VIEVIOTECH
OPERATOR'S
IVIANUAL

THE MEMOTECH

Operator’s Manual

Written by
Spencer Bateson

Published for Memotech Ltd.
by

PHOENIX PUBLISHING ASSOCIATES LTD.
14 VERNON ROAD, BUSHEY, HERTS. WD2 2JL

ISBN 0 9465 7626 2
Copyright © Spencer Bateson
Typeset by First Page Ltd, Watford
Designed by Denis Gibney Graphics, Chesham
Printed by The Garden City Press, Letchworth.

CONTENTS

CHAPTER PAGE
b 2R S A e e I L Y 1
2. BASIC COMMUNICATIONS i e 4
NI MIETHDATA. - . ccvocoe s s dis e magmmenio s simes bisssmssmessmesias 25
4. LOOPSANDDECISIONS i 42
g SANED FORBPOSTERITY .o i0vn s ss onm o e somevs o pme e vavirs g 50 s 53
B KEY TOBABIC . .cvvimscmiimmessovmey e s wn s o s om e s oo s w5 w0 @ 3 57
B SRIUNDING OFF cvmrmsinmr i asimeaiwssainoesinsnes 126
EECEIAPHICS WITH CHARACGTER. v smesmesomssm vnmme smms s msswms o sss 134
B BESOLUTION GRAPHICS. . iissnsssmisavsnacamismesnmsniasnesi 144

ERSPEITE GRAPEICSo cvvommovmm s s m o mm s wm oo mos s am s u s s 159

11. THENODDY LANGUAGE 171

IS TR MTRASEEMBIER . . ccvvovmesswasmusoosne s wss P ssmss 988 mmss 181

BEIISEARY OF TERME o .vovvsommmnss s o sumemns 85 58 £ yaemmes 5§ 555 SOsEmes § 555 & 194
DRURTNEARE BPPEBIDIR . . - o« v vvvmmuns 5 0 5 5 o b comoninn 5 ¥ 5 8 samaessin s © 5 5 3 daoammimnn s = & 5 ¥ 197
TECHNICAL APPENDIX 217
BBIDEIE .. .o ocoeonicimiioicn c ns sominiaieie a4 5 i+ R 8 S R 8 8 e & % 5 s 251

NB. In this book you will see “ ” * " used for quotation marks. This is a feature of the type used in
producing this book. Your computer key however will show

CHAPTER 1 : THE SET-UP

PACKAGES AND PERIPHERALS

Welcome to the world of MTX computing! Along with the computer itself you should find the following
goodies in the Memotech package.

One Memotech power pack

One cassette lead

One TV lead

One snap in cartridge port cover (possibly attached)
Five complimentary cassette programs

Qi o0, Iy

In a moment we'll look at each of these peripherals in turn, explaining what each piece of equipment does
and, when relevant, how it should be connected to your computer.

Before you set up your new acquisition it is a good idea to give some thought to the type of work surface
required. Obviously it should be near a power supply and large enough to comfortably hold the Memotech,
a TV and a cassette player (if you have one). If it is possible try to find somewhere that will serve as a
permanent computer work station. Apart from the obvious considerations of convenience, a dedicated base
of this type ensures that there is less chance of damaging the Memotech's ports and leads by constantly
plugging in and disconnecting your peripherals. Unsurprisingly, your Memotech needs to be fed electricity
before it can perform any wondrous feats! This is achieved by inserting the MTX lead (or power pack
as its known in the trade) into the socket marked 'POWER' on the back of the computer. You will then need
to flick the switch on the side of the power pack which should light up, thus indicating that the Memotech is
'powered up’.

As far as the micro is concerned it's now ready and rearing to go, but since we are only mere humans and
seeing is believing, we need the computer to display information in a manner that we can understand. This
is achieved by the use of a Visual Display Unit (VDU), which for the majority of you will mean a TV. Before
we explain how to connect your VDU to the Memotech a few words of advice are in order.

We have already stressed the value of a dedicated work station, but how can this be achieved without a
VDU which is a permanent part of the system? Well, the fact of the matter is that it can’t, which is why it's
advisable to get your hands on a TV exclusively dedicated to computing. Apart from the considerations
previously discussed there are a number of reasons that this somewhat luxurious situation is desirable.

Aside from the obvious advantages of avoiding conflict with other members of the family who are more
interested in soap opera than computing, there are other slightly more serious considerations. The aerial
socket at the back of a TV was not designed to have plugs constantly pushed in and pulled out of it. With a
little care (and a total absence of brute force), damage to connectors can probably be avoided.

Right, let's set up the basic MTX system. Fish out the TV lead and plug the appropriate connection into the
aerial socket on the TV and attach the other to the socket marked 'TV' on the back of the Memotech (it is
easy to tell which end should be plugged into which piece of equipment). Having achieved the rudiments of
a system you need to tune the TV into channel 36 (the channel used by most micros). When the MTX is
correctly tuned in the following message should be displayed on a clear blue background (that is providing
you have a colour TV!):

[]
Ready

This message is displayed whenever you turn on your micro. This is the computer’s way of telling you that
it's awaiting instructions. There should also be a flashing white square above the 'Ready’ prompt which is
known as a cursor. The cursor indicates the position at which characters will be printed to the screen.

The first component you should consider adding to your system is a cassette player. Whilst, theoretically,
this is an optional extra, in practice computing life is impossible without one. As you probably know,
cassette recorders provide computers with ‘offline’ storage (excuse the jargon!). Such a facility is referred to
as ‘offline’ simply because it is a storage facility external to the computer itself. In essence, this means that
you can store the program/file currently held in the micro’s memory on a tape, reloading it as and when
required. Cassette handling is discussed at some length in chapter 5, so we won't go into detail at this stage
but merely outline a few essential points.

The MTX cassette Head Cleaner is a very valuable addition to your system which is likely to be overlooked.
If the heads on your cassette player get covered in magnetic dust or assorted grime it becomes impossible
to reliably save and load programs. This is more than a little frustrating. Imagine spending hours
meticulously creating an earth shattering program, storing it on a cassette, only to come back at a later date
to discover that you are unable to reload the program because you've neglected to keep the heads clean.
The moral of this rather stern lecture is clear: Developing a program takes time and trouble. If you want to
avoid the disappointment of losing a cherished creation you must get into the habit of using the head
cleaner on a regular basis!

It you don't yet own a cassette recorder, resist a rash purchase until you've read chapter 5 of this manual.
This will provide you with all the essential parameters you need in order to select the most appropriate type
of recorder for the task at hand. For now, all you need to bear in mind is that you don't need to spend a
fortune to equip yourself with a perfectly adequate data recorder.

The next item on our peripheral check list is the snap-in cartridge port cover. Itis quite feasible that you
won't be able to find this item when you open up the MTX package. Since it's often attached to the computer
on delivery. Take a look at the left-hand side of your computer and locate the cartridge port to be protected
by this cover. When this port is not in use it is advisable to plug in the cartridge port cover to prevent
pollution from dust and grime. So if the cover is not attached, clip it into place.

Having pieced together the basic MTX system, you'll notice a few ports on the back of the Memotech that
have not yet been mentioned. These sockets offer a wealth of expansion possibilities, so we’ll take a quick
look at what you computing future holds.

On the left of the computer you'll see two ports labelled RS232-1 and RS232-0. These can't be used in their
raw’ state. However, with the addition of further peripherals you can use a serial printer and disc drive as
well as exploiting the MTX's networking potential.

On the right-hand side of your micro you'll find a port labelled CENTRONICS TYPE PARALLEL PRINTER,
which (predictably enough) enables MTX programmers to utilise a parallel printer. Your micro's Input/
Qutput (I/0) facilities are unusually flexible in that they allow access to both centronics and serial printers.

Next to the RS232-0 port is a socket marked "MONITOR'. A monitor is another type of VDU which can be
used instead of a TV. The main difference between the two options lies in the the quality of the screen
display. which the monitor wins hands down. Monitors are simply high quality VDU's which offer a much
sharper display than TV's. The majority of monitors are very expensive and are generally found dedicated
to a computer system. This said, if you want the best of both worlds, there is a wide range of TV/monitors
available which in terms, of both quality and price, offer an acceptable compromise for the home user.
However, if you decide upon this compromise solution, ensure that the VDU you opt for is fitted with a BNC
connector.

The last ‘add-on’ we'll outline in this chapter is the disc drive. To use the MTX with CP/M you'll require 64K
of memory. A single disc system can be used by either 32K or 64K but an additional board, known as the
Communications Board. is required by both systems. A disc drive can be used as an alternative means of
storing your files and programs. It plays exactly the same role as a cassette recorder, but it is more reliable,
substantially faster and operates far more efficiently.

The MTX drive scans a disc for a specified file, which is then loaded into the computer's memory as soon as
it is found. The wonder of disc drives is that they only take a few seconds to load and save programs.
Although this is a fairly expensive method of storage, the majority of serious users insist that, in the final
analysis. the purchase of a cassette recorder is simply delaying the inevitable - a disc drive is the essential
add-on!

Having said that a disc drive with CP/M can only be operated with a 64K system, this is probably the time to
explain what 64K and 32K actually mean. The MTX is equipped with either 32K or 64K of available memory
and since CP/M consumes a fair amount of this valuable memory space it can’t operate with a 32K system.
For the moment, all you need to know is that a 'byte’ is a storage location in your micro's memory and that K
(or kilobyte) is an expression used to denote the amount of available memory. One kilobyte will hold
approximately one page of this book, and so, 32K (kilobytes) will hold approximately 32 pages.

By now you and your micro are presumably powered-up and ready to go. In the chapters which follow we’ll

introduce you to the BASIC computer language, and in so doing ensure that you and your computer travel in
the same direction.

CHAPTER 2 : BASIC COMMUNICATIONS

WHAT'S BASIC

The computer's humming and your fingers are poised over the keyboard, but how do you get the silicon
wonder to do anything? Well, the first thing to recognise is that although micros can offer fairly convincing
simulations of intelligence, they're not actually very bright! In fact computers must be given very precise
instructions before they are capable of anything. In the next few chapters we will be looking at one of the
languages that can be used to persuade your micro to perform whatever fiendish tasks you choose to set it.

There are three main methods of communicating with your MTX - Noddy, Assembler and BASIC. The
language that we'll be looking at in the next few chapters is BASIC (Beginners All-Purpose Symbolic
Instruction Code). The BASIC language is known as a high-level language. This means that we don't have
to concern ourselves with the complex clicks and whirs going on within the computer, all we have to do is
issue instructions, according to the rules of BASIC, and watch the computer carry them out.

It is imperative that you don't skip any of this section since it will provide you with the foundations of the

BASIC language. Work your way through the text systematically, trying all the examples as you go and in
this way you will gain an understanding of the intricacies of BASIC.

The Keyboard

| VEMOTECH MTXS1E |

5 (8] (310 (7] [o] (w] (3] (] (1] [£][*] [§] [oe]

[+ (7] 0]
HIEIEE]
2][3][3][3]

0]

2
Cl
E
[m]
El
El
<
=
=
o]
(=]
[
]
[<] [

The keys on the Memotech keyboard are laid out in the standard QWERTY typewriter format, so if you are
accustomed to using a typewriter you won't find the MTX a problem. Try typing in a few characters, that is,
numbers, letters and any of the symbols on the keys and then press <RET> key. You will probably be
confronted with a screen displaying the characters you typed in, with the cursor flashing over the first
character of the line, and a message that says 'Mistake’. This will all be explained later in the chapter, but for
now simply note computers are very meticulous about the information they will accept and this message is
the computer's way of telling you that it doesn’t understand what you have just typed in. To get rid of the
error message press the CLS key (bottom right of the numeric keypad on the right of the machine) and then
press <RET> and the 'Ready’ prompt will reappear.

It is important to realise that nothing you can type in can actually hurt the machine. If anything apparently
disastrous should happen - such as the keyboard not responding when you press the keys - either switch
the MTX off and on again or simultaneously press the two keys on either side of the space bar and the
keyboard response will return. This process is known (rather unimaginatively) as RESETting the machine
and consequently the keys are called the RESET keys.

Up until now all the letters that you have entered have probably been in upper case (capitals), to access the
lower case set of characters press the ALPHA LOCK key. You will see that all the characters that you type
in are now in lower case. To return to the upper case mode you can either press the ALPHA LOCK key
again or else use the SHIFT key (as on a typewriter) to access single characters. We'll now take a look at
the non-standard keys on the MTX keyboard.

ALPHA LOCK

This key, situated on the left-hand side of the QWERTY keyboard, acts as a toggle switch from upper case
to lower case. A toggle acts in much the same way as a light switch turning a facility on or off.

SHIFT

The SHIFT keys (which you will find bottom left and right of the QWERTY keyboard) provide access to both
capitals (assuming you were in lower case) and the top symbol on the key that is required. For example if
you press SHIFT and 1 simultaneously an exclamation mark (!) will be printed to the screen.

CTRL

The control key is sometimes used during the running of a program. To give you an example of what it can
do try pressing CTRL and 8 together. For additional uses of this facility refer to the Codes of Control
appendix.

ESC

Your computer has an unusual feature which enables us to make use of six different character sets. You
automatically access the standard international character set (the American set) when you power up your
computer and the ESCAPE key is used to access the other sets. Try pressing SHIFT and 3 and, instead of
the expected pound sign, a hash (#) appears on the screen. The hash is substituted for the pound sign
which is not supported by the American standard set. If you want to use a pound sign you will have to
access the English character set, to do this press the ESCAPE key followed by B then 1. A complete list of
ESCape sequences is listed in appendix 2.

BS

The BS key, situated on the top right-hand corner of the QWERTY keyboard, is the Back Space key. BS
moves the cursor back one character space each time it is pressed. If you hold down the BS key (or any
other key for that matter) the key will repeat itself until such time as it is released. This is referred 1o as an
auto repeat facility.

LINE FEED

This key, situated above the <RET> key on the QWERTY keyboard, is mainly used in conjunction with the
NODDY language and has the same effect as the cursor down key.

RET

The RET key is situated on the right-hand side of the QWERTY keyboard above the SHIFT key. It has a
similar function to the carriage return on a typewriter in that it creates a linefeed whilst returning the cursor to
the beginning of the next line. The difference between the the carriage return on a typewriter and the

RETurn key on a micro is that the RETurn key will activate a direct command or cause a program line to be
stored in the computer's memory as well as performing the standard carriage return function.

THE NUMERIC KEYPAD
The numeric keypad is on the right of the QWERTY keyboard and has two operational modes. By pressing

a number and the SHIFT key you can use it to enter numbers and by using it unSHIFTed you can use it to
edit your programs.

PAGE

This key (top left of the numeric keypad) is used to pause a program when you are listing it to the screen. It
acts as a toggle switch. The first time PAGE is pressed it pauses a program listing, at the same time
generating a sound prompt.

EOL
This is the 8 key on the numeric keyboard. EOL is short

for End of Line and, as we have already seen, its function is to delete all characters following the cursor. For
further details, see the section on MTX editing facilities in chapter two.

BRK

Top right of the numeric keypad. The function of the BRK is to BReaK into a program which is currently
being RUN.

TAB

This key (the 4 of the numeric keypad) moves the cursor over the text, from left to right, in leaps of eight
characters. This key proves very useful when editing large sections of code.

CURSOR CONTROL KEYS

UP ARROW

This key, the 5 on the numeric keypad, moves the cursor one line up the screen. However, this key will not
work on the BASIC EDIT screen, so you must use the left and right cursor control keys to move around text
on this particular screen.

LEFT ARROW

This key, the 1 on the numeric keypad, moves the cursor one space to the left each time it is pressed.

RIGHT ARROW

This key, the 3 key on the numeric keypad, moves the cursor one space to the right each time it is pressed.

DOWN ARROW

This key moves the cursor down one line, but, as with the up arrow key, it will not work on the BASIC EDIT
screen.

HOME

This key, the 2 on the numeric keypad, returns the cursor to the beginning of the screen.

INS

This key is a toggle used when editing text on the screen. The INS key, when pressed for the first time,
enables you to INSert text at the current cursor position. It should be noted that this facility is turned off each
time the <RET> key is pressed.

DEL

This key DELetes the character under the cursor, and will continue to delete subsequent characters until it
is released.

ENT/CLS

ENT/CLS, situated at the bottom right-hand corner of the numeric keypad, is a dual purpose key. It can

either be used to CLear the Screen or, when SHIFTed, ENTer a line of text. When it is used to CLear the
Screen it will only clear the BASIC EDIT screen (the bottom four lines of the screen).

The CLS key followed by <RET> can also be used to terminate a number of operations. For example,
CLS-<RET> disables the AUTO line numbering facility, facilitates a return to BASIC from Noddy and
Assembler and can also be used to delete a Noddy page.

FUNCTION KEYS

On the far right of the machine are 8 keys labelled F1 through to F8. These are known as function keys and
will be discussed later in the text.

CLEARING THE SCREEN

Up until now everything you've typed in has been confined to the bottom of your screen. On power-up your
micro only provides access to the BASIC EDIT screen, which utilises the bottom four lines of your VDU.
However, this screen is invaluable since it enables us to enter proarams and issue commands.

Type in some characters until you have familiarised yourself with the Memotech's keyboard. Once you feel
quite at home with the layout you'll be ready to move on to bigger and better things. However, before we enter
the wonderful world of BASIC, you must learn how to clear this screen of unwanted text. This can be achieved
by either RESETting the machine (by simultaneously pressing the two keys on either side of the space bar).
or by typing the CLS following by <RET> or by pressing F2 followed by <RET>.

The first of these two methods will clear the entire screen and erase any information currently stored in the
computer's memory. The second sequence (CLS/ENT) simply clears the BASIC EDIT screen, but keeps
the contents of the memory intact.

We have already established the importance of precision when issuing instructions to computers. In the
next few chapters we'll introduce you to the foundations of the BASIC language, you should bear in mind
the need for accuracy when typing in the example programs.

There are two different ways of issuing instructions in MTX BASIC. The most common method is in the form
of a program, which is a numbered list of commands stored in the Memotech's memory. The second option
is to enter the commands directly. This method executes commands the moment <RET> key is pressed
but does not store the actual code in memory. Since direct commands force immediate response from the
computer, we'll use this mode of instruction as a means of introducing you to the principles of BASIC.

We have already established that computers are very fussy about the way in which instructions are
formatted. This need for precision extends to the spacing of commands. Nearly all MTX commands must be
followed by a space if they are to be accepted as a legitimate entry. However, Memotech BASIC is easier to
use than the majority of dialects since most keywords can be entered in an abbreviated form which
automatically includes a following space.

GETTING INTO PRINT

The first BASIC keyword that we'll examine is the PRINT statement. This instruction, as you might expect, is
used to PRINT items of data to the screen. The characters to be PRINTed when using the simplest PRINT
format must always be enclosed within quotes. Type in:

PRINT "HI THERE EVERYONE | AM 4 YEARS OLD!”

and press the <RET> key to activate the command. As soon as the <RET> key is pressed - HI THERE
EVERYONE | AM 4 YEARS OLD! - will be PRINTed to the screen on the line below the command. As soon
as the computer encounters PRINT followed by characters within quotes, it stops thinking and mindlessly
displays the quoted material to the screen. We'll see a little later there are PRINT formats which allow usto
PRINT material without the use of quotes. However, for the moment note that the simplest form of the
PRINT statement requires information to be enclosed between double quotes. Try the following example
which excludes the quotes and see what happens.

PRINT MEMOTECH <RET>

This time, instead of 'MEMOTECH being PRINTed to the screen our trusty micro has come up with one of
its numerous error messages: 'Undefined’. For now do not concern yourself with the meaning of this
message (it will be explained later in the chapter). Simply note that double quotes are required whenever
you want the MTX to passively PRINT material to the screen. Erase the error message by pressing EOL or
CLS followed by <RET>. We should probably make it clear that 'characters’ is an all-embracing term used
to describe the letters, numbers and symbols that can be displayed using a PRINT statement. For example:

PRINT "ABC 123 !#:;%” <RET>

will PRINT all the characters enclosed within the quotes to the screen. Like a 'gaggle’ of geese, this
collection of quoted characters is referred to as a 'string’.

By now you're probably very bored of typing PRINT each time you want to create a PRINT statement.
However, as we mentioned earlier, your micro allows you to abbreviate keywords and the short form of
PRINT is P. so. make life easier for yourself and whenever you come across a PRINT statement, just type in
'P.". On pressing <RET> you'll notice that the statement will be displayed in its unabbreviated form.

PRINT AND NUMBERS

BASIC offers alternative PRINT formats which force the computer to consider PRINT material in a less
literal manner than the quoted string displays we have just discussed. For example, we can use the
Memotech as a rather expensive calculator by asking it to PRINT the calculation of numbers. In the light of
what we have just discovered you shouldn't be surprised that:

PRINT ”8-4” <RET>

displays 8-4 on the screen. In other words, the numbers contained within quotes will be literally reproduced.
However, by omitting the quotes we can get the computer to perform the actual calculation. Thus:

PRINT 8-4 <RET>

will PRINT 4 to the screen. By omitting the quotes we force the computer to consider the numbers following
the PRINT statement as a numerical expression, which must be calculated before it is PRINTed.

Let's try a few more PRINT statements and make sure that you're completely at home with this valuable
command. (We will assume that you've recognised the need to press <RET> to activate a command, so
we won't mention it again.)

PRINT 8+4-2
will PRINT 10 to the screen.

The asterisk (*) is the micro’s equivalent of the multiplication sign and is used to avoid any confusion with
the letter x. Thus:

PRINT 2%4

will PRINT 8 to the screen. However, if we ask the Memotech to calculate 3*3+4 we have to be clear about
what we're asking the micro to work out for us. In other words, do we mean (3"3=9) plus 4 (9+4=13), or
3+4 (3+4=7) multiplied by 3 (7*3=21). To avoid this sort of confusion the computer assigns a set of
priorities to each mathematical operator. The following table shows the priorities of these arithmetical
operators in descending order:

() Brackets

2 Exponential

*.0 Multiplication and Division
+ - Addition and Subtraction

So, the MTX will always deal with any expression within brackets as its first priority. Thus:

PRINT 6+(2%2)
will return 10, since this expression is equivalent to 6+4.
The next operational priority is exponentiation, the process of raising one value to the power of another (for
example two squared which is 2*2). To refresh your memory, 2 raised to the power of 4 is 2%2*p*2=16.The
exponential numerical operator uses the ~ symbol which you will find next to the equals sign on the
QWERTY keyboard. Thus:

PRINT 274%*3
will return 48. In other words, 2~4 (or 2%2*2%2=16) which is then multiplied by 3 (16*3=48).

The next operators on the priority list are multiplication and division which are assigned an equal priority by
the computer. Thus:

PRINT 2+2%3

will return 8.0ur micro will first calculate 2*3=6 (since multiplication has a higher priority than addition) and
then add 2, returning 8. Similarly:

PRINT 2+6/2

will return 5. First 6/2=3 is calculated and then 2 is added to the result, returning 3+2=>5. When operators
with an equal priority are used in the same calculation, the computer reads the expression from left to right.
Thus:

PRINT 2/3*6
will return 4.

Since addition and subtraction are also assigned equal priority, they are also interpreted from left to right
when both are used in the same expression. Thus;

PRINT 2-4+6
will return 4 and:
PRINT 6%2-3

will return 9 because subtraction has a lower priority than multiplication. Let's try a more complex
calculation which should clarify the need for a system of pre-defined priorities.

PRINT 2%472/(6-3)+ 4

Since brackets take the highest priority of all the numerical operators, the bracketed expression (6-3) is
calculated first. thus changing our expression to 2*%472/3+4. The next calculation involves exponentiation.
Once 4 has been raised to the power of 2 our calculation will look like this: 2% 16/3+4. As multiplication shares
the next highest priority with division but on a left-to-right basis, our expression will be 32/3+4 after the
computer has performed its multiplication. Penultimately it will work out 32/3 to return 10.6666667. and
finally add 4 to produce 14.6666667.

