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1 INTRODUCTION 
Over its lifetime the MTX was supplied with 2 different manuals, the original one was adequate, but only 
just. It suffered a little in that although there was an introduction to BASIC and Noddy, and a technical 
section at the back with lots of info on the hardware and component parts, there wasn’t a lot in 
between the two. 

The 2nd manual had a lot more useful detail for the BASIC programmer but was still short of covering the 
gap between BASIC and the technical appendices. 

So back in 1987 Keith Hook wrote a book called “The Source” about some of the more technical aspects 
of the MTX series of computers, to bridge the gap between the sections in the manual(s). 

While it may not be the best book ever written, it is one of the few available for the MTX.  During the 
development of the MTX plus project with Dave Stevenson, Dave provided me with a copy of the book. I 
found some information of use for the project, I also found some of the information to be presented in a 
confusing manner, of in a couple of spots just plain wrong. 

This therefore is my attempt at correcting some of the errors and presenting things in a way that makes 
more sense to me. I assume that anyone reading this has at least a basic Knowledge of the MTX and the 
Z80 CPU. 

 

                                                  

 

I’d like to thank Andy Key for adding the screen dump facility in to Memu, and Dave Stevenson for 
reading the first draft and his many useful suggestions. 
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2 UNDER THE HOOD 
The MTX series of computes were designed using “Off the Shelf” products available in the early 1980’s 
the major components of the design were 

4mhz Z80A CPU 

4mhz Z80A CTC 

TMS9929A VDP 

SN76489A PSG 

4MHz Z80 DART - available on the optional RS232 expansion 

 

Memory varied between systems from 32k on the MTX500, up to a theoretical maximum of 784k 
available as paged memory under CPM. This was supplied as dynamic RAM which was the norm for the 
time. For the early systems ram was 64k by 1-bit chips later designs used 256k by 1-bit parts. At the time 
memory chip manufacturers would package “failed” 64k chips where one of the two 32k banks within 
the device was working as 32k chips and Memotech used these on the MTX500 and the 32k RAM card.  

The motherboard has a system of links between the CPU and the RAM to accommodate either high or 
low bank 32k RAMs on the MTX500 along with a setting for 64 or 32k on board to identify to the 
memory configuration PAL (Programmable Address Logic) whether the system was the MTX500 or 
MTX512. The RAM expansion card would also have a PAL programmed to the specific type of RAM fitted 
to the card and for the system it was to be plugged in to. 

The 256k MTX series 2 used the larger 256k devices and along with a re-designed PAL needed patch 
wiring on the reverse side of the board to make them fit.  

The 24k of operating system on the MTX, in common with other systems of the era, isn’t anything like 
what would be considered one today. Rather there is a collection of routines needed to support MTX 
BASIC. It’s evident from the ROM listing and the state of the error messages, that the programmers were 
struggling to fit everything they wanted into the space available. 

Some parts of the system are written to use a common access point, for other parts however, it’s up to 
the user to discover “useful” sections within the ROM and call them directly. This then raises potential 
issues to anyone that wants to modify the ROM contents, for example removing some of the foreign 
language tables in order to fix the error massages, as software that relies on those entry points would 
fail. 

The majority of the components on the board were standard 74LS series logic. These provided the 
“ports” for memory mapping, the keyboard and Joysticks, the printer and cassette tape. 
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The VDP was fitted with 16k of its own dedicated video memory, which was the maximum the device 
would accept. These used 3 voltage 16k by 1-bit RAM chips which have proved to be a reliability 
problem as the systems age. 

Storage on the basic system was to cassette tape only. There were 2 different floppy disc systems 
available from Memotech during the life of the MTX. 

The FDX was a large system that could accommodate 2 5.25” drives within the chassis and further 
external 5.25” or 8” if required. The FDX required 64k of RAM to operate as it was essentially a CPM 
system. An 80 column video card was a standard part of the CPM system, allowing the use of dual 
monitors for developing programs. A supplied program, FDXB.COM, enabled access to MTX BASIC with 
32k of RAM available like the MTX500. The on-board card frame would also accept solid state “silicon 
discs” under CPM for additional high speed, temporary storage. 

The SDX expansion, at least initially, didn’t offer CPM, instead it had an expansion ROM which added a 
number of commands to MTX BASIC. The underlying disc system however was CPM, allowing the 
interchange of discs between the FDX and SDX. Later SDX systems had an extra paged ROM on board 
that allowed CPM in addition to the BASIC extensions. Some also had extra RAM available as a RAM disc, 
echoing the silicon discs of the FDX. 
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3 THE MEMORY MAP  
The MTX memory map is complex, in order to fit the operating sys and a reasonable amount of memory 
into the 64k available to a Z80, a memory paging system is used. To make things more complicated, CPM 
requires another totally different memory layout in order to function.  

Memotech assigned the Z80 output port 0 as a write only memory configuration register. Since the port 
is write only, they also added a system variable PAGE at #FAD2 (64210 decimal) to store a copy of the 
current memory configuration. 

The Z80’s 64k memory is split into 4 logical blocks each 16k in size. In ROM mode the first 16k block, 
#0000 to #3FFF, is allocated to system ROM, the next 2 blocks at #4000 to #7FFF and #8000 to #BFFF are 
paged RAM. In the MTX500 the lower of those 2 blocks is empty. 

In CPM mode, there is no ROM, so all 3 of these blocks are allocated to paged RAM. In large memory 
systems, this results in each 16k block of RAM within the paging system potentially having 2 different 
locations.  

The final 16k, occupying the area between #C000 and #FFFF is fixed, and always available to the CPU in 
either mode. It is home to those parts of the system that must be available to the CPU at all times. 

As the Z80 is an 8-bit CPU, there are 8 bits available in any memory or I/O port. The paging register is 
split into 3 sections. 

The 4 lowest bits, labelled P0, P1, P2 & P3 select which of the available RAM pages will be accessed 
making a maximum of 16 pages available in either mode. In RAM mode this is 16 pages 48k in size, in 
ROM mode it is 16 pages of 32k. The next 3 bits designated as R0, R1 & R2 select the current paged ROM 
from a total of 8. 

The final bit, RELCPMH, determines whether the system has the ROMs enabled, or is in RAM only CPM 
mode. The name apparently stands for Rom Enabled Low CPM High 

3.1 ROM ENABLED MODE 
ROM mode is set when the RELCPMH bit is set to a 0. As noted before, the standard MTX has 24k of on-
board ROM, in order to fit this into the 16k space allowed for ROMs, Memotech decided to page the 
upper 8k, leaving the lower 8k fixed. Since there are 3 bits allocated to the ROM paging system this 
enabled a total of 72k ROM to be fitted. (9 x 8k ROMSs, 8 paged, 1 fixed) The hardware on the 
motherboard decodes the lower 8k ROM and paged ROMs 0,1 and 7. 

A complete listing of the original MTX ROMs can be downloaded from Andy Key’s website at 
http://www.nyangau.org/memotech/MTXROM.zip 

ROM 7 isn’t used by the motherboard, but this signal is instead made available on the expansion 
connector for use by external hardware, and is intended for the ROMpak or NODE ROM.  

The lower 8k ROM and paged ROMs 0 and 1 then make up the 24k of the operating system. Typically, 
ROM 4 would be used by CPM, and ROM 5 by the SDX ROM, although some SDX systems used ROM slot 
3.  
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The internal ROM expansions (NewWord, Pascal and the video wall software) used ROM page 2, which 
because of additional hardware on the expansion card could be sub paged into up to 256 ROM pages.  

The MTX 500 has 32k of available RAM, since half of this is fixed by design as occupying the top 16K of 
the memory map. Memotech made the obvious decision to fit the other 16k directly below to maintain 
a continuous 32k block of memory, this 16k is in RAM page 0. The 16k between the top of the ROM and 
the bottom of the RAM is then empty, any attempt to “poke” data into this area will result in the data 
being lost, “peeking” from this area will return garbage. 

 

MTX500 memory map 
Page #0000 to #1FFF #2000 to #3FFF #4000 - #7FFF #8000 - #BFFF #C000 -  #FFFFF 
0 OS ROM 

 
BASIC ROM Empty 16k paged RAM 16k Shared RAM 

1 Assem ROM Empty 
2 Expansion 
3 Expansion 
4 DISC (CPM) 
5 DISC (SDX) 
6 Expansion 
7 ROMpak 
8-15 N/A 

 

The MTX512 on the other hand has 64k of RAM available, however there is only 48k in the memory map 
allocated to RAM, the extra 16k has to go into page 1 due to the limitations of the PAL that controls the 
motherboard memory paging, the extra 16k has to occupy the area from #8000 to #BFFF in page 1, this 
also makes for a continuous 32k block being available in page 1 as the paged RAM adjoins the 16k fixed 
area. 

MTX512 memory map 
Page #0000 to #1FFF #2000 to #3FFF #4000 - #7FFF #8000 - #BFFF #C000 -  #FFFFF 
0 OS ROM 

 
BASIC ROM 16k Paged RAM 16k paged RAM 16k Shared RAM 

1 Assem ROM Empty 
 

16k Paged RAM 
2 Expansion Empty 

 3 Expansion 
4 DISC (CPM) 
5 DISC (SDX) 
6 Expansion 
7 ROMpak 
8-15 N/A 

 

Adding RAM to either system is done in multiples of 32k. A MTX512, with an additional 128k would have 
the memory arranged so that the 5 lowest pages were full, and a 6th half full page would be filled from 
the top. Page 244 of the Phoenix manual has this wrong, though the equivalent table in the original 
manual was correct. 
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MTX512 with 128k expansion 
Page #0000 to #1FFF #2000 to #3FFF #4000 - #7FFF #8000 - #BFFF #C000 -  #FFFFF 
0 OS ROM 

 
BASIC ROM 16k Paged RAM 16k paged RAM 16k Shared RAM 

1 ASSEM ROM 128k exp. (a) 16k Paged RAM 
2 Expansion 128k exp. (c) 128k exp. (b) 
3 Expansion 128k exp. (e) 128k exp. (d) 
4 DISC (CPM) 128k exp. (g) 128k exp. (f) 
5 DISC (SDX) Empty 128k exp. (h) 
6 Expansion Empty 
7 ROMpak 
8-15 N/A 

 

During start up, the MTX ROM does a very simple check for available paged RAM, and stores the result 
in the system variable LSTPG at #FA7A (64122 decimal).  PRINT PEEK (64122) returns the number of 32k 
pages of RAM - 1; the MTX500 will return 0, a standard MTX512 returns a 1. The example MTX 512 + 
128k above would return 5. 

Anyone using an MTX fitted with Andy Key’s REMEMOorizer will get a result of 11, indicating there is 
384k (32k x 11 +32k) available from BASIC. 

There is a minor bug in in the ROM size testing routine. If a system should be full of memory, such that 
there is memory at 0x4000 of RAM page 15, then the routine returns 0, i.e. only 32K of memory. 

3.2 CPM MODE 
Setting CPM mode on an MTX500 is possible, but serves no purpose, as all it does is page out the ROMs, 
however as there is no additional RAM in the system this just serves to create a vacant 32k block in 
lower memory. 

The 64k in the MTX512 is the minimum required for CPM, with the RELCPMH bit set to 1 all 64k RAM is 
available in page 0, the other pages are empty. Leaving the memory map looking like this: 

MTX512 RAM only memory map 
Page #0000 to #3FFF #4000 - #7FFF #8000 - #BFFF #C000 -  #FFFFF 
0 16 k Paged RAM 16k Paged RAM 16k paged RAM 16k Shared RAM 
1 Empty Empty Empty 
2  
3 
4-15 

 

Note that the lighter shaded page has “moved”, in ROM mode it’s in page 1 at #8000, in CPM mode it’s 
the very first block in page 0. This moving page only occurs on systems using memory based on the 64k 
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RAM chip, the MTX series 2 using the larger 256k chips is unable to duplicate this behaviour due to the 
limitations of the 14L4 PAL used by Memotech. 

Expansion memory starts in page 1 and grows upward from the lowest point in memory, depending on 
the amount of RAM fitted, the final page could have a gap in the map between the last block of RAM 
fitted and the shared RAM at #C000. The example below as taken from the manual of a MTX512 with an 
extra 128k illustrates this, Page 3 has memory available in the lowest 32k and the top 16k, however the 
area from #8000 to #BFFF is empty. It’s worth noting that every one of the blocks has moved from the 
position it had in RAM mode. For example, block e which was in page 3 at #4000 is now in page 2 at the 
same address. Block a is still in page 1 but has moved from #4000 to #0000  

 

MTX512 RAM only memory map with 128k expansion 
Page #0000 to #3FFF #4000 - #7FFF #8000 - #BFFF #C000 -  #FFFFF 
0 16 k Paged RAM 16k Paged RAM 16k paged RAM 16k Shared RAM 
1 128k exp. (a) 128k exp. (b) 128k exp. (c) 
2  128k exp. (d) 128k exp. (e) 128k exp. (f) 
3 128k exp. (g) 128k exp. (h) Empty 

 4-15 Empty Empty 
 

3.3 THE 256K SERIES 2  
The MTX512 series 2 was fitted with 256k by 1-bit RAM chips, however restrictions imposed by the 
motherboard and the memory PAL meant that not all of that RAM was accessible in either mode. It also 
meant the moving page from the earlier systems could not be duplicated. 

The RAM itself was mapped into the first 4 pages. Any portions that aren’t obscured by the ROM or 
shared RAM are visible to the CPU. 

MTX512 Series 2 
Page #0000 to #1FFF #2000 to #3FFF #4000 - #7FFF #8000 - #BFFF #C000 -  #FFFFF 
0 OS ROM 

 
BASIC ROM 16k Paged RAM 16k paged RAM 16k Shared RAM 

1 Assem ROM 16k Paged RAM 16k paged RAM 
2 Expansion 16k Paged RAM 16k paged RAM 
3 Expansion 16k Paged RAM 16k paged RAM 
4 DISC (CPM) Empty 

 
Empty 

5 DISC (SDX) 
6 Expansion 
7 ROMpak 
8-15 N/A 

 

With RELCPMH set to 1, the 4 banks of RAM that were previously covered by the ROM are now visible 

MTX512 Series 2 RAM only mode 
Page #0000 to #3FFF #4000 - #7FFF #8000 - #BFFF #C000 -  #FFFFF 
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0 16k paged RAM 16k Paged RAM 16k paged RAM 16k Shared RAM 
1 16k paged RAM 16k paged RAM 16k paged RAM 
2  16k paged RAM 16k paged RAM 16k paged RAM 
3 16k paged RAM 16k paged RAM 16k paged RAM 
4-15 Empty Empty Empty 

3.4 SDX MEMORY 
Some of the latter SDX disk drive expansions also provide an additional 512KB of memory. Andy Key has 
done an investigation of how this is mapped, http://www.nyangau.org/memmap/memmap.htm. There 
appears to be a number of variations: 

 The extra memory is only available in CP/M mode (RELCPMH=1). In ROM mode, only the original 
MTX memory is accessible. 

 Some of the SDX memory is accessible in ROM mode, but not all of the additional memory is 
available in either mode and the RAM pages do not move as documented when switching 
between ROM and CP/M modes. 

3.5 USING PAGED MEMORY 
There are 2 things to be aware of when using the page port: 

 the first is not to move a page that the CPU is currently using, and 
 the other is to take precautions for interrupts. 

The remainder of this section discusses using paged memory while in ROM BASIC. In CP/M mode there 
is no built-in support for paging, and it is entirely up to user code to manage page access. If a RAM disc is 
used then that makes use of paged memory, with no features to share this with application code. 

For safety, on start-up, the MTX ROM initializes the Z80’s stack pointer to use shared RAM at #FD48. If 
the system stack were placed in paged RAM, then a system crash would be the likely result of any RAM 
re-paging.  The OS takes care to only re-map the paged ROMs while running from the fixed OS ROM, 
likewise a user program changing the RAM page should only do so with code that is running in the 
shared RAM area. 

If a paged ROM needs to access routines in another paged ROM, then it needs to do the same as the 
SDX ROM, copy a short routine into RAM that changes the ROM page and calls the appropriate routine 
then reverts to the original set up before returning. 

When running in BASIC, the MTX interrupt system generates 125 interrupts per second, which needs to 
be serviced and may or may not involve a different paged ROM. On exit from the interrupt, the system 
checks PAGE and uses that to reset the memory map to its original setting before returning. Therefore, 
the following code should be used when changing pages: 

LD (PAGE),A 
OUT (#00),A 
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The system variable needs to be changed first, otherwise an interrupt occurring between the 2 
instructions could leave the page port in an incorrect state. With the instructions this way around, if an 
interrupt were to split them, then the only result would be that the memory would already be re-
mapped making the OUT instruction redundant. 

For relatively short sequences of code, it’s also possible to disable interrupts while paging, though that’s 
not really recommended. 

As a practical example, the MTX has 24k of ROM, it’s possible to use PEEK from BASIC to examine the 
lower 8k of ROM, it’s also possible to read one of the 2 paged ROMs, but not the other. You can only 
PEEK the ROM that the PEEK command itself runs from. The same issue arises with PANEL, the only 
paged ROM that can be examined is the one that PANEL occupies.  Should you want to examine the 
contents of one of the other paged ROMs they need copying to RAM first. 

The following program would copy the contents of ROM 2 to #A000, should you want to examine 
another ROM, just change #4019 to LD A,#30 or #40 etc. the first digit is the ROM number from 0 to 7, 
the  last digit should be a 0 to ensure the copy goes to accessible RAM, using hex numbers in this 
instance make the intention clearer. 

 

NB While the MTX’s built in assembler is functional and reasonably fast, it lacks a decent equates 
system, so it’s not always possible to avoid using numerical references where a label would be clearer.  
E.g. It is not possible to set a label for PAGE, instead #FAD2 has to be used. The original manual’s 
assembler and panel section is pretty abysmal. The later manual is much better in that respect, but still 
not great. 

 
 

10 ASSEM  
CODE 
 
4007         LD DE, #D000                                         
400A         LD BC,#20                                           
400D         LD HL,START                                         
4010         LDIR                                                
4012         JP #D000                                            
4015 START:  LD A,(#FAD2)                                        
4018         PUSH AF                                             
4019         LD A,#20                                            
401B         LD (#FAD2),A                                        
401E         OUT A,(0)                                           
4020         LD HL,#2000                                         
4023         LD DE,#A000                                         
4026         LD BC,#2000                                         
4029         LDIR                                                
402B         POP AF                                              
402C         LD (#FAD2),A                                        
402F         OUT A,(0)                                           
4031         RET                                                 
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Symbols: 
START   4015   

 
 
The first 4 lines used the Z80 block move to copy the actual code into shared RAM, which is then run by 
the JP instruction on the 5th line.   

 

Since this code is designed to only change the paged ROM, and as a user program is running in RAM 
page 0, copying the code to shared RAM first isn’t really needed. However, if the same code were 
running in a paged ROM it would be vital. 

The code itself is fairly straightforward.  

The code at START gets the current memory layout and saves it to the stack, then sets the new layout in 
order to access ROM bank 2 and RAM bank 0, then it’s another block move to copy the ROM into RAM.  

The final lines restore the memory map from the stacked value and then exit. 

For more than 32KB or 64KB of memory, there are many variants. If writing for a single known machine, 
then you can make use of all the available memory. However, if writing for more general distribution it 
is probably advisable to include your own test of what memory is actually available. 

The standard Memotech type 51 RAM disc requires a full 64KB + 512KB of RAM installed. However to 
allow for machines with less than this, the program S2R was produced, which can be used to hack the 
definition of a type 51 disc to occupy less than the full 512KB. It would have been more consistent if a 
number of RAM disc type codes had been defined, requiring differing amounts of RAM. 

3.6 MEMORY MAP IN BASIC 
In MTX BASIC there are three areas of allocated RAM 

3.6.1 Low RAM 
This starts at 0x4000 on the first page of RAM (assuming the machine has 64K or more of memory) and 
goes up to 0xBFFF. It then flows over to the beginning of the next page of RAM. This is repeated until the 
last page of RAM, where it starts at 0x8000 and if necessary, continues up into the common RAM at 
0xC000, 

Low RAM contains, in order: 

 The BASIC program (see sections 3.7 and 3.8) 
 Any NODDY pages (see section 3.11) 
 Data for character strings and arrays 

3.6.2 Middle RAM 
This starts at the base of common RAM (0xC000), or just above the top of low RAM if this extends into 
this area. 



ReSource 2021 
 

 15 

Middle RAM contains, in order: 

 Variables names table (see section 3.10.2) 
 Variables values table (see section 3.10.3) 
 Calculator stack 

3.6.3 High RAM 
This works down from the top of memory, and contains, in order: 

 SDX disc routines (if SDX is present) 
 NODE Ring network (if installed) 
 Sound envelope buffers 
 System variables 

3.7 BASIC PROGRAM 
One line of BASIC is formatted in memory as: 

Bytes Description 
0-1 <len> - Length of BASIC line 
2-3 Basic line number 
4 The BASIC code 

<len>-1 0xFF 
 

In order to both reduce the space required and improve execution speed, BASIC keywords, operators 
and functions are stored as single byte tokens (with values in the range 128-253) rather than being 
spelled out. These tokens are listed in the following table. 

 

Token Value Token Value Token Value Token Value 
128 REM 160 SPRITE 192 CIRCLE 224 EXP 
129 CLS 161 CTLSPR 193 LINE 225 FRE 
130 ASSEM 162 MODE 194 CODE 226 INT 
131 AUTO 163 NEW 195 ELSE 227 INT 
132 BAUD 164 PAPER 196 FK 228 LN 
133 VS 165 NODDY 197 OFF 229 PEEK 
134 CONT 166 ON 198 STEP 230 SGN 
135 USER 167 OUT 199 THEN 231 SIN 
136 CRVS 168 PLOD 200 TO 232 SQR 
137 CLEAR 169 PANEL   233 TAN 
138 CLOCK 170 GENPAT   234 IMP 
139 ATTR 171 PAUSE   235 USR 
140 COLOUR 172 PHI   236 LN 
141 INK 173 POKE   237 ASC 
142 CSR 174 RAND   238 LEN 
143 DATA 175 RETURN 207 + 239 VAL 
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Token Value Token Value Token Value Token Value 
144 PRINT 176 READ 208 - 240 LN 
145 DIM 177 VIEW 209 * 241 MOD 
146 ADJSPR 178 RESTORE 210 / 242 PI 
147 EDIT 179 ROM 211 ^ 243 RND 
148 NEXT 180 RUN 212 = 244 PI 
149 FOR 181 SAVE 213 > 245 CHR$ 
150 GOTO 182 SOUND 214 < 246 SPK$ 
151 GOSUB 183 EDITOR 215 >= 247 INKEY$ 
152 INPUT 184 DSI 216 <= 248 LEFT$ 
153 IF 185 PLOT 217 <> 249 MID$ 
154 MVSPR 186 STOP 218 AND 250 RIGHT$ 
155 LIST 187 ANGLE 219 OR 251 GR$ 
156 LET 188 SBUF 220 NOT 252 STR$ 
157 LLIST 189 VERIFY 221 ABS 253 TIME$ 
158 LOAD 190 DRAW 222 ATAN   
159 LPRINT 191 ARC 223 COS   

 

3.8 MACHINE CODE IN BASIC 
The following information was derived from the MTX2BAS program written by Paul Daniels, which can 
be downloaded from Andy Key’s website: http://www.nyangau.org/memotech/mtx2bas_v0.4.zip 

The format of a CODE line in memory, containing executable machine code is: 

Bytes Description 
0-1 <len> - Length of CODE line 
2-3 Basic line number 
4 0xC2 – The CODE token 

5-6 <ncode> - Length of machine code 
7 Executable machine code 

<ncode>+7 Symbols table 
<len>-1 0xFF 

 

The symbol table contains a list of symbol definitions. Each symbol definition may be one of a number of 
different types, as given below. To avoid having to update the symbol table every time a new BASIC line 
is inserted, addresses in the symbol table are given as offsets from the top of the machine code section. 

3.8.1 Numeric value 
Size Description 

1 0x00 – A numeric symbol 
 Symbol name – Text string terminated by character with high bit set 

1 <nbyte> - Number of places the value is referenced as a byte value 
2 * <nbyte> List of addresses at which the value is referenced as a byte 

1 <nword> - Number of places at which the value is referenced as a word 
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Size Description 
2 * <nword> List of addresses at which the value is referenced as a word 

1 <njump> - Number of places at which the value is referenced as a jump address 
2 * <njump> List of addresses at which the value is referenced as a jump address 

 

3.8.2 Statement label 
Size Description 

1 0x02 – A label symbol 
2 Address of the label 
 Label name – Text string terminated by character with high bit set 

1 <nbyte> - Number of places the label is referenced as a byte value 
2 * <nbyte> List of addresses at which the label is referenced as a byte 

1 <nword> - Number of places at which the label is referenced as a word 
2 * <nword> List of addresses at which the label is referenced as a word 

1 <njump> - Number of places at which the label is referenced as a jump address 
2 * <njump> List of addresses at which the label is referenced as a jump address 

 

3.8.3 Data Definitions 
Size Description 

1 0x03 – DB, 0x04 – DW, 0x05 – DS 
2 Address of the statement 
1 Length of data defined 
1 <len> - Length of data description 

<len> Name of each item, each terminated with high bit set 
 

3.8.4 Comment 
Size Description 

1 0x08 – Comment 
2 Address of the statement 
1 <len> - Length of the comment 

<len> Text of the comment, terminated with high bit set. 
 

3.9 RELOCATING MACHINE CODE 
Every time a line of BASIC code is inserted, deleted or edited, the locations of all the higher numbered 
lines changes. This invalidates any CALL or JP addresses in the code and will cause the code to fail when 
executed. To correct this, it is necessary to ASSEM each of the CODE lines and the exit again to force 
updating of all the addresses. For this reason it is common practice to put all the machine code in a 
single CODE line at the top of the program and then access the routines via USR statements. 

A typical CODE line may start something like: 

10 CODE  
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4007         RET   ; Do nothing when executed 
4008         JR ENCODE  ; Jump table to M/C routines 
400A         JR DECODE 

This works fine when working on a single machine. However, if you move the code onto a machine with 
a different amount of memory (32K or 64K) and try and run it, it will fail because all the subroutine calls 
(and long jumps) are to the wrong address. Before running the code on a different amount of memory 
you normally have to do "ASSEM 10", and then exit the assembler again to update all the addresses. 

However, it is possible to insert code to do this updating automatically: 

10 CODE  
 
4007         JR REBASE  ; This must be JR not JP 
4009         JR ENCODE  ; Jump table to M/C routines 
400B         JR DECODE 
400D REBASE: LD DE,#FFF9 ; On entry HL contains start address 
4010         ADD HL,DE  ; We want the start of CODE line, which is 7 bytes earlier 
4011         CALL #1BE3 ; Call ROM routine CODETEST (Enter assembler) 
4014         RET NZ  ; This should never happen 
4015         LD A,(#FAD2) ; We now need to call a routine in ROM page 1 
4018         PUSH AF  ; Save old PAGE register 
4019         AND #0F  ; Select page 1 
401B         OR #10 
401D         LD (#FAD2),A ; Update page register 
4020         OUT (#00),A 
4022         CALL #2277 ; Call ROM routine LINK (Exit assembler and update addresses) 
4025         POP AF  ; Restore page register 
4026         LD (#FAD2),A 
4029         OUT (#00),A 
402B         RET 
; Other M/C routines go here 

Building upon the code above, it should be possible to write a routine to put at the top of a program, 
which searches for all of the CODE lines and updates the addresses in each of them. This would make it 
much easier to interleave Basic and MC. 

3.10 BASIC VARIABLES 

3.10.1 Virtual Addresses 
MTX Basic uses 24 bit virtual addresses to describe the location of array data (and program code?) in 
memory. This means that MTX BASIC is not limited to 48kB. To translate a virtual address (va) to a 
physical address the following algorithm is used: 

 ram_page = va >> 15 

 addr = ( va & 0x7FFF) + offset 

where offset is 0x4000 for most pages, but 0x8000 for the last page. This means that the last page of 
virtual memory can extend into high memory at 0xC000 and above. 

Routines VAtoLRA (0x357C) and (LRAtoVA (0x3593) in the BASIC ROM translate between physical and 
virtual addresses. 

3.10.2 List of Variable Names 
System variable VARNAM (0xFA7B) points to the bottom of a list of variable names. 
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The names in this list are mangled as follows: Each item in the list starts with the second character in the 
name, and continues to the last character. This is then followed by a byte which encodes both the first 
letter and the type of the variable. This byte always has bit 7 set (indicating the end of the item), bits 
5&6 indicate the variable type, and bits 0-4 give the 5 lsb of the initial letter. The values of this byte are: 

 0xE0 – 0xFA A numeric array 
 0xC0 – 0xDA A numeric value 
 0xA0 – 0xBA A string array 
 0x80 – 0x9A A string value 

The list is terminated by a 0xFF byte. 

The position of a variable name in this list is called (by the ROM source listing), the UVI of the variable 
(the first name has a UVI of one (not zero)). 

To find the UVI of a variable, construct a name string, mangled as above, set DE to the start of this string 
and then call to 0x30DC in the BASIC ROM (This is a call to an unnamed location within the SEARCH 
(0x30D5) routine. Returns with the UVI in BC and carry flag set if found, otherwise with carry flag clear. 

3.10.3 List of Variable Values 
The list of variable names is followed by the list of variable values. System variable VALBOT (0xFA7D) 
points to the start of the list, and system variable CALCBOT (0xFA7F) points just beyond the end of the 
list. 

The address of a value item in this list is given by: 

 addr = CALBOT – 5 * UVI 

This is calculated by routine UVItoSRA (0x34A0) in the BASIC ROM. Call with UVI in BC, returns with 
address in HL. 

Each of the items in this list is five bytes long, and the list is in reverse order of the names list. 

The contents of the item varies according to the variable type identified above. 

Numeric Array 

Bytes 0-2: 24 bit virtual address of array data 

Bytes 3&4: 16 bit word giving the number of dimensions. 

Numeric Variable 

The value of the variable is stored as a five byte floating point value. 

String Array 

An array of strings is actually represented as an array of characters with one extra dimension (the length 
of the strings) 

Bytes 0-2: 24 bit virtual address of string array data 

Bytes 3&4: 16 bit word giving the number of dimensions plus 1. 
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String Variable 

Bytes 0-2: 24 bit virtual address of string data 

Bytes 3&4: 16 bit word giving the length of the string.. 

3.10.4 Array Data 
This includes all strings, which are treated as arrays of characters. 

Numeric Array 

The data for a numeric array starts with a list of the sizes of each dimension, stored as 16 bit words. 

This is followed by a list of the floating point values, five bytes each, stored in the order of last 
dimension varying most rapidly (C style, not Fortran style). 

String Array 

The data for a string array starts with a list of 16 bit words that give the sizes of each dimension. This is 
followed by a 16 bit word giving the length of the strings in the array (the final dimension of the 
character array). 

This is followed by the characters in the array, one byte each stored in the order of last dimension (the 
position in the string) varying most rapidly. 

String variable 

The data for a string starts with a 16 bit word (presumably the length of the string, repeating the value 
given in the variable values list) followed by the bytes giving the text of the string. 

3.11 NODDY PAGES 
NODDY pages are stored in memory immediately above the BASIC program. Each NODDY page consists 
of: 

Bytes Description 
0-1 Length of NODDY page 
2- Name of page, terminated by a character with bit 7 set. 
 Text of the page, with space compression 

 

In the page text, bytes with bit 7 clear represent their ASCII character. Bytes with bit 7 set represent 0-
127 space characters, providing a simple compression of pages with much blank space. Each line of the 
page is 39 characters long, there is no end of line marker. However, lines will typically end with 
compressed space characters filling out the line length. 

3.12 SDX BASIC DISC OPERATING SYSTEM (BDOS) 
The following listings of the SDX ROMs can be found on Andy Key’s website: 

 An original SDX ROM listing: http://www.nyangau.org/memotech/SDX_ROM_Listing_2.pdf 
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 Andy’s reconstruction of the SDX ROM: http://www.nyangau.org/sdxrom/sdxrom.htm 
 Andy’s reconstruction of the CP/M ROM: http://www.nyangau.org/bootrom/bootrom.htm 

The SDX ROM copies the CP/M BDOS and BIOS from the system tracks of the A: drive into high memory, 
and then patches the resulting code. A number of SDX data structures are then placed over the top of 
the code, rendering many of the non-disc functions unusable. 

It is not known why Memotech took this approach, rather than implementing their own routines in 
ROM. One hypothesis is that this gives SDX discs that are inter-operable with CP/M without violating 
Digital Research’s copyright on the CP/M BDOS. 

A disassembly of SDX high memory can be found at: 
http://www.mtxworld.dk/memorum/viewtopic.php?p=3574#p3574 

Key addresses are given in the following table. Other MTX storage systems (Rememoriser, CFX, CFX-II) 
will be similar, but may also make use of some of the areas marked as spare. 

Address Description 
0xD700 Start of BDOS 
0xD706 BDOS entry point. This location can be called with any of the BDOS disc function codes 

(0x0D-0x24). However the lower non-disc function codes (0x00-0x0C) will result in a crash 
due to parts of the BDOS having been overwritten. 

0xD812 Incomplete part of the console BDOS. Since this code is inoperable this space could be 
used for user code. 

0xD840 Start of five disc channel control blocks (four user and one system). 
Each block is 42 bytes long. It starts with the CP/M file control block (36 bytes) but has 
another 6 bytes (contents currently unknown) at the end. 

0xD912 Incomplete part of the console BDOS. The BDOS stack has been relocated into this area, 
but depending upon how far down in memory this extends it may be possible to use the 
lower part of this for user code. 

