THE
SOURCE

.

KEITH HOOK

[Produced and printed by ORION SOFTWARE 1987)

THE SOURCE
by

KEITH HOOK

Produced and printed by ORION SOF TWARE 1987

This book is dedicated To MARLYN & GEOFF BOYD forn thein undying belied in a
computer that L4 wonthy of consideration by any computern buff. Without
Zthein - dedication the MTX would have died. Instead, the phoenix arcse from
the ashes in the guise of the MCL SERIES TWO.

Funthern dedications ane dinected at the many pdoneen usens who suffered
greatly 4n the 'early days' but have remained Loyal to Black Beauty. My
personal thanks go to these people who over the yeans have given me the
falth to continue.

Keith Hook
Highen Reedley
1987

ACKNOWLEDGEMENTS

The author wishes to thank MCL and the many people who have submitted

material to him over the past years and for their assistance with ideas and
material.

All programs have been written expressly to 1illustrate specific points
within the text. The are not warranted as being suitable for any specific
application. Although every care has been taken in writing this book no
responsibility is assumed by the author or publishers for any errors or
omissions.

Neither MCL nor the author make any representation or warranty with respect
to the contents and specifically disclaims any implied warranties of
merchantbility or fitness for any specific purpose. '

Contents

CHAPTER ONE

Overview of Mtx Operating System

Memory Layout

Machine Differences

Basic Programs

Obtain Length of Basic String

Sting Comparision

String Input

Data Restore to a Line Number [Basic]
Data Restore to a Line Number [Assembler]
Simulated Print Using

CHAPTER TWO

Overview of Sprites

Basic Sprite Collisions

Joystick Movement

Screen Handling

Simulated Screen Poke

Reading VDP Status Register

Test for Multiple Joystick Movement

CHAPTER THREE

How To Use The Assembler

The Assembler Commands

CHAPTER FOUR

How To Use The Front Panel

Front Panel Comands

Screen Dump Program

CHAPTER FIVE -

Overview of Video Display Processor
VDP Register Functions

Writing to the VDP Registers
Reading and Writing to Vram

CHAPTER SIX

Display Modes
Text Display
Graphic Mode 2 Display
Graphic Mode 1 Display

CHAPTER SEVEN

CTC Overview

Time Constant

Prescaler

Down-counter

Programming the CTC

VDP Interrupts

How to Setup VDP Interrupts

CHAPTER EIGHT

Sprites

Sprite Attributes

The Early Clock Bit

Initialising Attribute Table

The Sprite Generator Table

Sprite Animation

Sprite Collisions

How to Detect Sprite Collisions with the Pattern Plane

CHAPTER NINE

Screen Restart Instructions
Overview of Operation
How to Utilise RST10 Instructions

CHAPTER TEN

Keyboard Scanning
Sense Bytes

Scan Values
Keyboard Layout
Keyboard Rom Call

CHAPTER ELEVEN

Overview of Sound Processor

Formula For Writing to PSG

The Tone Generators

The Noise Generator

Amplitude Control

Sound Rom Call

A Complete Sound Subroutine Package

Music Demonstration Using the Above Routine
APPENDIX A

System Variable Functions

APPENDIX B

Z80 Operation Codes

APPENDIX C

Auto Load for the Larger Program

APPENDIX D

Demonstration of How to Setup Vram
Simple Animation

APPENDIX E

Useful Subroutines

THE SOURCE CHAPTER TwO

CHAPTER TWO

The Memotech's screen handling can initially seem difficult to get to grips
with - superficially it doesn't seem to have direct memory mapping of the
video display, and the manual doesn't explain how you can write to and read
from the screen using POKE & PEEK. The confusion is basically caused by the
way ~the display operations are managed. The Memotech uses the Texas
TMS9129A Video Display Processor [VDP] to handle all data relating to the
display, while other micros tend to use the cpu for this operation.

S0, although the presence of the UDP is confusing, it is actually an
advantage, giving you 16k of video ram on top of the normal ram, and giving
you added flexibility once you get to grips with it.

Normally the screen is memory mapped in ram. For instance, the Colour Genie
computer is memory mapped at 4400H to 47FFH (17408 - 18431) for the low-
resolution screen. Fast writes or reads from/to the screen can be
accomplished by Peek (address) or Poke,address value.

