,A
H
0006

A> SAVE 38 PGMOVCPM.COM
A>

18.17 Summary.

In this Chapter we have included some of the more commonly needed 'fixes'
which are suplied by Digital Research for 2.2 and earlier versions. There are
more than we have shown here, and there are also 'fixes' forCP/M3.1(CP/M
Plus). In each of the cases we have shown, the DDT 'D'or'L' commands have
been used to display what the content of each location should hold before
you make the alterations, to confirm to yourself that you have the correct
address - particularly where this has to be calculated after following a séries of
'jumps'. In is worth commenting, in conclusion, that the list of actual error
corrections in all versions of CP/ M is tiny, compared to the scope and power
of the product. Most of what we have covered here is in the realms of 'if you
want to, you can'. Perhaps, too, following each of the 'fixes' through - either
in text or actually on your machine - will not only illustrate and give you
practice in using DDT, but may give you more ideas for things that could be
done, and how to do them. Teli the CP/MUGUK your ideas so that everyone
can share them !

325

PGMOVCPM.COM

Appendix

Two useful addresses are:

Digital Research (UK) Limited,
Oxford House,
Oxford Street,
Newbury,
Berkshire,
RG131JB
téléphoné from UK numbers (0635) 35304

CP/M Users Group UK
11 Sun Street,
Finsbury Square
London
EC2 2QD
téléphoné (01) 247 0691

326

INDEX
ABORT 16.4.4 282
ACCEPT 9.9.3 163
ACCESS 6.6 68
Access Drive 13.2 244
Active Dises3.2 28
Active Files 3.2.6 34
Adding MDISC to CP/M

11.3.1 209
AFN 2.2 13
ALGOL/M 9.8 148
ANSI COBOL 9.9.3 163
Append 10.1.2 176
ARCHIVE 6.6 68
ASCII Codes2.3.2 21
ASM 7.4, 8.1,8.2 91,97,97
ASM COM 8.4 103
ASMX8.4 103
Assembler 7.4, 8.3 91,100
Assembler Errors 8.6 109
Assembly Fields 8.3.1 100
Assignments 3.4.4 38
ATT2.3.1 18
ATTACH 16.4.6 283
AUTO 9.7.2 135
Auto Start 5.4 59
Auxillary Input Status 13.2 230
Auxillary Output Status 13.2 230

Backspace and Rubout (Delete)
Keys 18.2, 18.2.1

Back-Up2.2, 10.1.2
Banked Memory 6.1
BASCOM 9.7.4 145

308,310
11,176
62

BASIC-E 9.3 119
BAT 3.2.4 32
Batch Commands 5.1 54
Baud Rate 3.4.2, 15.1 37,270
BDOS 2.1,11.2 9,198
Binary7.4 91
BIOS 2.1, 5.1, 11.1, 11.2,

18.5 9,54,196,198,314
BIOS Calls 14.2.5 259
BIOS86 17.7 300
BIOS Enhancements 14.2.3 258
BIOS Error Return Code Options

18.3 311
BIOS Extensions 14.2.2 258
BIOS Routines 14.2, 14.2.1 250,

252
BOOT86 17.4 296
Bootstrap 1.1,11.3.1 2, 209
Buffers2.1 9
BUG.COM 8.4 103
BUG FIXES 18 305

BACKSPACE 2.3.3 25

CALL 9.9 153
Call RSX 13.2 246
CBASIC 9.4 121

327

CBASIC2 9.4 121
CCP 2.1, 11.1, 11.2 9,196,198
CCP AUTO-LOAD 18.1 305
Chain (to Program) 13.2 245
Character Pointer 10.1.1 174
Checked 3.2.5 33
CISCOBOL9.9 153
C Language 9.11 169
CLINK9.11 169
Close File 13.2 234
COM Files 8.6, 9.7.4 109,145
Compiled Language 9.1 118
Compiler 9.4 121
CON 3.2.4 32
Concatenate Files 4.3 52
CONCHAR% 9.6 125
Concurrent CP/M 1.6, 16.1 7,