0xDA00 Top of BDOS stack. 
0xDA11 Free space? 
0xDA41 Current user number 
0xDA42 Current drive 
0xDA43 Pointer to current File Control Block 
0xDA45 Code for disc BDOS functions 
0xE4F1 Free space 
0xE500 Start of BIOS jump table. As for the BDOS, some of the non-disc BIOS routines have been 

overwritten and calling these will result in a crash. 
0xE533 Start of drive parameter headers, 16 bytes each for drives A – I. 
0xE5C3 BIOS cold start routine. This is not used and could be overwritten by user code. 
0xE680 Default DMA location 
0xE700 BIOS console, printer and serial routines. These are not used and could be overwritten by 

user code. 
0xE7E0 BIOS disc routines. 
0xE870 Free space 
0xE8C0 Buffer for directory sector 
0xE940 Start of drive allocation and check vectors 
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Address Description 
0xE9C0 Buffer for de-blocking 256 byte sectors 
0xEB80 BIOS data 
0xEBB0 More BIOS disc routies. 
0xEC4E Drive parameter block 
0xEC5F Free space. Newer storage systems may have additional drive parameter blocks here. 
0xF000 Start of Node Ring network data and code if installed. Newer storage systems may make 

use of some of this space and are therefore incompatible with the Node Ring. 
0xF5B0 Alternate entry point for the BDOS. Contains a jump to 0xD706. 
0xF5B3 Routines for calling the SDX ROM 
0xF5F2 Free space 

 

3.13 NODE RING 
A NODE ring is a simple network for MTX computers. It requires each of the computers to have: 

 An RS232 communication board 
 A NODE ROM 

The serial ports of the participating computers are connected in a daisy chain ring. For more details see 
Dave Stevenson’s website: http://primrosebank.net/computers/mtx/techlib/mtx/mtxnode.htm 

User documentation is at: http://primrosebank.net/computers/mtx/documents/node_ring.pdf 

It is believed that the NODE ROM was originally installed in ROM slot 6, although the code allows any 
free ROM slot to be used. The NODE ROM installs the following data and code in high memory: 

Name Address Description 

  Space between (STKLIM) and (LSTBAS) for mail 

  14*(NRING) bytes of space for node names 
Node names list grows downwards in memory, with IDSELF & ASCIND (own 
name and ID) forming the top entry 

IDSELF F000 Name of node 

ASCIND F00C Numeric node identifier as hex string 

RINDEX F00E Numeric node identifier as a byte value 

RNGFLG F00F 03 = In operation 
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Name Address Description 

RCVFLG F010 Receiver status: 
0 = Not in packet 
1 = Start of packet received 
2 = Data packet 
3 = Data packet, >=5 characters, first byte of ID matches 
4 = Data packet, not addressed to node 
5 = Data packet >=5 characters, addressed to node 
6 = Control or program packet 

TFLAG F011 Transmit status 

TMRFLG F012 Timer flag 

PTYPE F013 Return packet type 

SYNFLG F014 Packet syntax flag: 
0 = No error 
2 = Declared packet length does not match received length 
4 = Checksum error 
8 = Packet type 5, length not 3 bytes 

RCIND F015 receiver buffer pointer 

RPOINT F017 no. of chars. in receiver buffer 

RCERR F018 special receive condition flag 

FRMERR F019 packet framing error flag: Non zero if start of packet received part way. 

TINDEX F01A transmitter buffer pointer 

MRKFLG F01C transmitter mark flag 

TCOUNT F01D counter for timer 

TCNST F01F ring time constant 

ABTFLG F021 abort flag 

BRCFLG F022 Broadcast flag (1 = Broadcast data received, 0 = Unicast data received) 

SUSPFLG F023 set while ring suspended 

PROGFLG F024 non-zero during program loading 

RNGERR F025 set during recovery from ring error 

RCMMD F026 ring executive command byte, set by NI 

RETFLG F027 return packet code 

MBXFLG F028 Mail box in use flag 

MAILC2 F029 Copy of MAILCNT. Tested during print spooling. 

CTBFLG F02A set while NI is writing to CTBUF 
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Name Address Description 

TKNFLG F02B set while node has token 

TKNHLD F02C hold token if set 

TCOMMAN
D 

F02D transmitted data packet token 

RNGSTAT F02E ring status for NODE STAT 

NRING F02F number of nodes in ring 

NSEND F030 number of sender nodes 

NDTYP F031 Node type: 
2 = Master node 

ACCEPT F032 data accept flags 

ENABLE F033 Command enable flags. Set to FF if master packet received. 

CTBCNT F034 no. of entries in CTB 

CRBCNT F035 no. of entries in CRB 

RSENDER F036 last data received sender no. 

RTYPE F037 last data received type 

ERRSTAT F038 Error trapping status 

ERRNUM F039 Error number [copy of ERRFLG] 

GSBFLG F03A GOSUB flag 

ADBAUD F03B channel A default baud rate 

CTCAD F03C channel A baud rate 

MAILCNT F03D number of entries in mail box 

IRSTAT F03E Copy of INSRCV for NODE STAT 

NNSTAT F03F Copy of NEWNAME for NODE STAT 

PKTCNT F040 Non-token packet counter 

TKNCNT F041 Token counter 

INSRCV F042 instruction received flag 

NEWNAME F043 new name flag 

JTYPE F044 received packet type 

ENTER F045 enter ring on next token, if set 

ERRF2 F046 An error code?? 

ASCIN2 F047 Copy of ASCIND – Hex encoded node ID 
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Name Address Description 

CTCBD F049 Time constant for CTC channel 2 

DBFMT F04A DART Channel B configuration 
Bits 15-14: Bits per character (0x0000 = 5, 0x8000 = 6, 0x4000 = 7, 0xC000 = 8) 
Bits 3-2: Stop bits (0x0040 = 1, 0x0080 = 1.5, 0x00C0 = 2) 
Bits 1-0: Parity (0x0000 = None, 0x0001 = Odd, 0x0003 = Even) 

NDYRSV F04C Number of bytes reserved for NODDY page 

ERRTRAP F04E zero if error trap off 

ERRFLG F04F Error message number 

ERRLIN F050 line number to GOTO on error 

NLIST F052 first byte in identifier space 

LSTBAS F054 bottom of list space 

SRCND F057 source node for data packet 

PKTFLG F058 data packet no. flag 

DSPCNT F059 offset for display buffer 

SCRNFLG F05A flag for display screen 

TIMEFLG F05B flag for time on display screen 

RUNFLG F05C flag for auto-run after program load 

NOENT F05D Non zero value prevents node from entering ring on receipt of enter (0x34) 
packet 

OLDCALC F064 stores (CALCST) 

OSTKLM F066 Holds previous value of STKLIM when ring is suspended 

CRBBEG F068 Pointer to start of Command Receive Buffer 

CTBPSV F06A Saves CTBPTR while receiving a program 

CTBPTR F06C next free byte in Command Transmitter Buffer 

CRBPTR F06E next free byte in Command Receiver Buffer 

TXPEND F070 Pointer to pending transmission command 

MBXBOT F072 pointer to first byte below mailbox 

MBPPTR F074 Pointer to character in mailbox to print 

MBXTOP F076 Pointer to top of mailbox 

MBTOFS F078 Offset (from (STKLIM)) of top of mailbox 

MBPOFS F07A Offset (from (STKLIM)) in mailbox of character to print 

MBPCNT F07C Number of bytes in mailbox to print 
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Name Address Description 

PRNTFLG F07E mail print flag 

PRNDVC F07F printer device flag 

QDELFLG F080 Delete mail flag 

CHAR F081 character to be printed 

 F082 
-F091 

This space appears to be unused 

  The following user jumps are all initialised with RET, but can be modified to 
customise NODE operation 

NODEUJ0 F092 Character received. Character in A 

NODEUJ1 F095 Start of packet decode 

NODEUJ2 F098 Packet processed 

NODEUJ3 F09B About to transmit character. Character in A 

NODEUJ4 F09E Unicast data received? 

NODEUJ5 F0A1 Processing Transmit Control Blocks 

NODEUJ6 F0A4 User timer routine. A replacement for USERINT, which is hooked by NODE ROM 

NODEUJ7 F0A7 User keyboard routine. A replacement for USERIO, which is hooked by the 
NODE ROM 

NODEUJ8 F0AA Process NODE command. DE = Start of line 

NODEUJ9 F0AD About to display (HL) on NODE status line 

NODEUJA F0B0 Called by NODE DISC 

NODEUJB F0B3 Called by NODE USER 

NODEUJC F0B6 Unused ? 

NODEUJD F0B9 Unused ? 

NODEUJE F0BC Unused ? 

 F0BF Start of NODE code in RAM 

 F0EF Relative offset of a JR nstruction. Changed from #00 to #03 when loading a 
program 

NODEPG F189 NODE ROM page (modifies data value of a LD A,nn instruction) 

 F2FB End of NODE code in RAM 

DSPINI F2FD Display line initialised flag 

IDSLFA F2FE End of node names list 

CTBUF F300 Command Transmitter Buffer (256 bytes) 
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Name Address Description 

CRBUF F400 Command Receive Buffer (512 bytes) 

TRBUF F600 Transmit buffer 

RCVBUF F700 Receive buffer 

DSPBUF F800 Node variable: Node message buffer 

DSPTXT F802 Start of text in message buffer 

DSPTIM F820 Location of time in message buffer 

3.13.1 Node Names List 
The node names list grows down in memory from IDSELF, which forms the first entry. NLIST points to 
the base of the list. Each entry is 14 bytes and consists of: 

Offset Size Contents 

0 12 Name of the node (ASCII text) 

12 2 Node ID (hex encoded) 

3.13.2 Transmit Command Block 
This specifies data to be assembled for transmission. CTBPTR or TXPEND gives location of this data 

Offset Size Contents 

0 1 Length of block 

1 1 Destination ID 

2 * Data to be included in packet header (TCB length - 8) 

 3 Address and page of data to send 

 3 Length of data to send 

 

Some details of the on-the-wire format of the network data, and examples of the network traffic can be 
found in: http://primrosebank.net/computers/mtx/techlib/mtx/node/Ring_Notes.pdf 

3.14 CFX VIDEO 
For details of the CFX-II video display, see: 
http://primrosebank.net/computers/mtx/projects/sfx/cfxii_video.htm 

In order to support the CFX-II VGA video display in 80-column mode the following high memory 
locations are used. These are incompatible with the NODE ROM. 
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Name Address Length Description 

vgamode 0xF600 1 Current mode for the CFX-II VGA output: 
0 = Echoing VDP output 
1 = 80 column text (Basic screen type 3) 
2 = 40 column text (Basic screen type 2) 

vgaedit 0xF601 1 Current USER VGA mode: 
0 = Single monitor, 40 column edit (Screen type 0) 
1 = Single monitor, 80 column edit (Screen type 3) 
2 = Dual monitor, 40 column edit (on composite monitor) 
3 = Dual monitor, 80 column edit (on VGA monitor) 

Vgadbuf 0xF602 16 Buffer used for copying data from VDP to CFX-II when switching back 
to VDP echo mode. 

vgapalette 0xF612 16 VGA colour values (bbggrr) for each of the 16 Basic colours. 

vgatyp0 0xF622 38 Copy of TYPTX from ROM1, patched to support switching out of screen 
types 2 or 3, when type 0 selected. 

vgatyp1 0xF648 38 Copy of TYPG2 from ROM1, patched to support switching out of 
screen types 2 or 3, when type 1 selected. 

vgavdp1 0xF66E 7 Start of routine to switch to type 1 screen. 

vgavdp0 0xF675 20 Start of routine to switch to type 0 screen. 

jmprom1 0xF689 13 Routine to jump to address (HL) in ROM 1. 
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4 THE VIDEO SYSTEM 
The MTX series makes use of the TMS9929A Video Display Processor to generate the display in its PAL 
models, it was a popular device at the time and was used in a number of home computer systems. The 
NTSC equivalent is the TMS9928A. From a programmer’s point of view, the 2 devices are very similar. 
The only major difference I’m aware of is because of the different television standard’s frame rates, the 
VDP interrupt occurs 50 times a second on the PAL device and against 60 for NTSC. 

The VDP has 16k of its own dedicated video memory, this memory is not visible to the Z80A CPU and all 
communication between the CPU and the VDP has to go via I/O ports. 

The main advantages of the separate memory space means that the CPU does not have to give up RAM 
to the display nor is any extra circuitry needed to arbitrate between the CPU and VDP potentially 
slowing the CPU down. 

The obvious disadvantage, the CPU has no direct access to the video memory reducing the rate at which 
new data can be moved to and from the screen. This is mitigated to a certain extent by the availability of 
hardware sprites and the choice of character mapped or bit mapped display modes. 

The MTX ROM provides a number of useful routines for screen handling via the RST 10 and RST 28 
interface. However, for maximum performance and some extra facilities, accessing the VDP directly is 
the way to go. 

There have been at least two subsequent display add-ons: 

 The Memotech 80-column display for use with CP/M. 
 The 80-column VGA display as part of the CFX_II 

4.1 DISPLAY CONTROL CODES 
The following tables summarises the use of control and escape codes from within MTX Basic, the CP/M 
driver for the original Memotech 80 column card, and the CFX-II 80 column display. Note that when 
using the 80 column display from MTX Basic the MTX ROM processes all the control and escape codes, 
so the first column of the tables is relevant. The third column is only applicable for CP/M, or bypassing 
the MTX ROM by writing to port 96 (60 hex). 

4.1.1 Control Codes 
Hex Letter MTX Basic Memotech 80 Col CFX-II VGA 
0x01 ^A Plots point Plots point Plots point 
0x02 ^B Plots line Plots line Plots line 
0x03 ^C Position cursor Position cursor Position cursor 
0x04 ^D Sets background colour Sets background colour Sets background colour 
0x05 ^E Erase to end of line Erase to end of line Erase to end of line 
0x06 ^F Sets foreground colour Sets colours /attributes Sets foreground colour 
0x07 ^G Sounds bell Sounds bell  
0x08 ^H Backspace Backspace Backspace 
0x09 ^I Tab Tab Tab 
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Hex Letter MTX Basic Memotech 80 Col CFX-II VGA 
0x0A ^J Line feed Line feed Line feed 
0x0B ^K Cursor up Cursor up Cursor up 
0x0C ^L Clear screen Clear screen Clear screen 
0x0D ^M Carriage return Carriage return Carriage return 
0x0E ^N CTLSPR Blink on Blink on 
0x0F ^O GENPAT Blink off Blink off 
0x10 ^P COLOUR Black foreground Black foreground 
0x11 ^Q ADJSPR Red foreground Red foreground 
0x12 ^R SPRITE Green foreground Green foreground 
0x13 ^S MOVSPR Yellow foreground Yellow foreground 
0x14 ^T VIEW Blue foreground Blue foreground 
0x15 ^U Insert key Magenta foreground Magenta foreground 
0x16 ^V Delete key Cyan foreground Cyan foreground 
0x17 ^W Tab back White foreground White foreground 
0x18 ^X White text on black Initialise configuration Initialise configuration 
0x19 ^Y Cursor right Cursor right Cursor right 
0x1A ^Z Home cursor Home cursor Home cursor 
0x1B ^[ Escape Escape Escape 
0x1C ^\ Scroll mode Scroll mode Scroll mode 
0x1D ^] Page mode Page mode Page mode 
0x1E ^^ Show cursor Show cursor Show cursor 
0x1F ^_ Hide cursor Hide cursor Hide cursor 
 

4.1.2 Escape Codes 
Letter MTX Basic Memotech 80 Col CFX-II VGA 
A ATTR Select alternate font Select alternate alpha font 
B Select language Set bit of both attributes Set bit of both attributes 
C GR$ Scroll mode Scroll mode 
D Invalid Page mode Page mode 
E Invalid Show cursor Show cursor 
F Invalid Hide cursor Hide cursor 
G Invalid Select graphics font Select lower graphics font 
H Invalid  Delete character under cursor 
I Insert blank line Insert blank line Insert blank line 
J Delete the current line Delete the current line Delete the current line 
K Duplicates a line  Duplicates a line 
L Read character at cursor   
M Invalid  Redefine char. 
N Invalid Set bit of non-printing attrib. Set bit of non-printing attrib. 
O Invalid  Select virtual screen 
P Toggle Page / Scroll Set bit of printing attributes Set bit of printing attributes 
Q Invalid  Input 8-bit characters 
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Letter MTX Basic Memotech 80 Col CFX-II VGA 
R Set print colour, clear attributes  Input raw buffer data 
S Invalid Select standard font Select standard alpha font 
T Invalid Set printing attributes Set printing attributes 
U Reset screen Set non-printing attributes Set non-printing attributes 
V BASIC setup Set both attributes Set both attributes 
W PANEL Setup Set write mask Set write mask 
X Simulate control code Simulate control code Simulate control code 
Y CRVS  Define virtual screen 
Z VS  Reboot 
[    
\    
]    
^   Copy characters 
_   Space characters 
 

4.2 ACCESSING THE DISPLAY VIA RST 10 AND RST 28 
The majority of the screen handling can be done via RST #10 and those functions are documented to a 
certain extent in the Phoenix manual as well as Keith’s book.  However, there are also a couple of useful 
routines within the functions of the general purpose RST #28 that I discovered from the ROM 
disassembly that I’ve not seen documented elsewhere. 

Both RST #10 and #28 operate using in-line data. The RST instruction is followed by one or more data 
bytes. The program code then continues from the end for the data. Obviously, it is vital to get the data 
statements correct, otherwise a system crash is the likely result if the CPU starts trying to run data as 
program code. 

RST 28 function #42 is used to initialize the video system and is called by the MTX ROM during start up. 
However, this is after the paged ROMs are set up, if you’re programming a paged ROM, and need to do 
any printing then the following code is a must. 

RST 28 
DB #42 

 
This calls the routine VDINIT at #2E85 in the Assem ROM, so there’s no way to make the call directly 
from within a paged ROM. The other RST 28 function that can be used for accessing the display is 
function #AC (which calls the ROM routine PRINTX at #0CAB). This simply sends whatever is in the A 
register directly to the screen drivers. It will corrupt the A register on exit so should be used with that 
restriction in mind. It is however, faster to use than the equivalent RST 10 function. 

Control codes, as well as displayable characters, can be sent to the display, as shown in the following 
example, which uses code 12 (clear screen) as well as 13 & 10 (carriage return and line feed) 

10 ASSEM  
CODE 
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0x4007          LD HL,DATA                                          
0x400A LOOP:    LD A,(HL)                                           
0x400B          AND A                                             
0x400C          RET Z                                               
0x400D          RST 28                                            
0x400E          DB #AC                                              
0x400F          INC HL                                              
0x4010          JR LOOP                                             
0x4012 DATA:    DB 12                                               
0x4013          DB "HELLO WORLD"                                    
0x401E          DB 13,10,0                                          
0x4021          RET                                                 
 
Symbols: 
DATA          4012  LOOP          400A   

 

 
 

As the routine called by this RST 28 function is in the low ROM, it can be called directly, which is faster, 
but ends up being 1 byte longer. Since the function is called 14 times in the MTX ROMs, it would have 
saved the original programmers 14 bytes of ROM space. The RST and Data byte in the above code can be 
replaced with CALL #0CAB. 

The RST 10 call is actually 4 functions accessed through one entry point. The bits 6 and 7 of the data byte 
determines which function is called. Bit 5 is the continuation bit if this is set then the RST 10 processing 
code expects to find another data byte after the completion of the current command. If it’s clear the 
CPU will resume processing Z80 code at the end of the current command. Bits 0-4 of the data byte are 
command specific. 

 

A data byte with the top 2 bits clear (i.e. 00 C xxxxx) are used to send a single byte to the display. As 
there are only 5 bits available, the value sent is restricted to between 0 and 31, which means control 
codes only. This may seem a little restrictive, but it is useful for things like clearing the screen or sending 
a carriage return to the display, as it is both shorter than any of the other options and needs no 
registers. 

Sending a clear screen command (Character code 12 or #0C in hex) to the screen could be done with: 
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LD A,#0C 
RST 28 
DB #AC 

 
Take twice as much space as: 

RST 10 
DB #0C 

 
And changes the A register in the process.  

Sending a carriage return and line feed to the screen can be done in 3 bytes: 

RST 10 
DB #2D,#0A 

 
Note the setting of the continuation bit in the first data byte. There is no limit to the number of 
continuation items that form a single RST 10 command, nor are there any restrictions in mixing the 
various functions. 

 

Data bytes with bit 7 clear and bit 6 set deal with the MTX’s virtual screen system. Bit 5 is the 
continuation bit as with all commands, bit 4 isn’t used. Bit 3 if set to 1 will clear the virtual screen, set to 
zero, it won’t. Bits 0-2 are the virtual screen number 0-7. 

For example, to select VS 4, clear it, and set the continuation bit ready for further printing, the bit 
pattern for the data byte would need to be 01 1 x 1 100 which is #6C in hex (or #7C). Similarly, selecting 
VS 5 without clearing it and resuming processing, the data byte is 01 0 x 0 101 or #45. 

10 CODE 
 
4007        RST 10 
4008        DB #4C 
4009        RET 
 
Symbols: 
 
 
20 PRINT “HELLO” 
30 LINE 0,183,36,183 
40 GOTO 40 

 
This code the short assembly section selects VS 4, the graphics screen and clears it. The BASIC lines 
below print the message and underline it, producing the following output. 
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It also illustrates the fact that the display system treats all video data in the same way, whether it 
originates from BASIC or code. 

The third function is the most complex, and also the most useful. The data byte has bit 7 set, bit 6 clear, 
and bit 5 is the continuation bit. The remaining 5 bits are a count from 1 to 31 of the number of bytes to 
be sent to the screen. Control codes and printable characters can be mixed as required, if more than 31 
characters are needed, then the data can be separated into smaller sections and the continuation bit 
used. 

To duplicate the above display with RST 10 the following code could be used. 

10 CODE 
 
4007        RST 10 
4008        DB #6C 
4009        DB #A7,”HELLO”,13,10 
4011        DB #85,2,0,183,36,183 
4017        RET 
 
Symbols: 
 
40 GOTO 40 

 
The continuation bit is set on the command to select screen 4 and clear it, changing it from #4C to #6C. 
The next line is the 10 1 bit pattern for embedded data with the continuation bit set, as there are 7 data 
bytes following which is 00111, making the final byte #A7. The text that follows is the same as the BASIC, 
along with a carriage return and line feed. 

The final line #85 is the bit pattern is 10 0 for embedded data and no continuation and 00101 indicating 
it is followed by 5 data bytes. The 5 data bytes are 2 which is the control code for LINE, followed by the 
same 4 positional bytes as the BASIC. 

 

The final RST 10 function has both bits 6 and 7 set with bit 5 as the continuation bit as usual. The other 5 
bits are unused. This function simply sends the 2 characters in the Z80’s BC register pair to the screen. 
The Character in C is sent first, followed by B. The ROM actually uses RST 28 function #AC to do this. So, 
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unless there is a compelling reason, in most cases it is probably simpler to use the RST 28 function. It 
saves having to remember which order BC is sent, and uses the A register which is probably more 
natural in most circumstances. 

4.3 MTX ROM ROUTINES INVOLVED IN DISPLAYING CHARACTERS 
The display of a single character involves a large number of routines in the MTX ROMs. The following 
sections outline a few of these: 

4.3.1 PRINTX (0CABh) 
Display the character in A. Selects destination based upon PROPL, IOPL and IOPR. 

If screen, call GETSTR 

4.3.2 GETSTR (00BCh) 
Display in screen the character in A. Pushes the current PAGE on stack, followed by entry to PEND 
(which restores PAGE). Then selects ROM 1 (saving current RAM page) and calls BSLOAD. 

4.3.3 BSLOAD (1:3A6Fh) 
Accumulates control or escape sequences in BSSTR. 

CHPTR = Current position in BSSTR 

VINTFLG bit 0 = Accumulating a sequence 

VINTFLG bit 1 = Previous character was <Esc> 

VINTFLG bit 2 = <Esc>+X received. Simulate control character. 

LENLO = Remaining length of Control or Escape sequence. 

LENHI = Total length of Control or Escape sequence. 

Go to CONSTR if accumulating a sequence. 

If <Esc> character: 

 Set In-sequence and Escape received flag 

Else if control character: 

 Set In-sequence flag 

 Get sequence length from CTLLEN table 

 Check if device dependent (Call DEVSP if bit 7 set) 

 If single character sequence, call DISP1 

Else: 

 Call DISP1. 
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4.3.4 CONSTR (1:3ABAh) 
If Escape received flag set: 

 Reset Escape received flag 

 Convert character to upper case, and check is a letter 

 If “X” (simulated control code) 

  Set Simulated-Control flag 

  Exit routine 

 Get sequence length from ESCLEN table 

 Check if device dependent (Call DEVSP if bit 7 set) 

Else if Simulated-Control flag is set: 

 Convert letter to Control character 

 Reset CHPTR to start of BSSTR 

Else: 

 Decrement count of remaining characters in sequence 

 If last character call DISP1 

4.3.5 DEVSP (1:3AEAh) 
Test for control or escape sequence supported by current screen. 

Calls SCENT with A = 0Fh. This in turn calls: 

 For text screen: DVSPTX: Error if bit 5 is not set. 

 For graphics screen: DVSPG2: Error if bit 6 is not set. 

Note: The contents of CTLLEN and ESCLEN tables do not appear to be consistent with this usage. The 
high bits in these tables are set to: 

50h – Invalid code. But the device dependent bit is not set, so there is no error test, and length is 
very long. Somebody set this to 80d instead of 80h? 

C0h – Plotting functions (PLOT, LINE, COLOUR, ATTR & GR$). Graphics screen only. OK. 

E0h – Sprite functions. These are allowed for both text and graphics screens? 

4.3.6 GETCH (1:2F9Bh) 
Get next character (at CHPTR) from BSSTR, and return it in A. 

4.3.7 DISP1 (1:2FA6h) 
Call user patchable routine OVRLAY. 

IX = (CURSCR), one of SCRN0 – SCRN7 
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Push CEND as return address 

Get next character (GETCH) 

If character is printable, goto PRTCH 

Otherwise look up corresponding routine address from CTLTBL and jump to it 

4.3.8 PRTCH (1:2FDBh) 
More investigation required. 

Test insert mode (IX+03h) and shift remainder of line up one character (call ININLN) if set. 

Call CHKPOS – Wraps cursor at end of VS line and scroll / page at end of VS height. 

Call SCENT with E = Character, A = 5 – Displays the character. 

4.3.9 SCENTR (00CBh) 
Reset ROM 1 (preserving RAM page). 

4.3.10 SCENT (1876h) 
Called by PRTCH, also many of the control & escape sequence routines to dispatch code according to 
current screen type. 

Set SENTR as return address 

Get screen type from top 3 bits of (IX+0) 

Look up ROM number and jump table address from TYPTBL[3*screen type] in system variables 

Byte Description Default 

0 ROM selector for screen type 0 ROM 1 (0x10) 

1-2 Address in above ROM of command table for screen type 0 TYPTX (0x2EA1) 

3 ROM selector for screen type 1 ROM 1 (0x10) 

4=5 Address in above ROM of command table for screen type 1 TYPG2 (0x2EC7) 

6 ROM selector for screen type 2 0x00 

7-8 Address in above ROM of command table for screen type 02 0x0000 

9 ROM selector for screen type 3 0x00 

10-11 Address in above ROM of command table for screen type 3 0x0000 

12 ROM selector for screen type 4 0x00 

13-14 Address in above ROM of command table for screen type 4 0x0000 

15 ROM selector for screen type 5 0x00 

16=17 Address in above ROM of command table for screen type 5 0x0000 

8 ROM selector for screen type 6 0x00 
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Byte Description Default 

19-20 Address in above ROM of command table for screen type 6 0x0000 

21 ROM selector for screen type 7 0x00 

22-23 Address in above ROM of command table for screen type 7 0x0000 

 

Switch to nominated ROM (preserving RAM page) 

Look up routine address from Ath word in jump table (one of 19 entries) 

Call that routine. 

Entry TYPTX TYPG2 Description Used 

00h HSZTX HSZG2 Return screen width in A 302D 

01h CUFLTX CUFLG2 Update cursor position. Only called if cursor is visible. 
Need to return with bit 7 of (IX+08h) cleared to ensure 
that this is called once when cursor is hidden. 

314B 

02h SUCUTX CUFLG2 Turn on cursor 2FFE 

03h LNCOTX LNCOG2 Copy BC characters from HL to DE. 30F4, 33BA, 
33F1 

04h SPTX SPG2 Display BC space characters at position HL. Uses plot 
colours. Should not move cursor. 

30FE, 327E, 
334B 

05h PRCHTX PRCHG2 Display the character in E at position HL 2FEA 

06h INITTX INITG2 Initialise display 3A28 

07h SCOLTX SCOLG2 Return colour of character at position HL, in A.  

08h TABAGT TABAGT Set print colours to C and clear print attributes. 306B 

09h BPAPER BPAPER Set both print and plot paper colour to the low 4 bits of 
next character. Set border colour for text screen. 

310C 

0Ah BINK BINK Set both print and plot ink colour to the low 4 bits of 
next character. 

3110 

0Bh INATGT INATGT Sets white text on black (called by <Ctrl+X>) 
Used by CRVS to initialise colours. 

39F6 

0Ch DVDEGT DVDEGT Device dependant control or escape sequence 3114 

0Dh TXSIZE G2SIZE Number of characters (including current) from row D 
column E to end of screen. 

399B 

0Eh CHRDTX CHRDG2 Read character at position HL. Result in WKAREA. For 
graphics screen works by matching pattern. 

353E 
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Entry TYPTX TYPG2 Description Used 

0Fh DVSPTX DVSPG2 Test for control sequence valid and return length in H. 
Existing routines rely upon value from CTLLEN being 
loaded into H. 

3AF2 

10h VDCOLD VDCOLD Configure VDP. Leave in graphics mode. 3108 

11h VDBAS VDBAS Configure BASIC virtual screens 3108 

12h VDPAN VDPAN Configure PANEL virtual screens 3108 

 

To support a new display type from MTX BASIC it is necessary to implement appropriate versions of the 
19 routines defined above, create a new display type table pointing to these routines, and then update 
the relevant entry in the TYPTBL system variables to point to this. 

Alternately hook into the OVRLAY entry in the system variables, and bypass the remainder of the 
existing processing. 

4.4 ACCESSING THE VDP DIRECTLY 
Communication between the Z80 and the VDP is done using 2 I/O ports. Port 1 is used to transfer any 
data between the two, while port 2 is used by the Z80 to write to the VDP registers and memory 
pointer. Reading port 2 will access the VDP status register. 

That’s a little vague, so needs a little detail on exactly what that means. 

The VDP has 16k of video memory connected to it, the Z80 only has indirect access to that memory. In 
order to place data into that memory, or read from it, it has to tell the VDP the address where it wants 
to access. Once that address is set up, each access to the data register will automatically increment the 
address pointer. 

However, the VDP needs to know in advance whether the access through the data register at port 1 will 
be a read or a write. It’s not possible, when say plotting a single pixel onto the bitmap display, to read a 
byte, set the pixel and write it back without doing a second address set up in between. 

16k of RAM needs a 14-bit address to access each byte individually. Using 2, 8-bit, transfers leaves 2 bits 
for identification of the type of transfer taking place. The VDP uses bits 6 and 7 of the 2nd byte 
transferred for this. 

In order to send a byte to the VDP RAM, the low 8 bits of the address need to be sent to port 2, followed 
by the upper 6 bits. Bit 7 of the 2nd byte needs to be a 0, bit 6 needs to be a 1. Any data then set to port 
1 will be placed into the video RAM. 

There are 2 potential issues with accessing the video memory this way. The first is that when your code 
starts an address set up its impossible to know whether the VDP is part way through an aborted address 
set up or not. The first byte you send could be completing a previous address set up. The solution is 
simply to read form either the data register on port 1 or the VDP status register on port 2 before starting 
the address set up. 
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The other issue is interrupts. It’s possible for an interrupt to fire between the 2 VDP address setups. If 
that interrupt were to read the VDP status register, then the address setup would be re-started on 
return to your code with unpredictable results especially so on VDP writes. Unless you can be 100% 
certain that any interrupts won’t access the VDP, or if you only access the VDP under interrupt control. 
Then a DI instruction before the address setup and an EI afterwards to temporarily halt interrupts can be 
a good idea. 

It IS possible to write to the VDP from BASIC using the OUT command, and most of the time it will 
probably work as expected. But it’s not guaranteed. 

Port 2 is also used to write to any of the 8 VDP registers that control how the device is set up and what 
each section of video memory is used for. Register’s 0 and 1 control the basic setup, which screen mode, 
sprites, the VDP interrupt etc. The Register 7 controls the colour of the backdrop and text screen. The 
other 5 registers are pointers to the various lookup tables the VDP uses to create the display. 

There are timing restrictions with communicating with the VDP. After setting up the address, the CPU 
needs to wait 3 micro seconds before attempting to read or write data. With the MTX’s Z80 running at 
4mhz, this means the delay should be 12 machine cycles. This isn’t a major issue, reading the data 
register with IN A,(1) takes 11 cycles, adding one instruction between the final address set up OUT (2),A  
and the IN instruction is sufficient. The same applies for writing to the data register as OUT (1),A also 
takes 11 cycles. There are other I/O instructions available on the Z80, however, they all take more cycles 
to complete. 

What does need a little care is allowing sufficient time between successive data accesses in graphics 
modes. In text mode there’s no problem the minimum time between read or writes is 2 micro seconds, 
which Is 8 cycles and all the I/O instructions take longer than that. In Graphics mode where the VDP 
needs more memory access for itself because of the complexity of the display, 8 micro seconds are 
required between CPU accesses, so a little thought is required when laying out screen access code. 

Which mode the VDP is using, is determined by the current setup, and that requires writing to one or 
more of the 8 write only registers. 

In order to write to a register, the register data is sent to port 2 first, then the register number, to 
separate register writes from the address set up sequence Bit 7 should be set, and bit 6 should be clear. 
The register number should be between 0 and 7 to maintain compatibility. 

Register 0 and 1 between them can best be thought of as a collection flags. 

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 BIT 1 Bit 0 
0       M3 EV 
1 4/16k Blank IE M1 M2  Size Mag 

 

7 of the 16 bits are un-used and should be set to 0 for compatibility with later VDPs. Of the remaining 9, 
M1, M2 and M3 select which display mode the VDP uses. None of the modes require more than one bit 
to be set. It is possible to create “illegal” screen modes by setting more than one mode bit, those modes 
aren’t documented here.  
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 The first 3 modes were inherited from the older TMS9918 VDP used in the TI 99/4. Graphics 2 is only 
available on the later “A” version devices. (9918A, 9928A and 9929A) 

With all 3 bits clear, the VDP will be in graphics 1 mode. The display is 32 by 24 in up to 15 colours, the 
sprites system is active. Each character can only have 2 colours. 