We've seen how the inclusion or exclusion of quotes alters the manner in which the computer interprets a
PRINT statement. We'll now move on to see how other forms of punctuation can be used to control screen
displays. By using a semi colon (;) it is possible to join one sequence of PRINT items to the next. For
example:

PRINT 73+2=";3+2

The effect of a semi colon is to force the cursor to remain at the PRINT position it reached after displaying
the last print item. Thus, the next time the computer comes across a PRINT item, whether it appears in the
same statement or in a subsequent PRINT statement it will tack it on to the end of the last item displayed.
Therefore the above statement will PRINT out:

3+2=5
You'll notice a space between the equals sign and the five. This space is referred to as a leading space
which leaves room for a minus sign in the event of a negative number. Let's try PRINTing a negative
number:

PRINT 73-4=":3-4
This statement will PRINT:

3-4=-1

As you can see, the leading space is now occupied by the minus sign. Key in the following statement:
PRINT 1;-6

and 1-6" is PRINTed to the screen. It is important to remember that, as this example demonstrates,
numbers are not displayed with a trailing space. We actually wanted the computer to PRINT 1 -6, but with

10

no trailing space it simply joined up the numbers and produced a display that looks like a calculation as
opposed to a pair of individual numbers. However, by entering either:

PRINT 1;” ";-6
or
PRINT "1 -6”

we can achieve the desired effect. The semi colon is one of two PRINT separators available in MTX BASIC.
While the semi colon joins PRINT items, a comma sends the cursor to the next print field on the screen. Key
in the following example:

PRINT 3,4

Having displayed the 3 at the first PRINT position on the screen, the cursor then moves on 7 spaces before
PRINTing the 4. The Memotech’s screen has 5 PRINT fields across the width of the screen, and each
PRINT field can display 8 characters. By entering the following statement we can discover the first PRINT
position of each field:

PRINT 1,2,3,4,5

If we try adding a further item to this statement the computer will simply move on to the first PRINT field on
the next screen line:

PRINT 1,2,3,4,5,6.

LET IT BE

We have considered the PRINT command in depth primarily because it is an essential, flexible yet
straightforward BASIC instruction. However, PRINT statements also allow us to painlessly introduce the
concept of a program. This is because we can demonstrate most PRINT formats without having to rely on
any other BASIC word. However, like the words of any language, the power of most the BASIC keywords
can only be fully demonstrated in the context of other keywords. Thus, it will be necessary for some of the
examples which follow to make use of commands and structures that will not be explained until later in the
manual. On these occasions you can either look up the new statement in the keywords section or else
contain your curiosity until the keyword in question pops up in this brief tutorial. Earlier in this chapter we
asked the computer to:

Print Memotech

In other words, we tried to get the computer to PRINT a string without quotes. You'll remember that the
Memotech refused to accept this instruction and an 'Undefined’ error message was returned. This error
message is a burst of disgruntled shorthand which tells you that you have tried to PRINT an undefined
'variable' called MEMOTECH. You will have to excuse the jargon, but since the concept of variables is
central to computing you'll have to grit your teeth and grapple with it! The easiest way to think of a variable is
as a box to which you can assign a name and into which you can place a value. In order to define a variable
we use the BASIC keyword LET. If we had typed in:

LET MEMOTECH=24
followed by:
PRINT MEMOTECH
24 would have been PRINTed to the screen. In the first statement (LET MEMOTECH=24) we assigned the

value of 24 to a variable that we called MEMOTECH. Thus, when we entered PRINT MEMOTECH the
micro duly PRINTed the value that had been assigned to the aforementioned variable.

11

It is always advisable to create a variable name that will remind you of its role in the program. For example,
suppose you wanted to set up a variable to store somebody's age. To avoid any ambiguity we could simpiy
call the variable AGE.

LET AGE=ZS
FEINT "I AM";AGE; " YEARS OLD"

Our first line assigns the value of 25 to the variable called AGE. The next statement PRINTs out the
information between the quotes (I AM) and the semi colon which follows ensures that the value of the
variable AGE (25) is PRINTed directly next to it. The second semi colon informs the computer to PRINT the
string between the quotes (YEARS OLD).

As we have already discovered it is important to make it clear to the Memotech whether characters should
be considered as string or numeric values. When using variables we establish this distinction by selecting
one of two variable formats. The type of variables we have discussed to date are known as numeric
variables. AGE is a numeric variable because it stores a value which the computer can use in arithmetic
operations. We can also create string variables by assigning a variable name to a string of characters.
When a string variable is created a slightly different format is required. The LET statement is still used but
the variable name must be followed by a dollar sign ($) and the string that is being assigned to that variable
Is enclosed within quotes. Thus:

LET NAME$="SFENCER"
FREINT "MY NAME IS ";NAMES

will PRINT - MY NAME IS SPENCER - to the screen, since NAME$ stores the characters - SPENCER.
However, if we omit the dollar sign or the guotation marks, thus:

LET AsHELLO

the cursor will return to the beginning of the line and the dreaded 'Undefined' error message will appear. As
with all BASIC statements, the computer will only accept instructions which use the correct format. In this
case, since there is no dollar sign after the variable name, the micro is quite entitled to expect numeric data,
so, it's hardly surprising that illegal string data produces error message. Similarly, in the following example
the Memotech expects to find string data enclosed within quotes, but instead encounters characters without
quotes. In this case a 'Mismatch’ error is generated. This report informs us that we have tried to assign
inappropriate data to a particular type of variable - i.e. string data to a numeric variable or numeric data (or
characters without quotes) to a string variable.

A variable name can be of any length, but cannot contain a space or any symbols other than roman
characters. The following example shows how variables got their name. As you'll see, the value assigned to
a variable can be changed at any time:

LET A$="1 AM"

LET B$=" YEARS OLD."
LET AGE=40

FRINT A%; AGE; B%

This will PRINT variables to the screen in the order specified. Now let's change the value held by the
variable AGE and PRINT the last line again:

12

LET ABE=25
FRINT A%$; AGE;E$

This time the line PRINTed displays the new value of AGE.

By now it's hopefully clear that it would be much simpler to put this list of commands into a program. In this
way we can avoid retyping each line whenever we want to make a change or, for that matter, when we want
to PRINT the variables.

The difference between a program and the direct commands we've been using up until now is quite
straightforward. When writing a program each statement is given a line number. Before a new line can be
typed in, the <RET> key must be pressed. Unlike direct commands, line numbered statements are not
entered into the computer for immediate processing by <RET>, but stored in the computer's memory.
NB Entering a program line clears all variables.

BASIC PROGRAMMING

Let's key in the last sequence of statements again, but this time we'll give each instruction a line number.

10 LET A$="1 aAM"

20 LET B$=" YEARS (OLD"
30 LET ABE=40

40 FRINT A$; AGE; B

To enable the computer to execute this list of commands you must type in RUN and press <RET>. The
computer will deal with the instructions according to the order established by the line numbers, starting with
the lowest and finishing with the highest. When you RUN our example the screen is cleared and the
characters PRINTed to the top-left hand corner of the screen. Type in the following line and then RUN the
program again.

35 FRINT @ FRINT @ PRINT : FRINT = FEINT

I'his time the same sequence of characters are PRINTed lower down the screen. By using empty PRINT
statements we force the cursor down one line per statement. In effect we're PRINTing a blank line to the
screen. You'll notice that colons (:) have been used instead of semi colons. The effect of a colon is to allow a
single program line to contain more than one statement. In most circumstances this format has exactly the
same effect as creating a new program line.

So far we have made the somewhat reckless assumption that you have made no typing errors when keying
in your commands. What is more likely is that you've had to re-type a line each time you've made an error!
This is clearly the time to take a look at your micro’s editing facilities.

Before we can edit a program we need to display it on the screen. Type LIST and press <RET>. The LIST
command, when used on its own, LISTs the entire program to the screen. However, LIST statements can
take a variety of formats which enable us to LIST specified sections of code or a particular program line. It's
well worth familiarising yourself with the various permutations of this simple command since you'll find it
essential to the development of any program. Note that L. is the abbreviation of the LIST command. By
typing in LIST 20 the Memotech LISTs the entire program from line 20 onwards, LIST 20,20 will LIST line 20
only and LIST 20,40 will LIST lines 20 to 40 (inclusive) to the screen.

The only problem with LISTing a program is that the majority of programs are larger than your TV screen.
So, when you LIST a program the computer scrolls it up the screen until it reaches the final program line
However, by pressing the PAGE key (top left of the numeric keypad) you can pause the LISTing and

13

examine the section(s) you're interested in. To continue the LISTing simply press the PAGE key for a
second time. For more about PAGE refer to the keyboard section at the beginning of this chapter.

Having introduced the concept of line numbers, it's worth mentioning that the Memotech boasts an AUTO
line numbering facility. This is accessed by the BASIC keyword AUTO which takes the format 'AUTO
100.10" where 100 is the first line number you require and 10 is the step between line numbers. Thus,
AUTO 100,10 will create lines 100, 110, 120, 130.... and so on until the CLS/ENT key (followed by <RET>)
is pressed.

EDITING ON THE MTX

Having LISTed your program to the screen you can see that line 35 has been inserted between lines 30 and
40. Whenever you key in an extra line the computer will always insert it in the correct position. However,
make sure that you don't use the same line number more than once, since the second statement will wipe
outthe original program line. You can use this to good effect when you want to delete a line, since by simply
entering the appropriate line number and pressing <RET> you can delete the entire statement. Right, let's
change our AGE variable back to 25. Type in:

EDIT 30

and line 30 will appear at the bottom of the screen with the cursor at the beginning of the line. Using the
cursor control keys (the arrow keys on the numeric keypad) move the cursor along the line until it covers the
4 of 40. Press the DEL key (also on the numeric keypad) twice and the offending characters will be
removed. Finally, type in 25 and press <RET>. LIST the program again and you will see that line 30 now
reads:

20 LET AGE=25

To demonstrate the other editing facilities available on the Memotech let's change lines 10 and 20. Type in:
EDIT 10

and move the cursor along the line until it is over the A of AM. Press the DELete key twice (thus deleting

AM) and then press the INSert key, which is to be found on the numeric keypad. The INSert key acts as a

toggle which allows the INSertion of text. Whenever the <RET> key is pressed it is turned off, so you will

always have to turn it back on again before you can INSert any text into a new line. Type in 'LIVE AT and
press <RET>. Your new line should look like this:

10 LET A%="I LIVE AT"

Now type in:

EDIT 20 or E.20
(E. is the abbreviation for EDIT) and move your cursor along until it is over the space inside the quotes.
Press the INS key and press the space bar once, then press the INSert key once again (thus turning it off)

and then type BLYTHE ROAD . The ' YEARS OLD." will now be replaced by BLYTHE ROAD producing a
line that looks like:

20 LET B$=" RBLYTHE ROAD"

The final touch our program requires is the inclusion of the programming equivalent of a name tag, which
comes in the shape of a REM statement. REM is short for REMark or REMinder and the inclusion

14

of a REM has no effect on the way a program RUNSs. Its sole function is to label a listing and REMind us what
a program, or a section of code is meant to be doing. At first glance this might seem like a bit of a waste of
time. However, it's actually very important to label your programs clearly with REM statements so that the
code is easy to follow. Since our first program is fairly simple (and fairly dull!), a single REM is all that is
required in this instance.

1 REM ##%% DEMONSTRATION FROGREAM #iE#E

Since the MTX moves on to the next program line as soon as it encounters REM, you should never follow a
REM statement with a colon and another statement. The second statement will never be processed!

The line numbers in the first version of this program were incremented in steps of ten. Although this step
size is standard programming practice, you can increment your line numbers in any manner that takes your
fancy without affecting the way it RUNs. However, an increment of ten gives us the ability to insert any extra
lines we may require as the program develops.

INPUTTING DATA

Now that we've outlined the concept of a BASIC program, let's create a slightly more useful example and
introduce you to a new keyword, INPUT. However, before you enter a new program you'll need to clear the
computer’'s memory. You can do this by switching the MTX off and then on again, RESETting the machine
(using the RESET buttons on either side of the space bar), or typing in NEW followed by <RET>.

The INPUT statement allows you to enter data while a program is RUNning. In simple terms, it can be seen
as a cross between the PRINT and LET statements since it can be used to both display textual information
and to define a variable. As soon as the computer encounters an INPUT statement it stops the program until
the required data has been entered and <RET> pressed. Your entry is then stored in INPUT's variable.

If you haven't customised the statement by creating a textual prompt the computer will display a question
mark to the screen when the INPUT statement is executed. The question mark simply indicates that the
Memotech is awaiting information from the outside world. However, this doesn't actually give the user of a
program much of an idea about the type of data expected. There are two ways around this problem. One
alternative is to precede the INPUT statement with PRINT. For example:

S REM fffdddckddckdkdoik

10 REM #®¥% INPUT k¥

15 REEM ®ffffEiiisissss

20 PRINT "FLEASE ENTER YOUR NAME"
30 INFUT NAMES

The INPUT statement will still print the question mark prompt but at least the users will know what is
expected of them. However, a more economical alternative is to include an explanatory prompt within the
INPUT statement itself. Thus:

S FEM FEREEEREE R EEREE
10 REM #%% INFUT 2 ®$¥
15 REM $kddcddoddockididsd

20 INFUT “"FLEASE ENTER YOUR NAME ";NAMES

16

MEM-2

NEW the memory and type in the following program. If nothing else it'll give you a chance to practice your
newly acquired EDITing skills!

1 REM #ddkdddfdddsdak

S REM ®ER INFUT 3 ik

10 REM $3KEFERREEERERE

20 LET WHOLESALE=Z0

30 LET RETAIL=30

40 FEINT "MOW MANY ITEMS DID YOU SELL THIS WEEE??"
S0 INFUT SOLD

€0 LET FROFIT=C(RETAIL-WHOLESALE)®50L.D

70 FRINT FROFIT

This program calculates and PRINTs the amount of profit produced in a given week by a suspiciously
straightforward business. The INPUT statement (line 50) stops the program and the question mark prompt
indicates that data is required. The program will only continue if the correct type of data is INPUT. In this
case, since the INPUT variable SOLD is a numeric variable the Memotech will only accept a numeric
INPUT. If you try entering string data the computer will reject your INPUT and follow the illegal entry with a
second question mark.

The Memotech will not stop the program with an error report when the wrong type of data is entered.
Instead, it allows you to make another entry and will continue to do so until the correct type of data is
entered. It will respond in one of two ways. In our example we used INPUT without a string prompt so the
program displayed yet another question mark on the following line. If we had used INPUT to display the
quoted prompt, it would simply have re-printed the text on the next print line.

It is also possible to create multiple INPUTs by separating the INPUT statement’s variables with a comma.

For example:
S50 INFUT A, EB$

(don't key this line in as it is only intended to demonstrate a multiple INPUT format.) However, when INPUT
is used in this manner the user must enter data items in a single line separated by commas. For example:

12,fred
will assign the value 12 to the variable A and the string ‘fred’ to B$.

Delete line 50 by typing in 50 and pressing <RET>. Now change line 40 to read:

40 INFUT "HOW MANY ITEMS DID YOU SELL THIS WEEKT™ ";SOLD

Whilst we are polishing up our example let's make a couple of additional changes. In its present form our
program simply PRINTs an unadorned, undefined result to the screen. Let's change line 70 so that it's
slightly more informative.

70 FRINT "YOUR FROFIT FOR THIS WEEE IS";FREOFIT;" FOUNDS"

16

Try RUNning the program again and you'll find that this addition, although cosmetic, does make a
difference. 'User friendly” is a cliche the world can well survive without, however, improvements like this
help us to avoid the 'human hostile’!

GOTO

In a program painfully low on refinements, it might be a good idea to at least allow it to repeat itself so we
can calculate the profit for more than one week. The statement we can use to achieve this is GOTO. GOTO
is an extremely powerful command and should be treated with care since it disrupts the normal sequence of
processing by line number by forcing the computer to GOTO a specified line number. If there are too many
GOTOs in a program the code becomes impossible to follow and, more importantly, the final product is
invariably inefficient. We'll consider the criteria of efficient program design a little later. For the moment we'll
take the view that the use of GOTO is perfectly acceptable, so type in the following line and then RUN it
once again.

80 GOTO 10

Since the computer will always return to line 10 once it has calculated the PROFIT, the only way you can
exit this program is by pressing the BReaK key (top right of the numeric keypad). After RUNning this
example for a while, the screen will fill up with information and generally become rather messy. Let's make
another addition to our program which will clear the screen after each INPUT and demonstrate the value of
the CLS command.

SO CLS

Try running the program again and you will find that as soon as your INPUT has been completed (i.e. as
soon as you press the <RET> key) the screen will be cleared.

Since we have made quite a few modifications let's LIST the program before going any further:

i FREM i 5 0 0 S R 0 o S ol e A

S REM ok INPUT < Bk

10 REM #dfdfdiafdisss

20 LET WHOLESALE=:Z0

20 LET RETAIL=30

40 INFUT "HOW MANY ITEMS DID YOU SELL THIS WEEEY " B0OL.D

50 CLS
60 ILET PROFIT=(RETAIL-WHOLESALE)#50LD
70 FRINT "YOUR FROFIT FOR THIS WEEK IS FROFIT; " FOUNDS"

so GOTO 10

DO YOU WANT ANOTHER GO?

Although our current version of the INPUT demo is much improved, the program would be far mors
professional if after each calculation we gave the user the option of either exiting the program or having
another go. The INKEY$ command facilitates this extra touch of user participation.

17

When an INKEY$ statement is executed, the Memotech scans the keyboard to see if a key is being pressed
and, if it is, it stores its value. The difference between this command and the INPUT statement is that
INKEYS in its raw’ form does not actually stop a program. If a key is not being pressed at the precise
moment the INKEY$ statement is being executed, the program simply moves on to the next program line.
Another limitation of INKEY$ is that it only enables a single character string value to be stored. This said it
does allow a value to be stored and the program 1o continue without the user having to press the <RET>
key. However, we're not interested here in using INKEYS$ to hold a value. Enter the following lines:

74 FPRINT "WOULD YOU LIKE TO FERFORM ANOTHER CALC-ULATIONT CY/N)"
76 IF INEEY$="" THEN GOTO 76
80 IF INKEY$="N" THEN STOPF ELEE GOTO 10

This addition gives the user the option of leaving the program or performing another calculation. Don't worry
about the IF... THEN construction we've used in line 76 and the new line 80. This will be discussed later in
the book. (If your curiosity is aroused have a look at the entry in the keyword section.) Line 76 scans the
keyboard for a key press and if none is being made GOes TO the beginning of the line and repeats the
check. When empty quotes are used in this manner they are referred to as a null string. In essence line 80
says 'if you pressed N then STOP the program or ELSE GOTO line 10'. In other words, unless you press
the 'N' key the computer will repeat the process by GOing TO line 10. In this particular program we're
obviously not interested in storing the value of the INKEYS input. As long as it is not ‘N’ (for NO), we're
simply interested in being able to INPUT a new SOLD variable. However, there are circumstances in which
well want to use INKEYS as a substitute for INPUT and this requires access to the value it stores. There
are two ways in which this can be achieved. The first method is to consider INKEY$ as a string variable
which can be used to store a single character string:

I EEM s$dckdddsducs s e

S REM ¥ INKEY$

10 REM ¥1¥¥$$$$***$$#

£0 FRINT "ENTER ANY CHARACTER"
30 IF INKEY$="" THEN GOTO 30
40 FRINT INKEY$

Line 30 ensures that the program will not continue until a key is pressed and line 40 treats INKEYS$ as a
string variable that can be displayed on the screen. However, if we use an INKEY$ statement more than
once in a program, it is only possible to store the most recent value assigned to INKEYS, any earlier values
will be replaced by the latest key press. Thus it is usually necessary to store to value of the INKEY$ key
to a string variable.

L REEM ##dfssddssssss sy

5 REM #Ed INKEY$ 1 ###

10 REM $$ﬁ£$$$mﬁmmitxxx

20 FRINT "ENTER ANY CHARACTER"
3O LET A$=INKEYS$

A0 IF A$="" THEN GOTO 20

SO FRINT A

18

SUBROUTINES

We have seen how the GOTO command enables us to interrupt linear processing and direct control to a
specified line number. We're now going to introduce one of the most important command structures
available to the BASIC programmer which, although ostensibly an enhancement of the GOTO facility,
actually holds the key to efficient coding in the Memotech's resident language. GOSUB resembles GOTOin
that it also forces the computer to execute instructions from a line number defined by the statement rather
than executing the line numbers in sequence.

However , appearances can be deceptive! GOSUB is a considerably more sophisticated command than
GOTO because although it directs control to a specified part of the program, it also remembers the line
number in which the GOSUB statement re-directed control. This means that once the instructions to which
control has been directed by the GOSUB statement have been processed, a RETURN statement enables
the computer to return to the program line following the original GOSUB. The section of code to which
GOSUB statements direct control are known as subroutines. These 'mini-programs’ are often responsible
for operations which are required more than once in a program. By using GOSUB statements we can avoid
replicating sections of code by simply calling the appropriate subroutines as and when required.

Unlike GOTO, the use of GOSUB statements is not frowned upon by programming purists. This is primarily
because they store the RETURN address and thus promote the creation of programs comprising a series of
clearly differentiated operations controlled by the main program. Such code is easy to follow and forces the
programmer to plan the structure of a program before touching the computer. Subroutines are normally
placed at the end of a program so that each discrete operation is clearly differentiated, and the processing
sequence is immediately apparent from the GOSUB calls in the main program.

To demonstrate this structure we'll re-write our program incorporating the GOSUB...RETURN structure.

10 REME®EdRadifis

20 REMi#:GOSUB++ ¥

30 REMExfEEEsEiss

40 GAOSUR 100

o0 GOSUB 200

&0 IF F=1 THEN FRINT "GOODRBYE": STOF
70 GOSUER 200

80 GOSUBR 400

20 GOTO =0

95 FEM

100 REEMEfiVARIABLESH %

110 LET WHOLESALE=ZO

120 LET EETAIL=30

1320 LLET F=0

140 REETUREN

150 REM

ZO0 REMESTART/AGAINTHE

210 PRINT "WEEE'S FPROFIT CALCULATIONCY /N

19

4440

This program contains a number of new commands. For example line 200 starts a subroutine which
determines whether you want to re-RUN the program. If you type in N the process will STOP and if you type
in Y (or anything else for that matter) the INKEY$ command looks at your INPUT and moves to the
. which RETURNSs the control back to the main program. For further clarification of GOSUB

following line

IF INKEY$="" THEN GOTO 2z0
IF INKEY$="N" THEN LET F=1
FEETURN

FEM

REMEEXINFUT /CALCH$%

INFUT "HOW MaNY ITEMS DID YOU SELL THIS WEEK 7" 3 SOLD
LET FROFIT=(RETAIL-WHOLESALE»+S0LD

FEETURN

FEM

FEMERERESULT £4%

Cl=5

FEINT "YOUR FROFIT THIS WEEE 1§ "TFROFIT; " FPOUNDS"
FETUREN

REM

refer to the keyword section.

The STOP command, as you might expect, halts the execution of the program, returning the ‘Ready’ prompt
- With the use of a PAUSE statement we can PAUSE a program for a specified period of time.
PAUSE must be followed by a number between 0 and 65535, the larger the number the longer the wait.

to the screen

Insert the following lines into our program.

[
el

500
510
B ™

D)

530

and our final

10
20
S0

40

GOSUER S00

FEMEF¥FAUSESE
FRINT : FRINT
FAUSE 3500
FETUREN

version of the program should look like this:

FREMEffdadffdss

FEMEEECOSUR E

FREMEFEEEEsasss

GOSUR 100

GOSUR 200

IF F=1 THEN FRINT "GOODEYE": STOF
GOSUE 300

GOSUE 400

GOSUER S00

20

90 GOTO 40

95 REM

100 REMEHiVARIABLES ¥

110 LET WHOLESALE=ZO

120 LET RETAIL=30

130 LET F=0

140 RETUREN

150 REM

200 REM*START/AGAINT#®

210 PRINT "WEEE'S FREOFIT CALCULATIONCY/N)#v
220 IF INEEY$="" THEN GOTO 2z0

2320 IF INKEY#="N" THEN LET F=1

240 RETURN

250 REM

300 REMEFEHINFUT/CALCH:E

310 INFUT "HOW MANY ITEMS DID YOU SELL THIS WEEEK®" ; SOLD
320 LET PROFIT=(RETAIL-WHOLESALE)#50L.D

330 RETURN

350 EEM

400 REMif$RESULTH$E

410 CL.S

420 FRINT "YOUR FROFIT THIS WEEK IS ";FROFIT;" FOUNDS"
430 RETUREN

440 REM

500 REMif$FAUSE®3+

210 PRINT : PRINT

520 FAUSE 3500

530 RETURN

SPAGHETTI PROGRAMMING

Earlier in this chapter we mentioned that excessive use of the GOTO statement causes confusion and
inefficiency, as well as making a program difficult to follow. The example below demonstrates such abuse
and definitely satisfies all the criteria of a 'spaghetti program’.