275
CONFIGUR 15.1, 270
Configuring 15.1, 18.7 270,316
CONOUT 3.4.4 38
Console2.1,2.2,2.3.3,16.4.3 9,

11,25,282
Console Input 13.2 228
Console Output 13.2 229
Console Status 13.2 231
Constants in Assembler 8.3.1 100
CONSTAT%9.6 125
Control Key 2.3 14
Copying 4.1 42
COPYSYS6.1,6.5 62,67
Core11.1 196
CP/M86 17.1, 17.3 294,295
CP/M 1.3 1.2 2
CP/M 1.4 1.3, 2.2 5,11
CP/M Plus 1.5 6
CP/M 2.x 1.4 6
CP/M 3.1 See CP/M Plus
CPNET16.2 276
CREATE 6.6 68
CRT 3.2.4 32

-D 16.4.5 283
DATAINP 6.7 73
DATE 2.3.1 18
Date Stamps 2.3.1,6.6 18,68
DDT 7.5 95
DDT.COM 8.4 103
DEBUG.COM 8.4 103
Default 2.3 14
DELETE 2.3.2 21
Delete File 13.2 235
Despoolers 10.5 195
Destination 4.1 42
DEVICE 3.4 36
DEVICE Commands 3.6 41
DEVICE Names 3.4.3 38
DIR 2.1,2.3 9,14
Direct BIOS Calls 13.2 246
Direct Console 1/0 13.2 229
DIRS2.1 9
Disc Directory 11.3.2 211
Disc Parameter Block 14.6 265
DRIVE2.3.1 18
DSC4 17.2 295
DSKRESET 16.4.7 283
D Switch 9.9.3 163
DUMP 7.2 82

Echo 2.3.2 21
ECHO 6.7 73
ED5.1,10.1 54,173
EDIT Mode 9.7.2 132
Eh? Response 7.5 95
ERA2.1,2.3 9,14
ERAQ 16.4.2 282
ERASE (Version 3.1) 2.3.3 25
EXCLUDE2.3.1 18
Extents 12.2 213

FCB 12.2, 16.9 213,292
FDOS 11.1, 13.1 196,221
F80 9.12 170

328

FF2.3.1 18
File Control Block 7.4 91
File Name Table 11.2.4 204
Filespec 6.6 68
Files 2.1 9
File Stamps 13.2 247
File Structure Enghancement

16.7.3 289
FILTER6.7 73
First Character 5.5 60
Flags 7.4 91
Flexible Disc 2.1 9
Floating Point Numbers9.7.2 135
Flush buffers 13.2 245
Free Blocks 13.2 246
Free Drive 13.2 244
FULL2.3.1 19

Hard Disc 2.1 9
HELP 3.1 27
Hexadécimal 11.2 198
HEXCOM 7.3 82
Hex Display 7.2 82

INITDIR 6.1,6.6 62,68
Initialised Disc 6.2 63
Integer Variables 9.4 121
INTEL 7.3 82
Interlacing 14.4 261
Interpreted Language 9.1 118
IOBYTE 11.2.6, 13.2 206,230
IOBYTE (Altering) 14.5.1 264
IOBYTE — Input/Output Device

Mapping 11, 14.5 196,263

KILL 9.7.3 139

GENCOM 6.1,6.9 62,78
GENerate and LoaD an MP/M

System 16.5 285
GET 5.1,6.1,6.7 54,62,73
Get Address of Disc Parameter in

BIOS 13.2 240
Get Allocation Vector Address

13.2 238
Get Date and Time 13.2 248
Get Free Disc Space 13.2 245
Get Read Only Vector 13.2 239
Get Console Mode 13.2 248
Get/Set Output Délimiter