At first sight it seems that writing to the screen using Pokes or reading
from the screen using Peeks is not possible on the Mtx - the instruction
manual certainly doesn't mention the subject. However, memory mapping of
the screen via Vram is directly comparable with the system described above
for the Colour Genie, except that it is managed by the Vdp and not the 280
Cpu. '

Mtx Basic sets the start of the Text Screen see [diagram 4] at 1COOH (7168)
in Vram. This address corresponds to the first position on the screen, top,
left-hand corner.

Writing data to Vram involves sending the destination address to the Vdp via
Port 2. Once the address has been set up data can be transferred to Vram
through Port 1. But bear in mind the following :

The Vdp contains an auto incrementing logic, which means that once the
address has been set up, sequential writes to the screen need only involve
sending data. For example:

Write three blank spaces one after the other.
OUT (02),ADDRESS
ouT (01),32
ouT (01),32
ouT (01),32
[32 = ASCII CODE FOR A BLANK SPACE CHR$(32)]

All addresses must be sent to the Vdp Least Significant Byte firs, followed

2-1

THE SOURCE CHAPTER THREE

CHAPTER THREE

USING THE ASSEMBLER

The immediate advantage of the Mtx assembler over most other machines is
that it is very easy to use and has a simple instruction set that can be
learned with ease. It does not have to be loaded into memory and it is
called from Basic as an inline assembler. All code, entered at the
keyboard, is stored in memory as machine executable object code. The
readable source file is generated by using the LIST command, and at this
time the Mtx disassembles the object code by inserting labels, text etc.,
which are stored in tables above the object code - this is one reason why a
LISTing becomes slower as the program grows in size.

At this point it is important to realise the following:

Al SINCE CODE IS STORED IN A BASIC LINE
THE ACTUAL LOCATION OF THE CODE WILL CHANGE
IF THE BASIC PART OF THE PROGRAM (BELOW THE
ASSEMBLER LINE) IS MODIFIED, OR LINES ARE
ADDED.

B] A PROGRAM LISTING THAT USES TWO
SEPARATE CODE LINES ...ASSEM 20 : ASSEM 200
WILL NOT MATCH UP WITH THE ORIGINAL
ABSOLUTE ~ ADDRESSES [THOSE SHOWN IN THE
LISTING] IF COMMENT LINES ARE OMITTED. THIS
IS NOT A PROBLEM AS LONG AS LABELS HAVE BEEN
USED. THE CODE IS THEN RE-LOCATABLE AND THE
REMARKS STATEMENTS WILL NOT AFFECT THE
ACTUAL OPERATION OF THE CODE.

| REM THIS LINE HAS BEEN ADDED LATER
1@ CODE

1@ CODE

Bae7 LD HL,BUFFER Bo2C LD HL,BUFFER ;<= Notice how address has changed
8884 LD B,b8 BO2F LD B,b8

BBAC LDOP: LD A, (HL) 8831 LOOP: LD A, {HL)

aeen LD (HL),A 832 LD (ﬁL),A

BROE INC HL 8833 INC HL

aeeF DJINI LOOP ‘ 8834 DJNI LOOP

8811 BUFFER: DB 38,48,58,48,78,80 8836 BUFFER: DB 38,48,59,40,70,88
8017 RET 803C RET

BR18 RET 883D RET

Syabols: Syabols:

BEFFER 881 LOODP BRRC BUFFER BB36 LOOP 8831

3-1

THE SOURCE CHAPTER FOUR

CHAPTER FOUR

USING THE FRONT PANEL

Once an assembly program has been written, some means of testing the code is
desirable. One wrong byte can send a machine code program on a journey to
nowhere. It 1is, therefore, an advantage if some means of single-stepping
through a program is available - in this way we can examine registers and
detect when the code does not do what is expected. At this point, the Front
Panel comes into its own.

The Front Panel is a debugging aid which will allow the assembly programmer
to look at or single step through an assembled program. Most assembly
programs move data between registers, store data in specific memory
locations, or carry out some form of test on the flag register. Program
failure often occurs due to one of these operations performing in an
unexpected manner.

To wuse the Front Panel you must first become familiar with the type of
operations that can be performed from the keyboard.