M1 set, M2 and M3 clear puts the VDP into text mode. The display is set to 40 by 24 in 2 colours and the 
sprite system is turned off. There are 2 colours available for the whole display, setting individual 
character colours is not possible 

M2 set, M1 and M3 clear puts the VDP into Multi colour mode, the display is 64 by 48 in 15 colours, 
sprites are active. I’m not aware of any MTX software that uses this mode. 

M3 set, M1 and M2 clear puts the VDP into Graphics 2 mode, The Display is 32 by 24 in up to 15 colours. 
Each character row has its own 2 colours, with the correct setup a bitmapped display can be created. 

There’s only one other useable bit in register 0, EV. Setting this bit enables the external video input in 
the 9918 and 9918A. Since the MTX uses the 9929A setting it has no effect, and so it should be set to 0 
for compatibility. 

Register 1 has 5 other, useable bits. Bit 7 should be set on the MTX, as it’s used to inform the VDP of the 
amount of video RAM fitted. With the bit clear the VDP will assume 4k x1 RAM chips are fitted and 
adjust accordingly.  

If the BLANK bit is clear, then the VDP display is turned off, and will show the current border/backdrop 
colour. Setting it to 1 restores the current display, so possibly of use in some circumstances to hide the 
display being built. 

The IE bit, is the interrupt enable, if this is set the VDP will issue an interrupt at the end of the active 
display. The interrupt signal from the VDP is connected to the input of counter/timer 0 on the CTC, 
meaning both the CTC and VDP need to be correctly setup in order to make use of the VDP interrupt. 
Although its connected to the CTC, the MTX ROMs make no use of the video interrupt. If VDP interrupts 
are used, the VDP status register must be read during the interrupt routine as reading the register clears 
the interrupt flag. If the interrupt flag isn’t cleared further interrupts can’t occur.  

Bits 0 and 1 control the sprite settings. If MAG is set, all sprites are drawn double size. If the Size bit is 
set, then sprites are drawn from 4 consecutive 8x8 sprite characters in memory. If unset, then 8x8 
sprites are drawn from a single sprite character. 

At reset, the VDP sets both register 0 and 1 to all zero, meaning the display is blanked, interrupts are off 
and the VDP is in graphics 1 mode with 8x8 single pixel sprites. 

The remaining 6 registers have the following functions. 

Register Function Bit 7 Bit 6 Bit 5 Bit 4 BIT 3 BIT 2 BIT 1 BIT 0 
2 Name Table 0 0 0 0 A13 A12 A11 A10 
3 Colour Table A13 A12 A11 A10 A9 A8 A7 A6 
4 Pattern Table 0 0 0 0 0 A13 A12 A11 
5 Sprite Attribute Table 0 A13 A12 A11 A10 A9 A8 A7 
6 Sprite Pattern Table 0 0 0 0 0 A13 A12 A11 
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7 Text Colour Register Text Mode, Text Colour Background/Border colour 
 

Depending on the display mode some of the registers may not be used. As each table in video memory 
requires differing amounts of space depending on the amount of data it holds, the VDP designers 
decided to restrict the amount of address bits available to position the table. I.e. the “Name Table” is 1k 
in size, the programmer can position it on any kilobyte boundary as just 4 of the 8 bits in the register are 
used. As usual any un-used high order bits need to be set to 0 for compatibility with later devices.  

It’s important to note, that though the number of bits available for locating tables in video ram is 
restricted, overlapping of tables is allowed. For example, the Pattern Table and Sprite Pattern Table 
could occupy the same position in VRAM, with the programmer then deciding which sections of the 
table are used as characters, and which as sprites, or both! 

The VDP is primarily a character-based device, and in order to create a character-based display 2 tables 
are required. The Name Table is in effect a character map for the display. So for example, if the display is 
set with the ASCII character set, placing a byte with a value of #41 (decimal 65) into the first entry in the 
table will display the character “A” on the top left of the screen. 

The Pattern Table contains the actual character pattern that is displayed. There are 8 bytes per 
character, and 256 possible characters, making a maximum table size of 2k, which is why the register 
only allocates 3 bits for the pointer. The name table must go on a 2k boundary. 

MTX BASIC allocates the VDP RAM as follows: 

Start Address End Address Description 
0x0000 0x17FF Graphics pattern table 
0x1800 0x1BFF Text pattern table 
0x1C00 0x1FBF Text name table 
0x1FC0 0x1FFF User defined characters colour table 
0x2000 0x37FF Graphics colours table 
0x3800 0x3BFF Sprite pattern table 
0x3C00 0x3EFF Graphics name table 
0x3F00 0x3F7F Sprite attributes table 
0x3F80 0x3FFF Spare 

 

4.5 TEXT MODE 
Text mode uses 3 of the VDP registers to control the display.  These are register 2 the name table, 
register 4, the pattern table and register 7 the colour register. 

Only 2 colours are available, any “set” pixels will show as the text colour from the upper 4 bits of register 
7, everything else is rendered in the backdrop colour from the lower 4 bits of the same register.  

The ROM places the Pattern Table at #1800 in VRAM, with the Name table over lapping it at #1C00. This 
effectively reduces the pattern table to 128 or so entries, of which the ROM sets up patterns 32 to 127 
as the ASCII character set. Pattern 0 is also used by the cursor. 
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The overlapping table setup is required to fit both the bitmap graphics display (I hesitate to call it High 
Resolution) and text mode into the available ram space without them interfering with each other.   

In order to set the display, the MTX rom sends the following data to the 3 registers 

Register 2: #07 
Register 4: #03 
Register 7: #F5 
 
The binary version of the table pointer values makes it a little clearer what is being set : 

Register 2; (0000)  01 1100 0000 0000 
Register 4: (00000) 01 1000 0000 0000 
 
The cleared upper bits (in brackets) are ignored by the 9929 VDP but should be programmed as clear for 
compatibility. Referring to the table above, for register 2 the lower 4 bits are significant, for register 4 
it’s only 3,. Adding in the rest of the low order address bits (in red) confirms that register 2 has set the 
name table to #1c00 and register 4 the pattern table to #1800. 

Register 7 is much simpler to understand, as it’s setting white text -colour 15 (f) on a light blue 
background -colour 5.  

Unless there’s a good reason not to, it’s simpler to use the MTX’s default VRAM layout than to define 
one of your own. The following BASIC program illustrates direct screen access 

0 LET A=INP(2) 
10 OUT 2,2*16+1 
20 OUT 2,128+7 
30 OUT 2,1 
40 OUT 2,64+28 
50 LET A$+”Hello World” 
60 FOR X=1 TO LEN (A$)  
70 OUT 1,ASC(MID$(A$,X,1)) 
80 NEXT 
90 GOTO 90 

 

Line 0 clears any part written port 2 setup.  
Lines 10 and 20 set register 7 to #21, for a green on black display. 
Line 30 and 40 set the VRAM pointer to #1C01 ready for writing 
Line 50 is the message 
Lines 60 to 80 pass that message 1 byte at a time to the video ram. 
Line 90 prevents the MTX from reverting to blue on white when the 
program ends. 
 
 
All characters and sprites used by the VDP are based on an 8 by 8 matrix, however on order to fit 40 
columns on a display 256 pixels wide the lowest 2 bits of each row of character data are ignored. The 40 
column display is therefore 240 pixels wide, to accommodate this the borders are adjusted to keep the 
screen more or less central. 
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Assuming the name table is at its default position at #1C00 the location of any character on the screen 
can be calculated as #1C00 + row * 40 + column. An additional factor to take into account when writing 
to the screen is that bit 6 needs to be set on the address transfer, making the calculation effectively 
#5C00 + row * 40 + column. 

In assembler there are several ways to calculate this. The simplest is probably to use left shifts to 
multiply by 2. As 40 is 5 x 8, he following routine will calculate the screen address in HL, assuming the 
row number is in B and the column in C, B and C are assumed to have been range checked and so B is 
between 0 and 23 and C between 0 and 39. Multiplying B by 5 is done in the A register as 5 x 39 is 235 
and is with the permitted values for an 8 bit register. The final multiply by 8 needs a 16 bit register pair. 

SCREEN_POS: 
PUSH AF       ;save the working registers for neatness 
PUSH BC 
LD A,B 
ADD A,A       ; 2x row 
ADD A,A       ; 4x row 
ADD A,B       ; 5x row  
LD L,A        ; transfer A to HL for the final multiply by 8 
LD H,0 
ADD HL,HL     ; 10x row   
ADD HL,HL     ; 20x row   
ADD HL,HL     ; 40x row 
LD B,#1C      ; the column value is in C, setting B to #1C here 
              ; saves having to add #1C00 later 
ADD HL,BC   
POP BC 
POP AF 
RET 

 
Reading or writing the character ad row B, column C is then simply: 

WRITE_A: 
CALL SCREEN_POS 
PUSH AF 
LD A,L 
OUT (2),A 
LD A,H 
OR #40 
OUT (2),A 
POP AF 
OUT (1),A 
RET 

 
Reading the character is even simpler: 

READ_A: 
CALL SCREEN_POS 
IN A,(1) 
RET 

 



ReSource 2021 
 

 45 

Since the VDP’s internal character pointer is incremented after each access, the further characters could 
be transferred with just an additional IN A,(1) or OUT (1),A. 

To change the appearance of any character, simply update the data in the pattern table.  Each character 
is stored as 8 consecutive bytes, in the default setup, the position is therefore #1800 + 8 * character_no 

To set HL to the location of character A one way of doing it is: 

CHARCTER_POS: 
LD L,A       ; character code can be any value 0-255 
LD H,3       ; save adding #1800 later, by adding #0300 now 
ADD HL,HL    ; HL is now #0600 + 2 x A 
ADD HL,HL    ; HL is now #0C00 + 4 x A 
ADD HL,HL    ; HL is now #1800 + 8 X A 
RET 

 

Once the VDP address pointer is set up, then 8 bytes can be transferred with repeated IN or OUT 
instructions. 

 I mentioned earlier that there overlapping of the table leaves approximately 128 characters available to 
the programmer, provided the cursor blink is accounted for, Entries character codes 0-127 are free, then 
next 960 bytes are taken up by the name table, this leaved a further 64 bytes at the end of the name 
table that can be used for character definitions. That makes 8 further characters with codes 248 to 255 
that can be defined without corrupting the display, making 136 in all. 

4.6 GRAPHICS 2 MODE 
Graphics 2 is the other mode used as standard on the MTX, despite appearances, it is a character-based 
mode. In G2 mode there are 24 rows of 32 columns in the display, giving 768 locations. However, with 
the normal G2 setup, the name, pattern and colour tables are both split into thirds, each third of the 
name table therefore has 256 entries, allowing each one to be unique. Each byte in the Pattern table has 
a corresponding byte in the colour table, allowing each group of 8 pixels to have 2 colours. 

In order to use the display as if it were bitmapped, each segment of the name table is set up as 
ascending bytes from 0 to 255 (#FF). The display is then created by accessing the pattern and colour 
tables directly. 

In G2 mode the name table is 768 bytes, making the Pattern table 768 x8, or 6144 bytes in length, as is 
the colour table. Therefore, there are only 2 possible locations for these tables. Right at the start of 
Vram in locations 0 -6143 (#17FF) or from the mid-point from 8192 to 14335 (#2000-#37FF). 

The Pattern Table and Colour table meanings are modified, only the A13 has any significance in 
determining the table location. The TI documentation says that all the lower order address bits need to 
be set to 1 in order to use the full number of patterns. This gives the following 4 “legal” values for the 2 
tables 

Table
  

Register Binary 
Value 

Decimal Hex Decimal 
Location 

Hex Location  

Pattern 4 00000 0 11 3 #03 0 - 6143 #0000 - #17FF MTX setting 
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Pattern 4 00000 1 11 7 #07 8192 - 14335 #2000 - #37FF  
Colour 3 0 1111111 127 #7F 0 - 6143 #0000 - #17FF  
Colour 3 1 1111111 255 #FF 8192 - 14335 #2000 - #37FF MTX setting 

 

To avoid complications with overlapping tables, the name table needs to be fitted into one of the 
available 2k blocks. The MTX rom uses the first “free” area for the text screen, so places the sprites and 
Name table in the 2nd area. Register 2 is set to 15 (#0f) placing the table at 15386 (#3C00) however once 
it’s set up it can be forgotten. 

The following BASIC code is an example of how to setup and access graphics 2. 

0 REM GRAPHIC 2 SETUP EXAMPLE 
10 LET A=INP(2) 
20 OUT 2,3: OUT 2,128+4 
30 OUT 2,255; OUT 2,128+3 
40 OUT 2,15; OUT 2,128+2 
50 OUT 2,15: OUT 2,128+7 
60 OUT 2,0: OUT 2,64+60 
70 FOR X=1 TO 3 
80 FOR Y=0 TO 255 
90 OUT 1,Y 
100 NEXT 
110 NEXT 
120 OUT 2,2: OUT 2,128+0 
130 OUT 2,64: OUT 2,128+1 
140 OUT 2,0: OUT 2,64+0 
150 FOR X=0 TO 6143 
160 0UT 1,85 
170 NEXT 
180 OUT 2,0: OUT 2,64+32 
190 FOR X=0 TO 6143 
200 OUT 1,INT(X/24) 
210 NEXT X 
999 GOTO 999 

 
The code can be broken down into 2 sections, first the setup sequence: 

Line 10 is there to clear any part started transfers. Lines 2- to 40 set up the pattern table, colour table 
and name table with the MTX default values. Line 50 sets the border to white. Lines 70 to 110 then set 
up the name table as the required 3 repeating sequences of 0 to 255. Lines 120 and 130 set up the 
required mode bits for graphic 2, and turn on the display. 

The second section sets up a display. Line 140 sets the video memory pointer to the start of the pattern 
table which is at locations 0 to 6143. The +64 is to ensure the VDP is expecting memory writes. Lines 150 
to 170 then poke a vertical line pattern into the screen memory. Line 180 then moves the video memory 
pointer to 8192 (#2000), again setting up for transfers to vram. Lines 190 to 210 then set 24 consecutive 
locations (3 characters) to each of the 256 possible colour combinations. 

Line 999 is just there to stop BASIC returning to “Ready” on completion. 
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For a checkerboard display instead of lines, add the following 

145 LET J=85 
160 OUT 1,J 
165 LET J=255-J 

 
Because the display is character mapped, calculating the screen address is more complicated that it 
would be if it were arranged on a row by row basis. It’s best explained using the binary representation of 
the values. As each row of the character is 8 pixels wide, and each character fills 8 rows, the “x” value 
can be thought of as 2 fields. The upper most 5 bits select which column of characters to access, the 3 x 
bits, determine which pixel within the character row. The first pixel within the byte that’s displayed 
being bit 7, so the bit order needs to be reversed, as bi7 7 is pixel 0, bit 6 pixel 1 etc. 

Each character is 8 rows high, so the 3 low bits of the Y value select this offset into the character. As 
each group of 8 rows is 256 bytes long (8 rows x 32 characters) the upper 5 bits determine the high byte 
of the address. 

Colour memory is grouped by 8 pixels, so the calculation is identical except the 3 low “x” bits are 
ignored, and the offset for colour memory has to be added. 

Binary representation of the X value (0-255) ccccc xxx 

Binary representation of the Y Value (0-191) rrrrr yyy 

Final pixel address 000rrrrrcccccyyy, bit 7-xxx 

Final colour address 001rrrrrcccccyyy 

Drawing a line in BASIC could be done something like this: 

10 REM GRAPHICS 2 PLOTTING 
20 VS 4 
30 CLS 
40 FOR YPOS=0 TO 191 
50 LET XPOS=INT(50+ypos/2) 
60 LET C=8*INT(XPOS/8) 
70 LET B=7-(XPOS-C) 
80 LET R=INT(YPOS/8) 
90 LET Y=YPOS-8*R 
100 REM PLOT IT! 
110 OUT 2,C+Y: OUT 2,64+R: OUT 1,2^B 
120 NEXT 
999 GOTO 999 

 
NB BASIC’s OUT command is sufficiently slow the line is almost guaranteed to have glitches! 

The equivalent code in assembler is actually a little easier to follow because of the CPU’s ability to mask 
bits in a way BASIC doesn’t provide 

Assuming on input the B register holds the X position, and the C register the Y one. The following code 
will set up HL with the byte address. 
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LD A,7       ; mask for the lowest 3 bits 
AND C        ; A is now the low 3 bits of the Y value only (yyy) 
LD L,A       ; save for later 
LD A, #248   ; mask for the top 5 bits 
AND B        ; A is now the top 5 bits of the x value (ccccc000) 
OR L         ; add back the stored value 
LD L,A       ; the low byte is now cccccyyy as above 
LD H,C       ; get the Y value  
SRL H        ; shift right 3 places to form 
SRL H        ; 000rrrrr 
SRL H        ; HL now has the full address 000rrrrrcccccyyy 

 
There’s a major issue that still needs to be dealt with, the code above over writes all 8 pixels in the byte 
to set just the one. What needs to happen is first read in the byte from screen memory, set the pixel and 
then write it back. However, the screen memory pointer needs to know in advance the type of access 
being done and it also auto increments after the read, so the address needs to be set up again for the 
write back. Which leads to the following sequence: 

Calculate the screen address 
Set up the screen address, for a reading 
Read the byte 
set/reset the required pixel 
set up the screen address for writing 
write back the modified byte 
set up the screen address + #2000 also for writing 
write the colour data 
 
And that all takes time. 

 

4.6.1 Graphics 2 in text mode 
 

While MTX BASIC uses Graphics 2 as a bitmapped display, the underlying display system is actually a 
character based one. 

Using it as a text display is not unlike the 40 column text mode, the display is 32 characters by 24. Using 
the default screen set up, the character and colour data needs to be written 3 times, to each of the 
pattern and colour tables. 

Once that is done, a single byte update to the name table updates the display, and unlike the default 
MTX setup for text mode, all 256 patterns are available. 

There is a simpler way to achieve the same effect using some less well documented abilities of the VDP. 
The TI documentation advises that the “unused” low bits of the pattern and name tables should be set 
to 1. The reason for this is that those bits are binary ANDed with the memory address when accessing 
video memory. 

Bit 2 selects which of the two 8k halves of the video memory are used for the Pattern table. That is bit 
A13 of the video memory address, bits 0 and 1 therefore will mask A11 and A12 respectively. Using the 
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default setup both those bits are set to 1, and the full memory range is accessed. However, if they are 
both set to 0 along with bit 2, all video memory reads for the pattern table will be from the first 2k table 
only. 

From BASIC this can be demonstrated with 

10 VS 4: CLS 
20 PRINT “COMPRESSED PATTERN TABLE” 
30 OUT 2,0: OUT 2,128+4 
40 GOTO 40 

 

Line 30 here sets VDP register 4 to 0, forcing the VDP to use the first table for all 3 segments of the 
screen. Resulting in the text appearing on the screen 3 times, in the top row of each 1/3 of the screen. 

For the colour table, bit 7 of register 3 sets the upper or lower bank, leaving bits 5 and 6 to mask A11 
and A12. Masking lower bits will reduce the colour table further but don’t really add anything to the 
flexibility of the compressed display. Clearing bits 5 and 6 gives a binary pattern of 1001 1111, which is 
#9F in hex and 159 in decimal. 

Changing the default VDP setup this way means that there is effectively one 2k long table in video 
memory at #0000 to #1FFF for the character patterns and one 2k long table at #8000 to #9FFF for the 
colours. The table at #3C00 to 3EFF is then the character map for the display. 

 

Using BASIC to demonstrate: 

10 VS 4: CLS 
20 CSR 0,1 
30 OUT 2,0: OUT 2,128+4 
40 OUT 2,159: OUT 2,128+3 
50 FOR X=32 TO 126 
60 PRINT CHR$(X); 
70 NEXT X 
80 OUT 2,0: OUT 2,64+60 
90 FOR X=0 TO 767 
100 OUT 1,32 
110 NEXT X 
120 OUT 2,0: OUT 2,64+60 
130 LET A$= “G2 TEXT MODE DISPLAY” 
140 FOR X= 1 TO LEN (A$) 
150 OUT 1,ASC(A$(X)) 
160 NEXT X 
170 GOTO 170 

 

The section up to line 70, sets up the display, and pokes the standard MTX character set into the 
definitions for characters 32 to 126. 

Line 80 then sets the video memory output pointer to #3C00, then 90 to 110 clear the screen by 
inserting spaces.  
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Line 120 then sets the pointer back to the top of the screen for line 130 onwards to output the text in 
A$ to the display.  

Adding the following will show that the colours are defined per character, and not for the whole display 
as is the case for text mode. 

55 COLOUR 0,1+RND*15 
 
Leaving out one of line 30 or 40 will map one table to 2k and the other to the default 6k allowing for 
either one set of characters with 3 sets of colours one for each 1/3 of the screen, or the reverse where 
there are separate characters for each 1/3, but only one set of colours.  

4.7 SPRITES FROM BASIC 
Sprites are controlled from BASIC using the commands ADJSPR, CTLSPR, GENPAT, MVSPR and SPRITE. 
These commands work by updating the sprite control buffers in the system variables at SPRTBL 
(0xFE55). There are 32 spite control buffers (one for each sprite), each buffer being 8 bytes long. 

Each sprite control buffer contains: 

Byte Description 
0 Vertical speed 

1-2 Vertical position (in steps of 1/16 of a pixel) 
3 Horizontal speed 

4-5 Horizontal position (in steps of 1/16 of a pixel) 
6 Bit 7 set if stationary. Bits 6-0 = Pattern number 
7 Bit 6 set if sprite moved this cycle. Bits 3-0 = Sprite colour 
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5 THE CTC 
The MTX uses the standard Z80A CTC to handle the Clocks for the optional RS232 board and cassette 
tape interface as well as the main system timer. The CTC in the device name highlight that it is both a 
Counter and Timer Chip. 

There are 4 “event” inputs on the CTC. The VDP interrupt is connected to the channel 0 input, but isn’t 
used by the OS, channels 1 and 2 are the master baud rate clock inputs and are both connected to a 
300kHz clock obtained by dividing the main system clock by 13. The final input on channel 3 is the feed 
from the tape input circuitry. 

Due to package limitations, the CTC only has 3 outputs instead of the expected 4. Channel 0 is 
unconnected, while channels 1 and 2 feed out to the edge connectors as the SER1 and SER2 signals for 
the RS232 board 

Neither of the MTX manuals goes into great detail on the CTC, however with the Zilog datasheet being 
readily available on the net, that’s not as much of issue as it might have been in the 80s. 

The CTC occupies 4 read/write I/O ports in the MTX running from #08 to #0B (8 to 11 decimal). The CTC 
also needs 8 bytes of RAM for an interrupt vector table so that each counter/timer can have its own 
interrupt routine. That table is stored right at the top of memory at #FFF0 (65520 decimal). 

Each channel has 2 registers, the channel control word and time constant word. There’s also an 
additional “common” register, the interrupt vector word. 

Register Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 BIT 1 Bit 0 
Interrupt 
Vector 

A7 A6 A5 A4 A3 xx xx 0 

Channel 
Control 

Interrupt 
Enable 

Channel 
Mode 

Prescaler 
Mode 

Edge 
Select 

Timer 
Trigger 

Time 
Constant 
Follows 

Software 
Reset 

1 

 

The MTX sets up the CTC at #097F in the main OS rom and can be viewed in Panel. 
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The interrupt vector is set in 2 steps. The Z80’s I register needs to be set to #FF to set the top byte. The 
CTC interrupt vector word is set to #F0 to provide the remainder of the base address, bit 0 being clear 
informs the CTC this is a vector word. 

Next all 4 channels are reset in software. Before the routine ends. 

5.1 125HZ INTERRUPT 
Unlike most systems the main interrupt runs at 125Hz and not anything related to the screen refresh 
rate. This has the obvious advantage that the interrupt will run at the same speed on all systems 
regardless of the VDP fitted. That removes the need for separate NTSC and PAL versions of the ROM. 

The setup code of the interrupt is at #0996 in the OS ROM 

 

This sets up 2 of the 4 interrupt vectors, Channel 0 at #FFF0 is set to #0780 which interestingly the MTX 
source labels to as vdpint and channel 2 at #FFF4 is set to #1C11 which is referred to as enter in the 
original sources. 

The channel control word for channel 0 is set to #A5 which translates to 10100101 in binary. 

Bit 7 set:  Enable Channel 0 interrupt 
Bit 6 clear:  Timer mode – ie controlled from the 4mhz clock, and not the channel 0 input pin   
Bit 5 set:  Pre-scale value is 256 
Bit 4 clear:  Falling edge controlled 
Bit 3 clear: Automatic trigger when the time constant loads 
Bit 2 set: Time constant follows next 
Bit 1 clear: No channel reset 
Bit 0 set: This is a control word update 
 

The main clock is 4MHz, divided by the 256 pre-scale value results in a counting rate of 15625 counts per 
second. The time constant that follows is 7D (125 decimal) 15625 divided by 125 results in the final 
125Hz interrupt which vectors to #0780 

The channel 2 interrupt isn’t set up, even though the CTC setup code has put it into the vector table. 
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5.1.1 So why 125Hz?  
That’s probably because the CTC cannot produce any integer interrupt rates that are lower than that 
when running from the 4MHz main clock. Using a fractional rate isn’t really practical when updating the 
system clock. 

5.1.2 MTX BASIC and Interrupts 
The MTX ROMs update the master clock on every interrupt in the routine “vdpint” at #0780. The last 
byte of the CLOCK system variable at #FD5D is incremented every “tick” from counting up from 48 to 
173.The 6 bytes that form the data for CLOCK and TIME$ are updated when that counter hits 173. The 
count starts at 48 as that’s ASCII code for a zero, and the remainder of the clock counts in ASCII to 
simplify the code required to set and read the clock in BASIC. 

Once the clock is dealt with the system variable INTFFF at checked so that the main interrupt code is 
only run on alternate “ticks” which results in BASIC being a little more responsive as the longer codes 
sequence is only run 62.5 times a second on average. 

If the interrupt code is run, INTFFF is used as a mask to determine which of 5 possible interrupt routines 
are called.  

Bit 0: If set enables the interrupt driven sound 
Bit 1: If set enables the break key check 
Bit 2:  If set enabled the keyboard repeat 
Bit 3: If set enables cursor flash and Sprite movement 
Bit 4: If set enables a call through USERINT at #FA98 
Bit 5: If set enables a call through USERINT at #FA98 
Bit 6: If set enables a call through USERINT at #FA98 
Bit 7: If set tells the system to bypass the interrupt system this time around. 
If more than one of bits 4 5 and 6 are set, the USERINT will be called once for each bit. 

A BASIC program that runs in text mode, with no sound can run a around 3% faster if 64862 is poked 
with 6. For a game that doesn’t want the break key operative, then poke in a 13 instead. 

5.2 BAUD RATE CLOCKS 
The CTC delegates 2 of the 3 active inputs to the baud rate counter. 

The master clock for this is 4MHz divided by 13 using ap 74LS193 on the motherboard, which results in a 
not quite square wave at 307.7kHz (the signal is low for 2000 ns but only high for 1250). 

The BAUD command from BASIC then programs the CTC to count those pulses. The baud rate table is 
stored in rom at #0CFA and defines 10 speeds from 19200 baud down to 75 baud. Each entry is 3 bytes, 
2 bytes for the baud rate in binary, followed by the divider value to program into the CTC. 

19200 baud is the fastest rate than can be achieved, and is the result of dividing the 307.7kHz input 
clock with the 16 count pre-scale and triggering on every pulse. The lowest rate of 75 baud requires the 
maximum 256 counter value with the 16 count pre-scale. 
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4,000,000 / 13 / 16 gives an output rate of 19231Hz, which is close enough to 19200 not to cause any 
communications issues. To get a “perfect 19200 would require the input clock to be 307.2kHz, which 
isn’t possible for a 4MHz main clock. 

The output from the CTC on SER0 and SER1 is nothing like a square wave, the output is only low for 1 
period of the 307.7kHz clock however that’s enough to clock the Z80 Dart on the communications 
board. 

5.3 VDP INTERRUPT 
While the VDP interrupt isn’t used by the MTX roms, it is connected to the highest priority input on the 
CTC. So games, and anything else that takes over the whole system can synchronise themselves to the 
VDP in order to use the horizontal blanking period for smooth screen updates. 

What it needs is the CTC to be set to count pulses on channel 0, with a count of 1 so that every VDP 
interrupt trigger a CTC interrupt. The interrupt pointer at #FFF0 will then be called 50 or 60 times a 
second, depending on the VDP fitted. 

5.4 INTERRUPT PRIORITY 
The Z80 has 2 interrupt sources IRQ and NMI pins. IRQ or interrupt request is the only one used by the 
MTX. The higher priority NMI isn’t used.  

The IRQ system has 3 modes of operation, mode 0 which is 8080 compatible, mode 1 which vectors all 
interrupts through address #0038 and mode 2 which allows Z80 peripherals to supply an automatic 
vector address 

The MTX uses mode 2. Support has been built into the rom for mode 1 operation. Code at #0038 jumps 
to the system variables at #FD4E which is labelled USRRST. By default, that in turn jumps to a routine 
called enter30 in the source at #1C03 which drops into Panel. 

 

If an NMI is triggered by external hardware, the “support” provided by the rom is to issue the RST#38 
instruction and call the code above.  
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There is a bit of a “gottcha” with this. Because RST #38 is a call and not a jump, it puts the return address 
on the stack. Any user routine that intercepts the jump through USRRST will need to remember to adjust 
the stack on exit otherwise the RETN will “return” control to #0067 instead of the real location. 

The Z80 is designed so that there is a “chain” of devices that may issue IRQ interrupts to the CPU. The 
CTC is wired as the first device in that chain. Its interrupt will always have priority over any other device 
on the chain.  Z80 peripheral chips have an interrupt enable in (IEI) and interrupt enable out (IEO) pin.  

The IEI signal has to be high for an interrupt to occur. The IEI for the CTC is connected to the 5v rail 
through a resistor and is always high. 

The IEO signal will be pulled low while the CTC is servicing an interrupt, any devices further down the 
chain will only issue an interrupt if their IEI pin is high. If their IEI pin is low, they set their own IEO pin 
low to maintain the integrity of the chain. 

If there are too many devices (typically more than 3) on the chain, the time taken for the IEO to traverse 
the chain can cause issues, that’s not a problem with the MTX as the standard system only has the CTC 
on the chain. With the RS232 board connected the DART will also be on the chain. 
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6 THE PSG 
The MTX uses the 4 channel Texas Instruments SN76489A Programmable sound Generator. The A 
version indicates it’s the later 4MHz capable version. The PSG was used in a number of systems in the 
late 70’s early 80 most notably in the BBC Micro. The PSG mono device so although the MTX has a “HiFi” 
port on the back, it’s only a single channel, and not stereo. 

The chip itself is relatively slow as it’s basically a 500kHz device (The original SN76489 with a divide by 8 
on the clock input.) and needs 32 cycles at 4mhz to complete a read of the data bus. Rather than hold up 
the CPU while the data is transferred, Memotech devised a hardware solution that doesn’t use “ready” 
from the sound chip to pause the CPU. 

Instead OUT (6),data writes to a 74LS374 8 bit latch. IN A,(3) then starts the PSG data read from the 
latch. The Data returned from reading port 3 is irrelevant, it’s the action of reading the port that starts 
the access, there’s actually no valid data being output at that point in time to read. 

Since the PSG is reading from the latch it can take as much time as it needs, the CPU is then free to carry 
on processing. The manual warns that there should be at least 32 T states (or CPU cycles) between 
reads. That’s not quite accurate, there needs to be 32 T states between the IN (3) and the next OUT (6). 
If the data in the latch is updated before the PSG completes the read, the data is corrupted.  

The MTX ROMs have a routine at #093A (2362 decimal) to turn off all 4 sound channels. Calling #0953 
(2387 decimal) will sound the bell, without needing to go through the overhead of using the VDU 
routines. 

6.1 PSG REGISTERS 
The PSG has 8 internal registers, each of the 4 channels has its own volume and frequency register. 
Internally the volume is stored in 4 bits, and the frequency counter in 10 bits. The nose channel treats 
the received data differently from the 3 tone channels but the update method is the same. 

The data sheet refers to one and 2 byte data transfers, with a 2 byte transfer to update the frequency 
registers and a one byte transfer to update the noise and volume registers. Because of the way that the 
PSG latches the channel information the frequency can also be updated with a one byte update. 

 Which part of a PSG update is in progress depends on bit 7 of the data byte sent to port 6. 

 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1  Bit 0 
         
Frequency 
update 

0 Don’t 
care 

F9 F8 F7 F6 F5 F4 

Source 
update 

1 Ch1 Ch0 D/V X3 X2 X1 X0 
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If bit 7 is high indicating a source update the PSG will latch the 2 channel bits and the D/V bit, and then 
sent the 4 low bits to the appropriate internal register. 

Channel bits Destination Channel 
00 Tone 1 
01 Tone 2 
10 Tone 3 
11 Noise Generator 

 

If the D/V bit is low, then the destination is the frequency, if it’s high the volume register is selected. The 
4 low bits then set the low 4 bits of the frequency count or the volume.  

The volume control actually works in reverse, the 4 bis control the amount of attenuation of the signal. 
So, 0 is maximum volume and 15 turns that channel off. 

The 10 bits of frequency control the internal counter that flips the output when the counter is reached. 
Low values therefore produce a high note and high values a low note. 

The frequency produced is the 4MHz MTX main clock divided by 32 times the register value. Which 
simplifies to: 

Frequency = 125000 / Count, or 

Count = 125000/frequency 

To output the ISO standard note A4, which has a frequency of 440Hz, the count value would be 
125000/440, the result isn’t an exact integer so the closest value is 284. To play that note on the tone 1 
channel at maximum volume, the following values need to be sent to the PSG #8C, #11 and #90   

Examining those in detail: 

 #8C in hex is 1 000 1100 in binary. The 3 sections of the value highlight it’s a source update, the channel 
is 00 for tone 1, D/V is zero as it’s the frequency update and 1100 is the low 4 bits if 284 which is 
0100011100 in binary. 