13.2 222
Get/Set Program Return Code

13.2 248
Get/Set System Control Block

13.2 245
Get User Code 13.2 240
Graphies 6.9 78

21
106

49

106
106
106

18

106
117

106

Layout Editing 4.2.6
Left Arrow 2.3.2
L8O.COM 8.4
L81 8.4
L82 8.4
L83 8.4
Length 2.3.1
LET4.1 42
LIB.COM 8.4
LIB Utility 8.10
LINKASM8.4
Line Feed 2.3.2, 5.1
LINK.COM 8.4 106
LINK-80 8.9 115
LINK Options 8.9
List Block 13.2
List Output 13.2
LOAD 7.3 82
LOAD.COM 8.4

21,54

115
249

229

103
Load Overlay (Résident System

Extension) 13.2 246
Lock Record 13.2 244

329

L8O.COM
LIB.COM
LINK.COM
LOAD.COM

Log In 3.2.6 34
LPT 3.2.4 32
LST 2.3.2 21
LTP 3.2.4 32

MAC 8.1 97
MACASM 8.4 103
Machine Code 8.3 100
MACROII.COM 8.4 103
MAINPROG 6.9 78
Make File 13.2 237
Mapping 3.2.4 32
Master Disc 6.5 67
MBASIC 5.1,9.7.2 54,135
MBASIC Common Statements

9.7.3 139
MBASICError Trapping 9.7.3

139
MBASIC Files 9.7.3 139
MBASIC Program Chaining

9.7.3 139
M Disc 2.1,6.8 9,76
M8O.COM 8.4 103
Memory Disc 11.3 208
MESSAGE 2.3.1 18
ML8O.COM 8.4 103
MOVCPM 6.1 62
MP/M 1.7 7
MP/M Commands 16.4 280
MPMSTAT 16.4.1 282
Multi-User System 16.1,

16.3 275,279
MYPROG9.10 165

Networking 16.1, 16.2 275,276
Nested SUBMIT Files 18.6 315
NOPAGE3.1 27
NOSORT2.3.1 18
Null 5.4 59

Object Code 9.11 169
Offset 7.4 91
Open File 13.2 234
Operating System 1.1 1
OUTPUT TO 6.7 73
Over-writing 3.2.6 34

PAGE 6.8 76
Parameters 4.2, 4.2.6 45,49
Parse Filename 13.2 249
PASCAL/MT 9.10 164
PASM8.7 111
Password Mode2.2, 13.2 11,247
Patching Programs 7.4 91
Phoenix 8.7 111
PIP2.1,2.3.1,4.1,18.4,18.5,18.6,

18.7,18.8 9,18,42,313,314,
315, 316, 317

Ports 6.2.1 65
Print Block 13.2 248
Print Spoolers 10.5 194
Print String 13.2 230
Priority within MP/M 16.6 286
PRN4.2.6, 8.2, 8.2.3 49,97,99
Prompt 1.1,4.1 2,42
Protocol 3.4.2 37
Pseudo-Sources 4.2.4 47
PTR 3.2.4 32
PUN 3.2.4 32
Punch Output 13.2 229
Push-up Stack 16.7.4 229

Radix 8.3.1 100
Ram 6.2.1 65
RDR 3.2.4 32
Read Buffer 13.2 231
Reader Input 13.2 229
Reading Random Records

13.2 240
Read Only 3.2.2 30
Read Sequential 13.2 236

330

Reboot 1.1,2.3, 4.2.1 2,14,46
Record Block Table 11.2.5 206
Record Locking 16.8 292
Registers 7.4 91
REL Files 9.7.4 145
REN2.1,2.3 9,14
Rename File 13.2 237
RENAME (Version 3.1) 2.3.3 25
Reset 3.2 28
Reset Disc System 13.2 233
Reset Drive 13.2 244
Return Current Disc 13.2 238
Return Directory Label 13.2 247
Return Log-ln Vector 13.2 237
Return Serial Number 13.2 222
Return Version Number (C = OCH)