KEY OPERATION
RETURN MOVES MEMORY CURSOR FORWARD
DOWN ARROW MOVES MEMORY CURSOR DOWN
UP ARROW MOVES MEMORY CURSOR UP
-[MINUS] MOVES MEMORY CURSOR BACKWARD
.[FuLL-STOP] MOVES REGISTER CURSOR

Typing L will list from the current memory location and typing L #4000 will
list from #4000.

Typing D will display from the current Memory Block Cursor while typing D
#4000 will display from #4000.

There are two cursors and both use the same symbol ">". One is the Memory
cursor and one the Register cursor.

Typing I toggles the memory display between hexidecimal notation and Ascii.

How to wuse the Front Panel is best explained by example, so before we
continue type in the following listing - it doesn't do very much but it will
serve as a demonstration program. First enter the assembler by typing ASSEM
10 “RET>. In answer to the Assemble> prompt press <RET>. Your display
shouird now look exactly like this :-

8007 RET [Mtx 500] or 4007 RET [Mtx 512+]

4-1

THE SOURCE CHAPTER FIVE

CHAPTER FIVE

THE VIDEO DISPLAY

All display operations are managed by the Texas TMS9129 Video Display

Processor (VDP). The chip is not a secret weapon developed by Texas
Instruments in order to fill up the psychiatric wards with budding
programmers. It is a sophisticated piece of electronic wizardry which

allows complex screen displays to be utilised. However, as with all
powerful electronics, the chip requires what appears, at first sight, a
complicated set of instructions. The VDP manages an area of ram, which is
seperate and extra to normal ram called Video Ram (VRAM).

The VDP communicates with VRAM via Ports 1 and 2.

Port 2 is used for address transfers
Port 1 is used for date transfers

All addresses throughout VRAM are 14-bit. Address transfers require a two-
byte transfer with 2 bits unused.

The VDP has five available display modes.

a) TEXT

b) MULTICOLOUR MODE

c) GRAPHIC MODE 1

d) GRAPHIC MODE 2

e) MODIFIED GRAPHIC MODE 1

Only TEXT and GRAPHIC MODE 2 are available directly from MTX BASIC but the
other modes can be accessed by creating your own VDP setups.

TEXT MODE provides a screen which is 40 columns wide by 24 rows deep. Two
colours are available in this mode.

GRAPHIC- MODE 2 offers a display of 32 columns by 24 rows deep. Sixteen
colours are available and plotted displays are also allowed.

5-1

THE SOURCE CHAPTER SIX

CHAPTER SIX

THE DISPLAY MODES

TEXT MODE

This is the same as the normal MTX Basic text mode.

The VDP is initialised to text mode when the mode bits M1 = 1 : M2
=0

1]
Q

M3

(See previous chapter - VDP REGISTERS)

Text mode provides the following features:-

SCREEN

24 rows of 40 columns (960 character positions).

Up to 256 unique characters can be defined at any one time. The pixel size
of text characters should be six wide by eight deep. These character
patterns can be dynamically changed by transferring patterns from character
libraries held in unused portions of Vram or Z80 ram.

Two colours are available: one for text colour and one for the backdrop.
The colours can be chosen from a palette of fifteen hues including
transparent.

MTX Basic uses the following set-up for text mode:-

FUNCTION VRAM START ADDRESS VRAM END ADDRESS
TEXT PATTERN 6144 (#1800) 7167 (#1BFF)
SCREEN 7168 (#1C00) 7191 (#1€17)

Because, 1in Basic, the text mode has been designed as an inteqral part of

6-1

THE SOURCE CHAPTER SEVEN

CHAPTER SEVEN

ZILOG COUNTER TIMER CIRCUIT

The Zileg Counter Timer Circuit (CTC for short) handles all interrupts on
the MJX including VDP interrupts. ’

Its features are:-

4 independently programmable
Counter/Timer channels

Standard 780 daisy-chain
interrupt structure provides
full vectored, prioritised interrupts.

The CTC can generate MODE 2 interrupts from any of its four independently

programmable channels. It can act as a TIMER or COUNTER working with the
Z80 clock or an external trigger.

CTC operations are controlled by addressing four MTX ports - one for each
channel.