1 REM B e o o b e e e S R B e e O R Sl e e
3 EEM ®¥¥ HOW NOT TO USE GOTO - ##¥#%
10 REM BEEEREEEREEFREXEEEETEEEEKEEREEXK
15 EEM ##k SFAGHETTI FROGRAMMING *kd
DT] g R o o e 6 0 e o 3 O b R O o o o

30

INFUT "WHAT IS YOUR NAMET ";NAME$

21

40 GOTO 70

S0 PRINT "HELLOD ¢ ;s NAMES

60 GOTO 30

70 INFUT "HOW OLD ARE YOQUT ™ ; AGE

80 GOTO SO

S0 PRINT "I WOULD NEVER HAVE BUESSED YOU WERE";aGE; " YEARS QLD
You'll doubtlessly be horrified to discover that this mess RUNSs in spite of itself. Hopefully it clarifies our
contention that an excessive use of GOTOs makes life more than a little confusing!
Having introduced a number of important BASIC keywords, let's take a break and take a look at the MTX's
function keys which allow efficient access to such commands. These keys are situated on the far right of the
keyboard and have some BASIC keywords built into them. Try pressing F1. On hitting <RET> the keyword
REM is displayed to the screen. Now type in the following line (SHIFT F1 means that you must press SHIFT
and F1 simultaneously).

10 F1 F2 F3 F4 F5 F6 F7 F8 SHIFT F1 SHIFT F2 SHIFT F3 SHIFT F4 SHIFT F5 SHIFT F6
SHIFT F7 SHIFT F8

On pressing <RET> all the BASIC keywords stored in the function keys are displayed. The line displayed
should look like this:

10 REM CLS ASSEM AUTO BAUD VS CONT USER CRV
S CLEAR CLOCKE ATTE COLOUR INE CSFE DATA

You won't recognise the majority of these commands since we've only encountered REM and CLS so far.
However, it is an idea to bear this facility in mind since it's a great help to be able to enter a keyword by a
single keypress.

Before we move on to the next chapter let's run through the essential points you should remember about
each command we have looked at so far.

AUTO

1. Used to access the AUTO line numbering facility.
2. It takes the format AUTO x,y, where x is the start line number and y is the increment value.
3. Takes the abbreviation AU.

CLS

1. The abbreviation for the CLS command is 'C.".
2. When entered via the CLS/ENT key it will only clear the EDIT screen.

EDIT

1. The abbreviation for this command is 'E.’.

GOsuB

1. A command which enables you to interrupt the linear execution of a program by directing control to a
specified line number.

22

2. The section of code accessed by the GOSUB command is called a subroutine.

3. Stores return address and returns control to the line following the GOSUB statement when a
subroutine is terminated by RETURN.

4. The intelligent use of subroutines is the key to well structured programs.

5. GOSUB takes the abbreviation GOS.

6. RETURN takes the abbreviation RET.

GOTO

1. Acommand that enables you to interrupt the linear flow of a program by directing control to a specified
line number.

2. It should be used with care in order to avoid poorly structured programs.

3. Takes the abbreviation G.

INKEY$

1. Similar to INPUT but does NOT halt a program

2. No need to press <RET> to enter

3. Stores only one character

4. Can be made to equal a variable name, and can then be treated as a variable.

5. Takes the abbreviation INKE.

INPUT

1. Multiple INPUTs are available with commas.

2. The variable must be of the right type. i.e. if a numeric INPUT is required a numeric variable must be
used in the INPUT statement.

3. The MTX displays a question mark prompt unless the INPUT statement uses a customised textual
prompt in quotes. (For example, INPUT "What is your name?”; NAME$ would not display a question
mark prompt, whereas, INPUT NAMES$ would.)

4. The abbreviation for this command is INP.

LET

1. A variable name defined in a let statement can be of any length.

2. The variable name must only use letters from the standard Roman character set: it must include no
spaces or punctuation and cannot be a reserved word (BASIC keyword).

3. When assigning a string variable the variable name must be followed by a dollar sign ($) and the string
must be enclosed between quotes.

4. When assigning a numeric variable the value to be assigned must be either a number or a numeric
expression.

5. Many dialects of BASIC permit the word LET to be an optional part of a LET statement. MTX BASIC
requires its inclusion.

6. The abbreviation for this command is 'LE.".

LIST

1. When used on its own the entire program is LISTed to the screen.

2. When the statement takes the syntax LIST 50 the computer LISTs the program from line 50 onwards.

3. When the statement takes the syntax LIST 50,50 the computer LISTs line 50 only.

4. When the statement takes the syntax LIST 50,80, the computer LIST lines 50 to 80.

5. The abbreviation for this command is L.

23

PRINT

1. Any information to be PRINTed to the screen must be enclosed within quotes.

2. Each new PRINT statement causes the information to be PRINTed on the following PRINT line.

3. A semicolon leaves the cursor at the current cursor position thus causing subsequent PRINT items to
be PRINTed on the same PRINT line and immediately after any preceding items.

4. A comma moves the cursor to the next PRINT field causing any items which follow to be PRINTed at
this position.

5. Quotes should be ommitted when PRINTing numbers, calculations or variables.

6. The abbreviation for the PRINT statement is P.

REM

1. Short for REMark or REMinder

2. Used to label programs or identify sections of code.

3. Takes the abbreviation R.

24

CHAPTER 3 : DEALING WITH DATA

Approaching the problem

In the previous chapter we demonstrated that GOTO, when misused, can create spaghetti programs which
are both inefficient and invariably incomprehensible. BASIC purists tend to frown on the use of GOTO
statements because they offer the inexperienced programmer a ready means of 'patching’ poorly
conceived code. To a certain extent, any collection of BASIC statements can be cobbled together into
something which can be persuaded to RUN. However, if you don’t systematically plan your approach to a
problem it's more than likely that you'll end up patching inoperative code with GOTO statements.

In order to avoid such a situation it's well worth taking time out to determine the most efficient way of writing
the program. This isn’t to say that programs should be drafted in long hand and then keyed-in. All such an
approach involves is the breaking down of a problem into clearly defined sections (or modules) of BASIC
instructions. Once you've dismantled a problem into manageable sub-problems it's relatively simple to
determine the order in which the appropriate modules of BASIC code should be processed to produce an
efficient program. Let's take a simple problem and then run through the factors that should be considered
before the program itself is actually written.

The Problem
Assume that we want to work out the area and circumference of a circle whose radius is to be given by the
user of the program. In addition, we also require the values returned by the program to be corrected to two

decimal places.

Our first step should be to determine how many self-contained operations are required in the solution of this
problem. This approach will result in the creation of a 'task’ list:

1. Display the function of the program.

2. Provide an INPUT facility, so that the user can enter the radius on which subsequent calculations will
be based.

3. We need to assign to a variable the formula for calculating the circumference of a circle.

4. We need to assign to a variable the formula which calculates the area of a circle.

5. We need a routine that will correct results of the calculations to two decimal places.

6. We need a method of displaying results to the screen.

By comparing the above list of tasks with our original brief, we can be sure that we have identified every
aspect of our problem.

What is clear from our task list is that one of the processes must be performed twice for each radius
entered. Although the calculations to determine the area and circumference of a circle will obviously be
different, the results of both calculations need to be rounded to two decimal places. Thus the rounding
procedure can obviously be coded as a subroutine to avoid having to write the same set of instructions for
the result of each calculation.

Having decided that process number five can be used twice, we're immediately faced with another problem.
The results of our two calculations are held in two different variables, and both variables must be applied to
the same process.

In other words, if the variable A is assigned the value of the area of a circle, and C holds the value of the
circumference of a circle, we have a problem. How can we use two different variables in the same routine to
round to two decimal places? To make this problem a little clearer we must jump ahead and take a look at
the subroutine we will have to create to round to two decimal places.

This routine contains a new keyword which will be explained later in the chapter. For the moment, don't
worry about the calculation involved, but concentrate on the problem of using two variables in the same

25

calculation. The new keyword in question is the INT function. The keyword section contains a full
description of the INT statement and, if you're interested, you should take a look at this entry before reading
any further. However, all you really need to know is that INT rounds a decimal number down to the next
lowest whole number.

Let's construct our rounding subroutine so that it rounds the result of calculating the area of a circle to two
decimal places. Remember the variable A=Area of the circle.

200 REM dididckifioikidiiiissdd ik
203 REM #¥3¥ ROUNDING SUBROUTINE ###%
ZO89REM CEETER Rk kiR EkE®
210 LET A=INT (100X (A+.0Q03))

220 LET A=A/100

230 RETURN

This will round our circle area (A) to two decimal places. The problem with variables should now be clear.
Whilst the result of the Area calculation can now be rounded, we cannot use this routine to round the
circumference result (because this result is represented by the variable C not A). The only way around this
problem is to avoid using either C or A in the rounding routine. Let's say that Z is any value to be rounded to
two decimal places. Thus we can add two more processes to our list:

7. Convert Area variable into rounding variable
8. Convert Circumference variable into rounding variable

Now that our list of tasks is ostensibly complete, we can turn to the keyboard and start coding the program.
Task one simply PRINTs the programs objective to the screen:

—

FEM i e e o e o A B - G 0 0 S e . o
FEM % STRUCTURED FROGEAMMING k4
S5 REM FEREREREEEKEEREE R R EREELEE

0}

7 FEM idE DISFLAY INTENT o

9 REM FEEEEERERERREEEREEEREERE R R

10 CLS

20 PRINT " THIS FROGEAM CALCULATES THE "
EgIE$INT "CIRCUMFERENCE AND AREA OF ANY CIRCLE ":

This module of code is quite clear. Lines 20 and 30 display the options offered by the program, and line 10 is
a statement to clear the screen. Now we need to allow the user to INPUT the radius value to be used in
subsequent calculations:

GO REM #ikfkfftiEfdriiidtisiesskiessss
432 REEM #¥¥ USER INFUT & o
4% REM #¥fddsdidsdddisididiiiiiitig

SO FRINT "FLEASE ENTER THE RADIUS OF THE CIRCLE.":
INFUT R

26

As soon as the user enters a value we can perform our first calculation; the circumference of a circle with
radius R. The formula for this is 2*PI*R. So our next lines will read:

60 REM f®¥ffkiddddrddidiesdsiid s sss
63 REM #%% CIRCUMFERENCE CALC #¥#%
65 REM disdfdddoidii s o olidiod g
70 LET C=Z¥FI%¥R

Q]

Since we are going to require the result of this calculation to be processed by our rounding subroutine, we
must change the name of the circumference variable C to Z:

80 EEM #xmxxxxmmxxxmxmxxxxxxﬁmxxxﬁm
83 REM #®¥% VARIABLE CONVERSION ¥k
85 REM $kfei iR i riitant
50 LET Z=C '

Next we need to call the rounding subroutine and, once the rounding process has been completed, PRINT
the result to the screen:

B 2C TN 0 ¢ (e e 0 e e
95 REM #% CALL ROUNDING ROUTINE ##%
97 REM &% AND FRINT RESULT #%%
9 REM ®ifdddidiidiiiiiiiiiiiiig
100 GOSUB 200

110 PRINT : FRINT "THE CIRCUMFERENCE OF A CIFKCLE W
ITH A": FPRINT "RADIUS OF";R;" IS";Z

m

Now we need to assign the expression which will calculate the Area of a circle to a variable. The formula for
this calculation is PI*R ~ 2, so our next line must read:

120 REM fischddoifdocidcidoioidiiol e ik s
123 REM #%% AREA CALCULLATION FEE
125 REM *ddfdddffsdddsdddrsesstsdisssx
130 LET A=FI&R"Z

The variable A must now be made equal to the rounding variable Z:
140 REM ®iiiiddddididiifdiiiiiiiiiesy
143 REM #¥% VARIABLE CONVERSION ##%

145 FEM F$£¥EEEEEEEdEEEitdsesde s sss
150 LET Z=A

27

Once again we must call the rounding subroutine and then display the result to the screen:

160 REM #iddddfdeesdsdioiiiioiiiieiss
163 REM # ROUND AND DISFLAY EESULT #%
165 REM i dddsdiisi st
170 GOSUEB Z00

180 FRINT : FRINT "THE AREA OF A CIRCLE WITH A RAD
IUS": PRINT "OF";R;" IS";Z

We have now completed all the processing modules of our program. Lines 10-180 provide the means of
INPUTIng data, assigning variables and displaying results. The subroutine in line 200 performs the
rounding operation for both calculations. We must now include a closing statement to prevent the control
module from running into the subroutine:

190 STOF

When we initially wrote the subroutine it was coded to deal with the result of the Area calculation. Since we
have created the rounding variable Z we must now make a couple of minor changes to the original
subroutine:

200 REM f®ipfckdidddkddiidiid it

203 REM ###¥ ROUNDING SUBROUTINE #i#

205 EEM #Rfifdiddddddiidiiiiiesiigd

210 LET Z=INTC(1O0%CZ+.005))

220 LET Z=Z/100

230 RETURN

240 REM ddisdiddciddeddiii it i
243 REEM #¥%¥ END OF SUBROUTINE A
245 REM #dddddcbsdddkdddddikddsid s

Our complete program now looks like this:

1 REM #®dddddsddsdddiiddsisdsidbiss

2 FEM # STRUCTURED FROGRAMMING %

ST o R 0 3 R o ol o e R

7 FEEM ¥f¥ DISFLAY INTENT FEE

(N 0 o R 5 5 8 R S

10 CLS

20 FRINT " THIS FROGEAM CALCULATES THE "

20 FRINT "CIRCUMFERENCE AND AREA OF ANY CIRCLE ":
FRINT

40 REEM dddddditssssiidisdiissstssss

28

43 REM #dE USER INFUT R S

45 FEEM £FEREEEFFEARREEREERefRisisiE

SO FPRINT "FLEASE ENTER THE RADIUS OF THE CIRCLE.":
[

I
(ST 3 2 oy R 0 ol 0 o e
2 FEM #%% CIRCUMFERENCE CaALC #%¥
65 REM #sidssiioioiioiiniig
70 LET C=2Z¥FI%R
BO REM FEifffifddfididifiiiiiisess
83 REM #®%% VARIABLE CONVERSION ®#X
B8E REM #iddfdciddcidiciiicisiiioiisidg
30 LET Z=C
93 REM #ffdfifdsksiesssdditssssssss
95 REM %% CALL ROUNDING ROUTINE #:#%
97 REM X%k AND FRINT RESULT #%¥%
EAE T o o o e A o
100 GOSUR 200

110 PRINT : FRINT "THE CIRCUMFERENCE OF & CIRCLE W
ITH A": PRINT "RADIUS OF"jR; Y 18N 52

120 REM #ffffffsfssffffsssissdfdssfoss
23 REM #idi AREA CALCULATION FEE
13295 REM $ffdddddssdddsisdsdsddddsdsssd
120 LET A=FI¥R™Z

140 REM ®iffffidssfiiidffiiifiiriiy
142 REM #%% VARIABLE CONVERSION #F#%
145 REM #®iffiiiiiiiiidifiiiiiiiiiess
150 LET Z=A

160 REM ®fFffdiidssididdidioniffiniis
162 REM # ROUND AND DISFLAY RESULT #*
165 REM Ssddddidisddiiiidoifiiinisss
170 GOSUEB Z00

180 FRINT : FRINT "THE AREA OF & CIRCLE WITH A RAD
IUS": PRINT "OF";Rp" IG";Z

190 STOR

200 REM sckdiickiickkiokiikkdhihk
203 REM ##% ROUNDING SUBROUTINE #i%
205 REM #iikddiibiiiiiiiiisiiiiigg
210 LET Z=INTC100%(Z+.005))

220 LET Z=Z/100

230 RETURN

29

REM, et et e ek hdo gttt e e o e o o Kl el
FEM #£+% END 0OF SUBROUTINE Fk
R T e e gl e e G e o A e e o

If you compare the final listing with our original itemisation of tasks, you'll see that each list item is
represented by an appropriate module of BASIC code. Ideally you should always tackle a programming
problem in this way. When a program's objectives are as straightforward as our example's such an
approach is almost inevitable since, apart from the variable problem, the coding is so simple that the code
almost writes itself. When a problem is more complex, it is considerably more difficult to hammer out a task
list that relates so literally to the finished BASIC program.

The main reason for this is that when problems become more complex each process in the initial task list
could easily be as involved as the complete program we have just written. Under these circumstances it's
easy to overlook a complication like the need for variable conversion. On the other hand, as long as the
major processing requirements have been correctly identified, a slight adjustment to a single module hardly
constitutes a disaster.

The moral of all this is quite simple. The biggest mistake any programmer can make is to start churning out
instructions which attempt to solve the entire problem in one fell swoop. The art of writing efficient and
readable programs is primarily determined by the ability of the programmer to break down a problem into a
series of smaller problems. As you have probably realised, individual BASIC commands can only be
applied to very specific problems. The flexibility of the language as a whole is only apparent when the
commands are creatively combined within a program. This said, it's precisely the specificity of each
command which necessitates the dismantling of a problem into manageable sub-problems before it is
coded. In this way individual tasks can be matched with BASIC modules on a one to one basis.

NUMBER SYSTEMS GALORE

If we look over the task list for our last program, we can identify three essential elements common to any
program. In order to solve any problem your computer requires data to process, instructions which
determine how this data is processed and a method of displaying or communicating the results of the
processing to the user. Before we can go on to look at the sophisticated sound and graphics potential of
your MTX we must be clear about the kind of data it will accept, and the way in which such data can be
processed.

Our profit program in the previous chapter initially set up data in the form of variables. It then defined a
variable which calculated profit and finally PRINTed the result to the screen. This program dealt solely with
decimal numeric data (as opposed to both string and numeric data). There are, however, many different
types of number systems, and one important method of presenting numeric data on micros is in the form of
exponential numbers.

The exponential number system is used to express very large and very small positive numbers. If a value
exceeds 999,999,999 (nine characters long) the MTX will present it in exponential notation which takes the
format of 1.02E+09 or 1.02E-09. When an exponential value is expressed in the positive format, you must
move the decimal point to the right to obtain the value in its normal format (in this case nine times, giving the
number 1,020,000,000). If the exponential number is expressed in the negative format, you must move the
decimal point to the left (in this case nine times giving the number 0.00000000102). The largest decimal
representation that the MTX can hold is approximately 1.7014118E+38 and the smallest is approximately
9.9999999E-39.

In essence, the Memotech can deal with numbers between 999,999,999 and -999,999,999 in the normal
way. but if a number is greater or smaller it will be returned in the exponential format that we have just
outlined.

Another number system that the MTX (and all micros) deal with is the binary system. Binary numbers use a
sequence of zeroes and ones to represent a value and it is this system that micros use to store data in
memory. The system is appropriate because the electronic switches at the heart of all computers can only
be either on or off, and a binary 1 represents a switch being on and the 0 represents off.

30

The number system with which most of us are familiar is decimal, or base 10. The binary system is in base
2. Let’s do a bit of counting in binary and then see how it operates.

DECIMAL BINARY
1. = 1
2 = 10
3 = 11
4. = 100
5 = 101
B = 110
7 = 111
8 = 1000
9 = 1001
10 re=0 101G
11 = 1011
12 = 1100
13 = 1101
M, e 1110
15 == 2T

Before we take a look at the binary system we’ll quickly run through the basic principles of the decimal
system and then make some comparisons. When we have a number like 1987, one thousand, nine hundred
and eighty-seven, we are actually saying:

1 x 1073 = 1000
9 x 1072 = 900
8 x 10M = 80
7 x 1070 = 7

1987

On this principle, the binary number 11011 can be broken down thus:

BINARY DECIMAL
1 1 X 274 = 10000 274%*%1 = 16
1 1 X273 = 1000 273*1 = 8
0 0 X272 = 0 272*%0 = 0
1 1 X2M = 10 2M* = 2
1 1 X 2% = 1 270%*1 = 1
11011 27

The last number system that we'll consider in this section is the hexadecimal (or hex) system. This system
is base 16. When counting using the hexadecimal number system the letters A-F are used as well as
numbers, thus:

DECIMAL HEXADECIMAL

(o) IS IR OV I b B
DU WN =

31

MEM-3

7

8 8
9 9
10 A
11 B
12 C
13 D
14 E
15 F
16 10
17 11
18 12
19 13
20 14

By using the same system we used for decimal and binary numbers, we can break down the hex number 53
thus:

HEX DECIMAL

5 5X16M =50 16™M*5 = 80

3 3X16% = 3 16%0%3 = 3
53 83

These are the only three number systems you'll have to cope with when using the MTX. If you find them
difficult to digest en masse don't fret! At this point it's enough that you recognise in addition to the decimal
system, micros utilise a number of other value representation systems.

ASCIlI CODES

Characters and symbols are not stored in your computer's memory in the form in which they are
represented on the screen. Instead, each character is represented by a number and such numbers are
called ASCIl codes. ASCII is pronounced as-key and is an acronym for American Standard Code for
information Interchange. You will find the complete list of the ASCII codes in Appendix 4.

By using the BASIC keyword ASC we can find out the ASCII code of any given character. The following
program PRINTs out the ASCII code of your INPUT.

1 REM ®fiffffdiisss

FEM #3# ASC dokd

S REM #idfEdsfddsss

10 INFUT "FLEASE ENTER A SINGLE CHARACTER "j; A%
20 FRINTSYTHE ASEELEORE SFEOR7M mads " 16 ' ahE CA$)
20 GOTO 10

O]

To exit this program you will have to press the BRK key. You can only use the ASC command to determine
the numerical representation of strings. These can either be presented in the variable format above
(ASC(AS)) or in the literal format:

ASC("7")

By PRINTIing the latter format the ASCII code for the number seven will be returned (55).

32

This program could have been written just as effectively using INKEY$. Thus:

1 REM $ddcidcfddsidodddfhdohdoi bk

3 FEM #®¥% ASC AND INKEY$ #®¥¥

S REM ®¥¥fsffrdtdddtdiddedtdidess

10 FRINT "FLEASE ENTER A SINGLE CHARACTER "
20 LET A$=INKEY$

30 IF A$="" THEN GOTO 2O ELSE FRINT “"THE ASCII C
ODE FOR ";A%$;" IS ";ASC(A$)

40 PAUSE 3500 : CLS

50 GOTO 10

60 REM #fffddddfdkdddsdsssdidss sttt
&2 REEM ¥ FRESS BRE TO EXIT FROGRAM *
E5 FEM #FFdfEFididffidddidddddddididdssad

Input is stored in the variable AS$. If a key is not being pressed the program GOes TO line 20: otherwise it
PRINTSs out the ASCII code of the key pressed.

CHRS$ is a command that works in the opposite direction to ASC. It turns ASCII codes into the characters
they represent (as opposed to converting characters to their ASCII codes). The number following the CHR$
command must be between 0 and 255 and contained in brackets. This said, the following codes cannot be
PRINTed to the screen since they return an escape error message: 1, 2, 6, 14, 15, 16, 17, 18, 19, 27. Only
codes 33-126 actually PRINT characters to the screen. However, the remaining codes are useful because
they allow you to use CHRS$ in conjunction with PRINT to access other display functions such as cursor
control. Key in the following program and try experimenting with this command.

10 REM #®$ffffEEEsfiis

12 REM ¥%¥ CHRE$ fEF

15 REM #ddfdsddssiisog

20 INFUT "FLEASE ENTER A& NUMEBER (33-126) ";4&
30 PRINT A;" IS THE ASCII CODE FOR ";CHRE$(AD
40 GOTO 10

Let's try a few more interesting examples. For example, if you enter CHR$(4) the screen turns a lilac colour,
while CHR$(24) turns it black. CHR$(6) will turn your display lilac, and CHR$(12) will have the same effect

as CLS.

STRINGS TO NUMBERS

In the previous chapter we saw how the MTX examines the contents of a string variable (or quoted string) in
very literal terms. It will not perform calculations on numeric representations defined as strings. Fortunately,
the Memotech is armed with the VAL command which enables us to convert such a string into its numeric
value. Key-in the following program and we will then run through it and see how it works:

33

1 REM HEXEEEfddiedss

2 REM *i% vaL P 3.

10 INFUT "FLEASE ENTER A& NUMEBER "y A%

20 LET A=VAL(A$)

25 FPRINT : FRINT : FRINT

S0 FPRINT "NOW THAT YOUR INFUT HAS BEEN CONVERTED"

40 FREINT "FROM A STRING VARIABLE TO & NUMERIC ©

90 FRINT "VARIABLE WE CAN FPERFORM THE FOLLOWING "

50 FRINT "CALCULATION"

70 FREINT : FRINT : FRINT

80 FRINT "4 #";A;" + 1 =";4kA+1
Your INPUT is stored in the string variable A$, the VAL statement then converts A$ into the numeric variable
A in line 20 by assigning the VALue of A$ to the numeric variable A. This conversion enables us to perform
the calculationin line 80. If the first character of the VAL's argument is not a plus (+) or minus (—) sign, a space,
decimal point or a number the Function will return a zero. If there are any non-numeric characters in the

argument the Memotech will ignore the string from that point on. Thus the string 1.5h9 will be considered to
be 1.5 and the 9 will be ignored.