13.2 232
RMAC8.1 97
RO 2.3.1 18
Rolling Screen 7.2 82
Root Segment 16.2 276
RSX Modules 6.9 78
RTMASM 8.4 103
RUBOUT 2.3.2 21
RUNALG 9.8 148
RW2.3.1 18

-S 12.4, 18.4
SAVE 2.1,2.3
SCHED 16.4.10

219, 313
9,14

285
Screen Handling 12.3 218
Scrolls 2.3.2 21
Search for First 12.2, 13.2 213,

235
Search for Next 12.2, 13.2 213,

235
Sector Allocation 11.2.7 207
Sectors 2.1 9
Sector Skewing 12.1, 12.2 213,

213

Select Disc 13.2 233
Self-Compiled Language 9.1 118
SET 6.1,6.6 62,68
Set BDOS Error Mode 13.2 245
Set Date and Time 13.2 247
SETDEF 6.1 62
Set Default and Password

13.2 248
Set Directory Label 13.2 247
Set DMA Address 13.2 238
Set File Attributes 13.2 239
Set Multi Sector Count 13.2 245
Set Random Record Number

13.2 243
Set User Code 13.2 240
SHOW Commands 3.6 41
SID 7.5 95
SID.COM 8.4 103
SID Commands 7.4 91
SIZE2.3.1 18
Size Column 3.2.1 30
Skewing, hard 14.4 261
SOURCE 4.1 42
Space 5.4 59
SPOOLand STOPSPLR

16.4.8 284
$SYS 3.2.3 31
Stack Requirements 14.3 261
Stand Alone 5.3 58
Stamping 6.6 68
STAT 2.1,3.2 9,28
Statistics 2.1 9
SUBMIT2.1,5.1 9,54
SUBMIT Statement 5.2 56
Symbol Table 9.5 124
SYS 2.3.1 18
SYSGEN 6.1 62
System File 3.2.3 31
System Parameters Area 11.2,

11.3 198, 208
System Reset 13.2 228

331

Test and Write Record 13.2 244
TOD 16.4.9 284
Toggle 2.3.2, 9.4.1 21,122
TPA 11.2 198
Transient 1.1,2.1, 11.2 1,9,198
Trapped 3.2.2 30
Truncate File 13.2 246
TTY 3.2.4 32
TYPE 2.1,2.3 9,14
Type Suffix 6.6 68

Ufn 2.2 11
UL1 3.2.4 32
Unlock Record 13.2 245
UP1 3.2.4 32
UP2 3.2.4 32
UR1 3.2.4 32
UR2 3.2.4 32
Useof MDISC 11.3.2 211
USER 2.1,2.3, 2.3.1 9,14,18
User Patching 6.4 67
Using CP/M86 17.8 303

V Command 10.1.3 177
VAL 3.2.4 32
Variables 5.3 58
Vérification 4.1 42
Version/Configuration of CPM

6.2 63

Warm Boot 1.1 2
Winchester Disc 6.8 76
Wordstar 10.2 182
WRITE 6.6 68
Write File FCB 13.2 247
Write Protect Drive 13.2 239
Write Random with Zéro Fill

13.2 244
Write Sequential 13.2 236
Write to MDISC 11.3.2 211
Writing Random Records

13.2 242

XSUB 5.1 54

Z80ASM 8.4 103
Zilog Z8000 17.1 294

Printed in England by Commercial Colour Press, London E7.

332

About This Book:-

This book tells you clearly but concisely how to use QP/M.induding CP/M Plus,
to your advantage. Ali of the commands and options in the main versions of CP/M
(1.4, 2.2 and 3.1 or CP/M Plus) are described with detailed examplesof their use.
The main softwaretools (languagesand editors) arealsodescribedandeach hasa
detailed 'quick référencé' guide. Again, exemples are used where appropriate. The
closing chapters take you inside CP/M, showing how memory and file Storage are
organised and manipulated.