PORT CHANNEL FUNCTION

08 0 VDP INTERRUPT

09 1 4 MHZ SYSTEM CLOCK/13
##0A 2 4 MHZ SYSTEM CLOCK/13
#0B 3 CASSETTE EDGE INPUT

TIME CONSTANT

When the counter/timer channel is programmed, the time constant register
receives and stores the value which can be in 'the range 1 - 256 (0=256).
The constant is then loaded into the down-counter when the counter channel
is initialised and subsequently whenever the count reaches zero.

7-1

THE SOURCE CHAPTER EIGHT

CHAPTER EIGHT

SPRITES

Sprites are very important in animated game displays and have all manner of
uses in graphic displays.

A sprite is a special animation pattern which can be moved, one pixel at a
time, in 'a horizontal, vertical or diagonal direction, and is motivated 1in
a way that is totally independent of the background pattern.

The sprite can be coloured in any one of 15 colours plus transparent.
Multicoloured sprites can be designed by overlaying two or more sprites in
different colours. Care must be taken to ensure that the overlay pattern is
limited to four sprites or the fifth sprite syndrome may have unpredicted
results on the display.

Sprites can assume any one of several sizes and magnification. They can be
'bled' into the display from any direction.

With the exception of sprite co-ordinates, pattern shapes, colour, all other
maintenance such as background replace is carried out under hardware
control.

Two sections of Vram are responsible for management - SPRITE ATTRIBUTE
TABLE and SPRITE GENERATOR TABLE.

SPRITE ATTRIBUTE TABLE

The attribute table is responsible for the control of sprites. Thirty two
sprites are available on the MTX. Each sprite has four bytes of dedicated
information which means this table is 128 bytes long.

The start address of the table is determined by the contents of VDP Register
5 which locates the table on an 128 byte boundary.

Each sprite has an hardware priority index assigned to it by the VDP.
Sprite 0 has a higher priority than Sprite 1 and the higher the sprite
number the lower its priority. The sprite with the higher priority will
appear to pass in front of the sprite with a lesser priority.

Sprite 0 is assigned attribute bytes 0,1,2,3 and has the highest priority.
Sprite 31 has the lowest priority of all sprites and is assigned attribute
bytes 124,125,126,127.

THE SOURCE CHAPTER NINE

CHAPTER NINE

SCREEN RESTART ROUTINES RST10

For those of you who are just a little faint-hearted RST10 calls provide a
reasonable solution to using machine code for screen displays.

An RST instruction is a unique one byte command that allows a call to any
one of eight addresses in low memory. Because it is a one byte instruction
‘'speed of execution is assured.

RST10 is wused by the MTX rom for at least 90 per cent of rom graphic
routines available under Basic. The rom has been designed so that machine
code programmers can take advantage of all the routines and once mastered
RST10 instructions are very easy to use.

The function of the RST10 call is to send Ascii or control codes to the
screen or printer depending on which bit is set in system variable I0PR
For the sake of simplicity we shall assume that all writing will take place
to the screen.

RST10 commands can operate in four different modes:-

SEND A NUMBER OF CHARACTERS TO SCREEN

SEND ONE BYTE TO SCREEN

CLEAR AND SELECT VIRTUAL SCREEN

OUTPUT CONTENTS OF BC REGISTER PAIR TO SCREEN

The format for this type of call is as follows:-

RST 10
DB <DATA TO SEND>

The fact that data is placed in the path of program flow may seem confusing
at first sight but these commands are really easy to use. Just try this...

9-1

THE SOURCE CHAPTER TEN

CHAPTER TEN
KEYBOARD SCANNING

It is important to note that the MTX Keyboard scan is active when the output
is low (0) and not high as is the norm with most computer Keyboard scans.

The left hand joystick is mapped onto the cursor keypad with the fire button
repldcing the home key.

FIRE = HOME KEY
JOY LEFT = CURSCR LEFT
JOY RIGHT = CURSOR RIGHT
Joy up = CURSOR UP
JOY DOWN = CURSOR DOWN

This form of mapping is very useful as it dispenses with the need to read
Joystick ports. Reading joystick data is a simple matter of scanning the
keyboard. Unfortunately, this does have the disadvantage that multiple
movements have to be managed in software. Later, we shall write a routine
to detect multiple keypresses from the Joystick.

The sense lines and read lines on the MTX keyboard are tied into port 5.