#11 is 0 0 010001 in binary. The first zero is the frequency update marker, the 2nd one is a don’t care bit, 
it could have been a 1 without altering the output, and 010001 is the top 6 bits of 284. 

#90 is 1 001 0000 in binary, so another source update, this time it’s the tone 1 volume register, and the 
attenuation is zero for the loudest output.  

6.2 DRIVING THE PSG 
MTX BASIC has a rich set of sound controls, however the PSG can also be driven through the port 6/port 
3 update process in the same way as would be done in assembler. The bit fields are clearer in hex, but 
that’s not available in BASIC, so the examples have to use decimal. 
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Lines 10 and 20 set the volume for tone 1 to maximum (144 is #90 hex or 1 001 0000 binary) 
Lines 30 and 40 set the low counter bits for tone 1 to zero (#80 hex or 1 000 0000 binary) 
Lines 50 and 60 set the upper counter bits to 63 so the count is 1008 and the output frequency 124hz or 
so. (#3F or 00 111111 binary). 
Entering Ctrl G from the keyboard, to sound the bell, will kill the output. 

The BASIC program can the be extended to illustrate the one byte frequency update. The extra 4 lines 
progressively reduce the count to zero, increasing the output frequency. 

 

Changing the code to output to the volume register instead of the frequency produces a different effect.  

 

BASIC is sufficiently slow, that there is no consideration of the timing between port 6 updates. 
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The single byte frequency update illustrated in the 2nd example needs the previous source update to be 
the tone register. Swapping lines 10 and 30 over so that the volume register is the previous source can 
produce some “interesting” effects. 

6.3 SOUND ENVELOPES FROM BASIC 
The SOUND and SBUF commands from BASIC use two types of control buffer in high memory. 

Four sound control buffers, 10 bytes each, one for each channel, starting at CTRBADR (0xFA52). 

Byte Description 
0 Next envelope buffer to fill 

1-2 Address of start of envelope buffers for the channel 
3 Number of envelope buffers 
4 Current envelope buffer 

5-6 Frequency 
7-8 Volume 
9 Done flag 

 

Sound envelope buffers, 12 bytes each. The number of buffers per channel is specified by SBUF 
command. Sound envelope buffers are allocated downwards from 0xF952. Therefore they start at: 

0xF952 – 48 * <nenv> 

Where <nenv> is the number of sound envelope buffers specified by the SBUF command. By default 
(with 2 envelope buffers per channel) the start is at 0xF8F2. 

Byte Description 
0-1 Initial frequency 
2-3 Initial volume 
4-5 Rate of change of frequency 
6-7 Rate of change of volume 
8-9 Duration remaining 
10 Continuation flag 
11 ??? 

 

There is 256 bytes of unused space between the top of the envelope buffers and the bottom of the 
system variables at 0xFA52. 
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7 THE KEYBOARD 
The MTX has a 79 key keyboard. 2 of those keys are the reset keys, the other 77 are the input keys. The 
2 sections are totally independent. Pins 1 to 18 of the 20 way keyboard cable handle the main section 
which is arranged as a 10 by 8 matrix, with 3 unused keys. Pins 19 and 20 are connected to the reset 
keys. 

7.1 RESET KEYS 
The reset keys cannot be read from assembler or BASIC, and because they are attached directly to the 
CPU’s reset pin, they cannot be blocked or intercepted. While this ensured that the user can always 
regain control from a run-away program, it does have issues for program security.   

The MTX only clears the 16k common RAM on reset, the memory detection system also corrupts a small 
amount of RAM in the MTX512, but not the MTX500. Loading a typical early game on the MTX500 and 
resetting then allows the game code to be examined in the panel and saved out. 

The 2 reset keys are connected in series so that both have to be pressed to activate the CPU reset. The 
hardware on the motherboard deals with any key-bounce etc. to ensure the reset pin is activated in line 
with the manufacturer’s recommendations. 

7.2 THE MAIN KEYBOARD 
BASIC provides the INKEY$ function to read the keyboard, in assembler the equivalent is CALL #0079. 
The keyboard scanning code is the same for both options, and will stop at the first key ASCII detected. 
The scan will not detect the shift or control keys, nor will it detect multiple keypresses. It will however 
process the control or shift key’s effect on the key detected. 

Reading multiple keys, requires accessing the hardware directly. Care has to be taken when doing this, 
as the break key is read during the 125hz interrupt processing and so can result in an incorrect read if 
precautions aren’t taken. 

 The keyboard matrix is based on an 8 by 10 grid, which is too big to read through a single 8 bit wide I/O 
port therefore 2 ports are used. 

The matrix itself consist of 8 “Drive” lines and 10 “Sense” lines. Sending a value to output port 5 will set 
the drive lines. The reading from input port 5 will read 8 of the 10 Sense lines, input port 6 is used to 
read the other 2, input port 6 has other functions so only the bottom 2 bits are relevant to reading the 
keyboard matrix.  

The sense lines are normally pulled high by resistors. If a key is up, or the drive line is high the resistor 
ensures the input is a high. To be detected the key attached to that line has to be down AND the drive 
line for that key also has to be set low. That makes it possible to detect an individual key. 

The ROM’s keyboard scanning routine therefore sets each drive line low in sequence and then reads the 
2 input ports. If port 5 reads as anything other than #FF (255 decimal 1111 1111 binary) then there is a 
key down. Similarly, if the lowest 2 bits of port 6 reads as anything other than #03 (xxxx xx11 binary) 
there is a key down on that part of the keyboard. 
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For something simple, like Magrom when it checks for the space bar being pressed on boot, the code 
simply needs to set 1 drive line low, and check one sense line. For the space bar the code is: 

LD A,#7F 
OUT (5),A 
IN A,(6) 
AND 1 
RET NZ 

 
Breaking that down #7F is 0111 1111 in binary so drive line 7 is being set low.  There’s no requirement to 
wait a minimum number of cycles, the keyboard data is immediately available. In this case the space bar 
is on sense line 8, port 6, bit 1 needs to be tested. If the key isn’t being pressed the AND 1 instruction 
will return 1, and the code will exit RET NZ. If the key is down, the result of the AND 1 is zero and the 
code continues after the RET NZ and starts up the games ROM. 

This particular snippet doesn’t need to take any precautions for interrupts as it’s run before the system 
sets those up. However, once the interrupts are running, there is a system variable LASTDR at #FD7E 
specifically set up to preserve the drive status across an interrupt. Adding one line to the above snippet 
is all that’s needed. 

LD A,#7F 
LD (#FD7E),A 
OUT (5),A 
IN A,(6) 
AND 1 
RET NZ 

 
On exit from the break key test, the interrupt code will put that value stored in LASTDR back on the port 
5 drive lines.  

The keyboard matrix looks like this: 

Sense line Port 5 Drive line 
Port 5 Bit 7 Bit 6 Bit 5 Bit 4 BIT 3 Bit 2 Bit 1 Bit 0 
Bit 0 Z L shift A caps Q ctrl esc 1 
Bit 1 C X D S E W 2 3 
Bit 2 B V G F T R 4 5 
Bit 3 M N J H U Y 6 7 
Bit 4 . , L K O I 8 9 
Bit 5 _ / : ; @ P 0 - 
Bit 6 Ins R shift Ret ] Linefeed [ ^ \ 
Bit 7 Cls Down Home Right Left Up Eol Page 

Port 6         
Bit 0 Space    Del Tab BS BRK 
Bit 1 F4 F8 F3 F7 F6 F2 F5 F1 

 

The emboldened keys highlight some of the decisions made by Memotech when the keyboard was laid 
out. 
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The 2 shift keys share a common drive line so can be read in a single read of port 5.  

The cursor keys (and the right joystick port that mimics them) have a common sense line, as do the 8 
function keys. 

Like the shift keys, the 5 keys returned by the left joystick port (Z C B M and space) share a common 
drive line making that port a little easier to read, though most games seem to have gone with right 
joystick port. 

The 3 unused spots in the matrix are all in bit 0 of port 6. 

7.3 KEYBOARD RE-MAPPING 
The layout of the MTX keyboard differs from that of modern (IBM) PC keyboards. This can cause some 
difficulty when typing due to muscle memory and learned key positions. 

It also causes problems when trying to use modern keyboards either with MEMU or using the “MTX PC 
Keyboard Interface” (http://www.primrosebank.net/computers/mtx/projects/p2skbd/ps2kbd.htm) with 
a real MTX. The difficulty is caused by the fact that some characters are shifted on the PC keyboard but 
not on the MTX keyboard, or vice-versa. 

Character MTX Keyboard PC Keyboard 
# Shifted Unshifted 

‘ (quote) Shifted Unshifted 
: Unshifted Shifted 
= Shifted Unshifted 
@ Unshifted Shifted 
^ Unshifted Shifted 
` Shifted Unshifted 

 

In order to work around this with an unmodified MTX (or MEMU with unmodified ROMs) it is necessary, 
for these characters, to type a different key to obtain the desired key: 

To Obtain Type 
# £ (shift 3) 

‘ (quote) @ (Shift quote) 
: # 
= ^ (Shift 6) 
@ ‘ (quote) 
^ = 
` (Shift backquote) 

 

In order to make typing on a PC keyboard easier, two keyboard remappings have been developed. 

The original remapping, developed for MEMU redefined some of the existing MTX keys as well as 
making use of one of the gaps in the MTX keyboard matrix. The redefined keys are: 
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Sense Drive Original 
Unshifted 

Original 
Shifted 

Remapped 
Unshifted 

Remapped 
Shifted 

Port 5 Bit 3 Port 5 Bit 0 7 ‘ (quote) 7 : 
Port 5 Bit 5 Port 5 Bit 5 : * # * 
Port 5 Bit 5 Port 5 Bit 3 @ ` (back quote) ‘ (quote) @ 
Port 5 Bit 5 Port 5 Bit 0 - = - ^ 
Port 5 Bit 6 Port 5 Bit 1 ^ ~ = ~ 
Port 6 Bit 0 Port 5 Bit 5 (none) (none) ` (back quote) (none) 

 

For the hardware PC keyboard interface, it was essential that the original MTX keyboard continued to 
work, so none of the original keyboard mappings could be disturbed. Therefore. all three gaps in the 
original keyboard matrix were used instead. 

Sense Drive Original 
Unshifted 

Original 
Shifted 

Remapped 
Unshifted 

Remapped 
Shifted 

Port 6 Bit 0 Port 5 Bit 6 (none) (none) # : 
Port 6 Bit 0 Port 5 Bit 5 (none) (none) ‘ (quote) @ 
Port 6 Bit 0 Port 5 Bit 4 (none) (none) = ^ 

 

With this remapping, it is still necessary to type shift + back-quote to generate a back-quote character, 
but this character is likely to be little used. 

To make use of these remappings, it is necessary to modify how the MTX interprets a keyboard scan. For 
CP/M, the keyboard scan code is copied into RAM, and the keyboard map tables can be modified there. 
A CP/M program (“cpmfixup.com”) to do this has been developed. For BASIC, the keyboard decoding is 
done in ROM. Fortunately, there is a hook in the system variables that can be used to modify the 
keyboard mapping. 

The following code, which has been placed in the free space above the sound envelope buffers 
implements the three new key definitions: 

;System variables used by keyboard handler 
 
KBFLAG: EQU #FA91 
LASTASC: EQU #FD7D 
LASTDR: EQU #FD7E 
USERIO: EQU #FD51 
 
;System Rom routines called 
shif:  EQU #00AD 
 
; Paged rom 0 routines called 
ascmap: EQU #37C3 
scan:  EQU #36AA 
look:  EQU #3718 
ncont: EQU #3684 
norm11: EQU #3689 
norm2: EQU #3693 
 
; Paged rom 0 tables used 
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base:  EQU #3721 
upper: EQU #3772 
 
  org #F952  ; Just above sound envelope buffers 
start: jp init 
key1:  LD A,#FB 
  LD (LASTDR),A 
  OUT (#05),A 
  IN A,(#05) 
  BIT 0,A 
  JR Z,cntrl 
  CALL kbnormal 
  CALL NZ,ascmap 
  RET 
cntrl: CALL kbnormal 
  CALL NZ,ascmap 
  RET Z 
  AND #1F 
  LD (LASTASC),A 
  RET 
kbnormal: CALL shif 
  JR Z,nshift 
  CALL scan 
  RET Z 
  LD D,A 
  LD BC,base  ;the only point in the rom where the base 
keyboard table is referenced 
  CP #4A 
  JR C,old1 
  CP #4D 
  JR NC,old1 
  LD BC,newbase - #4A 
old1:  CALL look 
  LD B,A 
  CP #7F 
  JR Z,kb8 
  CP #20 
  CCF 
kb8:  LD A,(KBFLAG) 
  JR C,kb999 
  BIT 2,A 
  JR NZ,nsh1 
kb999: BIT 7,A 
  LD A,B 
  JR Z,ncont2 
  CP #A0 
  JP Z,norm11 
  CP #1D 
  JP Z,norm2 
  CP #61 
  RET C 
  CP #7B 
  RET NC 
nsh1:  LD A,D 
  JR nsh2 
nshift: CALL scan 
  RET Z 
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nsh2:  LD BC,upper ;the only point in the rom where the upper 
keyboard table is referenced 
  CP #4A 
  JR C,old2 
  CP #4D 
  JR NC,old2 
  LD BC,newupper - #4A 
old2:  CALL look 
ncont2: JP ncont 
newbase: DEFB #23,#27,#3d ; bytes for ps2 "scroll lock mode" 
newupper: DEFB #3a,#40,#5e ; bytes for shifted ps2 "scroll lock mode" 
init:  LD HL, KEY1 ; Address of new keyboard handler 
  LD (USERIO+1), HL ; Install new handler 
  RST #10 
  DEFB #80 + (S2 - S1) 
S1:  DEFB #0D, #0A 
  DEFS "Keyboard patch loaded." 
  DEFB #0D, #0A 
S2:  RET 
END: 
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8 EXPANSION POTENTIAL 
The standard MTX console has plenty of expansion potential. There are edge connectors on both sides 
of the main circuit board as well as a 20 pin DIP socket in the centre of the PCB with 8 input and 8 
outputs, that can be read/set using I/O port 7. 

The original Memotech memory expansion fitted internally as did the RS232 communications board. The 
RS232 board also provided the pin header to connect the FDX disc system which had additional internal 
space for the various boards of the CPM system. There is sufficient space under the keyboard for the 
RS232 board and one of the ROM or RAM boards. 

The external edge connector was used by the SDX, ROMpaks and Speculator. It’s the easiest expansion 
for the home user to access, as it doesn’t require opening the case.  

The internal and external connections are mirror images of each other, with the A1 (component side) 
and B1 connection closest to the front of the keyboard.  

They are not quite identical. The circuit diagrams in both versions of the manual show a link between 
position A25 and the IEO (input enable output) from the CTC. That link is actually only present on the 
external connection (which is J1) and is open by default. The internal connection (j10) does not have the 
link as the connection is always made. 

The Z80 DART on the RS232 board needs to be connected to the Z80 interrupt chain. The IEO signal from 
the DART is then passed on to the FDX if connected. If there is an expansion on the external connector 
that needs to be added to the interrupt chain, then a modification the PCB is needed.  

The RS232 communication board would then be incompatible with the external hardware, as the DART 
and new interrupt source would both think they were 2nd in the priority chain after the CTC. 

The MTX used a 30 x 2 way 0.1” edge connector. This was a pretty standard thing at the time. To save 
money, the connections are not gold plated and are simply solder “plated” by the PCB assembly process. 
That can cause ussies with poor connections between boards because of dirt or tarnishing. It’s not 
unusual to see systems where the main PCB and an expansion board have the edge connector replaced 
by a permanent soldered connection. 

Another difference between internal and external expansions. The board around J1 the external is 
shaped to take a closed ended edge connector, while J10 has no cut-outs and requires an open-ended 
connector.  

This makes the keyway in position 5 redundant for J1 when using a closed ended connector. For J10 it’s 
very much needed if using less than 160mm full height expansion board. For a full height board, the case 
rails maintain the correct position for the connector. 

The layout of the edge connector, and the probable reason for the keyway, is set up to allow the 
ROMpak to use a sub set of the connections, and therefore a smaller (and cheaper) 15 x 2 way edge 
connector. The ROMpak itself just needs to be big enough to hold a single 64kbit ROM or (E)EPROM. 
Which conveniently is not much bigger than the edge connector making a nice compact package. 
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8.1 CONNECTOR LAYOUT 
 

Component (A) Side Position Solder (B) Side 
SER #2 30 0V 

RE/CPM 29 SER #1 
R1 28 R2 
P3 27 R0 
P1 26 P2 

IEO (J10 only) 25 P0 
*NMI 24 *INT 

*WAIT 23 *BUSREQ 
*HALT 22 *BUSAK 

PHI 21 *RFSH 
*WR 20 *M1 

*IORQ 19 *RD 
*RESET 18 *MREQ 

0V 17 0V 
12V 16 -V 

5V 15 5V 
D6 14 D7 
D4 13 D5 
D2 12 D3 
D0 11 D1 

A14 10 A15 
A12 9 A13 
A10 8 A11 

A8 7 A9 
A6 6 A7 

Keyway 5 Keyway 
A5 4 0V 
A3 3 A4 
A1 2 A2 

*GROM 1 A0 
 

8.2 CONNECTING A ROMPAK OR EXTERNAL 8K (E)EPROM 
The coloured sections are the signals used by the ROMpak The PAL within the MTX decodes the memory 
range used by the paged ROMs but doesn’t have enough output pins to provide a chip select for both 
the internal paged ROM (*CE64B) and the external one (*GROM).  

Instead, the PAL will output a low if the correct memory range is used and either paged rom 1 or 7 is 
active. Paged ROM 7 decoded separately by 3 diodes, the rest of the hardware combines that, with the 
dual chip select from the PAL to determine whether *CE64B or *GROM is active. 
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Because the PAL includes the *RD signal from the Z80 in its equation, neither rom select will be active if 
the Z80 is writing, which means there is no need for *RD itself to be passed to the ROMpak. For *GROM 
to be active the Z80 is reading data.  

An (E)EPROM connected externally would need both the chip select and output enable to be connected 
to *GROM. Depending on the device being used the *WR (write enable) on an EEPROM or Vpp 
(programming voltage and *P (program enable) pins on an EPROM will probably need to be tied to 5v.  

The power, data and address pins are wired 1 to 1. The only other component would be an optional 
capacitor across the power rails, the one in the MTX ROMpak in the photo is 47nf, 100nf would also be a 
common option. The visible traces show how simple the connections are. And how short the 15 x2 edge 
connector is. 

 

 

Anything other than a ROM board is likely to need multiple signals from the other half of the edge 
connector so in most cases it makes sense to fit the full 30 way connector. For mechanical stability if 
nothing else. 

8.3 CONNECTING RAM TO THE EXTERNAL CONNECTOR 
In addition to the full 16 bit Z80 address bus, the expansion connector also carries all 8 of the page port 
signals discussed in the section on the Memory Map. When the MTX was designed, static ram would 
have been too expensive so the RAM boards used dynamic memories. The MTX memory boards 
required 6 support chips alongside 16 Memory chips to add 128k. Modern static RAM in the sort of sizes 
useful for expanding the MTX is cheap, 128k can be added using just 1 memory chip and one GAL to 
control the memory mapping. 



ReSource 2021 
 

 69 

The simplest, and probably most useful memory expansion would be to add the extra 32k to a MTX500 
to give it the full 64k of the MTX512 

The extra RAM in the MTX512 has 2 possible locations in the memory map controlled by the RE/CPM 
signal in position A29. If that signal is low, the MTX is in ROM mode, and the 32k is split between the 16 
to 32k block in page 0 and the 32 to 48k block in page 1. When RE/CPM is high the MTX is in CPM mode 
and the extra memory fills the gap from 0 to 32k in page 0. 

Connecting the RAM is straight forward, A0 to A14 and D0 to D7 on the edge connector connect to A0 to 
A14 and D0 to D7 on the ram chip. For static RAM, there is no action requirement for A0 to be 
connected to A0, or A1 to A1. As long as all 15 address pins connect to 15 different address lines, that’s 
all that is required. The same applies to the data lines. If swapping the connections around makes for a 
simpler board layout there’s no reason not to do so.  

Static RAM is directly compatible with the Z80’s *RD and *WR signals so they connect to output enable 
and write enable respectively. It’s the job of the GAL to provide the chip select. 2 inputs are required to 
take the A14 and A15 address lines from the CPU, plus 5 more to take RE/CPM and the 4 RAM page 
signals from the page port. One additional signal is needed and that *MREQ as the memory only needs 
to respond to memory requests, and not to any I/O port (or the dynamic RAM refresh signal). With one 
output that easily fits into a 20 pin 16V8 GAL. 

CPM mode is the easiest to decode, the chip select needs to be active when all of the following 
conditions are met: 

RE/CPM is high – as this is a CPM mode decode 
A15 is low - indicating memory in the 0000 to #7FFF bank is being accessed 
P0 to P3 are all low – The chip should only respond in page 0 
*MREQ is low – only activate the chip on a memory access  
 
For ROM mode there are 2 possible circumstances in which the chip should be activated: 

RE/CPM is low – as this is a ROM mode decode 
A15 is low, A14 is high - indicating memory in the 4000 to #7FFF bank is being accessed 
P0 to P3 are all low – The chip should only respond in page 0 
*MREQ is low – only activate the chip on a memory access  
 
RE/CPM is low – as this is a ROM mode decode 
A15 is high, A14 is low - indicating memory in the 8000 to #BFFF bank is being accessed 
P0 is high, P1 to P3 are all low – The chip should only respond in page 1 
*MREQ is low – only activate the chip on a memory access  
 
And that’s it, 8 inputs, 1 output and 3 equations. The exact format of the equations depends on the 
programming environment being used. 

In WinCUPL supplied by Atmel for programming the ATF series of CPLD’s the code would look something 
like this. 

 

Name     MTX32K ; 
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PartNo   01 ; 
Date     24/03/2018 ; 
Revision 01 ; 
Designer Engineer ; 
Company  None ; 
Assembly None ; 
Location  ; 
Device   g16v8 ; 
 
/* 32k RAM decode for MTX500 to MTX512 expansion */ 
 
/* *************** INPUT PINS *********************/ 
PIN   1  = RECPM  ; 
PIN   2  = A15    ;  
PIN   3  = A14    ;  
PIN   4  = MREQ   ; 
PIN   5  = P0     ; 
PIN   6  = P1     ; 
PIN   7  = P2     ; 
PIN   8  = P3     ; 
 
/* *************** OUTPUT PINS *********************/ 
PIN   15 = RAMCS  
 ; /* Pin 15 and 16 are outputs in simple mode */ 
 
FIELD ADDRESS = [A15..0] ; 
FIELD PAGE = [P3..P0] ; 
 
!RAMCS =  
   RECPM & !MREQ & ADDRESS:[0000..7FFF] & PAGE:0   /* CPM mode    */ 
# !RECPM & !MREQ & ADDRESS:[4000..7FFF] & PAGE:0   /* ROM mode page 0 part */ 
# !RECPM & !MREQ & ADDRESS:[8000..BFFF] & PAGE:1   /* ROM mode page 1 part */ 
 ; 
 
 
For memory expansion beyond 32k the GAL also needs to control the additional memory address lines, 
however for 32k, that’s not required, and the chip select is the only output.  

 

8.4 CONNECTING INPUT/OUTPUT DEVICES TO THE EXTERNAL CONNECTOR 
To maintain compatibility with the Intel 8080 the Z80 CPU maintains a separate address space for 
input/output device. On the 8080 there were 256 “port” addresses, as only 8 bits were made available 
to address them. The Z80 extends this to 16 bits, giving the 64k of possible ports. 

The MTX hardware only decodes the 8 bit Intel compatible addresses. The first 32 ports are defined as 
internal to the keyboard unit, the rest are allocated to the FDX. 

This can cause compatibility issues with the RS232 board. The Z80 DART on the expansion is mapped to 
ports #0C to #0f (12 to 15 decimal) in line with the internal allocation guidelines. The decode PAL then 
passes any access to ports in the FDX range to the 60 pin expansion header. 
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With one of the alternative storage systems attached (CFX, REMEMOorizer etc), which use high 
numbered ports the actions of the PAL causes contention on the data bus, as both the storage device 
and the RS232 board are loading the bus. 

Alternatives to the PAL on the RS232 board are available if it needs to coexist with one of the modern 
storage devices. 

While the MTX hardware only uses 8 bit port, the MTX ROM used 16 bit port, well sort of. 

In BASIC, the OUT (port),data will accept a 16 bit value for the port. Try OUT 257,65 to see this in action. 
The port address is truncated to 8 bits by the hardware, but the full 16 bits address is actually put onto 
the Z80 address bus. 

However, the INP(port) function will only take an 8 bit address, entering PRINT INP(257) as a command 
will stop with an error. 

The reason for this it the OUT command, which is processed at #09FD in the ROM, reads 2 16 bit values 
from the BASIC line (the 2 RST 30 instructions showing in the panel listing reads a 16 bit value to BC and 
copies the low byte to A) and uses them in the OUT (C),A instruction. 

  

The input function on the other hand uses totally different code. Which range checks the value. The 
MTX programmes could actually have saved some space if INP hadn’t been restricted to 8 bits. 

The INP code at #1309 first calls a routine to read a small integer, which tests the top byte for zero 
before returning. The INP code branches to an error routine if the top byte isn’t zero before reading a 16 
bit address anyway. Had the code simply called the read a 16 bit integer routine it would have enabled 
the full input range and removed the code for the branch. 
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So, a potential “upgrade” to 16 bit input would be to replace the 2 bytes at #130C and #130D with zero. 
For most MTX users that’s not really an option. However, with access to a rom programmer and a 
system with the 2 rom, 4000-04 main board which has configurable links, replacement (E)EPROMS could 
be fitted to update the “OS” portion of the roms. 
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9 PROJECTS 
Starting with “Magrom” in 2013 I’ve designed a number of add-ons for the MTX, some of which have 
been made available to the public and some that haven’t. Since initially, they were all for my own use, 
the information available for them varies from the comprehensive pages on Dave Stevenson’s 
Primrosebank.net, to the non-existent. 

I won’t claim any of them are ”perfect” designs, however, they do stand as examples of what can be 
done, and so documenting them may give ideas as to what can be done better! 

9.1 MAGROM 
The original Magrom idea, was simply to cram as many games as possible onto a large capacity EPROM 
and make them available via some sort of menu system. That would reduce the loading time from 
minutes to seconds and remove the need for an unreliable and increasingly hard to find tape cassette 
player. The name was Dave’s invention initially I referred to it as just the Games ROM. 

There were 5 hand-built prototypes, before the design was finalised and Dave has subsequently 
produced 3 versions of the PCB. Because the design has evolved over so many steps, it probably isn’t the 
best. However, a re-design at this stage wouldn’t serve any purpose. 

The original concept design arose from 2 observations on the nature of the MTX 

 Most games were written to run on the 32k MTX500 
 The MTX memory map typically has a half page of ram in the “last” page 

 
MTX500 games only use memory from #8000 upwards, as that is all that is fitted on the 32k MTX. That 
leaves room on the MTX500 for 16k of data ROM to occupy the normally empty area from #4000 to 
#7FFF. The MTX 512 has 64k of RAM, however, due to the paging of that memory on page 1, there is 
only ram from #8000 upwards, the same gap from #4000 to #7FFF is available. 

The Magrom board provide a manual system select jumper so that the hardware knows which RAM 
page to place the data ROM in. Though “unusual” this is quite safe, the system itself doesn’t apply any 
conditions as to what appears in the various places in the memory map. As long as the electrical and 
timing requirements are met. 

However, a data ROM sitting at #4000 won’t be detected on start up. For the board to auto run it must 
be found as a paged rom at #2000. One way of doing this would be so fit 2 memory devices, an 8k 
control ROM in a paged rom slot, and a data ROM in main memory.  

Fitting 1 rom in the paged rom area, and then dividing that up into subpages is an option. However, that 
has the disadvantage of needing an area of RAM to put the data transfer code in, otherwise the system 
would crash as soon as a sub page is activated.  

Since I didn’t know if there would be any RAM areas than no game used to put that code into it seemed 
best to run the control code as a paged ROM, and the put the data in to the empty memory area where 
it could be paged without risking a crash, or using any RAM. 
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Fitting 2 ROMs increases both the cost and the size. The Magrom design therefore uses a single ROM 
and has it respond to access requests to both memory areas. 

The MTX’s default rom design allocates ROM7 as the “games rom” and allocates a signal on the 
expansion connector labelled GROM to activate it. Early prototype versions of the Magrom decoded the 
ROM page for themselves but this was removed before the first PCB version to save components. It then 
had to be added back in on the V1.1 PCB because of issues using ROM 7 on some “international” 
versions of the MTX. 

The size of the data rom is dictated by part availability, 512k flash ROM is available in an easy to handle 
DIP package and at a MTX compatible 5 volts. 512k would leave room for 15 32k long games plus the 
controlling software. As it turned out, none of the MTX500 games are close to being that large and so 
there was room for more than double that. 

9.1.1 Magrom Software 
The Control ROM occupies almost the full 8k allocated to a paged ROM. However, over 7k of that is the 
Graphics mode 2 screen that appears at start up.  The controlling code is only 600 bytes or so, and is 
included in full below, typos and all. 

 

NAME GraphicRom105 
TYPE rom 
 
;Change History 
; Version 1.05 Rom6 comatibility changes for production version V1.1 
; version 1.02 Further changes to accomodate REMEMOrizor compatibility 
; version 1.01 ROM 7 entry point now in use, do nothing skeletom removed. 
; Version 1.00 release version, cosmetic changes from 0.22 only 
; Version 0.22 I/O port changed to &FB to match hardware revision 5.1 
; version 0.21 Spacebar check added on startup. 
; Version 0.20 CTC changes rolled back to V0.18 due to causing crashes  
; Version 0.19 CTC and other setup changes 
; Version 0.16 Keybaord range extended for up to 38 games 
; Version 0.15 Graphics 2 mode used, redundant code deleted. 
 
 
 
; temporary storage, there arw 3 unsued system variable bytes at FA8C 
 
sector EQU &Fa8D 
key EQU &fa8E 
 
port EQU &FB 
lstpg equ &fa7a 
sstack equ &fa96 
page equ &fad2 
setcall EQU &fd48 

 
Once past the revision notes and the equates, the actual ROM starts with a standard MTX auto run 
header, the paged rom ID pointer at #2008 isn’t populated, just the auto-run and ROM x entry points  

 
; Code starts at &2000, as only the upper half of the 16k rom space is paged. 
ORG &2000 
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;if bytes 0 - 7 are 8-1 resp. autoboot rom via &2010 on power up/reset 
;but after high memory cleared, any variables set will be retained 

DB 8 
DB 7 
DB 6 
DB 5 
DB 4 
DB 3 
DB 2 
DB 1 
 
; BASIC's ROM command enters at &200C 
ORG &200C 
JP run 
 

The auto-run entry point checks for the spacebar, and will exit if not pressed, so that the MTX can be 
used normally while the MAGROM board is fitted, which allows for internal fitting. Changing the RET NZ 
to RET Z would have the MAGROM run unless spaces is presses, and was included in a one off build for a 
system used to display the MTX at retro shows.  

 
;boot entry point &2010 
org &2010 
; first test for space pressed 
; can exit via a return as the startup code 
; is entered via a call. 
 
LD A,&7F 
OUT (5),A 
IN A,(6) 
AND 1 
ret NZ  
 

Because the auto-boot rom is called very early in the start up sequence the control rom needs to 
duplicate some of the hardware setup that BASIC performs. Turning off the sound and setting up the 
VDP are necessary, initialising the system VDU driver was required by some, but not all of the games, to 
get them to run. 

 
;no spacebar check if entering from "ROM 7" command 
;enters here to ensure a clean stack. 
.run 
;setup the stack 
ld hl,setcall 
ld (sstack),hl 
ld sp,(sstack) 
 
;the sound chip seems to default to making a noise at startup, 
; and we're loading before the OS kills the volume 
;so kill all 4 channels 
call sound_off 
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;this is the MTX VDINIT routine, which is run immediately after 
;the autostart rom check. 
rst &28 
db &42 
 
 
; select and clear VS 4 using RST 10 functions, which now work, 
;thanks to VDinit 
rst &10 
db &4C 
;set the border to black 
LD a,&F1 
out (2),a 
ld a,&87 
out (2),a 
 
; make sure the CTC iterrupts are off just in case 
call ctc_off 

 

Having set up the hardware, the memory map now has to be configured. The memory test run on boot 
will have identified how much ram is fitted, and so the RAM page has to be set so that the “current” 
page is the one that has the data ROM at #4000. 

 
; make sure we're in the correct page (0 for 32k, 1 for 64k,  
; 3 for 128k; 4 or 11 for 384k 
; (Andy's revised rom on REMEMOrizor sets lstpg to 4, instead of 
; 11. However all 11 full pages still exist) 
; or the data rom wont be acessible 
ld a,(lstpg) 
and &0f 
cp 4 
jr nz,change_page 
ld a,11 
.change_page 
ld b,a             ;V1.05 changes: save the ram page number 
ld a,(page) 
and &70            ;get the current rom page - won't always be 7 any more 
or b               ;add back the ram page 
ld (page),a        ;save to the OS first in case of interrupt 
out (0),a          ;set the hardware 

 

Once the configuration so done, the menu needs to be displayed and the start-up beep sounds 

CALL welcome_page 
call welcome_beep 
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The main loop is exceedingly simple. It reads the keyboard, the keycode is used to access the list of 
where each game starts in the data ROM, and then load & run that game if there is one allocated to that 
key.  

.key_loop 
call readkey       ;returns an index value in A only accepts 0-9 and A-Z 
and &3f 
LD HL,directory 
add a,l 
ld l,a 
ld a,(hl) 
ld (sector),a     ;save the location for later 
inc a 
jr z,key_loop     ;loop if empty entry 
call loadgame     ;wont exit unless the game tries to exit to basic (ie reversi) 
jp run            ;so re-start if it does        

 

The subroutines: 

The first one sounds the double beep on starting. 