AND BACK AGAIN

The complementary function to VAL is STR$. In the same way VAL turns strings to numbers, STR$ turns
numbers into strings. It's action is quite straightforward, as you'll see if you RUN the following example
which demonstrates the use of STR$ in conjunction with VAL. For a full explanation of these functions turn
to the appropriate entry in the keywords section.

1 REM #d®ddssaisssig
3 REM ##k STR$ $dw

REM #fffhs g i s

10 LET A$="1.52"

ZO PRINT STR$ (VAL (AS)I4Z/3.6)

i

STRING FUNCTIONS

As our next example program demonstrates, if you're attempting to format screen displays from user
INPUTSs it's often important to know the length of a particular string. This operation can be performed by the
string function LEN, which must be followed by a space before its first bracket to avoid an error message.

1 REEM f3ffEEiesdssts

S REM k## LEN #$i

10 REM #ffffffisissss

<0 INFUT "FLEASE ENTER A THREE DIGIT NUMEBER ";A%
30 LET L=LEN (A%$)

40 IF L<x3 THEN GOTO 20 ELSE FREINT APy Ay Oy AF, A
%y A%

34

LEN can only be used with string variables, so to define the length of numeric variables you must make use

of the STR$ function. However, it is important to note that when you convert a number into a string the
leading space is incorporated into the string.

1 REEM #FEFEFEEEdfdsssis
S REM #®%% LEN 2 #¥%

10

20

REM #®ffdfrniiaitss

INFUT "FLEASE ENTER & THREE DIGIT NUMBER ";é&
LET A%=5TRE®(A)

LET L=LEN (A%

IF L<>»4 THEN GOTO 20 ELSE FRINT A&%,A%, A%, 4%

You will notice that we've allowed for the leading space by restricting the LENgth of the INPUT to four

characters.

MTX BASIC offers a variety of commands which facilitate the manipulation of strings. Strings can be sliced,
generally mutilated, and then painlessly joined together again. In the next few pages we'll take a look at the
functions which facilitate such savagery and the circumstances in which they can be usefully employed.

STRING MANIPULATION

Having created and assigned a string to a variable, it's possible to link it to other string variables by using a
process called concatenation. This rather intimidating term simply means that the computer permits string
addition, enabling strings to be joined together using the addition sign (+). Key in the following example to
see this in action.

SLICING

REM kddckkdkddddddiiiibiitss:

FEM #i#k CONCATENATION #3%

FEM $ffdfsdddsssksfisssiffss

INFUT "WHAT IS YOUR NAME?T "j;NAMES
LLET HI%="HELLO"

LET QUERY$="HOW ARE YOU?=?"

LET SFACE$=" "

FRINT HI$+SFACE$+QUERY®

INFUT ANSWEE$

LET RESFONSE$="IS FEELING"

FRINT NAME$+SFACES+RESFONSES+SFADES+ANSWERS

STRINGS

Using either LEFT$, RIGHTS or MID$ we can extract a specified character or sequence of characters from
a string. The following program demonstrates how LEFT$ accomplishes a 'string slice’:

35

10 REM sk
2 REM #®# LEFT$ F¥EE
EOREM deddskdckiiiiii g
20 LET A$="WINE"

30 LET B®="DOWN"

40 LET Cs=LEFT$ (A%, 3)
S0 LET D$=LEFT$(BE%, 3>
G0 FRINT C%+D%

This example extracts a specified number of 'left-most’ characters from A$ and B$. The new strings created
by the operation are assigned to the variables C$ and D$. The number of characters to be extracted are
specified in lines 40 and 50, where the function’s first parameter is the string to be sliced and the second the
number of characters to be extracted. Thus LEFT$(A$,2) will extract the two left-most characters from A$. It
is not necessary to assign LEFT$ to a variable. We could have written the program like this:

10 REM #fffdddddddddsdd

13 REM #®$% LEFTS 2 kEE

15 REM #Rfddsdssdsisss

20 LET A$="WINE"

30 LET BE&="DOWN"

40 FREINT LEFT$(A$,3)+LEFT$HC(B%,3)

RIGHTS works in much the same way as LEFTS$, except that the numeric parameter (let's call it 4) extracts
the four right-most characters from the specified string. Thus:

10 REM #iddddddsddsdd

13 REM #%% RIGHT$ E¥FE

15 REM #dfsdddsdssddsss

20 LET As="AREA"

30 LET BR%="DEAL"

G0 FRINT RIGHTH(A$, 2)+RIGHTS (B, 1)

This program extracts the three right-most characters from A$ and the right-most character from B$. The
extricated characters are then concatenated to produce REAL, which is PRINTed to the screen.

The last of the Memotech's string slicing functions is MID$ which, although similar to LEFT$ and RIGHTS, is
slighuy more sophisticated. MID$ uses three parameters:

MIDS(AS,X,Y)

The first (A$) is the string from which the characters are extracted, the second (X) specifies the first
character to be extracted and the third (Y) determines the number of characters to be extracted. So if we
want to extract the string 'NIGH' from the string 'MIDNIGHT" our program will look like this:

10 REM: ikt ik
12 REM ##%% MID$ R
15 FEM: E£idkdddddidiiitt
20 LET A$="MIDNIGHT"
S0 FRINT MIDSCAS,y <, 3D

36

This program forces the computer to extract four characters from A$ starting with the fourth character. If the
second parameter (Y) exceeds the length of the string, the statement will return the entire string starting
with X. So, by changing line 30 of our example to read:

S0 FRINT MID$ (A%, 3, 20)
the sub-string NIGHT will be returned.

NUMBER FUNCTIONS

Having run through the string functions available in MTX BASIC, let's turn our attention to the numeric
functions.

ABS(n) Returns the ABSolute value of n
ATN(n) Returns the ArcTaNgent of n

COS(n) Returns the COSine of n

EXP(n) Returns e raised to the power of n
INT(n) Returns n truncated to an INTeger
LN(n) Returns natural (base e) logarithm of n
MOD(n1,n2) Returns the remainder of the division n1/n2
PI Returns the value of Pl

RAND(n) Sets the seed for a random number
RND(n) Returns a RaNDom number

SGN(n) Returns 0 if n is zero

1 if n is positive
-1 if n is negative

SIN(n) Returns SINe of n
SQR(n) Returns the square root of n
TAN(n) Returns the TANgent of n

All these functions are fully explained in the keyword section (chapter 6), so we won't devote a great deal of
space to them in this chapter. However, it's important to be clear about the circumstances under which
these commands can be employed, so let's go back to school and have a brief maths lesson.

In the final analysis it's highly unlikely that you're going to use your MTX's numerical functions unless you've
a fairly sound grasp of what COS, SIN and all the rest of them are about. This said, it could be that your
memory simply needs jogging, so prepare yourself for a swift numeric jolt.

Let's start with the simplest of the number functions. As the following example demonstrates, it is
sometimes necessary to force the MTX to produce a positive value, even if there's a chance of a calculation
returning a negative value. Under these circumstances, the ABS function can be applied, since it returns its
argument's ABSolute value. In other words ABS returns the number disregarding the + or - sign.

10 FEM $¥¥EFEFEEFEFEEFEEFEFEE

13 REM #$#%% ARS 4 4

15 REM ®ffdddifidssissss

20 REM % S00BC - 100AD #

25 REM kkkksiRdoRiickioricR Rk

30 FOR Y=-3500 TO 1000 STEF 150

40 FREINT ABS(YD);

50 IF Y<O THEN FRINT "BC" ELLSE FRINT "aAD"

GO NEXT Y

Another straightforward numeric function, which we've already encountered in circle program is INT.
Sometimes we need to ensure that a particular value is always a whole number (or INTeger). The INT
function rounds towards zero. Thus:

37

PRINT INT(7.89) will display 7
PRINT INT(-9.57) will display - 9

Note that the next lowest INTeger to -9.57 is, of course, -9 and not -10! On the subject of signs, the MTX’s
SGN function returns a result which indicates the status of the value to which it is applied. For instance, in
the statement SGN(x), if x is positive the function will return 1, if x is zero the statement will return 0 and if x
is a negative value SGN will produce -1.

We have already encountered the ~ symbol and the way it enables us to raise one value to the power of
another. Well, the EXP function raises its argument to the value of e (which is approximately 2.71828183).
This is extremely useful if you happen to be performing calculations with the MTX's natural log function
(LN), since EXP(LN(n)) returns the antilog of its argument. The LN function itself can be useful when
working with very large numbers that might potentially throw up an overflow error. Under such
circumstances you can ensure that:

V<7™N
does not throw up an overflow error by making sure that:
LN(V)<N*LN(7)

Although it is possible that V ~ 7 could cause an overflow, the LN formulation performs the test without
risking an error report. The Memotech's RaNDom number function is quite complex and explained at length
in the keyword section. For now we'll simply outline the MTX's RaNDom number facilities. When a RND
statement is executed the computer does not actually return a true RaNDom number but selects a number
(known as a seed value), upon which it performs calculations to produce a numerical sequence. Thus,
although the numbers generated appear to be random they are in fact ‘pseudo-random’ numbers. By using
the RAND command it is possible to select your own seed number. This enables us to determine a
predictable 'random’ sequence by using positive RAND values, or unpredictable 'pseudo’ random numbers
by using negative values. For example, if you RUN the following routine:

10 REM #dfddsddstsssssss
12 REM #%% FRAND/RND ##%
1% REM F£HEFFFFEEFEFEEREEEE
20 REAND (1)
320 FOR aA=1 TO S
40 FRINT REND
50 NEXT A
The Memotech will always PRINT out the same RaNDom sequence. However, if you change line 20 to:
20 RAND (—13

the sequence of values generated will always be different.

So, if you want to create a random number in the range 0 (which it can equal) to 1 (which it will never quite
reach).the format is:

r=RND or r=(RND*1)

where r is the random value returned. On the basis of the second format it should be easy to see that you
can create random numbers between 0 to 10 by using the following format:

r=(RND* 10)
If we want to set both the upper and lower limits of the random number we must use the following format:

r=(RND*x)+y

38

where x is the difference between the lower and upper limits plus one, and y is the lower limit. Thus:
INT(RND*15)+5

will return an INTeger number between 5 and 14. The upper limit of this statement is 14 because the INT
function truncates the number to produce the next lowest whole number so, the 'random’ number will never
quite reach 15.

Before we move on to discuss your computer's trigonometric functions, two remaining numeric functions
deserve a mention. The first of these is SQR. As you probably know, a square root is the value which,
when multiplied by itself, produces the number of which it is the square root. What!! In other words, 4 is the
square root of 16, since 4*4=16. The Memotech’s SQR function returns the square root of its argument.
Thus:

PRINT SQR(16)

will return 4, and:

PRINT SQR(4)
will return 2.
The MTX’s final numeric function is MOD, which returns the remainder of the division of its argument. Thus:

PRINT MOD(5,2)

will return 1, since 5/2=2 with a remainder of 1. The following example uses MOD to get around the fact that
INT rounds towards zero.

10 REM sedfddsiadorsfdoidog

13 REM ®#d MOD & b 4

15 REM $ddkddss stk

20 PRINT "ENTER TWO VALUES (10-100) FOR THE"
30 CSR10y5: FPRINT "EXFRESSION X/Y"

50 CSR 6, 10 PRINT "X MUST BE GREATER THAN Y
60 INFUT X$: LET X=VAL (X%)

70 INFUT Y$: LET Y=VALCY$)

80 IF Y:>X THEN GOTO 70

90 LET D=INTCX/Y)

100 IF MODCX,Y2»>Y/2 THEN LET D=D+1

110 C8R 5,15: PRINT X$;" / ";Y%;" =";D

éﬁﬂ CBF S,17: FRINT "ROUNDED T0O THE NEAREST INTEGE

BASIC TRIGONOMETRY

Having dealt (albeit briefly) with your micro’s straightforward number functions, we'll now attempt to jog your
memory and run through the rudiments of trigonometry in the hope of placing the next sequence of BASIC
functions in context.

Your micro has four major trigonometric functions - Pl, SIN, COS and TAN. As we have already seen Pl in
action and it has an entry in the keyword section, we will merely outline its function in this section. It's
important to note that Pl does not have an argument (see the above list of numeric functions), as it will
always return the value of Pl (3.14159265...) rounded to eight decimal places.

39

In order to clarify the values returned by SIN, COS and TAN, we must resort to a painless diagram of a
right-angled triangle.

C B

Each of the three functions represents a specific ratio of the sides of a right angled triangle. Taking x to be
the angle at point C of the right angle triangle ABC, the various ratios can be expressed as follows:

BC ADJACENT

COS(X) = ==
AC HYPOTONUSE
AB OPPOSITE

SIN(X) = "
AC HYPOTONUSE
AB OPPOSITE

TAN(X) = —— e
BC ADJACENT

The value of understanding this set of relationships is that, given partial information about such a triangle,
we can use these formulae to fill in the gaps. For example, suppose we know the angle x and the length of
BC. With this information we can work out the lengths of the other two sides by calculating:

AC=TAN(X)*BC
AB=AC/COS(x)

Whilst the theory might be tedious, would-be graphics programmers will immediately see that these
functions are invaluable for future projects. The format for each of these functions is:

TAN(x)
COS(x)
SIN(x)

When you use any trigonometric function you must remember that, in common with most micros, the MTX
does not measure angles in degrees, but in radians. However, since:

360 degrees = 2*P| radians

and the computer returns an acceptable approximation of Pl, converting degrees to radians and vice versa
is no problem.

conversion to degrees degrees = radians*2*P|/360
conversion to radians radians = degrees*360/2/P|

Now suppose we know the lengths of the sides of our triangle, how can we calculate its angles? Well, the
MTX's ATN function simplifies such a calculation. ATN(z) returns the ArcTaNgent of its argument (z). The
simplest way to consider this function is to regard it as the inverse of TANgent. To make things a little
clearer, let's go back to our trusty diagram. Assuming we know the lengths of AB and BC, by using ATN we
can now calculate the angle x using the formula:

x=ATN(AB/BC)

40

One of the shortcomings of most BASIC dialects is that they do not include a full set of inverse trigonometric
functions. However, using the functions we do have at our disposal it is possible to create our own inverse
functions. The following formulae simulate arc sine and arc cosine functions:

ASN=ATN(BC/SQR(AC-BC*BC))
ACS=PI/2-ATN(AB/SQR(AC-AB*AB))

If the prospect of typing in expressions like this every time that they are required in a program fills you with
dread, fear not! You can always assign this type of formulae to a variable. Thus:

LET ASN=ATN(BC/SQR(AC-BC*BC))
LET ACS=PI/2-ATN(AB/SQR(AC-AB*AB))

and providing that all of the variables contained within the formula have been assigned a value there will be
no problem.

41

CHAPTER 4 : LOOPS AND DECISIONS

LOOPS

One of the main strengths of microcomputers lies in their ability to mindlessly repeat a process or a
sequence of processes without complaint.

Up until now, we've only used GOTO and GOSUB to create processing 'loops’ which allow us to execute a
set of instructions more than once. We're now going to introduce an equally important BASIC structure
which provides BASIC programmers with a flexible and efficient means of repeatedly executing a sequence
of commands. This structure also enables a program to specify how many times the code must be
repeated. The structure in question is known as the FOR...NEXT loop.

The importance of the FOR...NEXT loop structure was hammered home to us when we were planning the
early chapters of this book. We realised how difficult it was to create any form of meaningful example
programs without recourse to this versatile facility. In the following pages we will attempt to illustrate the
power of this construction.

Let's start by considering a very simple example. Suppose we want to print out the numbers 1 to 10.
Depending on the type of display required, we are faced with a variety of fairly tedious options unless we
use a loop structure. If we wanted to print out the numbers across the screen we would either have to use:

1 REM $F#ffffffdsdsdiiiiidsddssdssss
2 FEM Xxik¥ PRINTING ACROSS SCREEN ki
S REM #REREEfFffids it o g o
10 FPRINT 1;2;3;435;6;7;8;9; 10

or

1 EEM #iddsfddfiddisds s sdfs o
FEM ##% PRINTING ACROSS SCREEN ik
I REM #iEEfdddddsidssiiid it ok bk koo
10 PRINT "1 2 3 4 3 6 7 839 10"

0]

Or, if we wanted each number on a different line we would have to create an equally clumsy program:

1 REM #FFFFFfkEidiissisifisssisssssss
3 REM Fi# FRINTING DOWN SCREEN 3%
S REM #EFEEEEFFIFFRFFFFEEEEEE S84
10 FRINT 1
20 PRINT /2
20 FRINT '3
40 FRINT 4
80 FPRINT &
E0 FRINT &

42

70 PRINT 7
80 FRINT 8
B0 PRINT 3
100 PRINT 10

Apart from the fact that this sort of program devours totally unacceptable quantities of memory, it is also
hopelessly inefficient and manifestly impractical if you need to generate a display of numbers from 1-1000!

However, a problem such as this is easily resolved by employing the FOR...NEXT structure. Enter and RUN
the following example program and then we'll take a look at how it works.

1 REM $ddckdddokfddididdid ity
S REM Fk# FOR...NEXT LOOF 1 FEE
10 REM sk il R
20 FOR aA=1 TO 10

30 PRINT A

40 NEXT A

On RUNning our example the numbers 1 to 10 will be PRINTed down the screen. The loop statements are
contained in lines 20 and 40 and the code to be processed by the loop is the PRINT statement in line 30. As
there is only one PRINT statement and the program PRINTs ten numbers to the screen, it should be quite
clear that the loop has been executed ten times. How?

Well, when the computer first encounters the statement in line 20 it assigns a value of 1 to the variable A,
which is then PRINTed in line 30. The computer continues to process the statements following a FOR...
statement until it encounters a NEXT statement. At this point the program loops back to line 20 and repeats
the entire process. However, with each pass of the loop the variable A will be incremented by 1. This
process continues until A reaches its end value (which in this case is 10).

So, line 20 instructs the Memotech to create a variable called A which is assigned a sequence of values
from 1 TO 10. The first value assigned to the loop counter A is determined by the statement’s first
parameter (in this case, 1). Since there have been no instructions to the contrary, the value of A will be
incremented in steps of 1. However, before the value of A can be altered, the computer must execute the
statements in the body of the loop (line 30). When it reaches the NEXT statement, the micro checks to see if
A has reached its end value (10). If the loop counter does not equal its end value processing recommences
from the first statement of the loop where the value of the variable is redefined. When the loop counter (A)
reaches its end value (10) processing moves on to the line following the NEXT statement (or in the case of
our example program, ends).

The start and end parameters of a FOR...NEXT loop can be integers, floating point values, variables or
calculated expressions. Itis even possible to assign negative parameters. When the FOR statement adopts
the format used in the example above, the value of the loop counter will be incremented in steps of 1 on
sach pass of the loop. However, it's possible to specify the increment (or decrement) value of the loop
counter by adding the keyword STEP to the statement.

1 REM g O o T3 B T8, 0 L e o o A
5 REM EEE FOR...NEXT...STEF bk
10 REM :#::#::#’.:#:#::*.:1:::1::#::#::*::t:#:t::#'.#::4::#:#::#:*::#::t:#::u]:::#:::t::t::#‘.:#:
20 FOR A=0 TO 100 STEF 10

20 PRINT A

G40 NEXT A

43

This program executes line 30 ten times, thus PRINTing 0,10,20,30...100. The loop is only processed ten
times (not 100 times) because line 20 tells the Memotech to increment the value of A (0-100) in STEPs of 10
with each pass of the loop.

As with the majority of popular micros, the MTX allows us to omit the loop counter in the NEXT statement.
Thus line 40 could read:

40 NEXT

and the computer would still realise that you actually meant NEXT A. This said, it's often advisable to
include the variable name since it make's a program considerably easier to follow. This is particularly true
when there is a lot of code between the loop’s opening (FOR) and closing (NEXT) statements.

The absence of loop variable names is also confusing when a loop is placed within another loop (or series
of loops). When the loops are used in this manner they are referred to as 'nested’ loops. Our next example
demonstrates the action of such a structure. Note that the inner loop will always be completely processed
with each pass of the outer loop.

Since our example is intended to clarify this construction, it's very easy to follow. However, when loops have
been nested three of four loops deep and the code within the loop is lengthy and/or complex, listings can
become extremely difficult to follow. Therefore it is advisable to use the complete form of the NEXT
statement and clearly REM each module.

1 FREM B 0 A e e L e e 0 8 0 e 3

S AREM, « gk NESTED LOOFS EEE
10 REM, f3fddkdkfsdddkdiddddbtiddiddsd
)i s 3 1 [= 4 OQUTER LOOF START b g o

20 REM #$dddfdddddddds st id s
40 FOR A=20 TO S STEF -5

SOEEM dREfedddiidiiiiiisi it ik
o9 FEM ®i¥ INNER LOOF START dkk
E0 REM #dddokidddiditiitddiiidd sttt
70 FOR B=3.25 T0O 10.25 STEP .25

80 LLET X=B¥4.3/A

90O FEINT X

100 NEXT E

110 REM #dfdfdddsesidatdididditsiiis s
119 REM #%x END OF INNER LOOF o
120 EEM dktdddddddddddddtsssiisssstss
120 NEXT A

140 REM #iEEEEdEdssddddidsetdidisdessd
145 REM #$#% END OF OQUTER LOOF H##
1350 REM #Hixdtdddddfifdddddssitiiseds
160 STOF

44

You'll notice that the NEXT statement of the inner loop is coded before the NEXT A. When using nested
loops ensure that the NEXT statements of inner loops precede those of the outer loops. If they are coded
the wrong way round a ‘No FOR'’ error message will be returned.

You'll come across examples of FOR...NEXT loops throughout the manual, and additional details about
these statements can be found in chapter 6.

Having introduced the final loop control structure available to MTX programmers we can now go on to
discuss the final method of introducing data into BASIC programs. We have left this explanation of DATA
statements until now because they are commonly used in conjunction with FOR...NEXT statements.

READING DATA

In the previous chapter we saw how it is possible to feed the computer with information from the outside
world using INPUT and INKEY$ commands, and by assigning string and numeric values to individual
variables. DATA statements offer an alternative means of storing data within a program, and is normally
employed when large amounts of data need to be accessed and assigned to variables in a specific order.

Storing information in DATA statements is both simple to code and easy to access. The data itself is held in
a program line (or a series of lines) which can appear anywhere in a program. This said, DATA statements
are traditionally placed at the end of a program. Let's take a look at some typical statements:

LOO DATA MON, TUES, WED
110 DATA 23,56,2.6
120 DATA THURS, 1Z2,FRI, 24

As you can see from these statements, both string and numeric data can be stored in DATA statements and
it is also possible to mix both types within the same program line. You should also notice that string data
does not require quotes and that each item of data is separated by a comma. (However, commas cannot be
used as DATA items since the comma serves as the DATA separator.) Before we move on to examine how
this data is accessed a few words remain to be said about the DATA statement itself.

If the DATA statement is entered in its standard format:

100 DATA X, Y

it will place a leading space in front of the first item of data. Although this will have no effect on numeric data
it will cause problems when using string data, particularly when this data is being used to create screen
displays. This means that DATA must be entered in its abbreviated format (D.). You should also ensure that
there is no space between the DATA statement and the first data item. Similarly, when EDITing a DATA
statement you will need to reduce it to the abbreviated format and delete the space(s) preceding the first
data item.

So, how are data items accessed? Well, DATA is always used in conjunction with the READ statement,
which must be accompanied by the appropriate type of variable. For example:

S5 KEM #bddmddcilirkEk
10 REM #¥% DATA kkd
19" REM ¥HiCkEieRi i eiey
20 FOR C=1 TO &

45

20 READ A

40 PRINT A

S0 FEAD A%

60 FPRINT A%

70 NEXT C

80 DATA 12,RED, 14, BLUE, 16,CAT
90 DATA 45, MAN, 34, NEXT, &, DOG
100..8T0F

When the MTX encounters a READ for the first time it searches for the first data item (in the first DATA
statement) against which it places a data pointer. So, in our example, line 30 READs the DATA statement in
line 80 and assigns the value of the first data item (12) to the numeric variable A, which is PRINTed in the
following line. The next READ statement (line 50), is accompanied by a string variable, which is just as well
since the data pointer has moved on and is now placed against a string (RED). This is then PRINTed out
and the program loops back and repeats the process until all twelve items of DATA have been READ and
PRINTed.

