' = ¥

liemotech Owners Club Public Domain Software Library
Document LLJ2 - VDP Chip explained

Last month I included details of the RST 10 commands, well
John Hodgson has included some more details which will, amongst
other things solve the problems with using the SPRITL command
through R37 10. This information can be found in the Letters
pages.

I would like to demonstrate that although RSY commands appear to
be casy to use (once you have got the hang of them®®) they are in
fact still not making the full use of the machines speed. There
are following, two programs which do approximately the same
thing, they £fill the screen with “*'s. The first is a RST 10
version, you'll notice how short it is, it is faster than hasic
but not as fast as the second program, this program accesses the
VDP and VRAH directly and so is of optimum speed.

- ww

RST 10 Screen fill routine.
; CLS Before entry
LD B, 46
LOOP: RST 10
DB £C4, Mhkdkhhkhkhhrrhkrkrkk!
DJUZ LOOP
RET

Alternative Screen fill routine

- e e

LD DE,7168;TOP L/H CORNER OF TEXT SCREEN
CALL VSET
LD IX,960 ;LOOP COUNTER
LOOP; LD E,42 s NUMERICAL VALUE OF '"*"
CALL vourT
DEC 1IX
PUSII IX
POP BC
LD A,B
CP 0
JP N
LD A
CP 0
JP NZ,LOOP
RET
VSET: PUSH AF
LD AE ;SET UP VRAlN ADDRESS POINTER FOR LDATA OUT
ouT (2},A
LD A,D
OR 64 -
AND 127 -
OuT (2).,A
POP AF CONT'D OVERLEAF
RET
VOUT: PUSH AF
LD AL,E :QUTPUT BYTE TO SCREEN

SET WRITE TO VRAN MODE

VDP CHIP EXPLAINED



ouT (1),A
POP AF
RET

To type these programs in all you have to do 1is enter into
assembler (ASSERL 10 @RET¢ eRETg).
With both programs it is probably best to use the CLS command to
clear the screen before the routine and use the PAUS:Z command to
enable you to sec whats happened.

It is the second program that requires some explaining as it
contains several interesting points which will go someway to help
with the understanding of the machine and Z80 assembler.

The first line contains the address of the first location on the
screen (71686 Dec or 1C00 Hex).You may or may not know that the
screen is memory mapped, that is each screen location corresponds
to a memory location, if the manual had a block diagram of the
VRAM. you could see what I mean, but i'm afraid it does not, so
this makes an explanation impossible at this stage. Anyway, onto
the routine called VSET, this sets the VDP into write mode and
sets the address for the write. The Truth Table below shows the
two possible modes:-

Bit 6 ; 7
Write data to VRAM

0 Read data from VRAH

VDP address's are 14 bits long leaving the two most significant
bits (above) for the mode sctting.It should be noted that the VDF
register loaded with the “write' start adcress 1s an auto
incrementing register so enabling seguential data transfers. The
bits 6 & 7 are set to their correct values by the lines OR 64 &
AND 127, these are two logical operators and they perform the
following tasks. Two Truth Tables and a demo will _hopefully
clarify things somewhat:-

QO

0 AND 0 = 0 ’ 0 ORC =290
0 AKD 1 = 0 0 OR 1 = 1 TRUTI TABLES FOR LOGICAL UPS
1 AND 0 = 0 1 OR 0 = 1 CR & AND
1 AND T =71 1 0R 1 =1
As a demo 1'll use the nuwnbers from the program:-

Accunulator 00011100 = 1C Hex

OR 64 01000000 = 64 Dec

Accumulator 01011100

AND 127 61111111 = 127 Dec
01011100

You can see that bits 6 & 7 {two left hand bits) are now set as
required.

VOUT only performs a bit output the the VRAM address set by VSET,

The IX register is used as a counter to output 960 (24%40) '"*"
characters to the screen. I hope that this 1is fast enough for
youoooo.