OQUTPUT TO PORT 5
INPUT FROM PORT 5

SENSE BYTE
READ BYTE

non

OUT (5), n latches data to the eight drive
lines of the 8 x 10 keyboard matrix.

IN (5) will read the eight least significant
bits from a ten bit read byte.

IN (6) Reads the two most significant bits
of the read byte.

The most difficult part of writing a keyboard scan routine is selecting the
correct values to output on the sense line and then knowing which lines to
look at when testing for a value being returned. To aid understanding, a
little explanation may be in order.

The MTX keyboard is divided into eight sections each managing ten keys.

10-1

THE SOURCE CHAPTER ELEVEN

CHAPTER ELEVEN

SOUND

All sound processing on the MTX is managed by the Texas SN76489A sound
generator which is capable of producing a wide variety of complex sounds
under software control.

In order to perform sound synthesis while allowing the processor to continue
its other tasks, the chip can continue to produce sound after the initial
parameters have been sent to the control registers. Realistic sound
production often involves more than one effect and this is satisfied by
three independently controllable tone channels and one pink noise channel.

The principal element of the chip is the array of eight write only registers
which are responsible for directing the data to the relevant blocks within
the sound chip.

The chip is i/o mapped on port 6. All data transfers are required to be
passed through this port.

LD A,fFE
ouT (06),A

This data is then strobed into the sound device by performing a dummy read
on port 3.

IN A, (03)

FORMULA FOR WRITING TO P.S.G.

a) SEND DATA TO PORT 6
b) STROBE DATA TO CHIP ON PORT 3

LD A,#FE
out (06),A
IN A, (03)

Successive strobes across port 3 require at least 32 computer clock cycles
between each read.

11-1

THE SOURCE APPENDIX A

APPENDIX A
SYSTEM VARIABLES

SYSTEM VARIABLES

FA52 CTRBADR DS 40 Control buffer for sound

FA7A LSTPG DS 1 This contains the number of
32K RAM pages present -1

FA7B VARNAM DS 2 This contains the address of
the bottom of the variable
table

FA7D VALBOT DS 2 This contains £FF. VALBOT
plus 1 is the address of the
bottom of the variable value
name table

FA7F CALCBOT DS 2 This contains the address of
the bottom of the calculator
stack

FA81 CALCST DS 2 Stack Pointer - this contains
the address of the top of the
calculator stack +1. ie. the
next available free byte

FA83 KBDBUF DS 2 This contains the address of
the Keyboard Buffer.

FA85 USYNT DS 4

This contains the syntax bytes which are used to tell the computer what to
expect when the BASIC command USER is met. These bytes may be defined by
the operator, as listed below. They are examined from the top of the four
byte block to the bottom, and the last one must contain a RET instruction.

THE SOURCE APPENDIX B

APPENDIX B

/.80 OPERATION CODES.

ARCHITECTURE

8-8IT
DATA BUS

<>

DATA BUS
CONTROL

—

INST.
< A y< INTERNAL DATA BUS > ALY

INSTRUCTION

DECODE

&

13 Sﬁ‘dmu cPU
CPU AND REGISTERS
S >
CONTRO

SIGNALS ONTROL

<>

ADDRESS
CONTROL

16-BIT
ADDRESS 8US

<3

Z-80 CPU BLOCK DIAGRAM

THE SOURCE APPENDIX C

APPENDIX C

AUTO LOAD FOR LARGE PROGRAMS

Creating Basic auto-run versions of programs that extend into, or beyond
page one of ram is not obvious. However, the solution is simple.

Type in the program listed below and save it to tape. The program will only
work, and is only necessary, with computers with over 64K of ram.

To use the program carry out the following steps:

a) Load this program into memory and insert the correct
program name into line 20 .. this will be the name
of the large program you wish to auto-run.

b) Now save this version to a new tape by typing Goto
20.

c) Once the program has been saved stop the tape but do
not rewind it. Now remove the tape and re-set the
computer.

d) Now load in the program you wish to have as an auto-
run version. Now save this program onto the tape
with the previously saved auto program. You must save
this program as you would a normal auto-run program.

10 Your program
20 ditto
100 Save "This program"

GOTO 100 <RET>
The tape should now contain the auto-run program and the program you wish to
have auot-run. This program will now auto-run whenever it is loaded into
the computer.
It doesn't matter what the program is called. The listing will load it and

auto-run it regardless.