You must make sure that for every execution of a READ statement there is a corresponding data item,
otherwise the program will be halted by an”No data” error report. You can test this by changing line 20 to:

=0 FOR C=0 TO &

The program will also stop with a 'Mismatch' error if a READ statement with a numeric variable is used to
access string DATA. The items held in a DATA statement can only be READ once in the course of a
program unless a RESTORE statement is used. Change line 20 back to its original form change line 100 to:

100 GOTO 20

If you RUN the program it will return a”No data” error report when the FOR...NEXT loop is executed for the
second time. Now add:

9% RESTORE 80

and each time the loop is completed the RESTORE statement sets the DATA pointer back to the first DATA
item in line 80 and allows the program to RUN indefinitely. Most micros allow DATA to be RESTOREd, but
the MTX's capacity to RESTORE to a specified line number is a valuable enhancement of the statement.
Intelligent coding of DATA statements enables programmers in MTX BASIC to access specific segments of
DATA statements at appropriate points in a program, which can be controlled by RESTORE In.

It is possible to include more than one variable in each READ statement. Our example program above could
have been written thus:

5 REM E B o A L B A e g 20 .
10 REM #$£% DATA ki
1% REM $fckdsdddsiisss
2O FOR C=1 70 &

30 READ A, A

46

40 PRINT A: FREINT A$

o0 NEXT ©

&0 DATA 12,RED, 14, BLUE, 16, CAT
70 DATA <45,MAN, 34, NEXT, 2, DOG
80 STOF

Needless to say, when using a READ statement with multiple variables it is important to ensure that they
are applied to the appropriate type of DATA item.

Used in this way, READ and DATA statements will only store an item in the READ variable, until the next
READ statement is encountered. In the example above we are redefining the values of A and A$ with each
pass of the loop. So, how can we access all the items of data at any point in the program without creating a
different variable for every READ statement? Well, there obviously has to be an answer, otherwise DATA
statements might just as well be replaced by line after line of LET statements. The solution lies in another
DIMension!

DIMENSIONING AND ARRAYS

You'll be relieved to learn that we're about to outline the final MTX data facility. Assume we want to PRINT
out a calendar. Now obviously our display is going to require the days of the week and the months of the
year, which will have to be stored as data within the program. We could obviously construct a different
PRINT statement for each day and each month, or else introduce a little flexibility by assigning data to
variables.

While the latter approach is certainly the best of the two options, it requires the creation of nineteen different
variable names (twelve for the months in the year, and seven for the days of the week). Think how much
simpler it would be if we could consider all the days of the week as a variable called DAY$ and all the
months in a year as a list we could store in a variable called MONTHS. In the best of all possible worlds we
could, for example, PRINT out January by telling the computer to PRINT MONTH$(1) and Monday by
PRINT DAY$(1). Well, necessity being the mother of invention, precisely such a facility is available in
BASIC, and it is known as an array.

The storage of data in arrays is one of the most important tools available to the BASIC programmer. The
creation of arrays is a means of allocating a specified amount of memory space for the storage of a list (of
numbers or strings). The list itself is known to the computer by a single variable name (the array variable)
and each item in the list is assigned a numerical value (the subscript) by which it can be accessed. For
example, in the case of our list of days, we could call the array variable DAY$ and each day of the week
would be assigned the numbers 1-7, i.e. Wednesday being the third item on the list would be DAY$(3).

So, we now have a variable list of seven elements called DAY$(x) (where x is the number assigned to the
day, i.e. DAY$(1)=Monday). The next dimension we must define is the number of characters in the longest
string we want to store (in this case, Wednesday), which is nine characters long. When we DIMension string
arrays we have to tell the MTX the maximum number of characters that will be used by the elements of the
list. This enables the MTX to allocate sufficient space in its memory for, in this instance, a list of seven
elements where each element is a maximum of nine characters long. So our DAY$ array variable will be
DAY$(x,9). However, it is only necessary to include this second parameter when using string arrays. You do
not need to tell the MTX the maximum number of characters of numeric arrays.

Before we can store any data in our DAYS or MONTHS lists we have to tell the computer how much memory
each list likely to occupy. In other words, what are the DIMensions of the memory space that are going to be
given over to either. We do this by using the DIM statement.

Since storing data in arrays plays such an important role in BASIC programming, and the concept of
DIMensioning is often confusing to new programmers, we have included a fairly substantial DIM entry in the
keywords section. Before continuing with the rest of this chapter, turn to the DIM entry and make sure that
you understand the process of DIMensioning an array.

It is important to remember that the DATA command should be entered in its abbreviated format in the
manner outlined earlier in the chapter. Let's suppose you DIMension an array to hold nine elements (items
of data) which are a maximum of six characters long and then forget the leading space inserted by the
DATA statement in front of the first data item. As soon as the computer encounters the offending data item
(which is now seven characters long) and tries to store it into the array variable it will return a 'No space’
error because the computer had only assigned enough memory space for a maximum of six characters per
item of data.

Having established how data is stored in arrays it should be clear that the ability to access items by their
subscript enables complex operations to be performed on large quantities of data, using simple code that
uses memory space economically.

LOGICAL CONTROL

By now you have hopefully grasped the essential elements of BASIC programming. We've looked at the
ways data can be stored and displayed, and how the Memotech's string and numeric functions can be used
to process the data. We've also outlined the methods of re- directing control in a program with the use of
loops, subroutines and GOTO statements. Now it's time to look at how your Memotech can be programmed
to test data and determine the order and nature of processing.

Most computers-in-the-future horror stories centre around the intelligence of machines that take over the
world. From what we have seen so far, your computer does not constitute much of a threat as regards world
domination. This said, use of IF.. THEN...(ELSE) statements makes it possible to create BASIC programs
that simulate intelligence.

In our discussion of FOR...NEXT loops we saw how the computer tested the value of the loop counter to
see whether it equalled the loop’s end value. It is this ability to logically compare values that provides the
basis for the IF... THEN...(ELSE) construction and intelligence simulation.

LOGICAL TESTS

In spite of appearances to the contrary, the world seen through the eyes of the MTX is very simple.
Something is either True or False, and it has no capacity to come to any other form of conclusion when
accessing a condition. BASIC uses this somewhat uncompromising quality to good effect when testing and
comparing values in order to determine a course of action.

Like so many BASIC commands, the IF... THEN...(ELSE) statement has a self explanatory format:
IF <condition> THEN <action> ELSE <action>

(The ELSE is not actually entered in brackets, it is bracketted to indicate that it is an optional part of the
statement.) The condition after IF can be one of a variety of alternatives. The tabie below lists the
conditional operators that can be used to determine the relationship between values:

= equal to

< less than

> greater than

<= |less than or equal to
== greater than or equal to
<> not equal to

Thus, the IF..THEN...(ELSE) statement is split into three distinct sections. The first part contains the
expression that estalishes a relationship between values, and tests for its Truth or Falsity. IF the condition is
False the computer will pass over the statement following THEN, and, assuming the ELSE statement has
been included, it will execute the commands that follow it. If the ELSE statement was not included control
will pass to the next program line.

48

IF the expression is True, the instructions that follow the THEN statement will be executed and, if
applicable, the ELSE statement ignored. The instructions which follow THEN and ELSE can be any legal
BASIC statement. For instance:

IF X510 THEN LET Y=15 ELSE LET Y=0

is a legitimate structure, or a program can be terminated by:

IF D%=A% THEN STOF

One of the most powerful applications of the IF... THEN...(ELSE) construction is when it is used to direct the
control of a program:

IF V<2 THEN GOSUEB S00

If you wish the consequence of a True expression to be the execution of a GOTO statement, you could use
the following statement:

IF V<=4 THEN GOTO 350

One of the more tedious aspects of creating interactive programs in BASIC is that a large percentage of the
code must be devoted to guarding against human stupidity. As a general (and fairly inflexible) rule, INPUT
statements should always be followed by some form of INPUT check. For example:

10 REM $fddfddsdsfidiii s

3 REM #%% INPUT CHECE ##¥

15 REM #dddddddddit i i

20 CLS : INPUT "ENTER A NUMBER (1-103 ";N
20 IF N<1 OR Nx10 THEN GOTO 20

40 FRINT "CONDITION IS SATISFIED"

Just because a user is asked to enter a number between 1 and 10 does not necessarily mean that a value
within this range will actually be keyed in. (Unlike computers, humans excell in the contradiction of
instructions!) However, the inclusion of line 30 in the last example gives the user of the program very little
choice in the matter. If the number entered (N) is less than (<) one OR greater than (>) ten, the program
will simply return to the INPUT statement in line 20.

You'll notice that we've used the logical condition operator OR to combine two expressions in the first part of
line 30. MTX BASIC provides us with three such operators (the other two being AND and NOT), all of which
are fully described under their respective entries in the keyword chapter. For now, we'll simply look at a few
examples which demonstrate how they can be used to combine conditions in IF..THEN statements.

BOOLEAN LOGIC

The importance of logical (or Boolean) operators should be clear from our INPUT check example. If the
check is to serve its purpose it is obviously essential that both expressions are True before the program
continues. Thus, the statement in line 30 uses OR in exactly the same way as the word is used in English: IF

49

N is either less than one OR if N is greater than ten return to line 20. But we're jumping the gun a little. Let's
look at each of these operators in turn, and explain the consequences of the Truth or Falsity of the
expressions they combine. The important point to remember is that although more than one expression can
be tested by an IF... THEN...ELSE statement, there can only be a single evaluation of the statement as a
whole. The testing of logical conditions reveals another difference between micros and men. For the MTX
there is no such thing as a half truth!

AND

Having insisted that the MTX can only evaluate a conditional expression as either True or False, it's time to
back pedal a little in the interests of precision. Whilst the outcome of a logical test can only be True or False,
the computer does not actually have these words in its vocabulary. When asked to pass judgement on an
expression,the computer returns either -1 or 0, which are its representation of True and False respectively.
You can test this out be entering a couple of statements as direct commands. For example:

LET A=5 : FRINT(A>10)

will return a 0, since the expression that A is greater than 10 is False(0). Try:

LET A=5 : FRINT (A< #10)

Since A is clearly not equal to 10, the expression is True (-1) and thus -1 is returned.

So, the computer is obviously capable of logically assessing the Truth or Falsity of an expression. However,
it is often necessary to relate a number of expressions to one another in order to discover the logical status
of a combined expression. When AND is used to relate expressions the final result will only be True if each
element of the statement is True. For example:

FRINT (4=4 AND 3=2)

will PRINT 0 (False), because although the first part of the expression (4=4) is True, the second part (3=2)
is False and thus the expression as a whole is False. When such an expression is used with IF...THEN the
complete statement resembles an English sentence whose meaning is quite clear:

10 REM K e e o T o e T
13 FEEM #3% AND ##%%
10 REM gdcbddsd ot

<0 INFUT "FLEASE ENTER A NUMRER "N

20 IF N>=S AND N<=10 THEN FRINT "TRUE" ELSE FRIN
I eFALSE"

Obviously the computer will only get the chance to PRINT out True if the number falls between 5 and 10,
ELSE it will PRINT out False. We can also use this sort of construction to relate string expressions:

LOO IF S%="F" AND M$="Y" THEN LET Ag="pMRG"

50

The traditional (and indeed clearest) method of describing the effects of combining expressions is by the
means of a Truth table. What follows is a Truth table for AND, in which the result listed under the headings
Condition 1 and Condition 2 define the logical status of the component expressions relate by AND:

Condition 1 Condition 2 Result
TRUE AND TRUE = TRUE
TRUE AND FALSE = FALSE
FALSE AND TRUE = FALSE
FALSE AND FALSE = FALSE

As the table graphically demonstrates, every element of a multiply conditional expression whose
components are related by AND must be True before the expression as a whole can be deemed True (-1).

OR v
OR is used as a relational operator when a conditional statement must return True if any one OR all of its
component expressions are True. Thus:

100 IF A=10 OR B=-1 THEN GOSUEB 4350

will pass control to line 450 if either A=10 or B=-1 OR if both conditions are True. As with AND, OR can
also be used to test conditions relating expressions using strings:

200 IF As="Y" OF B#$="N" THEN GOTD 10

So, the Truth table for the OR operator is:

Condition 1 Condition 2 Result
TRUE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR TRUE = TRUE
FALSE OR FALSE = FALSE

Thus OR ensures that a conditional statement in which it appears is only False if all its component
expressions are False.

NOT

This is neither the time nor the place to embark upon the perennial debate on whether NOT should be used
at all as a relational operator. Suffice it to say that NOT should always be used with care since its use does
not always produce such immediately predictable results as its logical colleagues AND and OR. Essentially,
NOT inverses the logical status of the expression it precedes. However, whilst NOT (False) will always
return True, NOT (True) will not always return False. Let's take a look at NOT's disconcertingly simple Truth
table:

NOT (expression TRUE) = FALSE
NOT (expression FALSE) = TRUE

51

So when used with conditional BASIC statements the effects of the three relational operators is quite
straightforward. Indeed IF...THEN statements combining expressions with the operators are close enough
to their counterparts in English to be virtually self explanatory.

Take some time out to construct some demonically complex expressions using one or more of the
operators. Use the Truth tables if you are at all surprised by the results the computer returns.

52

CHAPTER 5 : SAVED FOR POSTERITY

OFFLINE STORAGE

The MTX will only store a program for as long as the computer is powered up. In other words, whenever you
turn the machine off you'll lose the contents of it's memory. It's obviously impractical re- entering a program
each time you want to use it, which is why we need an external or 'off-line’ method of storage.

Programs can be stored on either cassettes or disc and in this chapter we will be looking at cassettes, the
most popular of the two methods. It should be stressed that cassettes are not the most efficient or reliable
method of storing data. Discs, on the other hand, although fast and easy to use are very much more
expensive.

Programs are stored on cassette in much the same way as anything else is recorded on tape, except that
we're interested in storing data rather than music or speech. When you initiate the recording process a data
signal is transmitted from computer to cassette player, and stored on the magnetic tape of an ordinary
cassette. When you want to re-load the program into the computer's memory you simply inform the MTX of
your intentions, replay the cassette and the program will be reconstructed in much the same way as a song
is recreated on your hi-fi.

Before we look at the keywords and connection which access the MTX’s cassette handling facilities, let's
take a quick look at the best type of cassette player to use with your computer. The cassette lead that
comes with the MTX has two plugs at each end. So the first thing to bear in mind if you intend buying a
dedicated cassette player is that it should be one with 'EAR’ and 'MIC’ sockets (not all cassette recorders
have this facility). However, if you already own a cassette recorder and it doesn't have these ports, don't
fret, you won't have to rush out and buy a new one. Most hi-fi and computer stores stock a wide range of
leads and you should be able to find the right one without too much difficulty. Even if they don't have the
lead you're looking for they can probably be persuaded to make one up for you.

Fortunately, the best sort of recorder for the job doesn't require an enormous financial outlay. Surprisingly
enough, computers are not over-fond of high-quality stereo recorders, since such equipment tends to pick
up a variety of extraneous noises which confuse the micro and lead to rejected recordings. There's no harm
trying it out whatever system you own, but if you use a stereo you must switch it to mono before you SAVE
or LOAD a program.

When buying a cassette recorder there are a number of essential points to watch out for. Firstly, it's useful
to find one with a tape counter so that you can make a note of where one program ends and another begins.
This will enable you to mark your cassettes clearly and trace any programs without ploughing through miles
of tape. It's worth searching out a recorder with both volume and tone controls. Computers are fussy about
the type of signal they receive, and it helps to be able to regulate this by adjusting volume and tone levels.

You should always try to stick to the same cassette recorder when SAVEing and LOADiIng programs, since
the alignment of record and playback heads varies from one machine to another. These days, most of the
big chain stores sell micro-dedicated cassette recorders (known as data recorders) for around 30 pounds.
As they have been specially designed to deal with computer data they are normally a worthwhile
investment. As we mentioned earlier, it's very important to clean the heads on your recorder on a regular
basis. By neglecting to take this simple precaution and allowing the heads to get dirty you'll find it
increasingly difficult to LOAD or SAVE anything.

Before we move on to look at how this method of storage is accessed let's take a quick look at the cassettes
themselves. Never try to save money when buying data cassettes as it will inevitably prove to be a false
economy.

It is always advisable to buy short tapes such as C12's, C15's or C10's. If you use anything longer, you'll
suffer the obvious irritation of having to wade through twenty programs to find the one you want, and risk the
added danger of losing a large number of programs should the tape become damaged. Apart from these
two very sound reasons for not using this type of cassette, you'll also find that these longer cassettes have a
tendency to stretch, thus corrupting your programs.

53

CONNECTING THE SYSTEM

Having established the dos and don'ts of buying a cassette player, let's take a look at how to use it. The first
thing we need to do is to connect the cassette player up to the MTX. Take a look at the cassette lead. There
are two pins at each end, one is black and the other grey. Plug one into the socket marked "MIC' on the back
of the MTX and insert the same coloured pin at the other end of the lead into the socket market MIC on the
recorder. Plug the other pins into the sockets marked 'EAR’. Note that the same coloured pins must be
plugged into corresponding sockets.

Your computer uses three commands to deal with cassette handling: LOAD, SAVE and VERIFY. Welll
examine each of these in turn, starting with LOAD. Predictably enough, this is the command which LOADs
programs into the computer. It is normally entered as a direct command and can use one of the two formats:

LOAD ”n
or
LOAD “filename”

The first of these formats is used when you don't know the name of the program that you are trying to
LOAD. or when you want to LOAD the first program on a tape. If you try to LOAD a program and use an
inaccurate filename the MTX will not recognise it and consequently won't LOAD the program, so this is the
syntax to use when your unsure about a filename.

The second format can be used when you're sure about the name of the program, It's important to note that
you must use the same name by which the program was SAVEd, so make sure that your cassettes are
accurately marked. The computer distinguishes between upper and lower case filenames, so if you SAVE a
file called E.G. and then ask it to LOAD "e.g.” the MTX will be unable to locate the file you're looking for.

Insert one of your free games programs into the cassette player and type in LOAD ””, press <RET> and
then press the PLAY button on the cassette player. The MTX will now LOAD the first program that it
encounters on the tape. When it finds a program it will display the message:

FOUND: filename
LOADING

and once the program has been LOADed the 'Ready’ prompt will be displayed on the screen. If you have
any problems LOADing a program (either nothing will appear to be happening or a BK error message
returned) try altering the volume and tone controls on the cassette player and then attempt to LOAD the
program again. If you still have problems, it's quite possible that the tape has been 'corrupted’. This means
that your recording of the program has , for one reason or another, been damaged and the MTX will not
accept it as valid input.

SAVEING

As cassettes are not a particularly reliable method of storage it is always advisable to make at least two
copies of each program, preferably on separate cassettes. SAVEing a program involves transferring data
from the MTX to a cassette. Try typing in one of the example programs in this book and then SAVE it using
the format below. (Make sure that your cassette lead is still plugged into the appropriate sockets.)

SAVE "EXAMPLE”

Before pressing <RET>, place the cassette in the recorder, making sure that the the non-magnetic
‘header’ of the tape is past the heads, since you cannot store any information on this part of the tape. Now.,
press the RECORD and PLAY buttons on your recorder and press <RET> on the MTX. When you SAVE a
program always make sure that you give it a sensible filename (one you'll remember) and then clearly label
the cassette.

54

VERIFYING

Once you've SAVEd a program it is a good idea to check that the data transfer has been successful by
VERIFYing a program. Rewind the tape, and type in:

VERIFY "EXAMPLE”
or
VERIFY 7"

press <RET> and the press the PLAY button on the cassette recorder. The MTX will then compare the
program on tape with the program in memory and, if the two match up it will display the message:

FOUND: filename
VERIFYING

followed by the 'Ready’ prompt. However, if the two programs don't match you'll be presented with a
'Mismatch’ error message. Should this happen you will have to SAVE and VERIFY your program again,
repeating the process until the MTX is convinced that the two versions are identical.

One final point that should be noted when VERIFYing a program is that it is not possible to BReaK out of the
process unless the tape is actually running.

FLEXIBLE SLICES

Having gone to some lengths to introduce our readers to the wonders of BASIC string manipulation, this is
as good a time as any to reveal that Memotech BASIC offers string-slicing facilities which to all intents and
purposes make the commands we have just discussed redundant! This said, although your MTX has
string-handling capabilities considerably in advance of those offered by other home computers, you should
familiarise yourself with the action of MID$, LEFT$ and RIGHTS$ simply because they provide the basis for
string manipulation in most dialects of BASIC.

So what's so special about the way the Memotech handles strings? Well once a string variable has been
defined, any substring can be directly accessed via the variable itself. In other words, we can create
substrings without having to utilise any of the traditional string-handling statements.

Let's take a look at some simple examples that will hopefully add substance to these apparently wild
claims. We'll kick-off by assigning a string to a string variable in the usual manner:

LET AS=“MEMOTECH”

Now let's assume that we want to extract the substrings “MEMO” and “TECH”. On most micros such
operations would require the use of LEFT$ and RIGHTS statements:

PRINT LEFTS$ (A$,4) will return “MEMO”
PRINT RIGHTS (A$4) will return “TECH”

However, Memotech BASIC allows direct access to substrings:

PRINT A$ (1,4) will return “MEMO”
PRINT A$ (5,4) will return “TECH”

This method of string-slicing can also be used to generate single character substrings. For example:
PRINT A$(4) will return “O”

We can also simulate MIDS. The following routine:
10 LET A$=“MEMOTECH”
20 FORA=1TO 8

30 PRINT MIDS (AS,A,1);"";
40 NEXT A

55

Could be coded with the following modification:
30 PRINT AS (A,1);"";
Simplicity itself! The only point to be borne in mind when using such constructions is that they can only be

applied to standard string variables. If you want to use array variables in this manner the individual elements
of the array in question will have to be assigned to a transient variable.

56

CHAPTER SIX: THE KEY TO BASIC

Now that we have completed our schematic introduction to the logic and constructions available in MTX
BASIC, we shall endeavour to systematically detail each of the language keywords (or "reserved” words).

The keywords are presented alphabetically in a standard format. Each entry comprises a format example
using the following standard symbols:

V= numeric variable name
A$ = string variable or expression
i = integers or whole numbers
n = floating point or decimal value
¢ = conditional logical expression
In = program line number
addr = a memory location address
x,y = represent screen coordinates

Any special symbols required to clarify particular keywords will be defined within the entry in question.
When appropriate, we have included a short example program designed to show the keyword in action and
a list of related keywords which should be referred to as a means of situatina commands in their group
context.

ABS
SYNTAX : v=ABS(n)
ABBREVIATION : AB.

Numeric function which is used to ensure a positive value result from a numeric variable or expression.

There are occasions when it is essential to ensure a positive result from a calculation, or else non-negative
data from user input. In short, there are programming situations in which we must avoid a negative value,
and require what is known as an ABSolute value. For obvious reasons, there are certain circumstances in
which a negative value will cause a program to crash, and ABS is the function that guards against such an
event.

For example, suppose we wanted to establish CSR (cursor) parameters for the display of user generated
input. Obviously the appearance of negative data in such input would require an additional character ("-")
whose inclusion could disrupt an otherwise tidy display. By using ABS we can get around this problem as
our example program demonstrates.

The simplest way of understanding the value of this function is by considering the following: If we ask the
computer to consider the expression x-y, the result will obviously only be positive as long as x is greater

than y. However, ABS(x-y) will always return a positive result, regardless of the values of the two variables.
Thus:

30 FPRINT ABS(X-Y)
when x=100 and y=150 will return a positive 50, although the result of the actual calculation will, of course,

be -50.

The following example uses ABS to ensure a tidy tabular display, regardless of ~whether the values
entered are negative or positive.

57

10 RFEM #ddddddkdodhfoksg

=0 REM ##% ARSZ EEX

30 REM #fFddfssddidd

40 C8SR 10,2: FRINT "INFUT FIVE NUMBERS
50 CSRE By4: PRINT "(FOSITIVE % NEGATIIVE)"
60 FOR A=1 TO 5

70 CSR 10, 7+A: FRINT "NUMBER "j;a;" IS"
80 GOSUR 200

IO IF N<Q THEN CSRE 2, 7+A: FRINT "-"
100 NEXT A

110 STOF

200 CHBR 2,20 INPUT N

Z10 CS8SR 2,203 FRINT CHR$ (I

R0 CSE 24, 7+Ar FRINT ARSCND

220 RETURN

As well as returning positive values, ABS also rounds any values to which it is applied to eight decimal
places. Thus:

PRINT ABS(23.123456789) will return: 23.12345679

RELATED KEYWORDS: SGN

ADJSPR
SYNTAX : ADJSPR p,n,v
ABBREVIATION : AD.

ADJusts a value previously assigned by the SPRITE or MVSPR commands.

The ADJSPR command only alters a single parameter at a time, thus increasing the speed of program
execution. The variable n is the sprite number (1-32) and v is the new value to be assigned to the parameter

chosen by p.

VALUE OF P MEANING RANGE OF Vv

0 Sprite pattern 0-31 for 16*16 sprites
0-127 for 8*8 sprites

1 sprite colour 0-15

2 position x co-ordinate 0-255

3 position y co-ordinate 0-255

4 speed x direction 0-255 128-255 gives leftward
movement

5 speed y direction 0-255 128-255 gives downward
movement

The example below demonstrates how you can move sprite 1 across the screen from left to right.