VDP CHIP EXPLAINLED



Any machine code enthusiast who has tried to understand the
operation of the TMS9918 Video Processor and it's associated 10K
video ram from the description written in the MIX Users iianual
may appreciate how confused I felt after reading it for the first
time. This article attempts to provide a clearer and more
practical approach tc using and understanding the processor and
it's VRAl.

viemery Lap

The VRAM memory is mapped by BASIC as shown below, this “map' is
for both text and graphics. Graphics liode 2 as the manual says®

Address in

Decimal
16255 ;s End of Sprite Attribute table
"
16128 ; Start of Sprite Attribute table
16127 ; Lnd of Pattern Name Table
" (Graphics Display)
15360 ; Start of Pattern lame Table
15358 ; End of Sprite Generator Table
11
14336 ; Start of sSprite Generator Table
14335 ; BEnd of Pattern Colour Table
"
8192 ; Start of Pattern Colour Table
8191 ; End of Text Name Table
" (Text Display)
7168 ; Start of Text KName Table
7167 ; End Text Pattern Library
11}
6144 ; Start Text Pattern Library
6143 ; End of Pattern Generator Table
n
0 ; Start of Pattern Generator Table

Table Showing How VRAM is rapped Dy Basic

Your'e probably still saying what does it all mean, well,
starting with text mode (6144 to 8191), this 2K block of memory
takes care of text mode. In text mode the screen measures 40%24
characters, that's 960 characters in all, starting at 716¢ which
represents the top 1left hand corner of the text screen, each
screen location corresponds to a memory location, hence the Text
Hame Table is 1K long. lield in these memory locations 1is the
ASCII number of the actual character, ie. if the 10th location
along from the top (7178) contained number 31 then the screen
location 10 across from the top would show a "1".( For a table of
ASCII characters see your manual page 174, Appendix 1):
Incidentally the 128 ASCII characters are stored in the Text
Pattern Library, each entry in the 1library takes @& Dbytes,

VDP CHIP EXPLAINED



therefore, the library is 1K lcng. Notice also that the ASCII
characters are stored in the order of the table in your nmanual
and so placing a 31 in a display location causes the processor to
look a the 31st entry in the Text library and print that pattern
to the screen.

The graphic's display is laid out in a similar way to that of the
text display except more memory is needed and there 1is more
attention paid to detail.

In graphics mode (mode 2 in the manual) the screen 1is divided
into three sections sach of which has 256 pattern positions, each
pattern position is capable of displaying it's own unigue graphic
character as defined by the programmer. Lach pattern is mace up
in a 8 bit by & byte grid the same as for sprites.

To make things a little clearer let us look how patterns are
positioned on the top 1/3 of the screen, Firstly the patterns are
defined on the & * 8 grid and then are entered in their hex
format into the Pattern Generator Table starting at OK. Thus if
patterns x,y and z are defined then they will occupy a total of
24 bytes from £00 to E18.

The choice of pattern and it's position on screen is determined
by the contents of the associated Pattern Name Table, which in
this case starts at 15360 Dec and is 768 (24*32) bytes long. As
you can see this is much the same as for the Text Screen. It
should be pointed out however that patterns defined for one 113
of the screen may not be used for another area of the screen
unless they are definec¢ in the associated Pattern Table.

Ink and Paper colours for the defined patterns are set by the
contents of the 2 1/3rd's of the Pattern Colocur Tables, again one
table for each 1/3 of the screen. LBach byte in the colour table
is directly related to the byte entries in the pattern table. Ink
colour is determined by the contents of the most significant half
of each byte and Paper colour by the contents of the least
significant half. It follows therefore, that each byte of a
pattern definition may have it's own ink and paper colours.

Next month I'll explain how the sprite generator table and the
sprite attribute table are set up by basic and then move on to
explain how the VDP's registers are set up by Basic.

Many thanks to Paddy Thompson for the help that he has provided
in the writing of this article®®®

Continued from last months article about VRANM mapping from Basic,
we still have the 3prite Attribute and Generator tables to look
at.

Well, these obviously take care of the Sprites used by the GENPAT

command in iModes 4&5, it can be seen that the Sprite generator
table is 1K long (see last months mag.) thus allowing room for

VDP CHIP EXPLAINLD



128 size 0 sprites(8*3)d8*128 Dbytesi or 32 size 1 sprites
(16%16)432*%4*3 bytesl.

The Sprite Attribute table is 128 bytes long and controls the 32
sprite planes, each sprite plane is controlled by 4 bytes, the
format for these looks like this
Byte

1 This byte contains the value which is the number of pixels
from the top left hand corner of the sprite to the top of -the
screen.