.welcome_beep 
;now make the hello! beep 
ld hl,20000 
call beep_hl 
ld hl,0 
call delay 
call sound_off 
ld hl,20000 
call delay 
ld hl,28000 
call beep_hl 
ld hl,30000 
call delay 
call sound_off 
ret 
 
 
 

The game loading routine is pretty straightforward. All the games are in the RUN format used by the SDX 
and FDX disc systems. On the disc USER RUN “xxx.RUN” is used the access a lot of the early Continental 
Softwaree titles. They’s basically binary images of the game, with a 4 byte header containing the size 
and load/start address. Being a binary dump made them ideal for Magrom. 

The 512k of data rom is split up into 256 “sectors” each 2K long. This allows the catalogue enry to be a 
single byte. The loading code just copies up to 2k at a time from the data ROM to main RAM, and jums 
into the entry address once completed. 

;catalogue entry in HL 
.loadgame 
call find_sector 
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ld e,(hl) 
inc hl 
ld d,(hl)        ;DE now holds the loading address 
inc hl     
ld c,(hl) 
inc hl 
ld b,(hl)        ;BC now has the file size 
inc hl           ;HL now points to the first byte which is also 

 ;the codes entry point 
push de          ;push the start address onto the stack 
push BC          ;save the file size 
ld BC,&7fc       ;first sector is 4 bytes short because of the 
header 
LDIR             ;transfer the short sector, no file size check  
                 ; as all entrys must be at least one sector 
ld bc,&f804      ;-&7fC 
.block_loop 
pop hl           ;get the remaining file size 
add hl,bc 
ret nc           ;if Carry isn't set then there were less than  
                 ;&800 (7FC) bytes left  so exit via run address 

 ;stacked above 
push hl          ;re-stack the remaining file size 
ld bc,&800       ;and set BC for a full sector transfer 
ld a,(sector) 
inc a 
ld (sector),a 
call find_sector 
ldir             ;transfer 1 sector to DE  
ld bc,&f800      ;set BC to -&800 for 2nd and later sectors  
jr block_loop 
 
 

A graphics mode 2 screen takes up 12k of the video memory, 6k for the bitmap and 6k for the colour 
map. Rather than take up one of the data ROM pages, the bitmap is compressed before being loaded 
into the ROM image. The compression ratio is around 2:1, nothing special but it does allow for simple 
and speedy decompression by the Z80 CPU and it’s enough to fit everything into the 8k available.  

;Screem character map for graphics mode is stored at &0000, 
;the colour data is stored at &2000, both tables are &1800 bytes  
;long bit 6 of 2nd transfer set to indicate writing to Vram 
;the screen data is compressed, &FF isn't used anywhere in the 
;screen builder so is the flag for compression 
;&FF,byte,count, for a compressed chunk 
;&FF,FF is the end of table marker, but the byte count should  
; stop the transfer immediatly before them. 
 
.welcome_page 
push af 
push de 
push hl 
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LD HL,screendata 
LD de,&1800 
ld BC &4000 
call decomp 
LD HL,colourdata 
LD de,&1800 
ld BC &6000 
call decomp 
pop hl 
pop de 
pop bc 
ret 
 
.decomp 
LD A,c 
OUT (2),A 
LD A,b 
OUT (2),A 
.decomp_loop 
ld a,(hl) 
inc hl 
;check for compression marker 
cmp &ff 
jr z,compressed 
out (1),a 
dec de 
ld a,d 
or e 
jr nz,decomp_loop 
ret 
 
.compressed 
;get the data byte 
ld c,(hl)  
inc hl 
;get the count 
ld b,(hl) 
inc hl 
.comp_loop 
ld a,c 
out (1),a 
dec de    
;check to see if we're end of the bitmap 
ld a,d 
or e 
ret z 
DJNZ comp_loop 
jr decomp_loop 
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Reading the keyboard is done using the MTX’s built in keyboard routine, and unwanted keycodes are 
stripped out before returning to the main loop. 

 
;MTX's main keyboard routine is at &0079, and returns Z set if no 
key 
;or the ASCII code in A 
 
.readkey 
call &0079          ;read keyboard,  
jr z,readkey        ;wait for something to be pressed 
cp +ASC"0"  
jr c,readkey 
cp +ASC":" 
jr c,zero_to_nine 
and +%11011111      ;take care of lower case 
cp +ASC"@"  
jr c,readkey 
cp +ASC"\" 
jr c,a_to_z_ish 
jr readkey 
 
.a_to_z_ish 
sub 6 
.zero_to_nine 
sub +asc"0" 
ld (key),a 
RET 
 

Each 16k rom page hold 8, 2k sectors, so a 3 bit shift or rotate will convert the sector number to a page 
number. The 3 low bit then also need shifting 3 places to form the 2k offset within the 16k page. 

;"usefull" routines here 
 
;return HL pointing to the start of a 2k secotor, with the  
; relevant chunk paged in 
 
.find_sector 
push af 
ld a,(sector)  ; sectors are 2k, banked pages 16k, so divide by 8 
RRCA 
RRCA 
RRCA 
and &1f 
out (port),a    ;page the rom 
ld a,(sector)  ;now work out where the load data is on the page 
and &07        ;intra page offset, needs multiplying by 2k 
add a,a 
add a,a 
add a,a 
add a,&40     ;page offset in memory 
ld h,a 
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ld l,0         
pop af 
ret 
 

The CTC shut off routine pokes the software reset command to each of the 4 channels twice. Two reset 
commands are required just in case the CTC was part way through command on when the system was 
reset. On power up the duplicate command wouldn’t be necessary. 

 
;generic intrrupt cancelling routine. 
.ctc_off 
push bc 
push af 
ld b,2 
.ctc_loop 
ld a,3 
out (&8),a 
out (&9),a 
out (&a),a 
out (&b),a 
djnz ctc_loop 
pop af 
pop bc 
ret 
 

The sound off routine uses NOPs to ensure the PSG read timing is satisfied as there’s no compelling 
reason to do anything more efficient space wise. 

; set all 4 sound channels to silence, using the data table that follows 

.sound_off 
PUSH AF 
PUSH BC 
push hl 
Ld hl,sound_data 
ld b,12 
.sound_loop 
ld a,(hl) 
OUT (6),A 
IN A,(3) 
nop        ; at least 32 cycles needed  between accesses 
nop        ; 8 nops used to ensure the requirement is met 
nop 
nop 
nop 
nop 
nop 
nop 
inc hl 
DJNZ sound_loop 
pop hl 
pop bc 
pop af 
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ret 
 
.sound_data 
db &80,00    ;Channel 0, frequency 0 
db &9f       ;channel 0, attenuation off 
db &A0,00    ;Channel 1, frequency 0 
db &Bf       ;channel 1, attenuation off 
db &C0,00    ;Channel 2, frequency 0 
db &Df       ;channel 2, attenuation off 
db &Ff       ;channel 3, attenuation off 
db &E0,00    ;Channel 3, periodic noise N/512 
 

Straight forward delay of approx. 26 x HL cycles used by the start-up sound code. 

 
.delay 
PUSH HL 
PUSH BC 
.delay_loop 
DEC HL 
LD A,H 
OR L 
JR NZ,delay_loop 
POP BC 
POP HL 
RET 
 

The beeper code uses the HL value to sound a note on the tone 1 channel 

.beep_hl 
push AF 
push BC 
LD A,L 
AND &0F 
OR &80 
OUT (6),A    ; SEND TONE 1 + 4 BITS OF FREQUENCY 
NOP 
IN A,(3) 
LD A,L 
SRL A 
SRL A 
SRL A 
SRL A 
LD C,A 
LD A,H 
SLA A 
SLA A 
SLA A 
SLA A 
OR C 
AND &3F      ; REMAINING 10 BITS OF FREQUENCY 
OUT (6),A 
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NOP 
IN A,(3) 
LD A,&90     ; ATTENUATION 0DB TONE 1 
NOP 
NOP 
NOP 
NOP 
OUT (6),A 
NOP 
IN A,(3) 
pop bc 
pop AF 
RET 

The remaining date is poked into the ROM by an external program using addresses that were found by 
trial and error. This was due to limitations of the assembler, a later version would have allowed for 
binary data block to be inserted. 

ORG &2280 
.Screendata 
; compressed screenimage placed here by the builder 
 
ORG &3180 
.colourdata 
 
ORG &3FC0 
.directory 
 
;list of starting sector for each game 
;&FF should be present in the first unused entry 
 

The rom code itself has no indication of what it’s loading, the screen image has the game titles “drawn” 
in at build time. 

The early versions of the code use a text mode based interface, and that version did keep a directory of 
the game names. This screenshot of one of the very early development versions shows the pitfalls of not 
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setting the VDP pointers correctly. Miss-setting bit 14 of the address resulted in an off by one error in 
both the character definitions and some of the text positioning. 

The move to graphics mode 2 resulted in a much more “professional” display, as the screenshot of the 
last of the development roms shows. The background image was dumped from the emulator on my 
RiscPC and then loaded into a BBC basic program to insert the windows that Dave dubbed “Aero for the 
MTX”. Care had to be taken with the positioning to ensure that the resulting image could be rendered 
by the VDP. Conversion to VDP format and compression were also done with the RiscPC for inclusion in 
the rom code above. 

 

 

9.1.2 The Magrom Hardware 
There were 5 different versions of the Magrom design, 3 of which were built as prototypes, before the 
V1.0 board was finalised. Broadly they fit into 2 basic types, the early versions used logic gates to set 
address lines low when the rom was accessed through the #2000 in paged rom space. 

Following the discussion of the prototype on the Memorum forum, the last versions used pull down 
resistors. 
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Version 1 never got past the design stage. Version 2 was the first one to be built. As the photograph 
shows the board was built to fit horizontally on the MTX external connector. The edge connector was a 
31 way vertical fit part intended for PC ISA slots and needed adaption to fit the board. 

At this point there was still a possibility of using a 1024k EPROM instead of Flash so the white jumpers 
are included to allow for the larger device. 

This prototype highlighted a design issue with paging that required a re-design 

   

Prototype 2 also investigated the possibility of using a vertical fit. On proto board this caused issues, the 
“natural” position of the chips was on the inside, hover than left insufficient clearance for the ROM to be 
socketed, so that was fitted on the reverse. This version worked completely as intended, at the cost of 
requiring 8 logic devices in addition to the ROM. The EPROM option was removed 

This version used a 74HCT138 decoder to detect the 3 possible positions for the data portion of the 
ROM, which fed to the T jumper that selected one of the 3 to be used as the data ROM chip select. A 
second 74HCT138 decoded the chip select for the program portion of the ROM, all 8 possible ROM slot 
were decoded. the ROM7 output was used, but any of the available ROM slots could have been used.  

There were two 74HCT08 AND devices as there were 5 address lines that had to switch between zero in 
program mode, and the selected page in data mode. One of the 3 spare gates was used to combine the 
2 different mode selects into one chip select with the final 2 gates unused with the inputs tied to 0v to 
avoid leaving them floating. 

The paging data was held in a 74HCT273 exactly the same way that the MTX motherboard stores the 
main ROM/RAM paging register. All 8 inputs were connected to the data bus but only 5 of the 8 possible 
outputs were used, with the others left unconnected. 

Because the Z80 has separate IO and Memory address spaces, a 74HCT32 OR was used to combine the 
I/O request output and write pins into a single I/O Write used for setting the paging register, and also 
memory request and read for reading he ROM. Again the 2 unused gates had their inputs tied to 0v. 

The final section of the design used a 74HCT20 NAND to decode all bits high on A0 to A3 and A4 to A7. 
Those 2 signals along with the I/O Write went to a 3rd 74HCT138 to decode write for IO port #FF roe 
setting the page port. 
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The vertical fit proved to be impractical, with issues locating the rom select jumper and the front corner 
of the board being a hazard to the user’s left hand. 

Version 4 of the board was the final “active” design which replaced the dual 4 input NAND with an 8 
input NAND which then eliminated the 3rd 74HCT138, as once of the spare OR gates could then be used 
to create the page port select.  That design was never built, as the discussion on Memorum had 
identified further refinements. 

The version 5 board used the GROM output from the edge connector instead of doing its own ROM 
decode, saving another 74HCT138. The page port was changed to a 74HCT374 which has 3 state 
outputs, these are only active in data mode. In ROM 7 mode the 5 resistors pull the address lines low. 
Making the all but one of the AND gates redundant. The data ROM page selection is still done with the 
74HCT138. The 74HCT32 OR remains to combine chip selects and the Z80 signals. 2 Gates of a 74HCT00 
NAND is used in place of the last AND gate, while the 3rd gate enables the page port output, the 4th gate 
is spare so had its inputs wired to 0v. 

Using Port #FF could interfere with some of the other MTX hardware addons, most notably the 
Speculator. So, the board was modified to use the final NAND gate as another inverter so as to use port 
#FB instead, and it was this modified Version 5.1 that went on to become the V1.0 production board, 
seen here being assembled. 
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The production board has additional refinements. Provision is made for edge connectors on both sides, 
for internal or external fit. The positioning of the chips at the top of the board was required to ensure 
there was adequate clearance under the sloping MTX keyboard. 

The right-angle edge connectors used raise the board sufficiently far above the main PCB that there is 
only a millimetre or so clearance between the Magrom and the keyboard PCB at the low point. 

The final production board only bears a passing resemblance to the original, as the design process 
resulted in modifications for: 

 Compatibility with other expansion 
 Physical fit 
 Component reduction 

 

9.2 CFX 
After the Magrom reached ”release” status I joined the MTXplus+ project. Towards the end of 2014 we 
began work on the I/O board for them MTXplus+ and I started writing the code to support the IDE 
interface. Early versions of the MTXplus+ ran BASIC and used a patched version of the MTX ROM where 
the tape loading code was replaced by some custom code to read FAT32 CF cards.  Extending the read 
only system to read and write FAT32 was abandoned. Manipulating potentially 32k long clusters in 64k 
of memory proved to be impractical.  

Andy Key had done a LOT of work to patch the FDX and SDX firmware to run on the REMEMOorizer and 
ReMemotech, and made the full source code available. Having studied the code there were just 3 
routines in each system that dealt with the disc system:  

Initialise 
Read one sector 
Write one sector  
 
Replacing those with the equivalents I already had in the FAT32 code was straightforward and the 
MTXplus+ then had a fully working storage system. The MTXplus+ project then reverted to using the 
original CPM disc format as used by the FDX and SDX. Whist that made transferring software to the 
MTXplus+ a little more complicated, it did mean both CPM and the SDX extensions to Basic were 
available, and there was no requirement to patch into the tape code. 

At that point I realised that the same hardware could be fitted to a standard MTX and so CFX was born. 

9.2.1 CFX IDE Software 
The original FDX systems ran CPM and used a boot ROM in paged ROM slot 4 to control the system. The 
SDX basic extensions used ROM slot 5 which enabled a single 16k EPROM to handle both. 16K isn’t a 
commonly available size for “modern” devices 32k EEPROMs are available, but 128k Flash is both 
cheaper, faster and available from more sources.  For this reason, the CFX is actually fitted with 128k of 
rom, however only 16k is used to provide the 2 rom images for slots 4 and 5. 

The CF support software is the same for both ROMs, for the FDX it actually gets built to run in RAM, as 
CPM doesn’t (normally) use the boot rom once the start-up sequence is completed. 
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The SDX on the other hand runs the disc support software in ROM. The different locations for the code, 
buffers etc requires different source files, but the essentials are the same. This is the one from the SDX 
side 

 
IDE8255_LSB EQU &6c             ;108  Port A 
IDE8255_MSB EQU &6d             ;109  Port B 
IDE8255_CTL EQU &6e             ;110  Port C 
IDE8255_CFG EQU &6f             ;111  direction control 

 
The IDE interface is handled through a 82C55 PPI which needs just 4 I/O locations in the MTX memory 
map to fit in the 16 ports of the IDE interface itself. 

;control port settings 
IDE8255_READ  EQU %10010010     ;Port C is output A and B 

;inputs,using mode 0 
IDE8255_WRITE EQU %10000000     ;all 3 ports are outputs  

 
The PPI needs 2 control setups, 16 bits of input when reading and 16 bits of output when writing, the 
IDE control interface is always write only. 

 
;IDE address lines A0-A2 direct to Interface 
;IDE Control lines are inverted, so need to be set to trigger an 
; active LOW pulse 
;B3 = CS0, select main registers 
;B4 = CS1, select aux registers 
;B5 = IDE Write line 
;B6 = IDE Read line 
;B7 = IDE Reset line 
IDE_WR_LINE EQU %00100000 
IDE_RD_LINE EQU %01000000 
IDE_RESET   EQU %10000000 
 
;IDE Command registers 
IDE_DATA         EQU %00001000 ;CS0 register 0 16 bit wide data 
IDE_DATA_rlow    EQU %01001000 ;CS0 register 0 16 bit wide 

;data read line low 
IDE_DATA_wlow    EQU %00101000 ;CS0 register 0 16 bit wide 

;data write line low 
IDE_ERR          EQU %00001001  ;CS0 register 1 
IDE_COUNT        EQU %00001010 ;CS0 register 2 sector count  

;always use 1 to transfer to  
;the buffer 

IDE_LBAlow       EQU %00001011 ;CS0 register 3 low 8 bits of LBA 
;address 

IDE_LBAmid       EQU %00001100 ;CS0 register 4 mid 8 bits of LBA 
;address 

IDE_LBAhigh      EQU %00001101 ;CS0 register 5 upper 8 bits of  
;LBA address 

IDE_LBAtop       EQU %00001110 ;CS0 register 6 top 4 bits of LBA 
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;address 
IDE_COMMAND      EQU %00001111 ;CS0 register 7 write command 
IDE_STATUS       EQU %00001111 ;CS0 register 7 read status 
IDE_CONTROL      EQU %00010110 ;CS1 register 6 
IDE_ASTATUS      EQU %00010111 ;CS1 register 7 read other status 

;register 
 
The hardware dedicates 5 bits to register selection, and 3 bits to handle read, write and reset. The logic 
for those 3 pins is inverted in the hardware so a “1” sets the signal low (or active) and a zero sets it high. 
The register definitions for setting the data direction register have extra equates that also include the 
read and write line, that was done as part of the optimisation to increase the interface transfer rate. 

 
; IDE Status Register: 
; B7 = Busy     1=busy, 0=not busy 
; B6 = Ready    1=ready for command, 0=not ready yet 
; B5 = DF       1=fault occured inside drive 
; B4 = DSC      1=seek complete 
; B3 = DRQ      1=data request ready, 0=not ready to xfer yet 
; B2 = CORR     1=correctable error occured 
; B1 = IDX      vendor specific 
; B0 = ERR      1=error occured 
 
;the actual IDE commands used 
CMD_RECAL   EQU &10 
CMD_READ    EQU &20 
CMD_WRITE   EQU &30 
CMD_INIT    EQU &91 
CMD_ID      EQU &EC 
CMD_SPINUP  EQU &E0 
CMD_SPINDN  EQU &E1 
 

CFX only uses a small subset of the available commands, in the end it didn’t even need all of the ones 
listed. CF obviously doesn’t need to spin up or spin down. And it turned out running a “real” IDE drive on 
the interface didn’t require them either. 

The SDX system actually loads in the CPM BDOS off of the drive, so requires equates for the CPM 
functions used. Andy’s re-built source code includes a file for that. 

; BDOS.INC  Basic BDOS function numbers etc. 
; 
;  BDOS    EQU     &05 
;  TRUE    EQU     &FFFF 
;  FALSE   EQU     &0000 
;  K       EQU     1024 
;  CONIN   EQU     1 
;  CONOUT  EQU     2 
;  RDRIN   EQU     3 
;  PUNOUT  EQU     4 
;  LSTOUT  EQU     5 
;  DCONIO  EQU     6 



ReSource 2021 
 

 90 

;  GETIOB  EQU     7 
;  SETIOB  EQU     8 
;  PRINTF  EQU     9 
;  RCBUFF  EQU     10 
;  CONST   EQU     11 
;  RETVER  EQU     12 
   RESDSC  EQU     13 
   SELDSC  EQU     14 
   OPENF   EQU     15 
   CLOSEF  EQU     16 
   SFF     EQU     17 
   SFN     EQU     18 
   DELFIL  EQU     19 
;  RSEQ    EQU     20 
;  WSEQ    EQU     21 
   MAKFIL  EQU     22 
   RENFIL  EQU     23 
;  RETLV   EQU     24 
   RCDSC   EQU     25 
   SETDMA  EQU     26 
   GETAA   EQU     27 
;  WPDSC   EQU     28 
;  GETROV  EQU     29 
   SFATTR  EQU     30 
   GETDPB  EQU     31 
;  GSUSR   EQU     32 
   RRAN    EQU     33 
   WRAN    EQU     34 
   CFSIZE  EQU     35 
;  SETRR   EQU     36 
;  RESDRV  EQU     37 
;  WRANF   EQU     40 
;  FCB1    EQU     &5C 
;  FCB2    EQU     &6C 
;  R0      EQU     33 
;  R1      EQU     34 
;  R2      EQU     35 

 

None of the BIOS calls (functions 1 to 12) are used as BASIC already has its own routines for screen and 
keyboard handling. Memory usage is also different so the file control blocks aren’t in low memory like 
they would be running CPM. 

; SDX ROM use of high memory 
; 
 
LSTLOW  EQU    &D3FF 
BDOSADDR EQU   &D700 
LSTHIGH EQU    &D700 
JP59K   EQU    &D706 
CPMLOC  EQU    &D708 
DSKMSG  EQU    &D7BA 
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DSKERR  EQU    &D7C6 
ERRFLG  EQU    &D7E5 
PRINT0  EQU    &D804 
CRLF0   EQU    &D80E 
CHNL1   EQU    &D840 
CHNL2   EQU    &D86A 
CHNL3   EQU    &D894 
CHNL4   EQU    &D8BE 
CHNL5   EQU    &D8E8 
LINPUT  EQU    &D8F4 
IXTEMP  EQU    &D8F6 
STORE   EQU    &D8F8 
USERSAV EQU    &D912 
CURDSK  EQU    &DA42 
 
BIOSADDR EQU   &E500 
DPH_A   EQU    &E533 
DPH_B   EQU    &E543 
DPH_C   EQU    &E553 
DPH_D   EQU    &E563 
DPH_E   EQU    &E573 
DPH_F   EQU    &E583 
DPH_G   EQU    &E593 
DPH_H   EQU    &E5A3 
DPH_I   EQU    &E5B3 
DMA_DEF EQU    &E680 
DISCASS EQU    &E880 
DIRBUF  EQU    &E8C0 
VECST   EQU    &E940 
AVEC_AB EQU    &E940 
CVEC_AB EQU    &E954 
AVEC_C  EQU    &E964 
CVEC_C  EQU    &E978 
VECEND  EQU    &E9C0 
 
DBUF    EQU    &E9C0 
TDBUF   EQU    &EAC0 
PTRKP   EQU    &EB80 
LCA     EQU    &EB82 
EFLAG   EQU    &EB83 
LSTOUTX EQU    &EB84 
SWUF    EQU    &EB85 
CURDRV  EQU    &EB86 
TRACKS  EQU    &EB87 
BFID    EQU    &EB8B 
CFGTAB  EQU    &EB93 
TRUST   EQU    &EB9B 
DRVRQ   EQU    &EB9C 
CFGBYT  EQU    &EB9D 
TRKRQ   EQU    &EB9E 
SECRQ   EQU    &EBA0 
DMARQ   EQU    &EBA2 
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CDDRV   EQU    &EBA4 
BPNT    EQU    &EBA5 
RETRY   EQU    &EBA6 
TOAM    EQU    &EBA7 
JPLINK  EQU    &EBA9 
ULINK1  EQU    &EBAC 
SKEW    EQU    &EBAF 
 

Because CPM is basically a pre-built unit the various routines and storage locations are fixed and 
additional equates for these are also included. 

DBUF2    EQU    &ED00      ;256 bytes allocs 
TDBUF2   EQU    &EF00      ;128 byte checks 
DBUF3    EQU    &F000      ;256 bytes allocs       
TDBUF3   EQU    &EF80      ;128 byte checks 
DBUF4    EQU    &F100      ;256 bytes allocs 
TDBUF4   EQU    &F200      ;128 byte checks 

 

The original SDX rom allowed access to a single drive. 3 additional drive buffers are defined here to 
allow for 4 drives or partitions. 

 
; F280 to F2FF unused by SDX rom 
WORKSPACE     EQU &F280 ;string workspace 32 bytes 
math_a        EQU &F2A0 ;2x32 bit working registers for  

;the math calculator 
math_b        EQU &F2A4 

 
FAT32 support needed buffers for 32 math plus filenames etc these locations were retained for use by 
the support/start-up portion of the ROM. 

 
; The SD Card support is incompatible with the NODE ROM, 
; because we overwrite part of its memory space. 
SECADR  EQU     &F300  ;word offset 
CBLKBN  EQU     &F302  ;SECADR+2  4 byte block number 
CBLKBF  EQU     &F306  ;CBLKBN+4  512 byte buffer 
SDREGV  EQU     &F506  ;CBLKBF+&0200 16 byte area 
SDLBA   EQU     &F516  ;SDREGV+16  4 byte LBA 
 
SDXBDOS EQU    &F5B0 
USRJMP  EQU    &F5B3 
DSCFLG  EQU    &F5D3 
KEYJP   EQU    &F5D4 

 
Var_base      EQU &F8F2 ;standard saved base of system 
variables 

The CF deals with 512 byte sectors, CPM deal with 128 byte sectors so a larger sector buffer is required 
and because of the ROMs in the memory map cannot be located at CPM’s usual #0080. For the same 
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reason the default BDOS/BIOS entry using CALL #0005 won’t work and so an alternate entry point is 
provided. 

The CFX SDX rom is based on the original SDX code, however the start-up sequence is considerably 
different. 

The SDX boot ROM seems to have been designed to cause the minimum of interference with tape based 
software and to prove the best start-up speed, so no setup is done until the first disc access. 

CFX on the other hand has the MUCH more responsive CF for storage and doesn’t have to take “hot 
swapping” into account so does initialise the drive on start-up. Since there is more than enough room in 
the ROM it also displays the boot screen. 

; 

;TITLE   SDXMAIN SDX main 
; From Andy Key's SDX code: 
; This is a reconstruction of the source for the SDX ROM. 
; A SDX ROM was disassembled using BE and BEZ80. 
; Symbols were taken from a PDF of a printed listing of the ROM. 
; This was post-processed using a custom script, to make it  
; more M80-like. 
; Finally, salient text in the PDF was transcribed to this  
; source. 
 
; MTXplus+ CF init and load/save code replaces Andy's SD card 
; routines 
 
; signature 
ORG &C000 
Offset &2000 
DB      8,7,6,5,4,3,2,1 
 
DW      ROMCODE 
DW      0 
; 
; ROM command calls here (=0200CH) 
; 
.ROM 5 
JP      CPMLDR 
db  0 
; 
; power-up code calls here (=02010H) 
; 
.POC 
LD      A,&7F 
OUT     (5),A 
IN      A,(5) 
AND     &8 
RET     Z    ;if "M" pressed, return to BASIC 
IN      A,(6) 
AND     1 
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ret     z    ;if "space" pressed, return to BASIC 
call signon 
call initdsc 
call wfs 
RET  
 
.CPMLDR 
CALL    INITDSC 
jr nz   no_cf 
CALL    u_loader  ;only call the loader if the CF is present 
JP      RETBASIC 
.no_cf 
jp basic2 

 
The code starts with a standard MTX Autoboot signature, the “ROM 5” entry point is retained as that 
provides an alternative to CPM’s CTRL C to reset CPM in the event of an error etc. 

The power up code then checks for 2 possible keypresses, “M” and space and will return immediately id 
either is pressed. “M mode” is provided to allow the MTX to bypass the CF system if the intention is to 
use the MTX in “tape mode”. If a Magrom were also fitted, that needs space pressed in order to start it. 
However, Magrom is in paged ROM 7 which is the last paged ROM to be accessed.  

Loading the BASIC extensions in itself doesn’t affect Magrom, but the time taken is wasted, since 
nothing on Magrom knows anything about the disc sub system (or even Basic!). 

Having checked the keys, the first half of the boot screen is displayed, followed by the drive setup code 
that prints the CF status. That’s followed by the code that prints the 2nd half of the boot screen and then 
waits for the user to press return. On the MTXplus+ where this code originated, the system waits for the 
space bar, but that was changed for compatibility with Magrom.  

The CPM loader as called on “ROM 5” is extended to only try to load the system tracks if a CF is found, 
there isn’t one, it exits without an extra error message straight into the “Ready” prompt. 

The rest of the code in SDXMAIN is as per Andy’s re-build of the original source, with the addition of 
drive parameter blocks to support the extra 3 partitions. 

The CPM to SD drive code in Andy’s SDXSD file is unchanged, with the exception that the calls to SD 
hardware handlers are replaced with calls to CF hardware handlers. 

The CF low level driver provides the 3 driver entry points expected by CPM to SD translation routines 
plus all the PPI access code.  

; CF specific low level routines 
 
; 
; Initialise CF card 
; after: 
;   if ok, Z, CF initialised 
;   if not ok, NZ, CF not initialised 
; 
.CFInit 
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;do a hard reset on the drive, by pulsing its reset pin. 
PUSH BC 
push DE 
LD A,IDE8255_READ  ;set the 8255 to read mode 
OUT (IDE8255_CFG),A 
LD A,IDE_RESET 
OUT (IDE8255_CTL),A  ;Pull the reset pin LOW 
LD B,8                     ;needs to stay low for 25usec 

;according to the 1992 spec 
.RESET_LOOP   ;100 cycles at 4mhz 
DJNZ RESET_LOOP 
XOR A 
OUT (IDE8255_CTL),  ;Pull the reset pin back high 
LD C,IDE_LBAtop 
LD E,%11100000   ;select the master device. LBA mode 
call IDE_WR_8 
; 
;LD B,0    ;for the timeout counter 
LD BC,IDE_STATUS   ;implied LD B,0 in addition to setting 

the IDE register 
jr IDE_init_pass1  ;jump past the timeout checks on the 
first pass 
.IDE_INIT_loop              
dec B     ;exit if we've tried 256 times and 

;drive still not ready 
JR Z m_timeout 
call CF_delay   ;CF doesn't need to spin up, but 

;allow some extra time 
                           ;just in case. The 255 calls 

;of the delay routine take 
;approx 2.5 sec at 4mhz 

.IDE_INIT_pass1 
CALL IDE_RD_8   ;read status register to E 
RL E     ;bit 7 to carry 
JR C IDE_INIT_LOOP  ;wait for BSY to be clear 
RL E      ;bit 6 to carry 
JR NC IDE_INIT_LOOP  ;wait for RDY to be set 
POP DE      
POP BC 
 

The init code doesn’t actually need to save registers, but some of the later code using the time-out does 
save registers, so to maintain stack integrity every routine that could time out saves DE and BC.  

 
rst &10 
db &93 
db 13,10 
ds " CF initialised" 
db 13,10 
XOR A    ; A zero'd and ZF set to indicate all OK 
RET 
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If the drive initialises this is reported on screen. This is used for both the boot up code and “ROM 5” 
software reset to confirm success.  

 
.m_timeout 
rst &10 
db &94 
db 13,10 
ds " Drive not found" 
db 13,10 
.timeout 
POP DE 
POP BC 
xor A 
DEC A                           ;return A no zero and Z reset  
RET 

 
If the drive fails to respond within time at any stage a message is printed. No BASIC error message isn’t 
generated, it’s left to the calling code to decide what to do with the error. In the CPM version of the 
driver code there are no status messages. The RST 10 interface being BASIC only. 

 
;waste approx 3339 * 12 is approx 40,000 cycles delay 0.01 sec at 
4mhz. 
.CF_delay 
push bc 
ld BC,12 
.CF_delay_loop 
DJNZ CF_delay_loop    ;3323 cycles on inner loop 
dec c                    ;4 
JR nz CF_delay_loop   ;12 
pop bc 
ret 

 
The code uses a generic 1/100 sec delay routine, that doesn’t affect any registers. From basic, interrupts 
could have been used to deal with detection a timeout. However, the CTC isn’t setup in CPM and really 
it’s not worth the extra work, it’s simpler to just waste cycles. 

; 
; Read block from CF card 
;   before: 
;     SDLBA is 32 bit block 512 byte block number, HL is buffer 
;   after: 
;     if ok, Z 
;     if not ok, NZ 
; 
.CFREAD 
PUSH BC 
PUSH DE 
CALL IDE_WAIT_NOT_BUSY 
CALL    CFSetLBA       ;send LBA number to the drive 
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LD E,CMD_READ 
LD C,IDE_COMMAND 
CALL IDE_WR_8 
CALL IDE_WAIT_DRQ 
AND 1                ;isolate bit 0 
JR NZ,GET_ERR        ;error bit set, find out why 
CALL CFREAD_DATA 
POP DE 
POP BC 
xor A   ;exit with A zero'd and Z set  
RET 

CFread is the entry point for reading one sector, it waits for any running command to finish, sets up the 
24 bit LBA sector number, and then issues the read command. Once the device reports ready the actual 
read is done. For readability reasons this is a separate routine, but performance would be marginally 
improved is the code was included directly. 

.CFRead_Data 
PUSH    BC 
PUSH    DE 
PUSH    HL  
; ld B,0   ;256 2 byte transfers needed implied 
ld BC,IDE8255_CTL ;preset C to PIO port C 
LD e,IDE_DATA  ;all access through the 16 bit wide data 

;register 
ld d,IDE_DATA_RLOW 
.READ_DATA_LOOP 
OUT (C),e    ;(12) set the register & chip select bits 

;drive with read high     
OUT (C),d   ;(12) drive the read line low 
IN A,(IDE8255_LSB) ;(11)  
LD (HL),A   ;( 7) 
INC HL   ;( 6) 
IN A,(IDE8255_MSB) ;(11) 
LD (HL),A   ;( 7) 
INC HL   ;( 6) 
DJNZ READ_DATA_LOOP ;(13) 
xor A 
out (C),A   ;deselect everything also drives  

;read high a final time 
POP     HL 
POP     DE 
POP     BC 
RET 

The low level code is optimised to minimise the transfer time. Because the IDE interface is using 16 bit 
wide date, 2 bytes are read on each pass through the inner loop, so 256 passes are required to read the 
whole sector. Registers C D and E are pre-set to save cycles in the inner loop. OUT (C),reg is a cycle 
slower than OUT (port),A but not having to set A saves more than that. As the cycle timings indicate it 
takes 85 cycles to complete the inner loop, meaning a 512 byte sector is loaded in just under 22,000 
cycles giving a peak transfer rate of 180k a sec. CPM and BASIC overheads mean the overall transfer rate 
is a LOT lower. D and E are set separately for code clarity at the cost of a few cycles.  
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; CF routines only require A=0/Z=1 good or A<>0/Z=0 error 
; however error read on return for future expansion  
.GET_ERR 
LD C,IDE_ERR 
CALL IDE_RD_8 
POP DE 
POP BC 
AND A 
RET NZ 
DEC A   ;make sure A isn't zero and the flag isn't set 
RET 

The error register is checked on failure, none of the current code uses it as the driver is only expected to 
provide a yes/no response.  But the error data is there for any future use. As with timeout the stack 
needs to be tidied on exit. 