58

30 REM ** PUT SPRITE ON SCREEN **

50 VS 4: CLS

60 CTLSPR 2,1

80 GENPAT 3,0,60,126,219,255,231,126,36,60
90 SPRITE 1,0,127,96,0,0,1

110 REM % MOVE SPRITE ACROSS SCREEN %
130 FOR T=0 TO 255

140 ADJSPR 2,1,T

150 NEXT T

160 GOTO 50

RELATED KEYWORDS: CTLSPR, GENPAT, SPRITE, MVSPR, VIEW

AND

SYNTAX : ¢ AND ¢
: e AND e

ABBREVIATION : none

A logical operator that performs logical AND operations on two expressions.

AND is one of the MTX's Boolean or logical operators. It is used to determine whether a condition is True or
False. AND works in much the same way as it's used in the English language, acting as a conjunction to
combine logical expressions. To produce a True result, both of its conditions must be met. If only one or
neither of them are met the condition will be False.

Condition1 Conditional Condition2 C1 AND C2
operator

TRUE AND TRUE = TRUE

FALSE AND TRUE = "FALSE

TRUE AND FALSE = FALSE

FALSE AND FALSE = FALSE

When AND is used in an IF... THEN statement it will only activate the THEN instruction if the results of both
conditional expression(s) are True, otherwise processing will either move on to the following line or the
instructions following the optional ELSE statement.

10 REM #ddbdfdsid s

3 REM #¥% AND k#x

15 REM ®fffssisdkss

20 INFUT "WHAT IS YOUR NAME?S 'j; N

30 INFUT "ARE YOU MALE OR FEMALET (M/F) ";SEX%
40 INFUT "ARE YOU MARRIED OR SINGLE? (M/S) ";Bé

SO _IF SEX$="F" AND B$="8" THEN LET NAME$="MISG "
ELSE LET NAME$="MR. "

&0 IF SEX$="F" AND B#%="M" THEN LET NAME$="MRS. "
70 FPREINT "HELLO "j;NAME$;N$

The above program will only PRINT MISS if both the conditions in line 50 are met (i.e. if you indicate that
you are a female (F) and that you are single (S)). Similarly, it will only PRINT MRS if you both the conditions
in line 60 are met (i.e. that you are both female (F) and married (M)), otherwise it will PRINT out MR.

RELATED KEYWORDS: OR. NOT

59

ANGLE
SYNTAX : ANGLE x
ABBREVIATION : ANG.

Sets the initial drawing direction when using the MTX's ‘turtle graphics’ type commands.

The value of x is measured in radians and specifies the initial drawing direction. It starts at x=0 rad. which is
pointing horizontally to the right and moves anti-clockwise as the value of x increases up to P1*2 (also facing
to the right). If x is larger that PI*2 itis treated as x-PI"2. Even though itis permissable to use decimal numbers
and/or variables (eg LET Z = 1.345: ANGLE Z) in the statement’s argument, it is generally easier to use
fractions or multiples of PI. (Refer to chapter 9 for a radian to degree conversion chart.)

The statement below will set the initial draw direction to face downwards:

ANGLE PI*3/2
For further information on this command refer to chapter 9 where it is discussed at length.

RELATED KEYWORDS: PHI, DRAW, ARC

ARC
SYNTAX : ARC <length>,<angle>
ABBREVIATION : AR.

Draws an arc of a circle starting at the current plotting position.

The initial drawing direction of the ARC command is determined by the angle value currently stored in the
computer. Both the plotting position and direction are updated by this command. The angle parameter
determines the curvature of the arc by specifying what angle is subtended - the larger the angle, the tighter
the curve.

The example program below draws an ARC of a circle with a length 50 and an angle of 90 degrees (Pl/2
rad.).

1 REM e G R g g O o e

&)}

fEM o ARC FEE
S5 FEEM ddddddsdddig
10 VS 4: CLS

20 FLOT 120,30

30 ARC SO0,FI/Z2

40 GOTO <0

For furtner information on this command refer to chapter 9 where it is explained at length.

RELATED KEYWORDS: ANGLE, PHI, DRAW

ASC

SYNTAX : v=ASC("A”)
: v=ASC(AS)

ABBREVIATION : none

A function which returns a number between 0 and 255 which corresponds to the ASCII code of the first
character of the statement's argument.

60

The MTX does not store its characters as they are seen on your screen, but holds them as numbers known
as ASCIl codes. ASCIl (pronounced as- key) stands for American Standard Code for Information
‘nterchange, and each character in the MTX's character set is identified by its own unique ASCIl number.
Hence, the letter R is not stored as the letter itself, but as its ASCII code equivalent which is 82. ASC
complements CHRS, which returns the character represented by the code of its argument. If ASC is applied
0 a null string -1 will be returned.

The following program demonstrates the role of ASC in input checks. Line 40 tests to see whether the code
of each character that has been entered falls between the range 48-57, which represent the numbers in the
MTX's character set. Unless the input is a number, its ASCII code will not be printed to the screen.

10 EREM FH¥kEFksEEft®
13 REM *%% ASC %%
15 REM ®(¥E®EfifiEsrk

20 CLS

20 INFUT "ENTER ANY STRING ";&%

325 CLS .,

4(3'::%51_55.22(:4\35) »=48 AND ASBC(A%)<=37 THEN CSRE 10, 10z

45 FAUSE 2000
50 E0TO 20

RELATED KEYWORDS: CHRS, STRS, VAL

ASSEM
SYNTAX : ASSEM In
ABBREVIATION 3y

The command used to enter the Assembler.

To invoke the Assembler you must enter ASSEM followed by a BASIC line number. The statement must be
entered as a direct command (it cannot be used within a program). On pressing the <RET> key the word
CODE appears at the specified line number. Assemble > appears at the bottom of the screen and by pressing
the <RET> key once again you can start to insert your ASSEMBLY code.

At this stage the screen should look something like:
8007 RET (MTX 500) or 4007 RET (MTX 512)
The numbers above represent the hexadecimal address that the Assembler has furnished for you and the

RET is the instruction that currently occupies it. It is now possible to overwrite this with your own instruction,
if it is not overwritten it will RETurn you to BASIC.

Each carriage <RET>urn gives a new address, to exit insert mode you can type CLS (followed by the
<RET> key) and to exit Assembler altogether and thus return to BASIC you must enter CLS <RET> once
again.

For further clarification on this command refer to chapter 12.

RELATED KEYWORDS: CODE

61

ATN
SYNTAX : v=ATN(n)
ABBREVIATION : none

The value returned is given in radians, and will fall between -Pl/2 and Pl/2.

Like all the trigonometric functions on the MTX, ATN is, of course, invaluable when attempting any serious
graphical work on the machine. It can be regarded as the inverse of the TAN function, and can be used to
simulate inverse functions to complement the MTX's other trigonometric functions (COS and SIN). For a
further explanation see chapter 3. Note that the value returned by this function is always measured in
radians. To convert radians to degrees simply multiply the value by 180/PI (since 2*P| radians = 360
degrees).

ATN(x) = ARCTAN(x) ‘
ATN(-x) = ARCTAN(-x)

The function F = ATN(X) is valid for -1<X<Rmax

where Rmax is the maximum +ve real number available under MTX BASIC.
For - Rmax <X<Rmax one should use the function

F=SGN(X)*ATN(ABS(X))

RELATED KEYWORDS: COS, SIN, TAN

ATTR
SYNTAX : ATTR p,n
ABBREVIATION : AT.

The ATTR command is used to alter the effect that the other graphics commands have upon the graphics
screen. The ATTRibutes are not exclusive, but can be used in any combination. The value of n can be either
1=0N or 0=0FF, turning ON or OFF the specified ATTRibute. The parameter p defines the following:

p EFFECT

0 Inverse PRINT
1 Over PRINT

2 unPLOT

3 over PLOT

The example PRINTSs text on the screen, first in normal type and then inversed:
1 FREM #f+iFf+itFsEsddsE
2 REM %% ATTR #$k%
S REEM dEFEiifiisdiid
10 VS8 4: CLS
20 CSR 5,9: FRINT "NORMAL FREINTING"
30 ATTR 0,1
40 CSk S5,7: FRINT "REEVERSE FRINTING"
S50 ATTR 0,0
60 CSKE 9,9: FRINT "RACE TO NOREMAL AGAIN"
70 -BOTOH 70

62

For further information on this command refer to chapter 9 where it is discussed at length.

RELATED KEYWORDS: PLOT, LINE. PRINT. CIRCLE

AUTO
SYNTAX : AUTO In;i
ABBREVIATION : AU.

Command which activates the computer's automatic line numbering facility.

As our introduction to BASIC established, when developing a program it is always wise to increment the line
numbers in steps of ten to facilitate the inclusion of any omissions. Thus a regular, graduated system of line
numbering is standard programming practice, and the AUTO line numbering feature simply AUTOmates
the process.

So how does AUTO work ? Well, let's take the most common programming situation. Your screen is clear
and you're about to create a program. You want your creation to start at line 10 and progress in steps of ten.
You must enter the following as a direct command:

AUTO 10,10

Once this statement has been executed, the computer will increment line numbers in steps of ten each time
you press the return key. Try it. You don’t actually have to enter any code. Enter the statement above and
repeatedly <RETURN>. You'll generate a sequence of line numbers starting at line 10 and rising in steps
of ten.

AUTO's first parameter establishes the start point for the sequence of line numbers. Many programmers
start their program development by coding subroutines. So if your first subroutine starts at line 100, the
above statement would have to read:

AUTO 100,10

Thus AUTO's first parameter establishes the point at which specified line increments commence, and the
second determines the size of the increment.

You can choose any start point and increment value as AUTO's parameters, although for obvious reasons
non-integer values will generate an error message. To return to user controlled line numbering simply enter
CLS (bottom right on the numeric key-pad), and press <RETURN>.

RELATED KEYWORDS: none

BAUD

SYNTAX : BAUD c,r
:BAUD r

ABBREVIATION : B.

Input/Output statement which facilitates the selection of the baud rate (r) for the specified RS232 output
channel (c). If the statement's first parameter (c) is omitted, the specified baud-rate will be established for
both channels.

When transferring data via the computer's RS232 output port, the speed of transfer is set by a BAUD

statement. A baud is a term used to measure the transfer of data, calculated in bits-per-second. Thus the
higher the baud rate. the faster the data transfer.

- 63

The MTX has two RS232 channels, which are identified by the channel codes 0 and 1.

The MTX offers twelve legal baud rates, the slowest being 75 and the fastest 19200. The following table
lists the available rates. If you try to use any other values as rates, an "Out of range” error will be generated.

LEGAL BAUD RATES

75 1200
110 2400
150 4800
300 9600
600 19200

RELATED KEYWORDS

CHR$
SYNTAX : A$=CHRS(n)
ABBREVIATION : CH.

A string function which converts the ASCII code into the character (or display operation) specified by its
argument (n).

CHR$ is the string function which complements ASC. While the latter returns the ASCII codes of a string
character, CHR$ performs the reverse operation. For example:

10 FREM f£fitdEdsdidEdsss
12 REM #®%% CHE$ 1 fdx
15 REM ffdffifdifiiiisk
20 LET A=ASCC"A")

30 FEINT A

40 LET A$=CHF%$ (&3>

50 FRINT A%

Line 20 assigns the code for the character 'A’ to the numeric variable A, which is then PRINTed in line 30.
Thus 65 is displayed on the screen. Line 40 then uses CHRS$ to convert 65 into the character it represents,
and thus ‘A’ is PRINTed in line 50. The following program uses CHRS$ to display the computer’'s upper-case
alphabet.

10 REM #£ffffsdifiEiEdsss
13 REM ##%% CHR$% 2 &
15 RFEM $dfdfdiiiedaidi
20 FOR A=65 TO 30

SO FRINT CHRE$CAI; ", ";
40 NEXT A

As well as providing access to the MTX's standard character set, CHR$ can also be used to control facilities
such as cursor movement. This said, the following ASCII codes cannot be PRINTed to the screen as they
return the 'SE.B’ error message: 1, 2, 6, 14, 15, 16, 17, 18, 19, 27. The following example uses CHR$ to
PRINT some familiar lower-case characters to the screen:

64

10 REM s sy
3 REM ¥3%% CHRE$ 32 #%¥
14 REM #ffddfsdddddfdds
20 FOR A=0Q TO 7
30 READ V
40 FPRINT CHE$C(V)
SO NEXT A
100 DATA 109,101,109,111,116,101,%99, 104

Adding the following lines will use CHR$(12) to clear the computer's screen each time the program is
repeated:

15 FREINT CHE$C1Z2)
70 RESTORE 100
80 GOTD 195

There is a full list of ASCII codes in Appendix 4 . A little experimentation with CHR$ will reveal the value of
this flexible function.

RELATED KEYWORDS: ASC, STRS, VAL

CIRCLE
SYNTAX : CIRCLE x,y,r
ABBREVIATION : ClL

Draws a circle on the graphics screen at position x,y with radius r.

The circle must be fully drawn within the confines of the screen otherwise an error report will be generated.
As with all graphics commands, CIRCLE cannot be used on the text screen. The example program draws a
circle whose centre lies at the middle of the screen, with radius 50:

1 REM $f¥fRfdiffiiisdes
2 REM #%% CIRCLE #3uk
S EEM #ffEfffidddsidsy
10 VS 4: CLS

20 CIRCLE 127,396,350

30 GOTO 3O

For further information on this command refer to chapter 9 where it is explained at length.

RELATED KEYWORDS: LINE, PLOT

CLEAR
SYNTAX : CLEAR
ABBREVIATION + GLE:

65

Command whose execution voids all variables currently in memory.

CLEAR can be used in a program or entered as a direct command. Once a CLEAR statement has been
executed, all variable assignments are wiped from the computer's memory and any attempt to utilise a
previously defined variable will result in an "Undefined” error report.

The difference between CLEAR and NEW is that while the latter wipes the sections of memory that store
variables and program lines, CLEAR leaves the program intact and only voids the variables.

The example program below demonstrates the action of CLEAR. If you RUN the complete version of the
program, processing will halt at line 90 with an 'Undefined’ error message. This is because although the
arrays V$ and N have been defined by the READ loop (lines 30-60), the CLEAR statement in line 70 wipes
all knowledge of this assignment from memory. As far as the computer is concerned, the variables in
question simply don't exist! If you RUN the program for a second time, this time deleting line 70, you'll see
that the computer will repeat the PRINT sequence without complaint.

1 EEM #Ffdfddddisissss

o REM ®¥% CLEAR FEE

10 EEMEFRFHEE:EfREEE 808

20 DIM VH(3,10),NC3)

30 FOR A=1 TO 3

40 READ VS (A, NCA)

S0 FREINT NCAY;VEC(A)

GO NEXT A

70 CLEAR

BO FOR B=1 TO 2

S0 FRINT NCR)Y VS (R)

100 NEXT B

200 DATA MEMOTECH, 1,MICRO

210 DATA 2,FOWER, 3
RELATED KEYWORDS: LET, NEW, RUN

CLOCK
SYNTAX : CLOCK AS
ABBREVIATION : CLO.

Assigns start value to the MTX's built-in system clock, which is PRINTed by the TIMES$ string function.

TIMES is the string form of a system variable, and enables us to PRINT out or otherwise utilise a real-time
value, whose start point is established by CLOCK.

By using CLOCK in conjunction with TIME$ we can access the computer's hundred hour clock, which
operates in much the same way as any other digital clock. TIME$ stores a system variable, which
"translates” the computer's internal clock into the hours, minutes and seconds used by humans. If you
switch your computer off and then on again and then enter the following as a direct command:

PRINT TIMES

your computer will display the time that has elapsed since power-up. CLOCK enables us to establish a start

66

point to which the values generated by the computer's system clock are added. Thus the string variable
CLOCK allows us to use TIME$ as a means of simulating a real clock. If we want the value of TIMES to start
from scratch each time a program is run we use the statement:

10 CLOCEK "OQoQoQoo"
On the other hand, if we want to set the internal clock to 12:50 we must use:
10 CLAOCK " 125000"

In other words, 12 hours, 50 minutes and 00 seconds. The following example program uses CLOCK and
TIME$ as a stop watch.

10 REM #Effdffdssies

12 REM ##f CLOCE #if#k

19 REM ®fFEfEEfsdsss

20 CLOCKE "000000o"

30 LET X=2

40 FOR A=1 TO 35

S0 LET SE$=RIGHT$(TIME®,)

&0 LET CO=INT(RND*300)+10

70 C8R 2,2: PRINT "00:";SE%

80 -CSR. X312z - PRINT -"%"

90 FAUSE CO

100 D8R Xy 12 CPRINT- "

110 LET X=X+1

120 NEXT A

130 FRINT "THE #® TOOE ";SE$;

140 FRINT " SECS TO CR0OSS THE SCREEN"

150 FAUSE 3000: Curx= = FRINT "AGAINT CY/N) "
160 LET D$=INEEY#$: IF D%="" THEN GOTO 160
170 IF Ds<:="Y" THEN STOF

180 CLS : GOTO 10

RELATED KEYWORDS : TIMES

CLS
SYNTAX : CLS
ABBREVIATION : C.

The command used to clear the display screen.

67

When using this command on the text screen or virtual screen then the screen will always clear. When
using the graphics screen, the screen will not clear if certain of the ATTRibutes are set (see ATTR). In
particular, when using ATTR 3,1 the screen will not clear, but the screen colours can be changed globally by
using CLS.

The example program below first prints text onto the screen, and then CLearS the screen again.

1 REM #¥dddsdchsdohioks

3 REM *x%¥% CLS F¥¥

S FREM FfFffffFEFFEEsE

10 NVSy e 5 CLS

20 FOR T=1 TO 20

20 CSRE T,T: FRINT "HELLO WORLD!"
40 NEXT T

30 FPAUSE 1000

&0 CLS

70 STOF

RELATED KEYWORDS: none

CODE
SYNTAX i n/a
ABBREVIATION :n/a

The word inserted by the computer into a listing to indicate the start point of Assembler code.

It is important to stress that CODE is not a command and it cannot be typed in directly from the keyboard. It
is invoked by the ASSEM command and the computer inserts the word CODE in the line number specified
by the aforesaid command.

For example, if ASSEM 30 was entered the word CODE would be inserted at line 30 in the BASIC listing. Its
sole function is to indicate that the following lines are written in the Assembler language.

RELATED KEYWORDS: ASSEM

COLOUR
SYNTAX : COLOUR p,n
ABBREVIATION : COL.

The COLOUR command sets the colours for the graphics screen.

The colour is defined by n, see Appendix 5for the colour numbers. The value of parameter p selects the type
of display to be changed.

meaning

PRINT PAPER colour
PRINT INK colour
PLOT PAPER colour
PLOT INK colour
BORDER colour

A WON-=20 ©

68

The example program PRINTSs text in different colours on the graphic screen.

1 REM #FfF¥fFdsfsEsik

32 FEEM #$% COLOUR F¥%%

S REM ##fddddfksssiiois

10 VS 4: CLS

Z0 FOR T=1 TO 15

30 COLOUR 1,T

40 CSE Sy T: FRINT "THIS IS COLOUR ";T

S0 NEXT T
0 FAUSE 5000
70 STOF

RELATED KEYWORD: PRINT, ATTR, PLOT, LINE, CIRCLE

CONT
SYNTAX : CONT
ABBREVIATION : CO.

CONTinues the processing of a program that has been halted by the STOP command or the BReaK key.

When developing a program it is often important to know the value of a particular variable at specific points
in its execution. By using the BRK key the program can be halted, the values checked and processing
re-started using the CONT command. The MTX will re-commence processing at the precise point at which it
was interrupted.

CONT can also be used to re-start a program that has been halted by a STOP statement. Once again,
processing will continue from the line following the STOP statement. However, you cannot CONTinue a
program if any alterations have been made.

RELATED KEYWORDS: STOP, RUN, GOTO

cos
SYNTAX : v=CO0S8(n)
ABBREVIATION : none

Returns the cosine of its argument n.

It should be remembered that the computer's trigonometric functions all return values measured in radians
and that in order to calculate the angle in degrees, v must be multiplied by 180/PI. (See chapter 9).

RELATED KEYWORDS: ATN, SIN, TAN

CRVS
SYNTAX : CRVS n,t,x,y,w,h,s
ABBREVIATION : CR.

69

Defines a virtual screen within the main display screen.

The seven parameters used by the CRVS command are used to determine the following attributes:

b |

Virtual screen number (0-7)

Type of screen: O=text, 1=graphic.
Position of the top left corner, x co-ordinate.
Position of the top left corner, y co-ordinate.
Width of the virtual screen in characters.
Height of the virtual screen in lines.
size of the full screen length : 40 for text screen.
: 32 for graphic screen.

» TS< X~

The example line creates a virtual text screen of size 10 characters by 6 lines positioned so that the top left
corner is at position 10,9. The screen is given the identification number 2 and can then be invoked using VS
2:

10 CEVES 2,0,104,9,10,6,490

Screen types cannot be mixed. In other words, Virtual text screens cannot be placed upon the main graphic
screen and Virtual graphics screens cannot be placed on the text screen.
For further information on this command refer to chapter 9 where it has been explained at length.

RELATED KEYWORDS: VS

CSR
SYNTAX : CSR x,y
ABBREVIATION : Cs.

Places a character CurSoR at the specified position.

The argument x describes the horizontal character position, whilst y describes the vertical line position. Any
subsequent PRINTIing or INPUTting will take place at the new cursor position.

The example below places the CurSoR in the middle of the screen prior to PRINTing the text:

1 REM F&FEddEEdEddrss
3 REM #ik# CSR kiEx
S FEM #ffFEdEdsiiss
10 V8 S CLS

20 CSR 39,12

Fin FREINT LM HEL LA

40 STOF

For further information on this command refer to chapter 8 where it is discussed at some length.

RELATED KEYWORDS: PRINT, INPUT

70

CTLSPR
SYNTAX : CTLSPR p,x

ABBREVIATION : CT.
Declares the global parameters for the sprite graphics commands.

The CTLSPR command is used to define the parameters of sprites in much the same way as LET is used to
define a variable. The first parameter, p, is used to describe the following functions:

p Function range for x

0 Sprite speed 0-255

1 Distance 0-7

2 No. of active sprites 0-32

3 No. of orbitting sprites 0-32

4 Set sprite x as PLOT SPRITE 0-32

5 No. of moving sprites 0-32

6 Sprite size 0= 8*8 sprite, normal size

1= 8%8 sprite, double size
2= 16*16 sprite, normal size
3= 16*16 sprite, double size

The example below sets all active sprites to size 3, sets 3 active sprites, 2 of which are defined as orbiting:

20 CTLSPR 2,3: CTLSFR 3,2: CTLSPR 6,3

For further information on this command refer to chapter 10 where it is explained at some length.

RELATED KEYWORDS: ADJSPR, GENPAT, MVSPR, SPRITE

DATA
SYNTAX : DATA v,v,v,v...
: DATA v$,v8,vS...
: DATA v,v8,v,v§...
ABBREVIATION : D.

Statement used to store data within the body of a program.

DATA statements are used in conjunction with READ and RESTORE to access string and numeric data as
and when required by a program. The facility is simple to use and provides BASIC programmers with a
means of storing large quantities of information which can be READ into variables or (more usually) arrays
at an appropriate point in a program. The mechanics of DATA statements are best understood by an
example. The following program could be coded in a variety of ways, but is a simple way of demonstrating
the power of this valuable keyword:

1 REM #ffdddbdfddsd

S REM k%% DATA #¥x

10 REMEfRFHFfEREEEss

20 DIM A%(5,8): LET Y==2

20 REM %% READ/FRINT LOOF #%
40 FOR C=1 TO 4

71

S0 READ A%CCH

60 CSK 10,Y

70 PRINT C;" ";A%CC)

80 LET Y=Y+2

30 NEXT C

100 CSRE 10, 14

110 FRINT "ENTER YOUR STATUS (1,2,3,4) "
120 LLET S$=INKEY$: IF S$="" THEN GOTO 120
130 LET S=VAL(S$)

140 IF S<1 OFR S*4 THEN GOTO 130

150 CLS ¢ CSE 10,10

160 FRINT "SO YOU'RE A ";A%(5)

200 DATA MAN, WOMAN, CHILD, MACHINE

One of the wonders of DATA statements is that they can be positioned anywhere in a program. So whilst
our example has the statements in line 200, they could equally well have appeared in line 10 or line 27. This
said, it is standard practice to place DATA statements at the end of a program, but the point to note is that
the MTX will access them regardless of their position. So how do DATA statements work?