2 Contains the value which is the number of pixels from the
top left hand corner or the sprite to the left of the screen.
3 The contents of the third byte determine which shape the

sprites will be and is selected from one of the pre-defined
shapes in the sprite generator table.

4 The lower four bits of the fourth byte select the sprite
colour and the most significant bit of this byte may be set to
allow the sprite to 'bleed' in from the left hand side of the
screen.

Knowing now a little of what a Pattern Table, Generator Table and
Attribute table are, you should be able to make some sense of the
Technical data on the VDP in the black manual. You should alsc
appreciate the effects of such Dasic commands as:- CILSPR,
GLENPAT ,ADJSPR etc..

The only other thing that we have not talked much about 1is the
VDP's 8 Write Only Registers.(See Table 2 :VDP Registers, Pg22l
of manual). These registers contain all the information necessary
to form the VRAM table, Basic sets these on 'start up' to conform
to Mode 2 graphics, it is possible to set up these as you wish
and use them from assembler. The manual describes the VDP being
used in Mode 1 & Multicolour mode, this is possible and with time
and care could produce some interesting results, however all is
not so simple as it is necessary to disable Basic otherwise this
will corrupt your efforts. This is done by making your first
assembler command DI (Disable Interrupt) and your last, on return
to basic RETI (Return from Interrupt). Another way of returning
to basic is to make your last line JP £0000, this being called a
'warm boot' back to Basic in computer jargon.

It is totally safe to muck about with the VDP in this way so feel
free to try anything, the worst that can happen 1s that the
computer will 'hang-up'.

The technique for setting up the VDP registers is as follows:-
All register set-ups take place via port 2 in two stages. The 2380
*D' and "LE' registers are pre loaded with the register number and
the data for that register respectively, then the data is output
first to port 2 followed by the register number also to port 2.
It should Dbe noted that before the second write (the register
number) the most significant bit (7) must be set to '1' and bits
6,5,4 and 3 must be set to '0'. A simple program which does this
would look like this :

VDP CHIP EXPLAINED



f"’l-'g -

ROUTINE TO SLT UP VDP REGISTERS
DE REGISTIER LOADLD WITH DATA AND REGISTER ON ENTRY
(DO NOT Type in the above lines, they are for reference only)

~e wa

VDPREG: PUSH AF ; SAVE REGISTERS
PUSH BC
LD A,E s LOAD ACCUMULATOR WITH DATA
OUT (£02),A;OUTPUT DATA
LD A,D ; LOAD ACCUMULATOR WITH REGISTER NO.
AND 7 :SET UP CORRECT COWTROL DITS
OR 123 ;SET 1iSB TO ‘1!
OUT (£02),A;0UTPUT REGISTER NUIBER
POP BC
POP AF ;RESTORE REGISTERS
RET

Using this type of format it is possible to manipulate the VDP as
you wish, remember that :

Port 2 is used for Address transfers

i.e. The registers, including the auto-incrementing address
register mentioned last month. ‘

Port 1 is used for bata transfers

i.e. Accessing the Vran.

Also, address set ups and data transfers require a certain
minimum amount of time between processes, this is 11 micro
seconds between address set ups and 8 micro seconds between data
transfers. (liot long enough to go and make a cup of tea®®)

It is also possible to chance from Text Mode to Graphics iode
with alarming speed as only two Registers have to be altered. The
alterations are as follows :

(See pages 221 & 222 of black manual)

Bits 11,112 and M3 contreol the liode of operation anc simply
changing these using the above program will change you from Text
to Graphics.

B M2 K3
0 0 1 Graphics mode 2
1 0 0 Text l.ode

Thats about how simple the VDP is, probing about with simple
little routines will help with understanding these things even
fuller.

}{OCPDSL - 01/04/88 LLOZ

VDP CHIP EXPLATNED



	MOC_LL02_VDP_Chip_Explained_1
	MOC_LL02_VDP_Chip_Explained_2
	MOC_LL02_VDP_Chip_Explained_3
	MOC_LL02_VDP_Chip_Explained_4
	MOC_LL02_VDP_Chip_Explained_5
	MOC_LL02_VDP_Chip_Explained_6