; 
; Write block to CF card 
;   before: 
;     SDLBA is 32 bit block 512 byte block number, HL is buffer 
;   after: 
;     if ok, Z 
;     if not ok, NZ 
 
.CFwrite 
PUSH BC 
PUSH DE 
CALL IDE_WAIT_NOT_BUSY 
CALL CFSetLBA 
LD E,CMD_WRITE 
LD C,IDE_COMMAND 
CALL IDE_WR_8 
CALL IDE_WAIT_DRQ 
AND 1 
JR NZ,GET_ERR 
CALL CFWRITE_DATA 
CALL IDE_WAIT_NOT_BUSY 
AND 1 
JR NZ,GET_ERR 
POP DE 
POP BC 
xor A 
RET 

Writing to the CF is a done in exactly the same way as the read, except the data travels in the other 
direction. 

; 
.CFWrite_data 
PUSH    BC 
PUSH    DE 
PUSH    HL 
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;ld B,0   ;256 2 byte transfers needed implied 
ld BC,IDE8255_CTL ;preset C to PIO port C 
LD e,IDE_DATA  ;all access through the 16 bit wide data  

;register 
ld d,IDE_DATA_WLOW 
LD A,IDE8255_WRITE ;set the 8255 to output mode 
OUT (IDE8255_CFG),A 
.WRITE_DATA_LOOP 
OUT (C),E   ;set the register & chip select bits, 

;Write is high 
LD A,(HL) 
INC HL 
OUT (IDE8255_LSB),A ;put the low 8 bits onto the bus 
LD A,(HL) 
INC HL 
OUT (IDE8255_MSB),A ;put the high 8 bits onto the bus 
OUT (C),D   ;drive the write line low 
DJNZ WRITE_DATA_LOOP 
xor A 
out (C),A   ;deselect everything also drives write high 
LD A,IDE8255_READ 
OUT (IDE8255_CFG),A ;set the 8255 back to read mode 
POP     HL 
POP     DE 
POP     BC 
xor A 
RET 
 

Because the PPI code defaults to setting the IDE interface to reading, writing is a tiny bit slower reducing 
peak transfer rate by a fraction.  in practice however the overheads from the need to deal with the CPM 
code writing 128 byte sectors, means writing to the drive from CPM or BASIC will take at least 4 times as 
long as reading. 

 
; 
; Set CF LBA 
; 
.CFSetLBA  
push hl 
push de 
push bc 
push af 
LD HL,(SDLBA) 
LD A,(SDLBA+2) 
LD E,&e0             ;Top 4 bits of address zero, &E is for LBA 
master 
LD C,IDE_LBAtop 
CALL IDE_WR_8        ;write LBA mode to LBA top byte register 
ld E,A 
ld c,IDE_LBAhigh           
CALL IDE_WR_8        ;write to LBA bits 16-23 
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ld E,H 
ld c,IDE_LBAmid           
CALL IDE_WR_8        ;write to LBA bits 8-15 
ld E,L 
ld c,IDE_LBAlow           
CALL IDE_WR_8        ;write to LBA bits&-7 
LD E,1 
LD C,IDE_COUNT 
CALL IDE_WR_8        ;set the sector count to 1 
pop af 
pop bc 
pop de 
pop hl 
RET 

Setting the LBA also sets the drive to master, and the sector count to 1, This is done every time. Just in 
case something has updated the registers between calls. Only 24 bits, of the possible 28 bits or sector 
address are used, so only 1/16 of the maximum address range is available. In practice this isn’t an issue 
The MTX implementation of CPM uses a maximum partition size of 8 megabytes and 8 partitions. 64 
megabytes of storage would need 131072 of the CF’s 512 byte sectors, which only requires a 17 bit 
address. 

 
.IDE_WAIT_NOT_BUSY 
PUSH BC 
PUSH DE 
.IDE_WAIT_NOT_B_LOOP 
LD C,IDE_STATUS 
call IDE_RD_8            ;read status register to E 
LD A,E                   ;return status in A 
RL E                     ;bit 7 to carry 
JR C IDE_WAIT_NOT_B_LOOP ;wait for BSY to be clear 
pop DE 
pop BC 
RET 
 

3 different status checks are performed, drive busy, drive ready, and data ready. The released versions 
of the CFX code don’t actually have any timeout code in these routines, as there were no failures of this 
type in testing. Not having the code speeds up the access and shortens the code. 

 
.IDE_WAIT_READY 
PUSH BC 
PUSH DE 
.IDE_WAIT_R_LOOP 
LD C,IDE_STATUS      
CALL IDE_RD_8           ;read status register to E 
LD A,E                  ;return status in A 
RL E                    ;bit 7 to carry 
JR C IDE_WAIT_R_LOOP    ;wait for BSY to be clear 
RL E                    ;bit 6 to carry 
JR NC IDE_WAIT_R_LOOP   ;wait for RDY to be set 
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POP DE 
POP BC 
RET 

Wait for data and wait for ready both check the busy flag first, as the other flags aren’t guaranteed to be 
accurate if the device is busy. 

        ;Wait for the drive to be ready to transfer data. 
        ;Returns the drive's status in A 
.IDE_WAIT_DRQ 
PUSH BC 
PUSH DE 
.IDE_WAIT_D_LOOP 
LD C,IDE_STATUS      
CALL IDE_RD_8           ;read status register to E 
LD A,E                  ;return status in A 
RL E                    ;bit 7 to carry 
JR C IDE_WAIT_D_LOOP    ;wait for BSY to be clear 
RL E                    ;bit 6 to carry 
RL E                    ;bit 5 to carry 
RL E                    ;bit 4 to carry 
RL E                    ;bit 3 to carry 
JR NC IDE_WAIT_D_LOOP   ;wait for DRQ to be set 
POP DE 
POP BC 
RET 

 
The final 2 routines read and write the IDE registers, there are 8 bit transfers in the low byte, the upper 
byte is meaningless. Being an 8 bit transfer, it’s much simpler than the data transfer. 

 
;8 bit read of IDE register 
;Data in E, (D unused in 8 bit transfer)  
;register number in C 
;8255 in input mode by default 
 
.IDE_RD_8 
PUSH AF 
LD A,C 
OUT (IDE8255_CTL),A  ;set the register & chip select bits 
OR IDE_RD_LINE 
OUT (IDE8255_CTL),A  ;drive the read line low 
IN A,(IDE8255_LSB) 
LD E,A 
LD A,C 
OUT (IDE8255_CTL),A  ;drive the read line high again,  

;completing the write cycle 
xor A 
out (IDE8255_CTL),A  ;deselect everything 
POP AF 
RET 
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;8 bit write to IDE register 
;Data in E, (D unused in 8 bit transfer)  
;register number in C 
 
.IDE_WR_8 
PUSH AF 
LD A,IDE8255_WRITE  ;set the 8255 to output mode 
OUT (IDE8255_CFG),A 
LD A,E 
OUT (IDE8255_LSB),A  ;put the low 8 bits onto the bus 
LD A,C 
OUT (IDE8255_CTL),A  ;set the register & chip select bits 
OR IDE_WR_LINE 
OUT (IDE8255_CTL),A  ;drive the write line low 
LD A,C 
OUT (IDE8255_CTL),A  ;drive the write line high again,  

;completing the write cycle 
xor A 
out (IDE8255_CTL),A  ;deselect everything 
LD A,IDE8255_READ 
OUT (IDE8255_CFG),A  ;set the 8255 back to read mode 
POP AF 
RET 

 
As with the data transfer, register writing is factionally slower the reading because of the default to 
reading the PPI 

9.2.2 CFX Support Software 
In addition to providing the extensions to BASIC via the USER command in the same way that the 
original SDX did, CFX also has a start-up screen. Unlike Magrom that screen uses text mode, however 
there are enough unused character definitions that I was able to include a small logo. 

;TITLE CFX Extras 
;Code specific to the CFX Expansion 
;let the world know the expansion is working 
.Signon 
RST  &28       ; Utility routine 
DB   &42       ; call VDINIT   (&2E85) 

As with Magrom, the rom is called before the screen is set up so the utility routine that sets things up 
has to be called early 

XOR  A 
LD   (SCRN5+3),A 
LD   A,&28 
LD   (SCRN5+5),A 

The screen has to be set to the full 40 column width, BASIC usually only uses 39 because of the 
positioning issues of the TMS9929. If these values are left unchanged there’s a possibility of garbage not 
being cleared from the screen on reset. 

RST  &10       ; output routine 
DB   &4D      ; select VS5 and clear 
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call killsnd  ;rom routine to turn off all sound channels 
Again, as with Magrom the sound chip needs muting. 

RST &10 
DB &84 
DB 6,15 
DB 4,4 

The RST 10 call sets the screen colours to the darker blue background with white text. The logo is then 
printed before the rest of the screen display is generated. 

call logo 
RST &10 
DB &92 
DB 3,1,0 
DS "Memotech MTX" 
DB 3,1,2 
call print_mem_size 
RST &10 
db &84 
DS " RAM" 
RST &10 
DB &9C 
DB 3,1,4 
DS "Compact Flash File System" 
RST &10 
db &8e           ;3 for the cursor positioning + 11 byte date  

 ;string inserted = 14 &0E 
DB 3,29,4 
DATE 
RST &10 
db &8e           ;3 for the cursor positioning 6 for the text + 5  

 ;for the string input by BUILD = 14 &0E 
DB 3,29,3 
DS "Build " 
BUILD 
call beep 
RST &10 
DB &9C 
DB 3,1,6 
DS "Searching for boot drive:" 
ret 
 

At this point control passes back to the boot code where the CF is checked and set up 

WFS which used to be “Wait for Space” is called after the CF status message is printed, and build the 
rest of the screen. 

.wfs 
push af 
RST &10 
DB &B6 
DB 3,1,10 
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DS "Other boot options:" 
 
DB &B9 
DB 3,1,12 
DS "Reset C     - CPM mode" 
 
DB &B9 
DB 3,1,13 
DS "Reset M     - MTX mode" 
 
DB &B0 
DB 3,1,14 
DS "Reset Space -" 
DB &B7 
DS " start Magrom if fitted" 
 
DB &AF 
DB 3,6,18 
DS "Press <RET> " 
DB &B2 
DS "to enter SDX BASIC" 
 
DB &AD 
DB 3,6,20 
DS "Press <I> " 
DB &94 
DS "for more information" 
 
.wfs_loop 
ld a,&FB 
OUT (5),A 
IN A,(5) 
AND &10 
call Z info_screen 
 
LD A,&DF 
OUT (5),A 
IN A,(5) 
AND &40 
jr nZ wfs_loop 
pop af 
ret  

The wait loop repeatedly tests the keyboard hardware directly for “I” and return. If “I” is pressed the 
info screen displays, return from either the info screen, or the boot screen will pass control back to the 
boot code, and then the rest of the BASIC start-up sequence 

 
.info_screen 
ld HL,screen_data 
ld a,12 
.screen_loop 
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RST &28 
DB &AC 
ld a,(hl) 
INC HL 
and &7f 
jr nz screen_loop 
ret 

The info screen is just pushed to the VDU drive 1 byte at a time until the whole page is displayed. It exits 
when the zero byte at the end is found. 

.screen_data 
DS "SDX Basic additional commands:" 
DB 13,10 
DS "USER DIR" 
DB 13,10 
DS "USER LOAD ¢FILENAME.EXT¢" 
DB 13,10 
DS "USER SAVE ¢FILENAME.EXT¢" 
DB 13,10 
DS "USER READ ¢FILENAME.EXT¢,start" 
DB 13,10 
DS "USER WRITE ¢FILENAME.EXT¢,start,length " 
DB 13,10 
DS "USER MTX ¢FILENAME.MTX¢" 
DB 13,10 
DS "USER RUN ¢FILENAME.RUN¢" 
DB 13,10 
DS "USER ERA ¢FILENAME.EXT¢" 
DB 13,10 
DS "USER REN ¢NEWNAME.EXT¢=¢OLDNAME.EXT¢" 
DB 13,10 
DS "USER COPY ¢NEWFILE.EXT¢=¢OLDFILE.EXT¢" 
DB 13,10 
DS "USER STAT ¢<drive>:¢ or ¢FILENAME.EXT¢" 
DB 13,10 
DS "USER OPEN#channel,¢FILENAME.EXT¢,type" 
DB 13,10 
DS "USER CLOSE#channel" 
DB 13,10 
DS "USER KILL#channel" 
DB 13,10 
DS "USER PRINT#channel,variable list" 
DB 13,10 
DS "USER INPUT#channel,variable list" 
DB 13,10 
DS "USER LINE INPUT#channel,variable" 
DB 13,10 
DS "USER REC#channel,record number" 
DB 13,10 
DS "USER EOF#channel,line number" 
DB 13,10 
DS "USER TYPE ¢FILENAME.EXT¢" 
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DB 13,10 
DS "USER QUIT  (perform a NEW)" 
DB 13,10 
DS "ROM 5      (reset the CF)" 
DB 13,10 
DS "Press <RET> to continue into SDX BASIC" 
DB 0 
 

The 32 bit math routine used to calculate and print the memory size do the job, but are horribly 
inefficient and wasteful. They’re a remnant of the original MTXplus+ FAT32 code that really should have 
been replaced with a short look up table. There are after all only 16 possible memory sizes. 

 
.print_mem_size 
push hl 
push af 
ld a,(lstpg)        ;number of RAM pages found on startup  
inc a               ;add 1 for the fixed page 
ld (math_b),a       ;extend to 32 bit number in math register 
xor a 
ld (math_b+1),a 
ld (math_b+2),a 
ld (math_b+3),a 
ld a,5 
ld hl,math_b 
call shift_32       ;multiply by 32, as 32k per page 
call bin_to_dec 
call print_decimal 
LD a,+ASC"K" 
RST &28 
DB &AC 
pop af 
pop hl 
RET 
 
.print_decimal 
push hl 
push bc 
push af 
ld hl,workspace+-1 
;print the number in the workspace, skipping leading zero's 
;HL is pre-incremented so that the pointer is in the correct 
;place on the fall through into printing, hence the -1 above 
ld B,10 
.p_dec1 
inc hl 
ld a,(hl) 
cp +ASC"1" 
JR HS p_dec2 
djnz p_dec1 
;if we get to here all 10 digits were Zero's and B is 0 
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.last_digit 
inc B           ;so set B back to one (inc is shorter &  

;faster) so that at least one digit is printed 
.p_dec2 
RST &28         ;A holds the first digit on entry so start 
DB &AC          ;with the printing 
inc HL 
ld a,(hl)       ;load next digit wasted on final pass but makes  
                ;for short code 
djnz p_dec2 
pop af 
pop bc 
pop hl 
RET 
 
 
; 32 bit math constants 
.one 
EQUD 1 
.ten 
EQUD 10 
.hundred 
EQUD 100 
.thousand 
EQUD 1000 
.tenK 
EQUD 10000 
.hundredK 
EQUD 100000 
.oneM 
EQUD 1000000 
.tenM 
EQUD 10000000 
.hundredM 
EQUD 100000000 
.oneG 
EQUD 1000000000 
 
.two 
EQUD 2 
 
;Binary to decimal, of Math_b to workspace 
;limited to 2^31 or smaller  
.bin_to_dec 
PUSH HL 
PUSH BC 
PUSH AF 
;fill workspace with 10 ascii zero's 
ld hl,workspace+10 
ld b,10 
.bin_dec1 
dec HL               ;fill backwards so that HL finishes pointing 
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;to the start of the workspace 
ld (hl),+ASC"0" 
DJNZ bin_dec1 
;setup the alternate registers for the math pointers 
exx 
ld DE,oneG 
ld HL,math_b 
ld BC,math_B 
exx 
;LD HL, workspace    ;not needed now the fill counts down. 
ld B,9              ;loop down as far as 10's last digit can be  

;done with an add 
.bin_dec2 
exx 
call sub_32 
exx 
ld a,(math_b+3) 
add A,A            ;if the high byte is negative it's overflowed 
jr C add_back      ;shift sign to carry as no JR on minus 
inc (hl)           ;no overflow so increment the binary digit 
jr bin_dec2 
 
.add_back 
exx 
call add_32 
dec de             ;move DE' to the next lower digit before 
returning to 
dec de             ;the main register set 
dec de 
dec de 
exx 
inc HL             ;move on to the next ASCII digit 
DJNZ bin_dec2 
ld a,(math_b)      ;get the last digit 
add a,+ASC"0"      ;convert to ASCII 
ld (HL),A          ;and store, pointer already incremented 
pop AF 
POP BC 
POP HL 
RET 
 
; ##### Integer math routines ##### 
; all use pointers in one or more register pairs, to 4 byte 
little endian values.     
 
;(BC)=(HL)+(DE) 
.add_32 
push HL 
push DE 
PUSH BC 
PUSH AF 
ld a,(DE) 
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add a,(HL) 
ld (BC),A 
inc HL 
INC DE 
INC BC 
ld a,(DE) 
adc a,(HL) 
ld (BC),A 
inc HL 
INC DE 
INC BC 
ld a,(DE) 
adc a,(HL) 
ld (BC),A 
inc HL 
INC DE 
INC BC 
ld a,(DE) 
adc a,(HL) 
ld (BC),A 
pop af 
pop bc 
pop de 
pop hl 
ret 
 
 
; (BC)=(HL)-(DE) 
.sub_32 
push HL 
push DE 
PUSH BC 
PUSH AF 
EX DE,HL       ;swap the pointers as there's no "SUB A,(DE)" type 
commands 
ld a,(DE) 
sub (HL) 
ld (BC),A 
inc HL 
INC DE 
INC BC 
ld a,(DE) 
sbc a,(HL) 
ld (BC),A 
inc HL 
INC DE 
INC BC 
ld a,(DE) 
sbc a,(HL) 
ld (BC),A 
inc HL 
INC DE 
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INC BC 
ld a,(DE) 
sbc a,(HL) 
ld (BC),A 
pop af 
pop bc 
pop de 
pop hl 
ret 
 
;"A" bit shift left of (HL) used in cluster to sector calculatons 
.shift_32 
push AF 
.shift32_loop 
push HL 
SLA (HL) 
inc hl 
RL (HL) 
inc hl 
RL (HL) 
inc hl 
RL (HL) 
pop hl 
dec a 
jr nz shift32_loop 
pop AF 
ret 
  

The Magrom start up with a simple 2 tone beep. CFX is much more orchestral, it plays 5 notes on start-
up! Anyone that hasn’t had a “close encounter” with a CFX will have to guess what they might be 
(Dreadful pun I know) 

 
.beep 
push hl 
push IX 
push BC 
LD IX,TONES 
LD B,5 
.Beep_note 
ld L,(IX+0) 
LD H,(IX+1) 
ld c,(IX+2) 
call beep_hl 
.beep_loop 
call CF_delay 
dec C 
jr nz beep_loop 
INC IX 
INC IX 
INC IX 
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call killsound 
call CF_delay 
DJNZ beep_note 
POP BC 
pop IX 
pop hl 
ret 
 
.TONES 
DW 319 
DB 30 
DW 284 
DB 30 
DW 358 
DB 30 
DW 716 
DB 30 
DW 478 
DB 45 
 
;unlike the rom routine this one only silences channel 0 
.killsound 
PUSH AF 
LD A,&9f          ; ATTENUATION OFF TONE 1 
OUT (6),A 
IN A,(3) 
POP AF 
RET 
 
;”beep” code from the Magrom 
.beep_hl 
push AF 
push BC 
LD A,L 
AND &0F 
OR &80 
call safe_sound          ; SEND TONE 1 + 4 BITS OF FREQUENCY 
LD A,L 
SRL A 
SRL A 
SRL A 
SRL A 
LD C,A 
LD A,H 
SLA A 
SLA A 
SLA A 
SLA A 
OR C 
AND &3F                  ; REMAINING 6 OF THE 10 BITS OF 
FREQUENCY 
call safe_sound 
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LD A,&90                 ; ATTENUATION 0DB TONE 1 
call safe_sound 
pop bc 
pop AF 
RET 
 
 
.Safe_sound 
OUT (6),A 
IN A,(3) 
ex (SP),HL 
ex (SP),HL 
RET 

There are 40 free character definitions that could be used to create the logo, code 0 to 31 which aren’t 
used in the displayable part of the ASCII character set and 248 to 255 which is the last 64 bytes of the 
memory where the text screen and character definitions overlap but is beyond the end of the 24th row. 

The logo is 11 characters wide by 2 high, giving a 66 by 16 resolution, as in text mode each character is 6 
by 8 pixels.  

.logo 
LD a,&00 
out (2),a 
ld a,&58 
out (2),a 
ld HL,character_data 
ld B,176 
.logo_loop 
ld a,(hl) 
inc HL 
out (1),A 
djnz logo_loop 
 
Ld a,69 
out (2),a 
ld a,&5c 
out (2),A 
ld a,1 
call do_logo_row 
 
Ld a,29 
out (2),a 
ld a,&5c 
out (2),A 
ld a,0 
.do_logo_row 
ld b,11 
.logo_loop2 
out (1),a 
inc a 
inc a 
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djnz logo_loop2 
ret 

Character data is declared in binary as that allowed the pixels to “drawn” without having to convert to 
Hex or decimal. During testing the logo was adjusted up one row, and rather than re-format everything, 
the first byte was simply moved from the start to the end. 

 
.character_data 
DB %11111100 
DB %00000000 
DB %00111100 
DB %01111100 
DB %11100000 
DB %11000000 
DB %11000000 
DB %11000000 
DB %11000000 
DB %11000000 
DB %11100000 
DB %01111100 
DB %00111100 
DB %00000000 
DB %11111100 
    
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %10011100 
DB %11011100 
DB %11011000 
DB %00011000 
DB %00011000 
DB %00011100 
DB %00011100 
DB %00011000 
DB %11011000 
DB %11011000 
DB %10011000 
DB %00000000 
DB %11111100 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %11111000 
DB %11111000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %11100000 
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DB %11100000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %11111100 
 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %11000000 
DB %11100000 
DB %01110000 
DB %00111000 
DB %00011100 
DB %00001100 
DB %00011100 
DB %00111000 
DB %01110000 
DB %11100000 
DB %11000000 
DB %00000000 
DB %11111100 
 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %00011000 
DB %00111000 
DB %01110000 
DB %11100000 
DB %11000000 
DB %10000000 
DB %11000000 
DB %11100000 
DB %01110000 
DB %00111000 
DB %00011000 
DB %00000000 
DB %11111100 
 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
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DB %01110000 
DB %10001000 
DB %10000000 
DB %01110000 
DB %00001000 
DB %10001000 
DB %01110000 
DB %00000000 
DB %11111100 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %10001000 
DB %10001000 
DB %10001000 
DB %01110000 
DB %00100000 
DB %00100000 
DB %00100000 
DB %00000000 
DB %11111100 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %01110000 
DB %10001000 
DB %10000000 
DB %01110000 
DB %00001000 
DB %10001000 
DB %01110000 
DB %00000000 
DB %11111100 
 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
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DB %11111000 
DB %00100000 
DB %00100000 
DB %00100000 
DB %00100000 
DB %00100000 
DB %00100000 
DB %00000000 
DB %11111100 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %11111000 
DB %10000000 
DB %10000000 
DB %11100000 
DB %10000000 
DB %10000000 
DB %11111000 
DB %00000000 
DB %11111100 
 
 
DB %00000000 
DB %11111100 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %00000000 
DB %10000100 
DB %11001100 
DB %10110100 
DB %10000100 
DB %10000100 
DB %10000100 
DB %10000100 
DB %00000000 
DB %11111100 
 
DB %00000000 
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9.2.3 CFX CPM Screen Driver 
CPM traditionally used an 80 column by 24 or 25 row display. The VDP in the MTX has only 2 display 
options 40 by 24 or 32 by 24, and because of screen positioning issues on a typical TV of the era even 
those ranges weren’t fully visible. 

For CPM mode the CFX there were 2 basic options, use the text display, and ignore the first column for a 
39 x 24 display that would be visible on most screens. Or use the 256 pixel wide graphics display and 
reduced size character matrix to squeeze in more columns. The graphics modes have the same 
positioning issues that text mode has so the first few pixels are ignored with 250 or so visible. 

To fully form all the characters, a minimum of 5 pixels are required (“m” or “w”), plus a pixel for spacing 
between characters gives you the same spacing that text mode uses, so there is nothing to be gained 
switching to graphics mode. To make room for more characters some of the clarity has to go. 

Programming wise, using half a character is a lot easier than any of the other options so I designed a 3 
pixel wide set of characters, readability isn’t great, but it is good enough to use short term. 

On my test screen 31 of the 32 columns were usable, so I settled for 62 columns. For the maximum 
performance I decided not to update the colours, the resulting display being mono. 

All the CPM hardware drivers (Video, keyboard and Storage) have to fit into 4k at the top of the memory 
map. Space is sufficiently tight that there isn’t room to store 256 character definitions within the driver 
so the driver switches the ROM back in every time a character is drawn. With there be less restrictions 
on rom space where 8k is available, characters are stored twice in each 8 byte definition, the driver then 
picks the left or right half when printing. 

The driver is a very heavily modified version of the original FDX screen driver. The original programmer 
used self-modifying to handle multi byte commands and selectable fonts. That code is all still present, 
though some of it is redundant given the reduced capabilities of the display compared to the FDX. 

; ####### VDP OUTPUT ENTRY POINT ###### 
.VDU_OUTPUT 
PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 
push ix 
push iy 
LD   HL,v_exit 
PUSH HL 
CALL killcur 
.jp_vec 
JP   initl 

 

The main entry point is modified after the first call, so that instead of jumping to “initl” it jumps to 
“Crtgo” instead. Basically, the first time the driver is called, it resets/clears the screen without being 
explicitly told to do that.  
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For the CFX I had to add in the additional code to save the index registers, the original driver didn’t need 
to do that as it only used the 8080 compatible registers. That required corresponding changes to the exit 
routine. Because the driver is run from ram, the local storage is embedded into the code. 

.ascr 
DB &20 
.v_attr 
DB &02 
.scrflg 
DB &01 
.pratr 
DB &02 
.npatr 
DB &02 
.wrmsk 
DB &E0 
.xloc 
DB &00 
.yloc 
DB &00 
.csr_flag 
DB &FF 
 
; jump table for printing control codes 
.ctab 
DW      DUMMY   ; ^@ 
DW      DOTDO   ; ^A 
DW      VCTDO   ; ^B 
DW      CXYDO   ; ^C 
DW      BKGSET  ; ^D 
DW      EOLDO   ; ^E 
DW      ATRSET  ; ^F 
DW      BELDO   ; ^G 
DW      BSDO    ; ^H 
DW      TABDO   ; ^I 
DW      LFDO    ; ^J 
DW      UPDO    ; ^K 
DW      CLRDO   ; ^L 
DW      CRDO    ; ^M 
DW      BLSET   ; ^N 
DW      BLOFF   ; ^O 
DW      COLSET  ; ^P 
DW      COLSET  ; ^Q 
DW      COLSET  ; ^R 
DW      COLSET  ; ^S 
DW      COLSET  ; ^T 
DW      COLSET  ; ^U 
DW      COLSET  ; ^V 
DW      COLSET  ; ^W 
DW      INITLZ_CRT  ; ^X 
DW      FWDDO   ; ^Y 
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DW      HMEDO   ; ^Z 
DW      ESCDO   ; ^[ 
DW      SCRSET  ; ^\ 
DW      PGESET  ; ^] 
DW      CSSET   ; ^^ 
DW      CSOFF   ; ^_    
 

First call entry point, save the character code then clear the screen, before restoring the character and 
changing the jump vector, which is all original code. 

.initl 
PUSH BC 
CALL clrdo 
POP  BC 
LD   HL,crtgo 
LD   (jp_vec+1),HL 
.crtgo 
LD   A,C 
AND  &E0 
JR   Z,ctrl_code 
 

Once the original code has detected a control character, the modified printing routine takes over. The 
62 column driver does not have hardware scroll or a hardware cursor like the FDX so jumps direct to 
print the character, and move the cursor forward before exiting through the pre-stacked routine. 

;       PRINTABLE CHARACTER in C 
;.frig1 
;CALL dummy        ;code only needed with selectable fonts 
call do_print 
CALL FWDDO 
RET              ;jump to exit via stacked value above 
 
.v_exit 
;CALL xycalc 
CALL setcur 
pop iy 
pop ix 
POP  HL 
POP  DE 
POP  BC 
POP  AF 
RET 

 

The characters are stored in rom as 8 consecutive bytes, with identical left and right halves. Once the 
location of the character is calculated, the rom is temporarily paged in, and all 8 bytes copied to a 
temporary buffer. 

The screen address is then calculated, and the 8 screen bytes are also copied into the buffer. Because of 
the VDP’s auto incrementing pointer, copying all 8 bytes this way, then writing all 8 modified bytes back 
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saves having to keep re-setting the VDP pointer, It only has to be done twice, instead of the 16 times 
that a byte by byte update would require.  

;print the character in the "c" register 
.do_print 
;calculate character position character map starts at &2800 in 
rom 4 
ld H,5 
ld L,C          ;HL =&0500 + "C" 
add hl,hl       ;    &0A00 + C*2 
add hl,hl       ;    &1400 + C*4 
add hl,hl       ;    &2800 + C*8 
ld de, scroll_buff 
ld BC,8 
;move 8 bytes of character data into temporary storage 
;no interrupts for this bit as the rom has to be paged in 
DI 
ld a,&40 
out (0),A     ;page in ROM 4 
LDIR 
ld a,&80 
out (0),A     ;back to CPM mode 
EI 

Notice that interrupts are disabled while the memory map is changed, just in case. In theory nothing in 
the standard CPM system is using interrupts, but that doesn’t mean user software can’t. 

;next grab the 8 bytes off the screen into the next 8 bytes 
push DE 
call xycalc 
call set_read 
pop DE          ;push pop is shorter than re-loading DE with 

; buffer+8 
ld b,8 
.char_data_loop 
in a,(1) 
ld (de),A 
inc DE 
djnz char_data_loop 
call set_write  ;re-set the VDP pointer before moving on to  

;the next bit of code 
To do the actual printing D and E are used as masks for speed they only need to be set up once per 
character. 

; now work out if we want the left or right hand side of the 
character 
ld a,(xloc) 
and 1 
jr z plot_even 
;plot_odd 
ld de,&F00F           ;left side of new character and right side  

;of onscreen character 
jr plot 
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.plot_even 
ld de,&0FF0           ;right side of new character and left side  

;of onscreen character 
With the mask data set up the character data is read in from the buffer and one half blanked. The screen 
data is read, and has the other side blanked. The 2 halves are then re-combined and sent to the VDP 

.plot 
ld ix,scroll_buff 
ld b,8 
.plot_loop 
ld a,(IX+0) 
and E 
ld C,A 
ld a,(IX+8) 
and D 
or C 
out (1),a 
inc IX 
djnz plot_loop 
RET 
 

The original code to jump to the control code vector is used unchanged. There are 32 possible control 
codes, so HL is set to point to the start of the table, DE is then formed as control code value x 2 and 
added to HL to get a pointer to the start of the vector, that address is then read and transferred to HL 
when it’s entered via the indirect jump. The secondary control code table linked to the escape character 
(#1B) is accessed the same way. 

;       CONTROL CODE 
.ctrl_code 
LD   HL,ctab 
LD   D,&00 
LD   A,C 
ADD  A,C 
LD   E,A 
ADD  HL,DE 
LD   A,(HL) 
INC  HL 
LD   H,(HL) 
LD   L,A 
JP   (HL) 
 
.escdo 
CALL frigit          ;redirect VDU stream 
LD   A,C 
CP   &20 
JR   C,v_normal 
AND  &1F 
ADD  A,A 
LD   HL,esctab 
LD   E,A 
LD   D,&00 
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ADD  HL,DE 
LD   A,(HL) 
INC  HL 
LD   H,(HL) 
LD   L,A 
JP   (HL) 

The cursor XY code is also as per the FDX, so each the XY position data is offset by 32. Invalid cursor 
positions are silently filtered out by the checks against the screen dimensions. The don’t generate any 
errors. 

 
;cursor X,Y invalid values ignored 
.cxydo 
CALL frigit          ;redirect VDU stream 
LD   A,C 
SUB  &20 
AND  &7F 
CP   display_width 
JR   NC,cxskip 
LD   (xloc),A         
.cxskip 
CALL frigit          ;redirect VDU stream 
LD   A,C 
SUB  &20 
AND  &7F 
CP   screen_rows 
JR   NC,cyskip 
LD   (yloc),A 
.cyskip 
 

The self-modifying code uses 2 main routines, one to move the call pointer into the required subroutine, 
the other to put it back to the main entry point. The cursor XY code falls through onto the return to 
normal routine on exit. 

;this section returnes the VDU stream to normal after assembling 
a multi byte command 
.v_normal 
LD   HL,crtgo 
LD   (jp_vec+1),HL 
RET 
 
;set the VDU stream to code following the call to frigit, for 
assembling multi byte commands 
.frigit 
POP  HL 
LD   (jp_vec+1),HL 
RET 
 

To maintain as much compatibility with the FDX display as possible, the modified drive will accept all the 
original control codes, it just ignores the codes it doesn’t support. The attribute code is unchanged from 
the FDX, the internal values etc are updated, but nothing in the driver makes use of the values saved. 
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;character background not setable on V9958, so code does nothing 
.bkgset 
CALL frigit          ;redirect VDU stream 
LD   A,C 
AND  &07 
RLCA 
RLCA 
RLCA 
LD   C,A 
LD   A,(pratr) 
AND  &C7 
OR   C 
LD   (pratr),A 
LD   A,(npatr) 
AND  &C7 
OR   C 
LD   (npatr),A 
JP   v_normal 
 
;no attributes on 9928 code does nothing 
.atrset 
CALL frigit          ;redirect VDU stream 
LD   A,C 
LD   (pratr),A 
LD   (npatr),A 
JP   v_normal 

The FDX 80 column board has a 2nd character rom that defines a set of 2 x 4 block characters for low 
resolution plotting and line drawing. The original code to assemble the plot or draw command is 
retained, but no output is produced, as there is no equivalent of the block graphics on CFX. 