Well, let's take a look at our example. Having DIMensioned the A$ array at the beginning of the program, we
use the loop to READ values into each element of the array. With the first pass of the loop the first element
of the array is established as A$(1). When the computer encounters the first READ statement it places a
pointer against the first item of DATA in line 200, which is then assigned to AS$(1). Thus the string "MAN” is
stored in A$(1). With the next pass of the loop the array element becomes A$(2), the computer's pointer
moves on to the next DATA item ("WOMAN"), and so on until the loop is complete. Thus:

AS(1) = "MAN”
A$(2) = “WOMAN"
AS(3) = "CHILD”
A$(4) = "MACHINE”

We can store both string and numeric data in DATA statements. You'll notice that we've used the loop
counter (C) in line 70 to number our status options. These could have been included in our DATA
statement. Test this out by making the following modifications to the example:

200DIM AS(Ty100s LET Y=2

70 PRINT A$(C)

160 FRINT " S0 YOUWRE A ";MID®(AS(S5),3,7)
200 DATA 1 MAN, 2 WOMAN,3 CHILD,< MACHINE

However, it should be noted that under these conditions the numeric data items are stored as strings, not
numeric values. When using DATA statements it is important to ensure that the variable or array variable
used in the READ statement is appropriate to programming requirements. Thus:

1 REM s$¥dddidsssst
S REM *%% DATAZ #%%

72

10 REMEFfREfgEiissEkk

20 DIM NC3D '
20 FOR A=1 TO 3

40 READ NCAD

SO NEXT A

GO FPRINT NCLII+HNCZI+NC3ED

100 DATA 4,652

will PRINT out 12, since N(A) is a numeric array, and the calculations can be performed on the elements of
the array. However:

1 REM $dfokddisisdss

5 REM %3k DATAS *kxk

10 REM$dd i g

20 DIM N%(3,2)

30 FOR a=1 T0O 3

40 READ N%CAD

S0 NEXT A

GO FRINT N$C1)+HN$SCZI+NS 3D
100 DATA <4,6,2

will simply return 462, since the N$ array is a string array, and hence line 60 performs a concatenation, not a
calculation.

We have seen that the computer READs DATA, by placing a pointer against each item, and assigning it to
the READ variable or array element. But what happens when the pointer reaches the last DATA item? Well,
if the machine is asked to READ on more occasions than there are DATA items, processing will be halted
with a "No data” error. You can test this out by increasing the value of the loop counter in line 30 of the last
example program. So once the DATA statements have been READ, they can't to re-read. Well, not unless
we make use of the RESTORE facility.

When a RESTORE statement is executed, the computer returns its DATA pointer to the first DATA item in a

specified line. To see this in action, change the line 30 loop counter back to its original value (3) and add the
following line:

70 GOTO 30

If you RUN the program all will be well until the MTX tries to start the READ loop for a second time. Since
the DATA pointer reached the last data item the first time the READ loop was executed, there is nothing
further to assign to the N$(A) array, and the program halts with a "No data” error. Now add the following line
and RUN the program again:

65 RESTORE 100

This little addition will enable our program to RUN indefinitely. The RESTORE statement is telling the MTX
to RESTORE the DATA pointer to the first DATA item in line 100.

73

The ability to RESTORE to a specific line number is a valuable feature of MTX BASIC. Many micros only
permit DATA to be RESTOREA in its entirety. The option of using RESTORE to access and re-access
specific sections of DATA adds considerable flexibility to the programming potential of DATA statements.

Finally. it is possible to READ different types of DATA in a single statement:

10 REM #fffisfidddiffss

12 REM ##%% DATA4 Fi#

1% REM #*%fffdddirEssssd

20 DIM N&(2,42: DIM NCE)
20 FOR A=1 TO 3

40 READ N (A, NCA)

S0 NEXT A

GO FRINT N&CLI-+HNS G2 +NS 3D
70 FRINT NCLI+NCZI+NCE)
1O0 DATA MEM, 2,0,3, TECH, S

Having hopefully established the importance of DATA statements, a word of warning about the manner in
which the command itself must be entered. Unless the command is keyed-in in its abbreviated form the
computer enters a leading space before the first DATA item, which is then READ into the first READ
variable. You should remember this even when editing a DATA statement when you should wipe out DATA
and insert D. before altering a line. This is actually very important since an extra character in a data item
could stop the program if you have DIMensioned a string array leaving only just enough space for each data
item.

Unlike many other micros, the MTX READs quotes ("”) as DATA items and assigns them to the READ
variable. All ASCII characters can be included in DATA statements as data items, with the exception of
commas, which are interpreted as DATA separators.

If a program attempts to READ string DATA with a numeric variable, it will be halted with a 'Mismatch’ error
report.

RELATED KEYWORDS: READ,RESTORE,DIM,LET

DIM

SYNTAX : DIM v(i,j,...)
: DIM vS(ij,...)

ABBREVIATION : DI

DIM statements allow programmers to allocate memory space for the storage of string or numeric arrays.
BASIC offers two ways of storing data in variables. You can either use the standard format (LET A=34) or
dimension an array. When the former method is employed, the value assigned can be re-defined, but the
variable can only return a single value or string. However, by dimensioning an array you can assign a list of

values to an array variable. We can create both string and numeric arrays, so let's kick off by taking a look at
simple one dimensional numeric arrays.

NUMERIC ARRAYS

The need for dimensioning an array is quite simple. If we want to store a list of items, we have to let the

74

computer know how much space it has to reserve in memory for its storage. When an array is dimensioned,
the variable name is always followed by a number enclosed in brackets. This value to tells the MTX the
maximum number of items you want to assign to the array list. Thus:

10 DIM ACB)

allocates enough memory space for the storage of eight numbers. The first numeric value will be stored in
A(1), the second in A(2), the third in A(3) and so on through to A(8). Key in the following program and we will
then run through it to see what's happening.

10 REM #fdffddddssssss
12 REM #®%% DIM 1 F¥¥F
15 REM #fssffoiddfdfsidy
20 DIM &8

20 FOR B=1 TO 8

40 LET ACRI=REZ

30 FRINT ACED

&0 NEXT B

This program will print the numbers 2, 4, 6, 8...16 to the screen. But, this could have done that without using
an array we hear you cry. Well, this is very true, but using this format all of the values of the loop’s variable B
have been stored in the elements of the array, whereas a non-array variable would only retain the last value
that it had been assigned. To demonstrate this try:

PRINT A(4)
or
PRINT A(2)

and 8 and 4 will be PRINTed to the screen. However, if we had keyed in:

[y

FEM $dsddfisdoiddss
FEM #®%% DIM 1 F¥¥
5 REM #dkseddfsfsdsits
10 FOR A=1 TO 8

20 LET B=AX%Z

20 FRINT R

40 NEXT A

[15]

after running the program, the multiplication variable B will always be equal to its last value, 16. Let's take a
close look at our first example and see exactly what's going on.

In line 20 we DIMensioned our array, so the MTX is now ready for 8 elements of data. We then created a
FOR...NEXT loop. In line 40 we have rather a curious construction. The reason for this is that although we
have DIMensioned our array we have not actually told our silicon wonder what is going to be put into it. This
line says, ‘let the array A(B) be equal to the value of B*2'". The first time through the loop B will be equal to 1
so the first element of the array will be labelled A(1), which creates the statement.

75

A(1)=B*2

and as B is currently equal to 1, the value assigned to the array element A(1) is 2. The next time through the
loop B is equal to 2, so the second element is labelled A(2) and assigned the value of 4. The process is
repeated until the FOR...NEXT loop has run its course, and the final array element (A(8)), has been
assigned a value (16).

DATA AND DIM

The value of this method of data storage becomes apparent when you realise that arrays enable us to
access each of their elements simply and efficiently. Let's take a look at their use in conjunction with DATA
statements, since this will demonstrate the ease of assignment and recall.

1 FEM $ikddtbddkibeiiss
S REM ##¥¥ DIM 2 #i¥
10 REMF®+:tr+sdtsssssd
20 DIM ACS)H

20 FOR B=1 TO S

<40 READ ACE)

SO FRINT ACR)

60 NEXT I

70 FOR' X=1 TO 'S

80 FRINT ACX)

30 NEXT X

200 DATA 1,&5,38,0,30

By using an array in conjunction with the READ and DATA statements it makes it possible to store all the
DATA in 'different’ variable names. In our example the first loop assigns and PRINTSs the values of the A(B)
array, while the second loop shows how each element can be recalled.

So far we have only looked at numerical arrays. Let's move on and see how string arrays can be assigned.

This is achieved in exactly the same way, except you have to use the dollar sign in order to indicate that it is
a string array that you want to DIMension. Thus:

DIM A%(8)

will set aside enough space in the memory for eight string characters.

STRING ARRAYS

There is one major difference between string and numeric arrays. Although the above command will create
enough space for 8 items of string data, it will only leave space for ane character per item. In order to set
enough space side for multi-character string items, you have to assess the length of the longest string that
you will want to assign to an array. Let's say that the longest string required is 10 characters long:

DIM AS%(8,10)
This tells the MTX to set aside enough room for eight pieces of string data of ten characters long. This is

called a multi-dimensional array, since more than one value is used to DIMension it. (A multi DIMensional
array can have multiple dimensioning parameters, for example, DIM A$ (8,4,7.9).) If this second number is

76

ommitted and you try to assign a string to one of its elements that is longer than a single character a ‘No
space’ message will be returned.

1 REM #ddfdddisdissdiiid
3 REEM #®¥¥ STRING AREAYS Fi1X
10 REMEfddef st g okt
20 DIM A%CS5,3)

30 FOR B=1 TO S5

40 REEAD A$(R)

S0 FRINT A$%CRE)

0 NEXT B

100 DATA MONDAY, TUESDAY

110 DATA WEDNESDAY, THURSDAY
120 DATA FREIDAY

The DIM statement in line 20 ensures that there is enough space in memory for five data items of nine
characters in length (the longest item of data is WEDNESDAY, which is nine characters long). The
FOR...NEXT loop makes the computer READ the DATA items and store their contents into the array
variable (A$(B)), where B will be 1 the first time through the loop, 2 the second time through and finally 5.
Thus A$(1) will hold the string MONDAY and A$(5) will hold the string FRIDAY. Notice that it's only
necessary to include a string array’s subscript when recalling a string value. The second parameter can be
omitted. The elements of the A$ array are PRINTed out in the loop.

RELATED KEYWORDS: LET

DRAW
SYNTAX : DRAW x
ABBREVIATION : DR.

The DRAW command draws a line of length x in the current 'plotting direction’. The plotting position is
updated when DRAW is completed. The example below draws a horizontal line from the centre of the
screen, followed by a similar vertical line:

1 REM #fdoidckdahkddss
REM ##% DRAW HxXk
5 REM $Rdsddchdddoifdoig
10 V8 4: CLS

20 ANGLE ©

30 BLOT: 127,36

40 DREAW SO0

S50 PHI:R1Z2

EO DREAW S50

70 GOTO 70

0]

77

For further information on this command refer to chapter 9 where it it discussed at some length.

RELATED KEYWORDS: ANGLE, ARC, PHI, PI, PLOT

DSl
SYNTAX : DSI
ABBREVIATION : DS.

Enables the use of all of the keyboard keys where the result of any key-press is displayed directly on the
screen.

DSl is short for Direct Screen Input. DSI remains activated until the RET key is presed. When using the DSI
command, the following CTL and ESC sequences can also be entered:

SEQUENCE EFFECT
CTL w Tab back
STL] Set page mode
CTL X Set scroll mode

CTL flashing cursor ON
CTL flashing cursor OFF

>

CTL D then A to O PAPER colour A (1) to O (15)
CTL F then A to O INK colour a (1) to O (15)
ESC | Insert a line

ESCa:1 J Delete a line

ESC K Duplicate a line

Our example program allows you to roam freely about the screen. Try using the cursor keys, changing
colours etc. Note that the break key is not operational during DSI, but instead generates a CTL C.

1 FEM #fdsddddddtdsd
3 REM #u% DSI sk
S REM ®ffiiikfdddsis
10 V8 4: CLS

25 Bel

26, SToR

RELATED KEYWORDS: CRVS, VS

EDIT
SYNTAX : EDIT In
ABBREVIATION :..E.

Extracts the program line specified by the command'’s argument (In), and makes it available for EDITing.

EDIT provides access to the MTX's powerful EDITing facilities. When developing a program it is often
necessary to make alterations to statements that have already been entered. Rather than type in the entire
line again, we use the EDIT facility. Suppose we want to alter line 60. By entering the following as a direct
command: EDIT 60 or E.60 we cause line 60 to appear on the MTX's EDIT screen (at the bottom of the
VDU). If the line specified doesn't exist, the machine will not throw up an error message, but the EDIT
screen will remain blank and the computer will simply await further instructions.

78

Once the program line has appeared on the EDIT screen, programmer’s have full access to the MTX's
extensive editing facilities. For further details see chapter 2.

Note that you can only call down an entire program line for editing. So if you want to access a statement
within a multi-statement line, you must EDIT the entire line. For obvious reasons, EDIT is almost always
used as a direct command. However, it can be used within a program, as the following example from our
Sound chapter demonstrates:

10 REM ##ddddddfsissg

12 REM %% EDIT #%%

15 REM $dddiffffssis

20 SEUF 2

30 SOUND O, 33906,3900, 1, -1, 640, 1
40 EDIT 30

Line 40 presents us with line 30 to EDIT, whilst the SOUND created by the statement drones on.
For ASSEMBLER editing see chapter 12.

RELATED KEYWORDS: none

EDITOR
SYNTAX : EDITOR <variable list>
ABBREVIATION : EDITO.

Gives you the ability to accept input from a defined area of the screen.

EDITOR always uses virtual screen 0 and the size of this screen can be set using CRVS. When exiting
EDITOR the screen will remain set to screen 0 and must be changed by the programmer using VS.

The following example uses EDITOR to store the inputted data in the string variable A$. The Virtual Screen
0 is defined to be a single line deep and 5 characters wide:

=

REM s$fsddoididdoiidisd

REM #%% EDITOR #¥Xk

5 REM #fddddfddiiiiisd

10 V5 5: CLS : FAUSE Z0O

20 CSRE S, 10: FRINT "ENTER NO MORE THEN & LETTERS"
30 CRVE 0,0,5,11,5,1,40

400 EDITOR A%

50 V8 5

0 CBR Sy159: FRINT A%

70 GOTO 10

1]

RELATED KEYWORDS: CRVS, VS

79

MEM-£

ELSE
SYNTAX

ABBREVIATION

:IF c THEN s ELSE s

4 = I

Optional part of the IF...THEN conditional test, which facilitates the inclusion of a False option.

The ELSE facility in MTX BASIC adds flexibility to the IF... THEN construction. With a statement such as:

39 IF C=-1 THEN FPRINT "TRUE"

the PRINT statement will only be executed if C is equal to -1. In fact the computer won't even bother to look
at the rest of the statement if the initial condition is False. However, by including ELSE in the statement we
can provide alternative instructions to be implemented as the False option:

)

IF €=-1 THEN PRINT "TRUE" ELSE

f

FRINT "FALSE"

The value of such a facility is clear. The construction enables programmers to produce clear and economic
code, and avoids such clumsy duplications of statements as:

Sg IF C=-1 THEM
& IF C<>-1 THEN

FRINT "TRUE"
PRINT "FALSE"

The example program has been designed to show ELSE is action in a variety of formats.

19 REM XX¥¥EREEXXEERFAFERRFREXEREE
1S REM

20 REM ¥¥¥ ELSE EXAMPLE XX
25 REM

36 REM ¥¥¥EXXEFXIEXERKNEEF R XXX XK K
a0 DIM BH(4,4),B(4),VE(3,45,%(3;
4@ LET F=1: CSR 2.9

7@ FRINT "A=B AMD X3y "

S REM X¥EF,FEFEFEXFEFFEFXRIXFFFREF¥¥
=5 REM

o REM ¥¥% DATA/PRINT LOOF ¥¥%
95 REM

1TT FEM ¥¥¥XXUFANAEAK XXX XXX XXKH XXX
llg FOR A=1 TO 4

126 GOSUE ZI0d

128 READ X (A) ,VsE(A)

140 PRINT V% (A)
159 GOSUB &@d
Jaagh CER: RliA) .2
1s5 PAUSE 209
174 MEXT A

186 REM ¥¥EXREXEAXEREFFEEFFAFHARY
1385 REM

178 REM %*¥¥
125 REM

200 FREM XX YEARXHKFH LK FRF XX XXX XXNEY

FRINT EB$(A)

DISPLAY

RESULTS ¥¥%¥

80

LET F=2: GOSUB 399

LET R=(B(1)=B(2) AND B(3)>B(4))
IF R=-1 THEN PRINT "TRUE " ELSE FPRINT
STOP

REM ¥¥¥¥¥¥FFFEXXFXXERXEXXXRAXXX
REM

REM ¥¥%% END OF FROGRAM *¥%¥
REM

REM ¥¥FEFXXXFXXEXXRXXEXHXXXREXX
REM

REM

REM

REM ¥¥¥¥X¥URXUXXFEXKXXEXXXHXEX
REM

REM ¥¥%¥ DISFLAY SUBROUTINE ¥¥¥%
REM

REM ¥¥¥X¥FFFEHXFHFREXXXHXFHEKHK
CSR 1.7

IF F=1 THEN GOSUB 490 ELSE GOSUB S40@
RETURN

REM ¥¥¥¥¥¥FFEEXREXXXXXXRXXXXXXX
REM

REM ¥¥¥ TRUE SUBROUTINE *¥¥
REM

REM ¥¥¥¥¥¥HXXFRFFXREXXRXRXAXXX
CSR 1.,7: PRINT "EXAMFLE: "

CSR S.12: PRINT "ENTER VALUE FOR "j
RETURN

REM ¥¥¥¥AF¥XXFEREHHFXFXHXXXXXXX
REM

REM ¥¥¥ FALSE SUBROUTINE ¥¥¥
REM

REM ¥F¥XEXXXXXXAXXXXXXEXXXKNXX
CSR 1.7: PRINT "THE EXPRESSION: "
CSR S5,12: PRINT " IS LOGICALLY "3
RETURN

REM ¥¥¥¥¥¥F¥EEXEXXXXFEFIRXXEXXX
REM

REM ¥¥X* INPUT *XX%
REM
REM ¥%¥XXXXFFEREFREXXRXXXXXNXLH

LET B%(A)=INKEYS$

IF INKEY$="" THEN GOTO &34
LET T=ASC(BH(A))

IF T<458 OR T>57 THEM GOTO &3¢
LET E(A)=VAL(B%&(A))

RETURN

DATA 8,A,18.B,16,X,18.Y

RELATED KEYWORDS: IF, THEN

"FALSE

]

: v=EXP(n)

ABBREVIATION : EX.

This function raises e to the power of its argument (n).

81

As you probably know, if we talk of raising 3 to the power of 4 (3%4), we are calculating:
3%3%3%3

and the EXP function calculates the value of 2.71828183 raised to the power of the value contained in
brackets (n). The value of e is a magic number well known to mathemeticians, not least because:

EXP(n)

returns the natural antilog of n. The example program demonstrates EXP along with a number of other MTX
functions in the evaluation of complex mathematical expressions:

S REM XEXXXXXAXXEXXX¥

19 REM X*%x% EXP *¥¥

15 REM ¥¥¥XXXXXXXXEXX¥

29 CLS

39 INFUT "FLEASE ENTER TWO NUMBERS SEFERATED BY A COMMA "EXLY
48 IF LN(X)<@ THEMN LET XX=1/¥

S@ PRINT SER(X)*XEXF(Y)

6@ INFUT "ANOTHER GO7?7 (Y/N) ";jN%

79 IF N&="¥Y" THEN GOTO 1@ ELSE STOF

RELATED KEYWORDS: LN

FOR...TO...(STEP)...NEXT

SYNTAX : FOR v=n TO n (STEP n) NEXT v
FOR :
TO
STEP :
NEXT :
ABBREVIATION FOR :FO.
TO : none
STEP : STE.
NEXT :N.

A statement which creates a loop structure that processes the instructions contained within the body of a
loop (the amount of times specified in the opening line). The loop is terminated by a NEXT statement.

In the final analysis, the most valuable quality of any microcomputer lies in its ability to endlessly carry out
boring, repititious tasks without complaint. BASIC offers a number of structures which enable the heartless
programmer to force his/her micro to carry out such tasks effeciently, and the FOR...NEXT loop is one of the
most important.

Loops are easy to use and, once mastered, provide the programmer with one of the most valuable facilities
of the BASIC language. Take a simple example. Say we want to PRINT the alphabet. Without a loop the
coding would be hideously tedious, requiring an individual PRINT statement for each letter. The
FOR...NEXT construction makes life considerably easier:

10 REEM #dddddddididdsdds st
12 REM #®¥® FOR...NEXT i
15 REM #®ff%fdddddtdirsessss
20 FOR A=0 TO 25

30 PRINT CHRE$(A+ES),

G0 NEXT A

82

What could be simpler? Let's take it line by line. In line 20 the number of times that the instructions within the
loop are to be executed is established. In this case it is twenty-six times (0-25). Thus the first time the loop is
processed A (the loop counter) will be equal to 0, the second pass of the loop A=1, the third A=2, and so on
until A=25. In line 30 the value of the loop counter (A) is included in the argument of the CHR$ statement,
where it is added to 65 (the ASCII code for the letter "A”). When it reaches line 40 the NEXT statement
checks the value of the loop counter to see if it has reached its maximum value (25 in this case). If A is not
equal to 25, the NEXT statement forces the computer to return to the beginning of the loop and start the
process all over again.

In the example above the value of A is incremented in steps of 1. This will always be the case, unless we
make use of the optional STEP command. Key in the following modification to our example:

20 FOR A=0 TO 25 STEP 2

If we RUN the program again, instead of PRINTing out A,B,C,...Z, the computer will increment the value of
A in STEPs of 2, thus PRINTing every other letter of the alphabet (i.e. thirteen passes of the loop).lt is also
possible for the STEP size to be negative. For example:

10 REM #ddddiddcibdfiiagd
13 REM #%% FOR...NEXT 2 #¥¥
15 REM sdcdcicidcddddiei ik
20 FOR A=25 TOD S STEF -5

30 FRINT A

40 NEXT A

The possibilities are virtually endless! However, it should be noted that when a negative STEP size is
specified the end value of the loop counter will be the specified end value plus the step size. For instance in
the above example the end value will be 10 not 5. There's no reason why the STEP size should be a whole
number. Try this:

20 FOR A=10 TD S STEP —.25

In fact, the FOR...NEXT loop is so flexible that all its values can be non-integer, variables or even calculated
expressions. Add these lines to test these wild claims:

1@ LET X=5&: LET C=PI/2
20 FOR A=2¥4 TO X/3 STEP C

If you use a NEXT statement without a corresponding FOR statement the program will halt with a NO FOR
error message.

The inclusion of the loop variable in the NEXT statement is optional, but it is advisable to leave it in since it
makes a program much easier to read, particularly if you have created a series of loops nested within each
other.

Finally, note that you should never jump out of a loop with a GOTO or a GOSUB statement. If a crisis forces

you into a position where a loop jump is unavoidable you must always return to the loop and allow it to
complete its specified number of passes. Failure to comply with this rule will sooner or later result in the

83

program crashing.

RELATED KEYWORDS: none

GENPAT
SYNTAX : GENPAT p,n,d1,d2,d3,d4,d5,d6,d7,d8
ABBREVIATION : GE.

Enables the GENeration of PATterns. This command is used to generate the PATterns for both user-defined
characters and sprites.

The last eight of the statement's parameters (d1 to d8) are the items of data that define the shape to be
generated. The parameter p defines the type of shape to be created whilst n determines the actual
character or sprite shape.

p meaning range of n

0 ASCII characters 32 to0 127

1 User-defined characters 129 to 154

2 Multi-colour characters 147 to 154

3 sprite 8*8 pattern 1to127

4 sprite 16*16 pattern 1to 31
top left corner

5 sprite 16*16 pattern as above

bottom left corner
6 sprite 16%16 pattern
top right corner
7 sprite 16%16 pattern
bottom right corner

The example program below creates a user-defined character to replace the '*' shape. After this program
has been RUN, whenever the '*' key is pressed, a user-defined skull shape will be PRINTed to the screen
instead of an asterisk. In this example we are using the multiplication sign, and you should note that the
computer continues to act upon the multiply symbol, even when it PRINTs a skull shape. For instance, 3
<skull> 2=6. So only the shape of a particular character has been changed, not its effect.

1 REM #fFdfEdsdidssdidsssss

9 REM ##E GENFAT R S

9 REM #fEddEfFFRdsidiiissss

10 VS 4: CLS

20 GENFAT 0,492,60, 126,219, 255,231, 126, 36, 60
30 CSE 10, 12: PREINT "* & % % X% &Y

40 GOTO 40

Changing the parameter p and the number n allows you to define non ASCII characters or sprites.