C-1

THE SOURCE APPENDIX D

APPENDIX D

The following program is a demonstration of how to set up Vram and load an

independent

animation.

3 CODE

8007
8008
800C
800D
800E
8010
8013 LF1:
8014
8017

8019 INIT:

801C
801D
801E
8021
8022
8023
8028
8028
802E
8031
8032
8033
8034
8039
803C
BO3F
B042
8043
8044
80435
8046
8047
8048
8049
804C
804D
B04E

character set. The program also shows how to provide simple
LD SP, (£FA%) H Make sure Stack Pointer loaded fros systes
NOP PERRRER LR AR R R R RN R SRR R NN AR ERRRRRRLRRELARLLLL
NOP i SET UP VDP REGISTERS AND LDAD ASCII CHARACTERS INTD VRAM
NOP R IR Ea R d Rttt e a e ity e i iy R R Rt Y R bateesstsittqsssity
LD B,08 Nusber of VDP Write Registers.

LD HL,REBSET
RST 8

CALL REG
DINZ LF1

LD HL,256
NOP

NOP

CALL ASCMvE
NOP H
LD HL,2304
CALL ASCMVE
LD HL,4352 ;
CALL ASCMVE
LD HL,B448 ;
NOP ;
NoP H
CALL COLSET
LD HL,10496
CALL COLSET
LD HL, 12544
CALL COLSET

e me mE me e cae

H Make HL point to VDP Register Data,
This cossand does => _D E{HL)}:INC HL:LD D, tHL): INC HL.
Call Subroutine to send Register No & Data,
DJINI loops until B Rejister = 0 in this case 8 tises.
HL points to first Ascii character in top third of

benerator table which starts at 0000Hex ** Ascii 32 is first
printable character [Space] (B$32 = location 256)

H Call subroutine to fill all 728 bytes of
Character generator [91 characters t 8 = 728 bytes]

2nd Third of Benerator table

Bottoe third of generator table,

Point to equivalent colour table location for
Top third of graphics generator.Colour table is 8192 bytec
higher in vram so add 8192 to character position = Col pos.
H go send relevant inforsation.
: 2nd third colour table.

H bottos third colour table.

NOP H Everything is now set up for 62 screen in a character mapped
NoP H format..We can now write to the screen bby sending the
NOP H Ascii character through port 01....LD A,*Y* : ouTion A
NOP H or....LD A,BB [Ascii no X1:0UTt01),A

NOP PERREREEER RN R R RN R AR RN R R R AR RRSRRRSORRLRARILLL
NOP H LD This will print a message on screen

NOP R 2ty R e ey RiResee st el eeieatnttittteeses;
JP START

NOP PERREE TR IR R KRR IR KA LT KRR LRRR AN ERSRNRLLRENLL

NOP H DATA TO SET UP VDP REGISTERS SAME ADDRESSES AS VS 4
NOP LR ittty iete sttty iiaseettityisstitesitntli

THE SOURCE

APPENDIX E

THE SUBROUTINES

.

s

jRandos nuaber routine. Call this routine then load parameters into PARA which is
;a two byte word. Result is return in VAL BC must be preserved until

iresult has been obtained. Procedure: LD A,R:CALL

;RND: LD HL,PARAMS: LD A,HIGH

;VALUE: CALL PARA : LD A,(VAL) = RANDOM NUMBER

H
RND:

PUSH AF

PUSH BC

PUSH DE

PUSH HL

LD AR

LD {SEED3) , A

LD DE, (SEED)

LD HL, (SEED2)

LD B,87
RNDi@:

CALL SHIFT

DINI RNDiR

LD B,83
RND28:

CAwie SUB

DINI RND2@

LD {SEED) ,DE

LD {SEED2) ,HL

Lb A,7FH

AND]

LD {VAL) ,A s TEMP STORE FOR RANDOM NUMBER BEFDRE

poP HL sCALLING PARAMS

POP DE

POP BC

POP AF

RET
SHIFT:

ADD HL HL

EX DE HL

ADC HL,HL

EX DE,HL

RET

APPENDIX E

E-1

	Source_cover_Page_1
	Source_cover_Page_2
	The_Source_0
	The_Source_1-5
	The_Source_6-10
	The_Source_11-end