; no bitmap character set on the 9928 setup so plot and draw 
disabled 
; swallow the character codes to maintain compatibility 
.dotdo 
CALL frigit          ;redirect VDU stream 
LD   A,C 
SUB  &20             ;&20 byte offset in plot commands 
LD   (initl),A        ;save first perameter 
CALL frigit          ;redirect VDU stream again 
LD   A,C 
;SUB  &20 
LD   H,A             ;2nd parameter 
LD   A,(initl) 
LD   L,A 
;CALL plotd 
JP   v_normal          ;reset stream 
 
.vctdo 
CALL frigit 
LD   A,C 
SUB  &20 
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LD   (initl),A 
CALL frigit 
LD   A,C 
SUB  &20 
LD   (initl+1),A 
CALL frigit 
LD   A,C 
SUB  &20 
LD   (initl+2),A 
CALL frigit 
LD   A,C 
SUB  &20 
LD   C,A 
;CALL plotv 
JP   v_normal 

Although a lot of the display commands aren’t supported, the screen init code and blink on/off are 
included more or less unchanged. 

.initlz_crt 
LD   A,&FF 
LD   HL,scrflg 
LD   (HL),&FF 
INC  HL 
LD   (HL),&02 
INC  HL 
LD   (HL),&02 
INC  HL 
LD   (HL),&E0 
CALL    CSSET 
CALL    CRDO 
CALL    LFDO 
ret  
;JP      ESTD 
 
;blink on and off not used, as no character level attributes 
 
.blset 
LD   A,(pratr) 
OR   &40 
LD   (pratr),A 
RET 
 
.bloff 
LD   A,(pratr) 
AND  &BF 
LD   (pratr),A 
RET 

Cursor on/off is supported, the character printing routine updates the cursor on exit, and will use the 
value stored here to decide whether to make it visible or not. 

;no hardware cursor on 9928 in text mode 
;turn cursor on value will be used as bit mask 
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.csset 
ld a,&FF 
ld (csr_flag),a 
RET 
 
.csoff 
xor a 
ld (csr_flag),a 
RET 
 

Scroll mode code, is a simple on/off switch that gets checked on row 24 of the display. The screen will 
with scroll and stay on row 24, or reset to zero. 

;scroll flag is 0 for page mode (no scroll) 
.scrset 
LD   A,&FF 
LD   (scrflg),A 
RET 
 
.pgeset 
XOR  A 
LD   (scrflg),A 
RET 
 
; 9928 does not support individual charater attributes in text 
; mode, so this code does nothing 
.colset 
LD   A,C 
AND  &07 
LD   C,A 
LD   A,(pratr) 
AND  &F8 
OR   C 
LD   (pratr),A 
RET 
 

The control codes for positioning the cursor have been tweaked a little from the original Memotech 
code, greater use is made of falling through from one routine to the next where possible to improve 
performance. 

; carriage return just sets the X location back to zero 
; return used for dummy entry point for the nul codes 
.crdo 
XOR  A 
LD   (xloc),A 
.dummy 
RET 
 
 
; tab forward by setting the low bits of the x location then drop 
into cursor right 
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.tabdo 
LD   A,(xloc) 
OR   &07 
LD   (xloc),A 
.fwddo 
LD   A,(xloc) 
CP   display_width+-1 
JR   Z,fwdl 
INC  A 
LD   (xloc),A 
RET 
 
; need to go down a line so reset x to zero and drop through into 
cursor down 
.fwdl 
XOR  A 
LD   (xloc),A 
.lfdo 
LD   A,(yloc) 
CP   &17           ; are we on the 24th row (rows are 0-23)  
JR   Z,LFS         ;jump forward to test the scroll flag 
INC  A 
.pagem 
LD   (yloc),A 
RET 
 
.lfs 
LD   A,(scrflg) 
OR   A 
JR   Z,pagem      ;set Y back to the top of the screen if it's  

  ;page mode 
CALL scrup        ;otherwise scroll up, leaving Y as 23 
RET 

The FDX uses hardware so sound an on-board buzzer, for the CFX the PSG has to be used instead, and so 
a short tone is played on channel 1 

; "DING" 
;"beep" code from the Magrom 
.beldo  
push AF 
push BC 
push hl 
ld HL, 284 
LD A,L 
AND &0F 
OR &80 
call s_sound          ; SEND TONE 1 + 4 BITS OF FREQUENCY 
LD A,L 
SRL A 
SRL A 
SRL A 
SRL A 
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LD C,A 
LD A,H 
SLA A 
SLA A 
SLA A 
SLA A 
OR C 
AND &3F                  ; REMAINING 6 OF THE 10 BITS OF 
FREQUENCY 
call s_sound 
LD A,&90                 ; ATTENUATION 0DB TONE 1 
call s_sound 
ld bc,00A0 
.delay_loop 
djnz delay_loop 
dec c 
jr nz delay_loop 
;kill sound 
LD A,&9f          ; ATTENUATION OFF TONE 1 
call s_sound 
pop hl 
pop bc 
pop AF 
RET 
 
;send data to sound port with delay to guarantee sound chip time 
to load it.  
.S_sound 
OUT (6),A 
IN A,(3) 
ex (SP),HL 
ex (SP),HL 
RET 
 
 
;non clearing backspace 
.bsdo 
LD   A,(xloc) 
OR   A 
JR   Z,bsu 
DEC  A 
LD   (xloc),A 
RET 
 
;backspace needs to go up a line 
.bsu 
LD   A,display_width+-1  
LD   (xloc),A 
LD   A,(yloc) 
OR   A 
JR   Z,bss 
DEC  A 
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LD   (yloc),A 
RET 
 
;we’re already at 0,0 so need to put the x position back to 0 
.bss 
;   XOR  A    ; not needed A was 0 or we wouldn't be here? 
LD   (xloc),A 
RET 
 
;cursor up    
.updo 
LD   A,(yloc) 
OR   A 
ret  Z             ;can't go up from top row 
DEC  A 
LD   (yloc),A 
RET 
 
.clrdo 
CALL clrscn     ;clear the screen and fall through into home to  

;set the cursor 
.hmedo 
XOR  A 
LD   (xloc),A 
LD   (yloc),A 
RET 
 

Erase line, temporarily sets the start of the line to zero, then calls erase to the end of the line routine, 
before restoring the cursor position withing the line – all original code. 

.erln 
LD   A,(xloc) 
PUSH AF 
XOR  A 
LD   (xloc),A 
CALL eoldo 
POP  AF 
LD   (xloc),A 
RET 
 
.eoldo 
CALL xycalc 
LD   A,(xloc) 
LD   B,A 
JP   erase_eol 

Most of the “utilities” from the original code deal with the alternate character mops, which aren’t 
supported. 

;       UTILITIES 
 
.grpmap 
LD   A,C 
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AND  &7F 
LD   C,A 
AND  &40 
RET  Z 
LD   A,C 
AND  &20 
RLCA 
RLCA 
OR   C 
AND  &9F 
LD   C,A 
RET 
 
.altmap 
LD   A,C 
OR   &80 
LD   C,A 
RET 
 
.getmsk 
LD   A,C 
CP   &30 
JR   NZ,getbit 
XOR  A 
RET 
 
.getbit 
DEC  A 
AND  &07 
LD   C,A 
CALL ncalc 
OR   A 
RET 

To meet the different VDP set-up requirements for reading and writing to the VRAM, there is one 
routine for each type of VRAM access 

 
; set the VRAM pointer to HL for reading and writing respectively 
.set_read 
push AF 
ld a,L          ;setup VDP address 
out (2),a 
and &3f 
ld a,h          ;bit 6 and 7 clear for VRAM read 
out (2),a 
pop AF 
ret 
 
.set_write 
push AF 
ld a,L          ;setup VDP address 
out (2),a 
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ld a,h          ;set bit 6, bit 7 clear for VRAM write 
or &40 
out (2),A 
pop AF 
ret 

The 6845 on the FDX 80 column board has a built-in support for a hardware cursor. To provide 
something similar on the VDP means using a sprite. The cursor on code will always set the sprite to the 
cursor position. If the cursor is off its colour is set to transparent. If it’s on, the colour is set to white. The 
code is capable of sending data faster than the VDP can accept it, so a delay is added to every access to 
make sure the timing requirements are met. 

 
;cursor on/off needs to preserve registers as is called before 
any VDU output 
;uses sprite 0, pattern 0,  
.setcur 
push hl 
push DE 
push af 
ld HL,&3f00 
call set_write 
ld a,(yloc)          
add a,a 
add a,a 
add a,a 
sub 2 
CALL OUTA           ;send sprite Y 
ld a,(xloc) 
add a,2             ;not using first column 
add a,a 
add a,a 
CALL OUTA           ;send Sprite X 
ld a,0 
CALL OUTA           ;send sprite number 
ld a,(csr_flag)     ;get the cuersor flag 
and &0f             ;and with the colour, resulting in a  

    ;transparent sprite if the flag is zero 
CALL OUTA           ;send sprite colour 
pop af 
pop DE 
pop hl 
RET 
 
;USE CALL RETURN TO DELAY SCREEN ACCESSES 
.OUTA 
OUT (1),A 
RET 

The cursor off routine disables sprite processing by setting the sprite vertical position to 208, which is a 
“magic number” that in addition to being off screen since there are only 192 displayed rows, is also used 
as an off switch by the VDP for the sprite processing for that frame. 
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.killcur 
push hl 
push DE 
push af 
ld HL,&3f00 
call set_write 
ld a,208         ; set vertical position to "stop sprite 

 ; processing" 
out (1),a 
pop af 
pop DE 
pop hl 
RET 

The screen x,y position calculator has 2 entry points, the main one, and a secondary one where the DE 
pair already holds the cursor position. The routine is remarkably simple. Because the screen is 32 rows, 
of 8 bytes, there are 256 bytes per row, meaning there is no need for any row calculation, the value can 
be used directly. 

The position within the row, has 2 characters sharing each block of 8 bytes, requiring the lowest bit to 
be discarded. The modified value has to be multiplied by 4 (as there are 8 bytes per pair of character 
positions). If the display were to be tuned to use 60 characters, ignoring the first 2 columns, then the 
offset would increase to 16. 

; calculate the cursor position 
.xycalc 
LD   A,(xloc) 
LD   D,A 
LD   A,(yloc) 
LD   E,A 
.calc1 
; enter here if DE already set 
; no calculation required to find the high byte,  
; low byte needs the low bit removing and the remainder 
multiplied  
; by 8 
LD   H,E       
LD   a,D 
and &FE 
add a,a 
add a,a 
add a,8         ; add in the offset as the first column isn't  

; being used  
ld  l,a 
RET 

Ncalc is a redundant routine used to convert a number in (0-7) C to a bit position in A. 

.ncalc 
INC  C 
LD   A,&01 
.ncalcl 
DEC  C 
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RET  Z 
RLCA 
JR   ncalcl 
 

Some of the more “exotic” escape codes require more than a few lines of code to implement. However 
is seems that NewWord (and possibly other CPM software) uses the codes extensively so they’re all 
implemented. 

;delete line at cursor and scroll up 
; set HL to point to the start of the line below 
; set C to the number of lines remaining  
; then call the scroll up code at it's looping point 
.edcsln 
ld a,(yloc) 
cp &17           ;are we already on the last line ? 
jp z blank_last 
inc a 
ld e,a 
ld d,0 
call calc1 
ld a,e 
CPL 
ADD a,24 
ld c,a 
inc c 
call scroll_loop     ;does the scroll and blanks the last line 
jp v_normal 
 

To get the best performance from the scrolling, a whole line is copied at a time from the VDP to main 
memory, and then copied back in the new position. 

.scrup 
ld HL,&100      ;start with line 1 
ld c,23         ;23 rows to scroll 
.scroll_loop 
call set_read 
ld de,scroll_buff 
ld b,0 
.scroll_read 
in a,(1) 
ld (de),a 
inc DE 
djnz scroll_read 
ld de,&FF00     ;subtract 256 from HL to find the address to  

;write 
add hl,de 
call set_write 
ld de,scroll_buff 
ld b,0 
.scroll_write 
ld a,(de) 
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out (1),a 
inc DE 
djnz scroll_write 
ld de,&200      ;add 2x line length 
add hl,de       ;move HL on to the next line to be read in 
dec c 
jr nz,scroll_loop 
jp blank_last 
 
 

Although the screen driver is mono, and none of the character updates will change the colour attributes, 
early versions of the CLS code did set the background colour. The “final” build however disabled that for 
speed, and just cleared the character area.  

.clrscn 
ld hl, &0000 
call set_write 
ld BC,6144 
.CLRSCLP 
xor A 
out (1),a 
dec bc 
ld a,b 
or c 
JR NZ,clrsclp 
;ld hl,&2000 
;call set_write 
;ld BC,6144 
;.CLRLP2 
;ld a,screen_colour 
;out (1),a 
;dec bc 
;ld a,b 
;or c 
;JR NZ,clrlp2 
RET 
 

Erase to the end of the line by poking 0’s into VRAM for each pair of characters left on the line. It does 
nothing special for the half character. In practice it doesn’t seem to affect the output, though I can 
foresee some circumstances where the display could be corrupted if cursoring backwards before issuing 
this command. 

; erase to the end of the line from character B 
;xycalc has been called so HL holds the screen position 
.erase_eol 
;print a space if we're in the "odd" character position ??? 
LD A,64 
sub b 
add a,a 
add a,a   ;multiply by 4 if we've sorted the half character 
properly. 
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LD   B,A 
call set_write 
xor A 
.ereol_lp 
call outa 
djnz  ereol_lp 
ret 
 

The escape sequence table has only a few unique commands, the majority of the command available are 
duplicates of control codes. 

;       ESCAPE SEQUENCE LOOK-UP TABLE 
 
.ESCTAB 
DW      v_normal  ; @ 
DW      v_normal  ; DW      EALT    ; A set alternate character 
font 
DW      EBOTH   ; B set both attribute bytes 
DW      ESCRL   ; C set scroll mode 
DW      EPGE    ; D set page mode 
DW      ECSON   ; E cursor on 
DW      ECSOFF  ; F cursor off 
DW      v_normal  ; DW      EGRPH   ; G set graphic font 
DW      v_normal  ; H 
DW      EIBLLN  ; I insert blank line at cursor move the other 
lines down 
DW      EDCSLN  ; J delete line at cursor move the other lines up 
DW      v_normal  ; K 
DW      v_normal  ; L 
DW      v_normal  ; M 
DW      ENPATR  ; N set non printing attribute 
DW      v_normal  ; O 
DW      EPRATR  ; P set printing attribute 
DW      v_normal  ; Q      ; in SCPM ROM, disable color, cls 
DW      EREAD   ; R      ; in SCPM ROM, enable color, cls 
DW      v_normal  ; DW      ESTD    ; S set standard font 
DW      ESIPR   ; T 
DW      ESINP   ; U 
DW      ESIBT   ; V 
DW      EWRMS   ; W 
DW      CNTSIM  ; X 
DW      v_normal  ; Y 
DW      v_normal  ; Z 
DW      v_normal  ; [ 
DW      v_normal  ; \ 
DW      v_normal  ; ] 
DW      v_normal  ; ^ 
DW      v_normal  ; _ 

These control codes were removed from the table – they now just exit. 

;       ESCAPE SEQUENCE HANDLERS 
;only one character set provided in text 2 mode 
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;.ESTD 
;LD   HL,DUMMY 
;LD   (frig1+1),HL 
;JP   v_normal 
 
;.ealt 
;LD   HL,altmap 
;LD   (frig1+1),HL 
;JP   v_normal 
 
;.egrph 
;LD   HL,grpmap 
;LD   (frig1+1),HL 
;JP   v_normal 
;  
;simulate control character  
.cntsim 
CALL frigit 
LD   A,C 
AND  &1F 
LD   C,A 
CALL v_normal 
JP   ctrl_code 
 
.escrl 
CALL scrset 
JP   v_normal 
 
.epge 
CALL pgeset 
JP   v_normal 
 
.ecson 
CALL csset 
JP   v_normal 
 
.ecsoff 
CALL csoff 
JP   v_normal 
 
; set attributes directly, rather than by bit 
.esipr 
CALL frigit 
LD   A,C 
LD   (pratr),A 
JP   v_normal 
 
.esinp 
CALL frigit 
LD   A,C 
LD   (npatr),A 
JP   v_normal 
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.esibt 
CALL frigit 
LD   A,C 
LD   (npatr),A 
LD   (pratr),A 
JP   v_normal 
 
 

Clearing the last line is used in scrolling and elsewhere so is implemented as a routine of its own. Note 
the NOP instructions to ensure VDP timing requirements are satisfied. 

 
.blank_last 
ld HL,&1700        ; = the start of the last screen row 
.blank_current 
call set_write 
xor A 
ld b,A 
.blanks_loop 
out (1),a 
nop 
nop 
djnz blanks_loop 
jp v_normal 
 

Another one of the “pesky” escape commands that needed extensive coding. 

;insert line at cursor and scroll down 
.eiblln 
ld a,(yloc) 
cp &17 
jr z blank_last     ;on the last row, just blank it 
CPL                 ;ones complement so A=-(row)-1 
add a,24            ;add 24, as we want one less row - to allow  

    ;for inserting 
ld c,a              ;rows to scroll 
ld HL,&1600         ;working fom the bottom up, row 22 (to row  

                          ;23) is always the first to be moved     
.scroll_d_loop 
call set_read 
ld de,scroll_buff 
ld b,0 
.scroll_d_read 
in a,(1) 
ld (de),a 
inc de 
DJNZ scroll_d_read 
ld de,&100            ;move down to the start of the next row 
add hl,DE 
call set_write 
ld de,scroll_buff 
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ld b,0 
.scroll_d_write 
ld a,(de) 
out (1),a 
inc DE 
djnz scroll_d_write 
ld de,&FE00       ;-&200 to move up 2 rows 
add HL,DE 
dec C 
jr nz scroll_d_loop 
ld de,&100         ;move back to the "current" line 
add hl,de 
; now insert the blank line, 
JP  blank_current 

 

The FDX display being character based, it was possible to read the character at the cursor, the VDP can’t 
do that, but “something” has to be returned to the top line of the character display is read, the VRAM 
pointer is set up, so the remaining 7 bytes could be read, and the character shape detected. But that 
probably won’t ever be done! 

;read character at cursor ?? 
.eread 
CALL xycalc 
call set_read 
ld   a,2             ;set an attribute just in case 
ld   (v_attr),A 
IN   A,(1) 
LD   (ascr),A 
JP   v_normal 
 

More redundant code retained for compatibility.  

; setup write mask 
.ewrms 
CALL frigit 
LD   A,C 
LD   C,&E0 
CP   &30 
JR   Z,swrm 
LD   C,&C0 
CP   &31 
JR   Z,swrm 
LD   C,&A0 
CP   &32 
JP   NZ,v_normal 
.swrm 
LD   A,C 
LD   (wrmsk),A 
JP   v_normal 
 
;set printing attribute   
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.epratr 
CALL frigit 
CALL getmsk 
JR   Z,setpr 
LD   C,A 
LD   A,(pratr) 
OR   C 
.setpr 
LD   (pratr),A 
JP   v_normal 
 
; set non printing attribute    
.enpatr 
CALL frigit 
CALL getmsk 
JR   Z,setnp 
LD   C,A 
.enpa1 
LD   A,(npatr) 
OR   C 
.setnp 
LD   (npatr),A 
JP   v_normal 
 
;set both printing and non prining attributes. Does nothing on 
V9958. 
.eboth 
CALL frigit 
CALL getmsk 
JR   NZ,v_setb 
LD   (pratr),A 
JR   setnp 
 
.v_setb 
LD   C,A 
LD   A,(pratr) 
OR   C 
LD   (pratr),A 
JR   enpa1 

The Original driver ends with a local stack. In the original drivers each hardware sub system maintained 
its own stack, which was rather wasteful of space.  A single “driver” stack could have done the job and 
save memory.  

DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
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.vstk 
 
 
END      

 

9.2.4 CFX Hardware 
The 82C55 PPI based IDE interface isn’t my design. It’s based on Paul Stroffregen’s 8051 interface and 
code from pjrc.com, he in turn credits the hardware design to Peter Faasse whose design connected an 
IDE hard drive to a 63B03 using an 8255. The only other device required for the interface is a 74HCT04 
which is a hex inverter. 

The 82C55 and its earlier cousin the 8255 have 24 bi-directional I/O pins forming 3 x 8 bit I/O ports. This 
makes it better suited to building an IDE interface than the Z80 PIO Which only has 2 x 8 bit I/O ports but 
additional handshake lines.  

The ports on the 82C55 are labelled A,B and C.  Ports A and B connect to the 16 bit IDE data bus.  Pins 
PA0 to PA7 are connected to the IDE header data bus pins D0 to D7 with Pins PB0 to PB7 connected to 
D8 to D15. 

Port C pins PC0 to PC2 connect to the IDE line A0 to A2 for selecting which register is being accessed. 
PC3 to PC7 are all connected to 5 of the 6 inverters in the 74HCT04. The IDE interface uses active low 
signals, Peter’s original notes indicate his 8255 was briefly pulsing the output signals low when changing 
the 8255 I/O mode. Which was apparently enough to issue a reset to the IDE device. Using inverters 
means a low at the PPI holds reset (and the other signals) in the inactive high state. There is then no 
mode change glitch.  

PC3 connects to the IDE CS1 line which is used to select the primary bank of 8 IDE registers. PC4 
connects to CS2 and the alternate set. In practice, none of the current software needs any of the 
alternate registers and CS2 is unused. 

Of the final 3 pins, PC5 connects to IDE Write, PC6 to IDE read and PC7 to the IDE interface reset pin. 

The 82C55 isn’t a Z80 family device, its origins are the Intel 8080 family, and the reset signal is active 
high. This is the inverse of the Z80 requirements where reset is active low. The 6th gate of the 74HC0T4 is 
user to invert the main reset signal so that the 82C55 reset at the same time the Z80 does.  

In addition to the 82C55 and 74HCT04 the CFX has the 128k flash chip mentioned in the software 
section. It also needs to be able to provide a chip select for ROM and a chip select for the 82C55. Like 
the Magrom the chip selects are created with 74 series logic and not any form or programmable device. 

The ROM chip select needs 8 signals. 

RELCPMH Must be low, as ROM mode is required 
R1 Is low for both ROM 4 and ROM 5 
R2 Is high for both ROM 4 and ROM 5 
A15 Is low, as the ROM lives at #2000 to #3FFF 
A14 Is low, as the ROM lives at #2000 to #3FFF 
A13 Is high, as the ROM lives at #2000 to #3FFF 
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MREQ Is low on a memory access 
RD The ROM is read only, RD must be low 

The R0 signal the determines which image ROM 4 or ROM 5 is selected. 

The 82C55 chip also needs 8 chip selects 

M1 Must be high to eliminate the IRQ acknowledge 
IORQ Is low, for an I/O access not memory 
A7 Is low in for I/O range #C6 to #6F 
A6 Is high in for I/O range #C6 to #6F 
A5 Is high in for I/O range #C6 to #6F 
A4 Is low in for I/O range #C6 to #6F 
A3 Is high in for I/O range #C6 to #6F 
A2 Is high in for I/O range #C6 to #6F 

 

Since there are no signals in common that’s a total 16 signals, 7 high and 9 low. I could have used an 8 
input NAND (74HC30) for each select, but that would have required inverting the 9 low signals, and that 
would have needed 2 more 74HCT04s for a 4 chip solution. 

However, I realised that is was possible to use 3, 3 input devices to achieved the same result. The ROM 
select needs 6 low signals, the 82C55 needs 3. Using a 74HCT27, which is a 3 input NOR device combines 
3 low signals an produces a high if all 3 are low. I could at that point have used the pair of 74HCT30 ‘s to 
produce the chip select outputs, by using the red signals from the table above, plus the relevant outputs 
from the 74HCT27 and connecting the unused inputs to 5v. The untidy part of doing things that way is 
that signal paths are of different lengths. With the black signals from the tables above experiencing 2 
delays while the red ones only have one. I therefore used a 74HCT11 which is a 3 input AND device to 
combine the high signals, as that will only output high if all 3 inputs are high. Both selects needed 1 
input pin connected to the 5V supply as there are only 2 and 5 high signals respectively. 

That then means each chip select is distilled down to 3 signals all of which are high when selected, A 3 
input NAND gate is then required, to generate the final active low output, which meant using 2 of the 3 
gates of a 74HCT10. This is the drawing I did at the time to map out the logic. 

 74HCT27 3 input NOR  74HCT10 3 input NAND  
RELCPMH 1a           
R1 1b 1y     2A     

MREQ 1c           

 74HCT27 3 input NOR        
A15 2B           
A14 2C 2Y     2C     CS & OE ROM 
RD 2A           

 74HCT11 3 input AND        
5V 1A           
R2 1B 1Y     2B     

A13 1C           
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 74HCT11 3 input AND  74HCT10 3 input NAND  
M1 2A           
A6 2B 2Y     3C     
A5 2C           

 74HCT27 3 input NOR        
IORQ 3C           
A7 3A 3Y     3B     82C55 CS 
A4 3B           

 74HCT11 3 input AND        
A3 3A           
A2 3B 3Y     3A     

5v 3C           
 

The prototype board therefor had 6 IC’s and one 40 pin header.  The prototype also had options for 1 
ROM image or 2 but that was quickly shelved in favour of using 2 images all the time.  

 

Seen here connected to the testbed MTX, the prototype made a very compact package, the upright CF 
card was above the level of the keyboard, so not ideal.  
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Test were also done with a real IDE drive, although it worked, the requirement for an external power 
supple for the drive and the cabling were less practical than using the self-contained CF. Also note, that 
by the time this picture was taken, the jumpers have been removed and the prototype was permanently 
configured for 2 rom images  

 

The wiring side, connections to the 82C55 I/O ports are in white, the data bus is yellow, address bus in 
blue and other control signals in green. Since the flash chip has 17 address lines, and only 14 are used, 
other are tied low. Which shows up in the photograph as apparently empty pins on the right side of the 
socket. Other than power very few wires needed to connect to more than 2 points. 

Buried in the wiring are surface mount smoothing capacitors for all chips and one pull up and one pull 
down 4k7 resistor on the ID interface. They’re not required for CF use, but the ATA spec suggested they 
were needed for the real IDE drive. 

Having sorted out the basic design, I moved on to working with the software while Dave took my notes 
and wiring plans and created a proper schematic and designed a proper PCB. As with the Magrom 
design the lower part of the board had to be kept empty to fit under the keyboard. The upright IDE 
header was also replaced with right angle version to bring the CF down below the keyboard keeping it 
out of harm’s way.    
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That schematic and copies of the binaries etc are available on Dave’s primrosebank.net website. 

A first run of “Production” boards was completed in time to be demonstrated at Memofest in October 
2015. 

9.3 NFX 
The NFX is a proof of concept board, aimed at giving the MTX an Ethernet connection using the Wiznet 
5100 all in one ethernet controller. The W5100 has hardware support for TCP/IP and other network 
protocols. There are a multitude of Arduino “shields” that us it. I thought that if an ATmega 
microcontroller could talk to it then there was no reason why a Z80 shouldn’t be able to do the same. 

9.3.1 NFX Hardware 
The minimalist NFX design uses the 8 bit IDE interface originally developed for the CFX-II, 8 K of ROM 
mapped as a game rom in slot 7 and a WIZ811 ethernet module. 

 

With the CF and ethernet module removed, the minimal nature of the design is readily apparent. The 
only logic device on the board is a 74HC138. The WIZ5100 is a 3.3 volt device, so there is a 3 pin LDO to 
supply the 3v to the module, plus pull up resistors for the module SPI pins. 
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What isn’t visible from the top is the two 0.1nf capacitors across the power supply of the 2 chips. The 
WIZ811 module doesn’t need one, as that has multiple smoothing capacitors already fitted. 2 Further 
capacitors are fitted to the LDO voltage regulator 

The spacing of the header pins on each header of the WIZ811 module 2.54mm, perfect for the matrix 
board, but with one issue. The 2 banks are 0.4mm closer together than would be ideal. There is just 
about enough wiggle room to “force” the fit for the prototype though the headers aren’t quite square. 
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The WIZ5100 has 2 modes of operation, it can either present as 32k of RAM, or as 4 I/O ports. The MTX’s 
memory map, with its 32k pages would have allowed either type of connection, however I went with the 
4 I/O port option, as using one of the RAM pages complicates the driver software. The I/O port option 
also simplifies the hardware, as it enables the WIZ811 module to be decoded by the same device that 
decodes the IDE interface. 

The 74HC138 is a 3 to 8 decoder and provides the I/O decode. (As an aside, the 8 bit IDE interface really 
needs a CMOS Z80, which is fitted to the test system, so the HC version of the decoder is fine, for an 
NMOS CPU the HCT version of the decoder should be used.) 

The although it’s a 3 to 8 decoder, the 138 actually has 6 inputs. 3 lines that it decodes into one of 8 
outputs, plus 3 chip enables, one active high, and 2 active low. The address decode attaches the Z80’s 
IORQ line to one of the active low selects, the A7 line goes to the active high input and A6 to the other 
active low. Which means in order for the 138 to be selected, the MTX must be doing an I/O request in 
the #80 to #BF range it won’t respond to a memory request. The 3 decode inputs are connected to A3 to 
A5, each of the 8 outputs therefore responds to 8 I/O ports. 

The 8 bit IDE interface is connected to the Y6 and Y7 outputs, giving it 16 I/O addresses from #B0 to #BF. 
The WIZ811 select used Y4 giving an 8 port address range of #A0 to #A7. The jumper gives the option of 
using Y2 instead of Y4, re-mapping the WIZ811 to #90 to #97. Since the WIZ5100 chip is only using 4 
ports, the other 4 port will just duplicate the access to the first 4. 

As with most of my designs, there’s no circuit diagram for the NFX, the reverse view wiring “map” I drew 
up as a guide when soldering. 

The WIZ811 module has 15 address pins to accommodate the 32k mode, 13 of those are wired to 
ground, only A0 and A1 are connected to the Z80 address bus. To isolate the SPI bus in the WIZ5100 
MOSI, MISO and SCK pins are all pulled high (to 3v) via resistors. Other than power and the data bus the 
only other connections are read, write and reset from the Z80 and the module select from the 74HC138. 

The IDE interface connections are similar, but that needs 3 address lines, so A2 is also needed. 

The 128k flash device also has the extra address lines connected to 0v so that only 8k is seen. Because 
there is only 8k rom available I chose to use a modified CPM boot rom instead of the other option that 
would have been SDX style extensions to BASIC. 

CPM being a far better environment to develop the software than BASIC would be. 
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NFX wiring “map” created in Excel 

  

5V 0v 1 NC

5V *we ov-A16

NC 0v-A15

0v-A14 A12 c a

5v 0v A-A3 0v-A13 A7 *Grom 30 A0

Y0 B-A4 A8 A6 A1 29 A2

Y1 C-A5 A9 A5 A3 28 A4

Y2 Y2 *G2-A6 A11 A4 A5 27 0v

WIZcs Y3 *g2 *IORQ *GROM A3

Y4 Y4 G1-A7 A10 A2 A6 25 A7

Y5 Y7 *GROM A1 A8 24 A9

Y6 0v D7 A0 A10 23 A11

D6 D0 A12 22 A13

D5 D1 A14 21 A15

3.3v regulator Vout ov Vin D4 D2 D0 20 D1

3v3 5v D3 0v D2 19 D3

D4 18 D5

0v
*re

s D6 17 D7

nc D7 5v 16 5v

nc D6 12v 15 -V

nc D5 0v A14 NC 0v 0v 0v 14 0v

nc D4 0v A12 A13 0v 0v A6 A7 0v *reset 13 *MREQ

nc D3 0v A10 A11 0v 0v A4 A5 0v *IORQ 12 *RD

nc D2 0v A8 A9 0v 0v A2 A3 0v *WR 11 *M1

nc D1 0v 3v A0 A1 PHI 10 *RFSH

nc D0 D7 D6 0v 0v *HALT 9 *BUSAK

5v 0v D5 D4 WIZcs *CS *int *WAIT 8 *BUSRQ

0v NC D3 D2 *WR*RD *NMI 7 *INT

0v
*w

r
D1 D0 SCK *SCS nc LKN12 6 P0

0v *rd MO MI 3v *res P1 5 P2

P28 NC J1 J2 P3 4 R0

0v NC MO MI SCK R1 3 R2

P32 NC 4k7 4k7 4k7 REL 2 SER1

NC A1 SER2 1 0V

A2 A0 3v 3v 3v c a

Y7 Y6

0v nc

15 10 5 1

Keyway

128k flash

128k Flash, 8k used for rom
 7

74HC138

0.33uf

0.1uf



ReSource 2021 
 

 147 

9.3.2 NFX IDE support 
 The NFX uses and 8 bit IDE interface, which is specifically intended for use by CF cards. Since it’s 
interfacing to CPM in exactly the same way that the CFX does, the IDE driver has to supply the same 3 
basic routines, initialise, read 1 sector and write 1 sector. 

; CF specific low-level routines 

 

;write registers 
CFdata     EQU &B0 
CFfeature  EQU &B1 
CFcount    EQU &B2 
CFLBAlow   EQU &B3 
CFLBAmid   EQU &B4 
CFLBAhigh  EQU &B5 
CFLBAtop   EQU &B6 
CFcommand  EQU &B7 
; 
;read registers 
CFerr      EQU &B1 
CFstatus   EQU &B7 
; 
;the actual IDE commands used 
CMD_RECAL   EQU &10 
CMD_READ    EQU &20 
CMD_WRITE   EQU &30 
CMD_INIT    EQU &91 
CMD_ID      EQU &EC 
CMD_SPINUP  EQU &E0 
CMD_SPINDN  EQU &E1 

The current IDE software only uses the primary bank of I/O ports, ports #B8 to #BF are decoded, but not 
actually used. The direct connection of the 8bit IDE makes for faster transfers and simpler software, as 
the Z80 can handle all of the transfers on its own, without needing to go via an 82C55 like CFX does.  