There are practical hints and tips for programmers at ail levels, and each chapter
has a 'fundamentals' section to help the really new user. Concurrent CP/M, MP/M
and the other CP/M dérivatives are mentioned where appropriate.

This book is fora// users of CP/M, from the person who does a little programming
as a hobby, or just uses CP/M as a tool, to the dedicated practitioner. You will find it
an invaluable and up-to-date référencé.

About the Authors:-

Andrew Clarke is a founder member of the U.K. CP/M User Group, an established
consultant and an experienced teacher.

Mike Eaton is a freelance consultant in computerapplicationsand training. He was
previously a Senior Lecturer at North East London Polytechnic and, more recently,
a senior consultant at the National Computing Centre.

David Powys-Lybbe is a microsystems consultant specialising in CP/M based
micros. He has written many software packages, including the CP/M BIOS for a
1 6 bit micro, and was a major force in the formation of the U.K. CP/M User Group.

Other Books of Interest:-

UNIX, The Book. by M. Banahan & A. Rutter
Build your Own Expert System, by C.M. Naylor
Microcomputer Speech Synthesis & Récognition, by A.S. Poulton
Practical Pascal for Microcomputers, by R. Graham
Successful Software for Small Computers, by G. Beech
Computer Based Learning and Training, by G. Beech
Financial Planning on a Microcomputer (with Planner Cale and Master
Planner), by M. Dobres

Ail Published by
Sigma Technical Press
5 Alton Road
Wilmslow
Cheshire
SK9 5DY
U. K.

ISBN 0 905104 18 8

?

?
>

σ

Σ

	CPM The Software Bus... a programmer's companion
	PREFACE
	CONTENTS
	1 - A HISTORICAL SKETCH
	1.1 Fundamentals
	1.2 The history up to version 1.3
	1.2.1 The structure of CP/M 1.3
	1.3 CP/M version 1.4
	1.4 CP/M version 2.x
	1.5 CP/M PLUS - or CP/M version 3.1
	1.6 Concurrent CP/M
	1.7 MP/M
	1.8 Sixteen bits
	1.9 Summary

	2 - THE CONSOLE COMMANDS
	2.1 Fundamentals
	2.2 File Names
	2.3 Command summary

	3 - The Information Transients - STAT,HELP,DEVICE and SHOW
	3.1 Fundamentals
	3.2 The STAT command
	3.3 The Version 3.1 commands
	3.4 DEVICE
	3.5 SHOW in version 3.1
	3.6 Summary of DEVICE and SHOW commands in version 3.1

	4 - PIP
	4.1 Fundamentals
	4.2 PIP - The Peripheral Interchange Program
	4.3 Summary of PIP

	5 - The 'Batch Processing' transients, SUB MIT and XSUB, PROFILE and GET
	5.1 Fundamentals
	5.2 Using XSUB with SUBMIT
	5.3 Putting a run-time PARAMETER in SUBMIT
	5.4 Making a 2.2 program disc into an 'auto-start' System
	5.5 Making a 3.1 disc into an 'auto-start' system
	5.6 SUMMARY

	6 - Creating and controlling CP/M's operation.
	6.1 Fundamentals
	6.2 SYSGEN (versions up to 2.2)
	6.2.1 What SYSGEN does (and doesn't do)
	6.3 MOVCPM (versions up to 2.2)
	6.3.1 Summary of MOVCPM
	6.4 Summary of SYSGEN and MOVCPM, the commands up to version 2.2
	6.5 COPYSYS. (version 3.1)
	6.6 INITDIR and SET. (version 3.1)
	6.7 GET and PUT
	6.8 SETDEF (version 3.1 only)
	6.9 GENCOM (version 3.1 only)

	7 - DUMP, LOAD, DDT and SID
	7.1 DUMP
	7.2 LOAD and HEXCOM
	7.3 DDT
	7.4 SID
	7.5 Summary