; Initialise CF card 
; after: 
;   if ok, Z, CF initialised 
;   if not ok, NZ, CF not initialised 
; 
.CPMCFInit 
PUSH BC 
LD a,CMD_init 
OUT (CFcommand),A 
; 
LD B,0                          ;for the timeout counter 
jr init_pass1                 ;jump past the timeout checks on  

;the first pass 
.INIT_loop              
dec B                           ;exit if we've tried 256 times  

;and drive still not ready 
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JR Z cpm_timeout 
call cpm_delay                   ;CF doesn't need to spin up, but  

;allow some extra time 
;just in case. The 255 calls of 
;the delay routine take 

                                ;approx 2.5 sec at 4mhz 
.INIT_pass1 
in a,(CFstatus)                 ;read status register 
bit 7,a                         ;bit 7 is bsy 
JR nz INIT_LOOP               ;wait for BSY to be clear 
bit 6,a                         ;bit 6 is rdy 
JR z INIT_LOOP                ;wait for RDY to be set 
 

The Init command is the only one that will time out, the rest of the software assumes that the CF that 
was present on boot hasn’t been removed. 

 
ld a,1                  ;set CF 8 bit mode 
out (CFfeature),A 
ld a,&EF 
out (CFcommand),A 
call CPMwait_ready 
 
ld a,&82                ;set no write cache 
out (CFfeature),A 
ld a,&EF 
out (CFcommand),A 
call CPMwait_ready 
 
;LD A,%11100000         ;select the master device. LBA mode 
;out (CFLBAtop),A 
 
 
POP BC 
XOR A                   ;A zero'd and ZF set to indicate all OK 
RET 

Device setup requires the extra step of letting the CF card know that 8 bit mode should be used. 

 
.cpm_timeout 
POP BC 
xor A 
DEC A                   ;return A no zero and Z reset  
RET 

Not having the CF present will prevent CPM from booting, unlike CFX where running without a “disc” is a 
valid option. There are no error messages, as CFX used facilities from BASIC to print that, and this isn’t 
present in CPM.  

 
;waste approx 3339 * 12 is approx 40,000 cycles delay 0.01 sec 
;at 4mhz. 
.CPM_delay 
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push bc 
ld BC,12 
.Cpm_delay_loop 
DJNZ Cpm_delay_loop    ;3323 cycles on inner loop 
dec c                    ;4 
JR nz Cpm_delay_loop   ;12 
pop bc 
ret 
 
 
; 
; Read block from CF card 
;   before: 
;     SDLBA is 32 bit block 512 byte block number, HL is buffer 
;   after: 
;     if ok, Z 
;     if not ok, NZ 
; 
.CPMCFREAD 
PUSH BC 
PUSH hl 
CALL CpmSetLBA        ;send LBA number to the drive 
LD a,CMD_READ 
out (CFcommand),A 
CALL CpmWAIT_DRQ 
AND 1                ;isolate bit 0 
JR NZ,CpmGET_ERR      ;error bit set, find out why 
LD BC,CFdata         ;C set to the data register INIR count  

;set to zero for 2 x 256 
DI 
INIR 
INIR 
EI 
pop hl 
POP BC 
xor A               ;exit with A zero'd and Z set  
RET 

Reading and writing the CF is about twice as fast over the 8 bit interface, as although less data is 
transferred on each access, the Z80’s block I/O commands can be used 

 
; CF routines only requre A=0/Z=1 good or A<>0/Z=0 error 
; however error read on return for future expansion  
.CpmGET_ERR 
pop hl 
POP BC 
in a,(CFerr) 
AND A 
RET NZ 
DEC A   ;make sure A isn't zero and the flag isn't set 
RET 
; 
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; Write block to CF card 
;   before: 
;     SDLBA is 32 bit block 512 byte block number, HL is buffer 
;   after: 
;     if ok, Z 
;     if not ok, NZ 
 
.CPMCFwrite 
PUSH BC 
PUSH HL 
CALL CpmSetLBA 
LD A,CMD_WRITE 
out (CFcommand),A 
CALL CpmWAIT_DRQ 
AND 1 
JR NZ,CpmGET_ERR 
ld BC,CFdata           ;C set to the data register OTIR count set 

  ; to zero for 2 x 256 
DI 
otir 
otir 
EI 
CALL CpmWAIT_ready 
AND 1 
JR NZ,CpmGET_ERR 
POP HL 
POP BC 
xor A 
RET 
 

The low-level support routines are pretty much the same as the CFX, but they act directly and so are 
shorter. Direct access means there is no need to use read/write register subroutines. 

; 
; Set CF LBA 
; corrupts A 
.CpmsetLBA 
CALL CpmWAIT_ready 
LD A,%11100000         ;Top 4 bits of address zero, b4 clear  

 ;is for LBA master 
out (CFLBAtop),A      ;write LBA mode to LBA top byte register 
ld A,(CPMsdlba+2) 
out (CFLBAhigh),A     ;write to LBA bits 16-23 
ld A,(CPMSDLBA+1) 
out (CFLBAmid),A      ;write to LBA bits  8-15 
ld A,(CPMSDLBA) 
out (CFLBAlow),A      ;write to LBA bits  0- 7 
LD A,1 
out (CFcount),A       ;set the sector count to 1 
RET 
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; wait for device to be both not busy and ready 
;Returns the drive's status in A 
.CpmWAIT_READY 
in A,(CFstatus)          ;read status register 
bit 7,a                  ;bit 7 is BSY 
JR nz CpmWAIT_READY       ;wait for BSY to be clear so we can  

;get a good read on ready 
bit 6,a                  ;bit 6 is ready 
JR z CpmWAIT_READY        ;wait for RDY to be set 
RET 
 
 
;Wait for the drive to be ready to transfer data. 
;Returns the drive's status in A 
.CpmWAIT_DRQ 
in A,(CFstatus)          ;read status register 
bit 7,a                  ;bit 7 is BSY 
JR nz CpmWAIT_DRQ         ;wait for BSY to be clear so we can  

;get a good read on DRQ 
bit 3,a                  ;bit 3 is DRQ 
JR z CpmWAIT_DRQ          ;wait for DRQ to be set 
RET 
 
;   End of 8 bit CF low level routines 
 
END 

 

9.3.3 NFX CPM screen driver. 
The NFX uses the 40 column text mode for the CPM screen. There isn’t any legacy CPM software that 
can use the WIZ5100, so there was no need to compromise the clarity of the display to maintain a wider 
screen. The output from some of the CPM utilities can be a little unclear, but that’s acceptable given 
that the main focus of the NFX is transferring data over the Ethernet and that required brand new 
software. The screen drive, like the 62 column version for CFX is derived from the original FDX 80 
column driver code. 

; ####### VDP OUTPUT ENTRY POINT ###### 
.VDU_OUTPUT 
PUSH AF 
PUSH BC 
PUSH DE 
PUSH HL 
LD   HL,v_exit 
PUSH HL 
CALL killcur 
.jp_vec 
JP   initl 

Th initial setup code is identical to the CFX as is the inclusion of the variables in-lined into the code 
which by this point has been copied into ram. 
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.ascr 
DB &20 
.v_attr 
DB &02 
.scrflg 
DB &01 
.pratr 
DB &02 
.npatr 
DB &02 
.wrmsk 
DB &E0 
.xloc 
DB &00 
.yloc 
DB &00 
.csr_flag 
DB &FF 
; jump table for printing control codes 
.ctab 
DW      DUMMY   ; ^@ 
DW      DOTDO   ; ^A 
DW      VCTDO   ; ^B 
DW      CXYDO   ; ^C 
DW      BKGSET  ; ^D 
DW      EOLDO   ; ^E 
DW      ATRSET  ; ^F 
DW      BELDO   ; ^G 
DW      BSDO    ; ^H 
DW      TABDO   ; ^I 
DW      LFDO    ; ^J 
DW      UPDO    ; ^K 
DW      CLRDO   ; ^L 
DW      CRDO    ; ^M 
DW      BLSET   ; ^N 
DW      BLOFF   ; ^O 
DW      COLSET  ; ^P 
DW      COLSET  ; ^Q 
DW      COLSET  ; ^R 
DW      COLSET  ; ^S 
DW      COLSET  ; ^T 
DW      COLSET  ; ^U 
DW      COLSET  ; ^V 
DW      COLSET  ; ^W 
DW      INITLZ_CRT  ; ^X 
DW      FWDDO   ; ^Y 
DW      HMEDO   ; ^Z 
DW      ESCDO   ; ^[ 
DW      SCRSET  ; ^\ 
DW      PGESET  ; ^] 
DW      CSSET   ; ^^ 
DW      CSOFF   ; ^_    
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There are no changes to the control code jump table, the target routines maintain the same names with 
the code updated as required. 

.initl 
PUSH BC 
CALL clrdo 
POP  BC 
LD   HL,crtgo 
LD   (jp_vec+1),HL 
.crtgo 
LD   A,C 
AND  &E0 
JR   Z,ctrl_code 
;       PRINTABLE CHARACTER 
;.frig1 
;CALL dummy        ;code only needed with selectable fonts 
CALL XYCALC 
call set_write 
ld a,c 
out (1),a 
CALL FWDDO 
RET              ;jump to exit via stacked value above 
 

The first major change, text mode on the VDP is character based, so there is no need for a print 
character routine, once the screen address is calculated and sent to the address port, sending the 
character code to the data port is all that is needed to output the character. 

Exiting via cursor forward and the previously stacked exit routine address is exactly as in CFX  

 
.v_exit 
;CALL xycalc 
CALL setcur 
POP  HL 
POP  DE 
POP  BC 
POP  AF 
RET 
 

The NFX exit routine is the same as CFX, the original X,Y position calculation call isn’t required on exit as 
the cursor routine will deal with that itself. 

 
;       CONTROL CODE 
.ctrl_code 
LD   HL,ctab 
LD   D,&00 
LD   A,C 
ADD  A,C 
LD   E,A 
ADD  HL,DE 
LD   A,(HL) 
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INC  HL 
LD   H,(HL) 
LD   L,A 
JP   (HL) 

No changed to the control or escape code jump table access routines 

.escdo 
CALL frigit          ;redirect VDU stream 
LD   A,C 
CP   &20 
JR   C,v_normal 
AND  &1F 
ADD  A,A 
LD   HL,esctab 
LD   E,A 
LD   D,&00 
ADD  HL,DE 
LD   A,(HL) 
INC  HL 
LD   H,(HL) 
LD   L,A 
JP   (HL) 
 
;cursor X,Y invalid values ignored 
.cxydo 
CALL frigit          ;redirect VDU stream 
LD   A,C 
SUB  &20 
AND  &7F 
CP   40              ;screen width 
JR   NC,cxskip 
LD   (xloc),A         
.cxskip 
CALL frigit          ;redirect VDU stream 
LD   A,C 
SUB  &20 
AND  &7F 
CP   24              ;screen rows 
JR   NC,cyskip 
LD   (yloc),A 
.cyskip 
;this section returnes the VDU stream to normal after  
;assembling a multi byte command 
.v_normal 
LD   HL,crtgo 
LD   (jp_vec+1),HL 
RET 

The cursor positioning code retains the 32 character offset in both the X and Y axis, but checks the Y 
position against 40 because of the narrower screen. 
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;set the VDU stream to code following the call to frigit, for 
assembling multi byte commands 
.frigit 
POP  HL 
LD   (jp_vec+1),HL 
RET 

The original rom used self-modifying code to build multibyte control codes, and that’s retained 
unchanged. 

;character background not setable, so code does nothing 
.bkgset 
CALL frigit          ;redirect VDU stream 
LD   A,C 
AND  &07 
RLCA 
RLCA 
RLCA 
LD   C,A 
LD   A,(pratr) 
AND  &C7 
OR   C 
LD   (pratr),A 
LD   A,(npatr) 
AND  &C7 
OR   C 
LD   (npatr),A 
JP   v_normal 
 
;no attributes on 9928 code does nothing 
.atrset 
CALL frigit          ;redirect VDU stream 
LD   A,C 
LD   (pratr),A 
LD   (npatr),A 
JP   v_normal 

The attribute code runs un-altered but the attributes that it sets aren’t actually used, as the VDP doesn’t 
have the ability to do per character attributes. 

 
; no bitmap character set on the 9928 setup so plot and draw 
disabled 
; swallow the character codes to maintain compatibility 
.dotdo 
CALL frigit          ;redirect VDU stream 
LD   A,C 
SUB  &20             ;&20 byte offset in plot commands 
LD   (initl),A        ;save first perameter 
CALL frigit          ;redirect VDU stream again 
LD   A,C 
;SUB  &20 
LD   H,A             ;2nd parameter 
LD   A,(initl) 
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LD   L,A 
;CALL plotd 
JP   v_normal          ;reset stream 
 
.vctdo 
CALL frigit 
LD   A,C 
SUB  &20 
LD   (initl),A 
CALL frigit 
LD   A,C 
SUB  &20 
LD   (initl+1),A 
CALL frigit 
LD   A,C 
SUB  &20 
LD   (initl+2),A 
CALL frigit 
LD   A,C 
SUB  &20 
LD   C,A 
;CALL plotv 
JP   v_normal 

The dot and line code builds the command bytes exactly as the 80 column driver did, however the final 
routine to do “something” with that data isn’t implemented as the VDP doesn’t support a 2nd character 
set in the way the 80 column board did.   

 
.initlz_crt 
LD   A,&FF 
LD   HL,scrflg 
LD   (HL),&FF 
INC  HL 
LD   (HL),&02 
INC  HL 
LD   (HL),&02 
INC  HL 
LD   (HL),&E0 
CALL    CSSET 
CALL    CRDO 
CALL    LFDO 
ret  
;JP      ESTD 

The screen setup routine is the same as CFX, compared to the FDX original it exits early without setting 
up the alternate character set, as that’s not implemented. 

 
;blink on and off not used, as no character level attributes 
 
.blset 
LD   A,(pratr) 
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OR   &40 
LD   (pratr),A 
RET 
 
.bloff 
LD   A,(pratr) 
AND  &BF 
LD   (pratr),A 
RET 

As with CF, the blink on/off, cursor on/off and scroll on/off routines are all implemented. However, the 
blink attribute isn’t implemented as there is no hardware to support it. Nor is the cursor on/off 
supported by the software. 

;no hardware cursor on 9928 in text mode 
;turn cursor on value will be used as bit mask 
.csset 
ld a,&FF 
ld (csr_flag),a 
RET 
 
.csoff 
xor a 
ld (csr_flag),a 
RET 
 
;scroll flag is 0 for page mode (no scroll) 
.scrset 
LD   A,&FF 
LD   (scrflg),A 
RET 
 
.pgeset 
XOR  A 
LD   (scrflg),A 
RET 
 
; 9928 does not support individual charater attributes in text 
mode 
; so this code does nothing 
.colset 
LD   A,C 
AND  &07 
LD   C,A 
LD   A,(pratr) 
AND  &F8 
OR   C 
LD   (pratr),A 
RET 

Most of the character positioning control codes are as per the FDX original code, with the necessary 
changes to deal with the narrower screen. The order has been tweaked slightly to allow for “fall 
through” from one command to another where they’re related. 
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; carriage return just sets the X location back to zero 
; also has the dummy entry point for the nul codes 
.crdo 
XOR  A 
LD   (xloc),A 
.dummy 
RET 
 
 
; tab forward by setting the low bits of the x location then  
; drop into cursor right 
.tabdo 
LD   A,(xloc) 
OR   &07 
LD   (xloc),A 
.fwddo 
LD   A,(xloc) 
CP   39             ;screen width less 1 
JR   Z,fwdl 
INC  A 
LD   (xloc),A 
RET 
 
; need to go down a line so reset x to zero and drop through  
; into cursor down 
.fwdl 
XOR  A 
LD   (xloc),A 
.lfdo 
LD   A,(yloc) 
CP   &17           ; are we on the 24th row (rows are 0-23)  
JR   Z,LFS         ;jump forward to test the scroll flag 
INC  A 
.pagem 
LD   (yloc),A 
RET 
 
.lfs 
LD   A,(scrflg) 
OR   A 
JR   Z,pagem      ;set Y back to the top of the screen if it's 

; page mode 
CALL scrup        ;otherwise scroll up, leaving Y as 23 
RET 

The 80 column board had hardware and its own speaker to create a buzzer type noise in response to the 
“bell” character code. CFX and NFX create their “bell” using the build in PSG, the rather nice bell from 
MTX basic isn’t available, instead a short 440hz or “A4” tone is played over sound channel 1.  

The 284 value for the note is calculated as the 4mhz CPU clock divide by 32 which is the PSG pre-scaler 
value. Which gives the theoretical maximum frequency of 125,000hz, dividing that by 440hz of 
“international A” is 284.1, since the PSG doesn’t do fractional values, 284 is used. 
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; "DING" 
;"beep" code from the Magrom 
.beldo  
push AF 
push BC 
push hl 
ld HL, 284 
LD A,L 
AND &0F 
OR &80 
call s_sound        ; SEND TONE 1 + 4 BITS OF FREQUENCY 
LD A,L 
SRL A 
SRL A 
SRL A 
SRL A 
LD C,A 
LD A,H 
SLA A 
SLA A 
SLA A 
SLA A 
OR C 
AND &3F             ; REMAINING 6 OF THE 10 BITS OF FREQUENCY 
call s_sound 
LD A,&90            ; ATTENUATION 0DB TONE 1 
call s_sound 
ld bc,00A0 
.delay_loop 
djnz delay_loop 
dec c 
jr nz delay_loop 
;kill sound 
LD A,&9f            ; ATTENUATION OFF TONE 1 
call s_sound 
pop hl 
pop bc 
pop AF 
RET 
 
;send data to sound port with delay to guarantee sound chip  
;time to load it.  
.S_sound 
OUT (6),A 
IN A,(3) 
ld B,2 
.ss_loop 
djnz ss_loop 
RET 
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The sound chip delay isn’t the same as CFX, the looped version takes a few more bytes of code, but uses 
closer to the theoretical 32 cycles then the CFX version.  

;non clearing backspace 
.bsdo 
LD   A,(xloc) 
OR   A 
JR   Z,bsu 
DEC  A 
LD   (xloc),A 
RET 
 
;backspace needs to go up a line 
.bsu 
LD   A,39          ;screen with less 1 
LD   (xloc),A 
LD   A,(yloc) 
OR   A 
JR   Z,bss 
DEC  A 
LD   (yloc),A 
RET 
 
;were already at 0,0 so need to put the x position back to 0 
.bss 
;   XOR  A    ; not needed A was 0 or we wouldn't be here? 
LD   (xloc),A 
RET 

The NFX 40 column driver can uses the same cursor back and up code as CFX, with the one change 
required for the narrower screen width. 

;cursor up    
.updo 
LD   A,(yloc) 
OR   A 
ret  Z           ;can't go up from top row 
DEC  A 
LD   (yloc),A 
RET 
 
.clrdo 
CALL clrscn      ;clear the screen and fall through into home  
                 ; to set the cursor 
.hmedo 
XOR  A 
LD   (xloc),A 
LD   (yloc),A 
RET 
 

Clear screen falls through into the cursor home routine in the same way that CFX does.  

Erase line, by setting the x position to zero and calling erase to the end of the line is also unchanged.  
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.erln 
LD   A,(xloc) 
PUSH AF 
XOR  A 
LD   (xloc),A 
CALL eoldo 
POP  AF 
LD   (xloc),A 
RET 
 
.eoldo 
CALL xycalc 
LD   A,(xloc) 
LD   B,A 
JP   erase_eol 

 

Most of the “utilities” relate to unimplemented features, but the code is included for compatibility, just 
in case. 

;       UTILITIES 
 
.grpmap 
LD   A,C 
AND  &7F 
LD   C,A 
AND  &40 
RET  Z 
LD   A,C 
AND  &20 
RLCA 
RLCA 
OR   C 
AND  &9F 
LD   C,A 
RET 
 
.altmap 
LD   A,C 
OR   &80 
LD   C,A 
RET 
 
.getmsk 
LD   A,C 
CP   &30 
JR   NZ,getbit 
XOR  A 
RET 
 
.getbit 
DEC  A 
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AND  &07 
LD   C,A 
CALL ncalc 
OR   A 
RET 

As with the CFX code, 2 separate routines need to be coded for positioning the VDP memory pointer to 
allow for the wat the VDP differentiates between read and write accesses. 

; set the VRAM pointer to HL for reading and writing respectively 
.set_read 
push AF 
ld a,L          ;setup VDP address 
out (2),a 
and &3f 
ld a,h          ;bit 6 and 7 clear for VRAM read 
out (2),a 
pop AF 
ret 
 
.set_write 
push AF 
ld a,L          ;setup VDP address 
out (2),a 
ld a,h          ;set bit 6, bit 7 clear for VRAM write 
add a,&40  
out (2),A 
pop AF 
ret 

The cursor on code, is identical to the cursor off code, so one routine is used for both the character at 
the “current” cursor position is read and the top bit inverted. The character map set up on boot has the 
first 128 characters inverted as the 2nd 128 characters, so that flipping the top bit inverts the character.  

;cursor on/off needs to preserve registers as is called before 
any VDU output 
;uses inverted version of screen character,  
.setcur 
.killcur 
push hl 
push DE 
push af 
call xycalc 
call set_read 
in a,(1) 
call set_write 
xor &80         ; need to qualify this with the cursor  

; on/off flag 
out (1),a 
pop af 
pop DE 
pop hl 
RET 
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The cursor code could have used the cursor on/off flag, however for NFX’s intended use that wasn’t 
required and would only have slowed down the character output code. 

; calculate the cursor position 
.xycalc 
LD   A,(xloc) 
LD   D,A 
LD   A,(yloc) 
LD   E,A 
.calc1 
; enter here if DE already set 
LD   A,E       
ADD  A,A      ;y x 2 
ADD  A,A      ;y x 4 
ADD  A,E      ;y x 5 
ADD  A,A      ;y x10     

   ;max Y value 24, now move to 16 bit addition 
LD   L,A 
LD   H,&00 
ADD  HL,HL    ;y x20 
ADD  HL,HL    ;y x40 
LD   E,D 
LD   D,&00 
ADD  HL,DE    ;y x40 + x 
LD   A,H 
AND  &07 
LD   H,A 
RET 

Because NFX need the full 256 characters available to implement the cursor, it can’t use the same 
screen mapping as MTX basic, as the screen map there overlaps where the top half of the character 
definitions would be. So, instead, the screen map is located at in the lowest part of the video ram. 
Which has a benefit of speeding up the cursor position calculations, as there is no offset required. 

 
.ncalc 
INC  C 
LD   A,&01 
.ncalcl 
DEC  C 
RET  Z 
RLCA 
JR   ncalcl 

The code to convert a bit position value in C to a bit mask in A is as per the FDX original. 

NewWord can be configured to work with the 40 column display, and using it in non-document mode 
would allow source code to be developed on NFX. So the escape codes that NewWord uses for scrolling 
the display have to be implemented. 

The basic idea of the code is the same as CFX, however only 40 bytes need to be read for each line 
scrolled up or down instead of 256, which increases the scrolling speed considerably.  
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;delete line at cursor and scroll up 
; set HL to point to the start of the line below 
; set C to the number of lines remaining  
; then call the scroll up code at it's looping point 
.edcsln 
ld a,(yloc) 
cp &17           ;are we already on the last line ? 
jp z blank_last 
inc a 
ld e,a 
ld d,0 
call calc1 
ld a,e 
CPL 
ADD a,23 
ld c,a 
call scroll_loop     ;does the scroll and blanks the last line 
jp v_normal 

The scroll up code is the same as CFX, with the difference of the shorter lines. Both displays start at the 
beginning of the VRAM so there are no offsets to calculate 

.scrup 
ld HL,40        ;start with line 1 
ld c,23         ;23 rows to scroll 
.scroll_loop 
call set_read 
ld de,scroll_buff 
ld b,40 
.scroll_read 
in a,(1) 
ld (de),a 
inc DE 
djnz scroll_read 
ld de,&ffD8     ;subtract 40 from HL to find the address to write 
add hl,de 
call set_write 
ld de,scroll_buff 
ld b,40 
.scroll_write 
ld a,(de) 
out (1),a 
inc DE 
djnz scroll_write 
ld de,80        ;add 2x line length 
add hl,de       ;move HL on to the next line to be read in 
dec c 
jr nz,scroll_loop 
jp blank_last 
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The clear screen code uses 2 loops with B and C as loop counters, the inner “B” loop inserts 192 spaces 
on the first pass, and 256 on the other 3 for a total of 960 

.clrscn 
ld hl, &0000 
call set_write 
ld BC,&c004        ;write 960 spaces (&3c0) 
ld a,32 
.CLRscLP 
out (1),a 
djnz clrsclp 
dec c 
JR NZ,clrsclp 
RET 

Erase to the end of the line in test mode is simpler, calculate the number of characters from position “B” 
to the end of the line, and then output that many spaces. In text mode the VDP can accept data as fast 
as the Z80 can send it so there is no need for any software delays, a simple loop with a space being sent 
to the data port is all that’s needed. 

; erase to the end of the line from character B 
;xycalc has been called so HL holds the screen position 
.erase_eol 
LD   A,40 
sub b 
LD   B,A 
call set_write 
ld a, 32 
.ereol_lp 
out (1),a 
djnz  ereol_lp 
ret 
 

The escape code table is the same as for the CFX driver, it’s basically the same as the original, but all the 
alternate character set codes are converted to null and exit without doing anything. 

;       ESCAPE SEQUENCE LOOK-UP TABLE 
 
.ESCTAB 
DW      v_normal  ; @ 
DW      v_normal  ; DW  EALT    ; A set alternate character font 
DW      EBOTH   ; B set both attribute bytes 
DW      ESCRL   ; C set scroll mode 
DW      EPGE    ; D set page mode 
DW      ECSON   ; E cursor on 
DW      ECSOFF  ; F cursor off 
DW      v_normal  ; DW  EGRPH   ; G set graphic font 
DW      v_normal  ; H 
DW      EIBLLN  ; I insert blank line at cursor move the other 

; lines down 
DW      EDCSLN  ; J delete line at cursor move the other lines up 
DW      v_normal  ; K 
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DW      v_normal  ; L 
DW      v_normal  ; M 
DW      ENPATR  ; N set non printing attribute 
DW      v_normal  ; O 
DW      EPRATR  ; P set printing attribute 
DW      v_normal  ; Q      ; in SCPM ROM, disable color, cls 
DW      EREAD   ; R      ; in SCPM ROM, enable color, cls 
DW      v_normal  ; DW  ESTD    ; S set standard font 
DW      ESIPR   ; T 
DW      ESINP   ; U 
DW      ESIBT   ; V 
DW      EWRMS   ; W 
DW      CNTSIM  ; X 
DW      v_normal  ; Y 
DW      v_normal  ; Z 
DW      v_normal  ; [ 
DW      v_normal  ; \ 
DW      v_normal  ; ] 
DW      v_normal  ; ^ 
DW      v_normal  ; _ 

Alternate character set isn’t supported, so with the vectors removed in the table above, the code is 
commented out. 

;       ESCAPE SEQUENCE HANDLERS 
;only one character set provided in text 2 mode 
;.ESTD 
;LD   HL,DUMMY 
;LD   (frig1+1),HL 
;JP   v_normal 
 
;.ealt 
;LD   HL,altmap 
;LD   (frig1+1),HL 
;JP   v_normal 
 
;.egrph 
;LD   HL,grpmap 
;LD   (frig1+1),HL 
;JP   v_normal 
;  

The code to simulate control codes with escape codes is unchanged from the FDX. 

;simulate control character  
.cntsim 
CALL frigit 
LD   A,C 
AND  &1F 
LD   C,A 
CALL v_normal 
JP   ctrl_code 
 
.escrl 
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CALL scrset 
JP   v_normal 
 
.epge 
CALL pgeset 
JP   v_normal 
 
.ecson 
CALL csset 
JP   v_normal 
 
.ecsoff 
CALL csoff 
JP   v_normal 
 
; set attributes directly, rather than by bit 
.esipr 
CALL frigit 
LD   A,C 
LD   (pratr),A 
JP   v_normal 
 
.esinp 
CALL frigit 
LD   A,C 
LD   (npatr),A 
JP   v_normal 
 
.esibt 
CALL frigit 
LD   A,C 
LD   (npatr),A 
LD   (pratr),A 
JP   v_normal 
 

Blanking the last line of the display is use by some of the other routines so is coded separately, as with 
the erase to the end of the line code, there is no need for any delays, 40 spaces can be sent in a simple 
loop. 

 
.blank_last 
ld HL,920        ; = the start of the last screen row 
.blank_current 
call set_write 
ld a,32 
ld b,40 
.blanks_loop 
out (1),a 
djnz blanks_loop 
jp v_normal 
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This is another scroll routine needed by NewWord, other than the changes required for the 40 character 
lines, it’s the same code as CFX uses. 

;insert line at cursor and scroll down 
.eiblln 
ld a,(yloc) 
cp &17 
jr z blank_last    ;on the last row, just blank it 
CPL                ;ones complement so A=-(row)-1 
add a,24           ;add 24, as we want one less row - to  

;allow for inserting 
ld c,a             ;rows to scroll 
ld HL,880          ;working fom the bottom up, row 22 (to row 23) 

   ;is always the first to be moved     
.scroll_d_loop 
call set_read 
ld de,scroll_buff 
ld b,40 
.scroll_d_read 
in a,(1) 
ld (de),a 
inc de 
DJNZ scroll_d_read 
ld de,40            ;move down to the start of the next row 
add hl,DE 
call set_write 
ld de,scroll_buff 
ld b,40 
.scroll_d_write 
ld a,(de) 
out (1),a 
inc DE 
djnz scroll_d_write 
ld de,&FFB0       ;-80 to move up 2 rows 
add HL,DE 
dec C 
jr nz scroll_d_loop 
ld de,40         ;move back to the "current" line 
add hl,de 
; now insert the blank line, 
JP  blank_current 
 

Unlike CFX’s graphics mode display, the character at the cursor can be read in text mode. A dummy 
attribute is returned, but the character code is “real”. Since this code would be called while the cursor 
itself is off, the true character is returned, and not the inverted version. 

;read character at cursor ?? 
.eread 
CALL xycalc 
call set_read 
ld   a,2             ;set an attribute just in case 
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ld   (v_attr),A 
IN   A,(1) 
LD   (ascr),A 
JP   v_normal 
 

The various write mask and attribute routines from the 80 column display are fully implemented, but do 
nothing as the attributes aren’t implemented. 

; setup write mask 
.ewrms 
CALL frigit 
LD   A,C 
LD   C,&E0 
CP   &30 
JR   Z,swrm 
LD   C,&C0 
CP   &31 
JR   Z,swrm 
LD   C,&A0 
CP   &32 
JP   NZ,v_normal 
.swrm 
LD   A,C 
LD   (wrmsk),A 
JP   v_normal 
 
;set printing attribute   
.epratr 
CALL frigit 
CALL getmsk 
JR   Z,setpr 
LD   C,A 
LD   A,(pratr) 
OR   C 
.setpr 
LD   (pratr),A 
JP   v_normal 
 
; set non printing attribute    
.enpatr 
CALL frigit 
CALL getmsk 
JR   Z,setnp 
LD   C,A 
.enpa1 
LD   A,(npatr) 
OR   C 
.setnp 
LD   (npatr),A 
JP   v_normal 
 
;set both printing and non prining attributes. Does nothing. 
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.eboth 
CALL frigit 
CALL getmsk 
JR   NZ,v_setb 
LD   (pratr),A 
JR   setnp 
 
.v_setb 
LD   C,A 
LD   A,(pratr) 
OR   C 
LD   (pratr),A 
JR   enpa1 

Finally, like CFX, the VDP driver’s stack is implemented as per the FDX original. 

DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
DB 0,0 
.vstk 
 
 
END 
 

The initial setup for the VDU driver is actually done in the boot rom and that code isn’t copied to high 
memory, as it’s only needed once. However, it isn’t run until after the code is copied high, so all the 
routines in high memory can be called. That saves some assembler gymnastics that would be required to 
call the code in the rom instead. 

The code is reasonably well commented so doesn’t need massive explanation. The first step is to move 
the character map to the beginning of the video memory, that’s done by setting VDP register 2 to zero. 

The character data that was setup during boot is copied out into a convenient location, in this case 
that’s #C000, but could have been anywhere between #4000 and #DFFF. On the way from video 
memory to main ram the data is inverted using the CPL instruction. 

The VDP memory pointer is then set up to point to character code 160, and the inverted data placed 
into VDP memory to act as the inverted characters for the cursor. 

The final step is personal choice, I didn’t like using CPM with the default white on mid blue MTX colours. 
So register 7 is set to dark yellow on black, which is as close to a classic “amber” mono display as I could 
get using the colours available in the VDP. 
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;VDU setup step 1, move the name table (register 2) to offset 0000 
ld a,0 
out (2),A 
ld a,&82 
out (2),a 
;step 2 extend the patern table from 1900-1BFF to 1FFF  
;because the rom is copied we can call high memory routines 
ld hl,&1900 
call set_read 
ld hl,&c000 
ld e,3 
ld BC,1          ; b=0  c=1 
.read_loop 
in a,(c) 
cpl              ;invert the data, top bit characters are inverted and  

; used for the cursor  
ld (hl),A 
inc hl 
djnz read_loop 
dec E 
jr nz,read_loop 
 
ld hl,&1D00 
call set_write 
ld hl,&c000 
ld e,3 
ld BC,1          ; b=0  c=1 
.write_loop 
ld a,(hl) 
nop 
out (c),A 
inc hl 
djnz write_loop 
dec E 
jr nz,write_loop 
 
;step 3 change the colours by updating register 7 - CPM looks really 
;odd white on blue 
ld a,&A1 
out (2),A 
ld a,&87 
out (2),a 
 
JP   setup 