	8 - THE CP/M COMPATIBLE ASSEMBLERS
	8.1 Fundamentals
	8.2 ASM
	8.3 An Overview of Assembler
	8.4 Assemblers available
	8.5 SUMMARY OF CONVENTIONS AND SYMBOLS USED IN ASSEMBLER DIRECTIVES
	8.6 ASSEMBLER PSEUDO-OPS
	8.7 MAC (supplied with version 3.1)
	8.8 RMAC
	8.9 LINK
	8.10 LIB
	8.11 Summary

	9 - THE CP/M PROGRAMMING LANGUAGES
	9.1 Fundamentals
	9.2 The common languages
	9.3 BASIC-E
	9.4 CBASIC
	9.5 XREF
	9.6 RESERVED WORDS in CBASIC
	9.7 MBASIC
	9.8 ALGOL/M (Public domain software in the CP/M Users' Group)
	9.9 CIS COBOL
	9.10 Pascal/MT
	9.11 The language C
	9.12 FORTRAN under CP/M
	9.13 MACRO-80
	9.14 Summary

	10 - THE CP/M EDITORS
	10.1 ED - the CP/M text editor
	10.2 Wordstar
	10.3 BASIC line editors
	10.4 Other Editors
	10.5 Spooling the Printed Output
	10.6 Summary

	11 - The structure of CP/M
	11.1 FUNDAMENTALS
	11.2 CP/M in memory
	11.3 Memory Disc - MDISC

	12 - Hardware
	12.1 Fundamentals
	12.2 Dises
	12.3 Screen Handling
	12.4 Non-functional and missing characters

	13 - Using the FDOS
	13.1 Fundamentals
	13.2 The Function Codes
	13.3 Summary

	14 - Using the BIOS
	14.1 Fundamentals
	14.2 How to call BIOS routines
	14.3 Stack Requirements
	14.4 Interlacing
	14.5 The IOBYTE - Input/Output Device mapping
	14.6 Disc Parameter Block
	14.7 A complete illustrative subroutine
	14.8 Summary

	15 - Configuration
	15.1 Fundamentals
	15.2 CP/M Installation
	15.3 'Patching' the BIOS
	15.4 First-time installation of CP/M

	16 - Networking and Multi-User Systems
	16.1 FUNDAMENTALS
	16.2 NETWORKING
	16.3 MULTI-USER SYSTEMS
	16.4 MP/M Commands
	16.5 GENerate and LoaD an MP/M system
	16.6 Priority within MP/M
	16.7 MP/M Version 1 versus Version 2
	16.8 Conversion from '80 to '86
	16.9 Summary

	17 - CP/M on the 8086
	17.1 Fundamentals
	17.2 The initial hardware
	17.3 The design decisions
	17.4 BOOT86
	17.5 Loading CP/M86
	17.6 Processor conflict
	17.7 BIOS86
	17.8 Using CP/M86
	17.8.1 The Advantages of CP/M86

	18 - 'Bug Fixes'from Digital Research
	18.1 CCP AUTO-LOAD
	18.2 Reversing the functions of the Backspace and Rubout (Delete) keys
	18.2.1 Make Rubout (Delete) identical to Backspace
	18.3 BIOS Error Return Code Options
	18.4 Error when using the optional block/deblock algorithms
	18.5 Phase error wrongly generated in ASM
	18.6 Improving the S function
	18.7 Error in PIP when Start and Quit Strings are the Same Length
	18.8 Using XSUB and SUBMIT with PIP
	18.9 $$$ SUB file created on wrong drive
	18.10 PIP Object file transfer problem
	18.11 Using 'CTRL and n' characters in '.SUB' files
	18.12 Allowing PIP to copy to the PRN: device
	18.13 A Sample BIOS for a Serial Printer
	18.14 Changing the 'P' (page) length in ED
	18.15 Nested SUBMIT Files
	18.16 Configuring CP/M for Page boundaries
	18.17 Summary

	Appendix
	INDEX
	● Raw scan : Maxime CROIZER for ACME | Layout/OCR : ACME – https://acpc.me ●