When using user-defined characters the character set remains redefined at the end of the program. To
return to the standard character set type <ESC> followed by B and then 0.

For further information on this command refer to chapters 8 and 10.

RELATED KEYWORDS: ADJSPR, CHRS, PRINT, MVSPR, SPRITE, CTLSPR

84

GOsuUB

SYNTAX : GOSUB In
:ON v GOSUB In
ABBREVIATION : GOS.

A statement which transfers control from the main body of a program to a subroutine starting at line number
In. Control is returned to the main program by the means of the compulsory RETURN statement.

The creation of subroutines utilising GOSUB...RETURN statements provide BASIC programmers with a
means of creating code which is not only processed efficiently, but is also easy to follow. A GOSUB
statement resembles GOTO in as much as it passes processing control to the specified line number (rather
than following the line numbers in sequence). However, GOSUB is considerably more powerful than GOTO
because as well as directing control to a specified module it also stores a return address in memory. Thus
once the instructions contained in the subroutine have been executed, a RETURN statement forces control
back to the program line following the original GOSUB statement.

The line number specified by a GOSUB statement must be literally quoted. Variables or the results of
calculated expressions cannot be entered.

One important rule to remember when using subroutines is that they should never be jumped out of with a
GOTO, but should always be allowed to RETURN to the main body of the program. Apart from being the
height of bad programming practice, jumping out of subroutines and not RETURNing will soon corrupt the
MTX's memory stack and crash the program. This said, it is quite acceptable to create subroutines that call
other subroutines (such structures are known as nested subroutines), but care must be taken to ensure that
ultimately control is systematically RETURNed to the statement that follows the original GOSUB statement.

As well as promoting the creation of clear and efficient code, GOSUBs are obviously an important means of
saving memory as they enable a single section of code to be executed any number of times.

Before moving on to our example program, one final word of warning. Since it is standard practice to place
subroutines at the end of a program it is important to make sure that when the main body of the program has
been processed it is halted before the computer reaches the subroutines (which must only be entered or
called with a GOSUB statement).

5 REM ¥XEXEXFEFREFEFXEFXHXXXX

1@ REM X¥¥ GOsSUEB *¥¥
15 REM ¥¥¥F¥FFEXEXXEHXXXFXEXXXX
28 REM

8@ REM H¥¥FRXEHXAXXXXXXXXXNKX¥
29 REM *¥¥% INFPUT *¥%
95 REM X¥¥¥EXFEXAXXXAXEXXHXKXN¥
lgg REM

11g cLs ! INPUT "KEY IM A RADIUS ";R
126 REM

130 REM ¥¥EXEXEXFREXHRRXXXXEXXXKX
135 REM ¥¥¥ CIRCUMFEREMCE %¥¥
140 REM ¥¥¥¥F¥XXXAXRXXXAXXXEXXXX
159 LET C=Z¥FI*R

169 LET Z=C

17@ GOSUB 3604

186 FPRINT "CIRCUMFERENCE IS ";Z
198 REM XEXXXXEXXXXXXXXXXXXXNXX
125 REM *¥¥¥ AREA *X%
209 REM ¥XXXXEXEXEXXXXXXAXXEXX
219 LET A=FPI¥R"Z2

229 LET Z=A

239 GOSUB 3dd

85

249 PRINT "AREA IS "3;Z

256 STOR

2680 REM EXXXAXEXXEXXXXXEXXXXXKXXKX

265 REM ¥¥¥ END OF FPROGRAM X¥¥

278 REM XXXXHXXEXFKEXEXEHEXEEXXX

399 REM ¥EXXFXEFEFEXEXXFEEXXXXXEX
5 REM *¥¢ SUBROUTINE *¥¥*

310 REM ¥EXXEEXXXXEFEXXXXXXXXEXK

32¢ LET Z=INT(1gg¥(Z+.083))

S3@=IETD Z=Z71 O

340 RETURN

350 REM %¥¥HHHHHHHHHHHHXHHHKHEXAX

355 REM ¥¥¥ END OF SUBROUTINE %%

T6F REM XXXXXXXXXXXXXXXXXXXXXXXX

Finally, multiple branching in a program can be coded by coupling GOSUB with an ON statement. This
structure is commonly used to direct control in menu-driven programs, where user INPUT determines the
selection of a subroutine.

S REM XXXEXXXEXXXXXXXXXXAXXXX

1 REM %¥¥x OM GOSUB *¥%
15 REM XXXXXEXXXXEAXXXAXXXXXX
20 REM

25 REM XXXXXXRXXXXXXEXXAXEXXXX
I8 REM ¥¥¥ MAIN PROGRAM ¥¥¥
35S . REM %x¥X SCREEMN. DISPLAY. ¥X¥
3T REM ¥EXXEEXEXFEEEXEXEXXERXXX
Sg CLS @ CSR 2,1: PRINT "THIS FROGRAM CALCULATES THE AREA"

&g CSR 2,3: PRINT "OF A CIRCLE, OR AN ANMGLE’S COSINME™
78 CSR 2,95: PRINT "(MEASURED 1IN RADIANS), FROM THE"
8@ CSR 2:7: PRINT "VALUE OF THE INPUT"

9@ FPAUSE 5008

lgg CLS

195 REM ¥XX¥XXXXEXXXXHXHHXXEXX

119 REM *¥¥ VALUE INPUT *¥¥

115 REM ¥XXXEEXXEXEXXEXERAEX¥

12g INFUT "ENTER RADIUS OR ANGLE "jV: CLS
125 REM $XXEHXEREXXNXEXKXXXXX¥

139 REM ¥¥¥ ON GOSUB CHOICE¥¥*

135 REM X¥XXXXXXEXXXXEXEXXXEXERX

14g CSR 3,1: PRINT "ENTER NUMBER OF CALCULATION"
15¢ CSR 3,3: FPRINT "REQUIRED (& OR 1) "
160 LET A$="THE AREA OF A CIRCLE "

179 LET B%="THE COSINE OF AN ANGLE"

180 CSR 3,7! FRINT "@. "iAs$

12 CSR 3,9: FRINT "1. ";Bs$

195 REM ¥EXEXXEEXXXRAXXXFERXX

202 REM ¥¥% ON GOSUB INPUT %%

ZE5 REM ¥¥XXXAFEXXXAXEXXXAXXXXX

21 INPUT C

23@ OM C GOSUB 39@,40¢

235 REM %¥X¥%%HX%6HH XK XXHXH6%%

249 REM ¥¥x AGAIN *X¥

245 REM ¥%X%%%%3556%235% 636X %% %%

TS50 TSR 3,131INMPUT "ANOTHER VALUE ({Y/M)?"jS%
27g IF Ss="%¥" THEMN GOTO 18 ELSE STOF

86

ST REM X¥XXFEXEEXEXEFEREFXXXEXXN
395 REM ¥¥¥AREA SUBROUTINE¥¥¥
3130 REM ¥EXEXEAEXEXXXXXEXXXXX¥
328 LET A=PI¥V~2: CLS

338 CSR 3,3: PRINT As

349 CSR 3.5: PRINT "WITH A RADIUS OF ";V
338 CSR 3,7 PRINT "IS ";A

369 RETURN

370 REM ¥¥XEXXEXAEEXEXXXXHXXXX
375 REM ¥¥¥END OF AREA SUB¥X¥
380 REM EXXXXXXXXXXHXXXXHXXXXH
399 REM

498 REM XXXXXEXEXXHHHXHXEXXXAXXXXX
410 REM ¥XXEXXEXEXXKXXXXXXIXX
415 REM *¥¥C0OS SUBROUTINEX*X¥
42g LET B=CO5(V): CLS

43@ CSR 3,3: PRINT Bs%

449 CSR 3,5: PRINT "WITH A RADIAM OF ";Vy
45g CSR 3,7: PRINT "IS ";iB

469 RETURN

478 REM X¥XXXXXXXEXREXKK XK R HKRHK¥
475 REM ¥¥¥ END OF COS SUB ¥¥¥
489 REM XAXXXXXXXKXXREXXXXERNX

In our example program (which makes extensive use of REM statements to clarify the structure of the
program), the ON...GOSUB statement is used to determine whether the V INPUT is processed by
subroutine 0 or 1. If the value of INPUT C is 0 the program will GOSUB 300 and use V to calculate the area
of acircle. If C=1 GOSUB 400 will be called upon to calculate the COSine of the value entered.

RELATED KEYWORDS: GOTO, ON, RETURN

GOTO

SYNTAX : GOTO In
:ONv GOTO In

ABBREVIATION : G,

Statement which passes control to the line number specified by In which must be literally quoted.

As you probably know, when a program is RUN the computer will execute statements according to the order
specified by the program'’s line numbers, unless this process is disrupted by either a GOTO, GOSUB,
RETURN, ON GOTO, or ON GOSUB statement. The only other facilities in MTX BASIC capable of diverting
a program'’s linear flow are FOR...NEXT loops and the ASSEM statement (which passes control to a
machine code subroutine).

All of these statements are important in different ways and each enhances the programmer's capacity to
code the flow of a program to suit the needs of a particular problem. As soon as you start writing your own
programs it will immediately become clear why linear processing by line numbers would simply not be
practical.

A GOTO statement is one of the simplest means of re-directing control, and it performs in much the same
way as a GOSUB. The major difference between the two statements is that instead of passing control to a
subroutine and RETURNing to the main program, GOTO simply jumps to the specified line number and
continues processing in the normal way. No return address is stored when a GOTO statement is executed
and hence there is no way that control can be returned to the code between the statement and line it
specifies (except by using another GOTO).

87

|

One of the numerous and relentlessly flaunted Golden Rules of Programming decrees that GOTOs should
only be used to pass control forward in a program A swift glance through the programs in the present
volume will give you some idea of just how rigorously this rule is observed. This said, the principle behind
this particular sacred cow is both sound and sensible. Like all statements which manipulate the control of a
program, GOTO is a powerful command which should be used with care and in moderation. The advocates
of the GOTO Golden Rule are essentially over-reacting to the rather depressing fact that more often than
not GOTO statements are used by desperate programmers attempting to 'patch’ their flawed and poorly
structured creations. This, coupled with the undeniable observation that one GOTO invariably leads to
another, has prompted BASIC purists to associate GOTO statements with the spectre of ‘spaghetti’
programming. (A spaghetti program is one whose flow of control is as easy to unravel as a bowl! of the
aforementioned pasta!)

As a general rule, if you find you are developing a program that seems to require a large number of GOTOs,
it is almost certain that the most efficient solution to the problem you are tackling has eluded you. In other
words, think again!

Having devoted a great deal of space to the pros and cons of using GOTO statements, let's take a look at
an example which illustrates some of the points we have discussed:

10 REM oo g
13 REM #¥% GOTO 1 #3k
S REM #fidfisisisiiaes
20 CLS
30 INFUT "ENTER A VALUE ";V

40 IF V>10 THEN FRINT "YOUR NUMBER WAS GEEATER T
HAN 10": GOTO &0

50 FRINT "YOUR NUMEBER WAS LESS THAN ELEVEN"
60 FRINT " ANOTHER VALUE C(Y/N)7?"

70 IF INEEY®="" THEN GOTO 70
80 IF INEEY$="Y'" THEN GOTO zO
S0 STEF

The inclusion of the statement in the lines 70 and 80 is efficient, acceptable and clear. However the first
use of GOTO in line 40 could have been more coherently coded by the inclusion of the ELSE statement.
Thus:

10 REM #ffEffffEEissaiss

13 REM %¥%° 'GOTO. 2 #x%

15 REM ®fEREifdfffeiiiis

20 CLSs

30 INFUT "ENTER A VALUE ";V

40 IF VE10 THEN FREINT "YOUR NUMEER WAS GREATER T
Ugmnlo” ELSE FRINT "YOUR NUMBER WAS LESS THAN ELE
SO FREINT " ANOTHER VALUE CY/N) "

&0 IF INEEY$="" THEN GOTO &O

70 IF INEREY$="¥Y" THEN GOTO 20 ELSE STOF

88

RELATED KEYWORDS : GOSUB, ON, RETURN

GRS
SYNTAX : a$=GRS x,y,b
ABBREVIATION : GR.

Heads a bit pattern from the graphics screen, returning the value as a character.

The GR$ function is particularly useful if you want to PRINT the graphics screen to a high-resolution printer.
However, before the PRINT operation can be executed, GR$ must be assigned to a string variable (see
syntax example). Another use for GR$ is to detect the presence or otherwise of plotted points on the
graphic screen.

The values x and y are the co-ordinates, in pixels (256*192) on the full or virtual screen. The b parameter is
the number of bits to be read. The bits are read vertically downwards, starting at x,y. For instance:

LET A$=GRS(30,100,5)
LPRINT AS

gives a character made up as follows:

BIT 70

BIT 60

BIT50

BIT 4 PIXEL AT 30,100
BIT 3 PIXEL AT 30,99
BIT 2 PIXEL AT 30,98
BIT 1 PIXEL AT 30,97
BIT 0 PIXEL AT 30,96

If all of the above pixels are ON then the result of GR$ (30,100,5) would be (16+8+4+2+1=0)

The value of GR$ when creating hard-copy screen dumps is that user-defined characters on printers such
as the MEMOTECH DMX-80, and others, are defined in terms of columns rather than the horizontal rows
used by micros (see Chapter 8 for full details of user-defined characters).

RELATED KEYWORDS: LINE, PLOT

IF...THEN...(ELSE)

SYNTAX : IF ¢ THEN statement (True) (ELSE statement (False))
BASIC Token IF : THEN
ABBREVIATION IF : none

THEN : T.

Statement which enables the MTX to test conditions and, contingent upon their outcome, execute or ignore
specific instructions.

The IF...THEN...ELSE statement is what is known as a decision structure. The condition (c) following IF can
be any legal BASIC expression, using variables, logical operators, strings or numbers. The statement that
follows the THEN part of the decision structure can be any legal BASIC instruction. The ELSE is enclosed in
brackets above (although not when it is actually used in a program) because it is an optional element in this
format. The statement that follows ELSE can be any legal BASIC instruction.

When the construction is used without ELSE, if the condition(s) specified in the first part of the statement

are satisfied (True), the instructions which follow THEN are executed. If the specified condition(s) are False
(not satisfied) control passes to the next line in the program. If ELSE is included in the statement, the

89

instructions following ELSE constitute a False option which the computer executes if the conditional
expression is not satisfied. Multi-statement lines should be avoided when this construction is used as they
tend to be very confusing.

S REM FEXXXXXXXXXEXXXXXXXHXEXRRXXKX
1g REM

15 REM *¥¥ IFa% s « THEN *¥¥
29 REM

25 REM ¥XAEXEFXEEXREEKXX XXX XXAXX
3@ INPUT "ENTER YOUR SURMAME "jN$
4@ IMPUT "EMTER YOUR SEX (M/F) ";Ss%
59 CLS

&@ IF S$="M" THEN LET Ss="MR. ": GOTO &@
79 LET S$="M3. "

88 PRINT "YOUR NAME IS "jS$HiNs$

In the above program, MR will be PRINTed if your INPUT (S$) is an "M”. If M is not entered the variable S$
will be assigned MS which is PRINTed in line 80. This program could have been more efficiently coded with
the inclusion of the ELSE statement. This modification does away with the need for the GOTQ in line 60 and
generally clarifies the program.

S REM ¥¥¥¥FHXHH3H3HHH333 X3 HHH%%%
19 REM
15 REM %*¥¥ IF...THEN...ELSE ¥%¥¥
20 REM
23 REM XXXXXEXXEXXXXXXXXXXAXXXXAX
3@ INMPUT "ENTER YOUR SURNMNAME "jNs

4@ INFUT "ENTER YOUR SEX (M/F) ";S$
Sg CLS
6@ IF Ss="M" THEN LET S$="MR. " ELSE LET Ss="MMs. "

78 PRINT "YOUR NAME IS ";iS3iN

RELATED KEYWORDS: AND, OR, NOT, GOTO, GOSUB

INK
SYNTAX D INK i

ABBREVIATION =i F
Sets a foreground colour which is determined by the value specified in the statement's argument (i).

INK statements can be used in both the graphics and text modes, and allow us to specify the foreground
colour of the screen.

The following colour table lists the wide range of colours available on the MTX, along with the codes which
are used to access them in INK (and PAPER) statements:

0 TRANSPARENT

BLACK

MEDIUM GREEN
LIGHT GREEN
DARK BLUE
LIGHT BLUE
DARK RED

OO hWN =

90

10
11
13
14
15

Thus:

10 INK 4
20 FPRINT "COLOURM

- T ~
=0 GCOTYO 30

will print COLOUR in dark blue on the screen. When we use INK in the text mode, the command alters the
foreground colour of the entire screen. For example, if we use INK 6 (dark red) in a statement, as well as all
subsequent PRINT items, all items currently on display will now appear in red, regardless of what INK

colour was in action when they were printed.

When INK is used in the graphics mode (VS 4), the statement sets the INK colour for all subsequent PRINT
items, leaving those already on display unaffected. To appreciate the difference between the two modes,

enter the following example and RUN it:
5 REM ddckiidioRkE
10 REM #®#% INK &ix
15 REEM #ERFfdfiisE
20 FAFER 1
30 FOR A=1 TO 14
40 INE A
50 FOR B=1 TO &
&0 FRINT "COLOQUR",
70 NEXT B
80 FAUSE 1000
90 NEXT A
100 CLS
110 GOTO 30

BReaK into the program when you've had enough. By now the effect of INK on the text screen should be
clear. Now add the following line to the example to see INK on the graphics screen:

17 V8 4: CLS

RELATED KEYWORDS: PAPER, VS, PRINT

CYAN

MEDIUM RED
DARK YELLOW
LIGHT YELLOW
DARK GREEN
MAGENTA
GREY

WHITE

INKEYS
SYNTAX : AS=INKEY$
ABBREVIATION : INKE.

91

Function which scans keyboard to see if a key is being pressed and, if it is, stores the value of that key inthe
string variable specified (A$).

INPUT halts a program and will not allow processing to continue until an appropriate form of data has been
keyed in and the <RET> key pressed. There are occasions when a single character input is required and it
is inconvienient to make the user of a program press <RET> before processing continues, INKEY$ offers a
solution to this problem.

It should be stressed that by itself an INKEY$ statement does not halt a program. When the computer
encounters such a statement it simply checks to see if a key is being pressed. If no key is being pressed, the
program moves on. If the user is holding down a key, its value is stored in the statement’s variable. So in its
simple form INKEY$ isn't much use. However, if we take a look at one of the commonest roles for this
command we will see how it can be used to halt a program until an appropriate response is obtained from
the outside world.

When introducing a program it's often necessary to display screenfuls of data or instructions. Before moving
from one screen of information to the next, we have to ensure that the user has had time to digest the data.
The usual way of handling this is to ask the user to "PRESS ANY KEY TO CONTINUE". This is where
INKEYS$ comes into its own. Take a look at the following short example:

1 REM #ffdfRdiffdeisk

5 REM #kd INKEY$ kKRR

7 REM #dddsfsddiisfsd

20 CSRE 14,10

20 FRINT "SCREEN1"

40 CSR &, 12

50 FRINT "FEESS ANY EEY TO CONTINUE"
60 LET A®=INKEY%

70 IF as="" THEN GOTO &0
80 CLS : CSR 14,10

30 FRINT "SCREENZY

As you can see, it is line 70 that actually stops the program. It checks to see if A$ is a null string ("") - which
it will be if no key is pressed - and continually returns to the INKEY$ statement until something is entered.

INKEY$'s value as an INPUT substitute is limited by the fact that it can only be used to receive single
character string data. Thus if INKEY$ is used to input numeric data (only integer values between 0-9
remember), it must be converted into a numeric value using the VAL function.

Another situation in which INKEY$ often appears is when the keyboard is used to control simulated
movement on the screen. The example program below demonstrates this role:

1 FEM $d4ffifsffEssEdsd
S REM 4% INEKEYS A
10 REMEddsddddddsidss
20 DIM B$C1Z2)

30 LET X=Z: LET Y=1

40 GOSUR 200
50 CSR X, 10: FRINT "#"

92

&0 GOSUB Z00

70 CSR Xy, 10: FPRINT " ©

80 IF A=80 THEN LET X=X+1 ELSE LET X=X-1
90 GOTO S0

180 REM #idddddiididadisiiiid
185 REM #%% DETECT KEY FRESS #¥%%
190 REM $kkckkdiskksdokdolir i eses
200 LET A$=INKEY$: IF A$="" THEN GOTO =200
210 LET A=ASCCAS$)

220 IF A<79 OR AX81 THEN GOTO 20O
230 IF A=73 THEN STOF

2340 EETURN

280 REM #Fi$fdiiddssidiifhiot

285 REM #¥¥%k READS DATA duk#

290 REM #iRfRdsifkkdRikfiiRiE

200 FOR C=1 TO 3

310 READ B$: CSRE 5,Y

320 FRINT "FRESS ";B$: LET Y=Y+1
230 NEXT C

340 RETUEN

400 DATA O FOR ENDyF FOR RIGHT

410 DATA @ FOR LEFT

RELATED KEYWORDS: INPUT,IF,THEN

INPUT
SYNTAX : INPUT v,v$

: INPUT "prompt”;v,v$
ABBREVIATION : INP.

A statement which allows the user of a program to enter string and numeric data which is then held in the
INPUT variable(s).

INPUT statements are the most popular method of entering data for subsequent processing in a program.
When the MTX reaches an INPUT statement the program will stop until the user keys in the appropriate
form of data (string or numeric) and presses the <RET> key. The type of data it will accept is determined
by the statement’s format. For example:

10 INPUT n

will stop the program and PRINT a prompt (in the form of a question mark) on the screen. Since n is a
numeric variable, the computer will only accept a numeric INPUT which, as the operator types it in, will be
printed to the screen alongside the prompt. The program will continue processing from the line following the
INPUT statement as soon as <RET> is pressed. If string data is entered (when numeric was expected) a
question mark will appear after the characters entered and another prompt printed on the following line. The
user must type in the appropriate type of data before the program can continue. When the MTX is satisfied

93

with the INPUT it assigns its value to whatever INPUT variable has been used in the statement (in this case
nj.

String data can be INPUT in much the same way. For example:

10 INPUT AS
will stop the program until characters have been entered and <RET> pressed. This format will accept any
keyboard data (except a comma). However, any numbers that are entered will be stored as strings and can
only be operated upon as such unless VAL is used.
Since the ? prompt gives the user of the program no indication as to the form of INPUT that is acceptable to

the computer. INPUT statements are normally accompanied by an additional prompt which indicates the
kind of response required by the program. A customised prompt can be coded in one of two ways:

[y

FEM #dfdddddEsdfssd

FEM #¥% INFUT 1 HFX

5 REM ddoddoddddkdddiodk

10 PRINT "ENTER A NUMBER (1-132"
20 INFUT N

€3]

or

1 REM $fdddEfddsssssd
FEM #ik INFUT 2 $kX
REM $dtfssfddisaiss
10 INFUT "ENTER A NUMEER (1-13)";N

]

(]

INPUT statements can contain more than one variable. For example:

10 INFUT A, A%, NAMES

is a perfectly acceptable construction. Processing will restart when the appropriate data has been entered
for each of the INPUT variables, When using a single statement for multiple INPUTSs, each data item
entered should be separated by a comma. When using INPUT statements to obtain multiple entries of both
string and numeric data it is obviously essential to present explicit prompts if incorrect entries are to be
avoided. For example:

fury

REM stadvdddeokddkdk kL

FEM #¥f INFUT < #¥%

REM #ffdddddfdddids

10 REMEffdddsdfiiiiiss

20 FRINT "ENTER YOUR SURNAME FIRST!

30 FRINT "THEN YOUR AGE"

40 PRINT "AND FINALLY YOUR FHONE NUMEER®"
S0 FRINT “"FRESS <RET: AFTER EACH ENTRY"

0]

(&)

94

&0 INFUT NAMES$

70 INFUT AGE

80 INFUT NUM%$

D FRINT NAME$, AGE, NUM$

]

If this program is RUN the question mark prompt appears on the screen and the program stops until a string
has been keyed in and <RET> pressed. Note that although the final INPUT in line 80 is a number it has
been assigned to string rather than a numeric variable. This is to ensure that however the data is presented
by the user (636 2101, 01- 636 2101, Beaminster 7463 or 6462192) it will be accepted as valid.

INPUT can only be used within a BASIC program, it will not be accepted as a direct command.

RELATED KEYWORDS: PRINT, INKEYS, CSR

INT
SYNTAX : v=INT(n)
ABBREVIATION : none

Function which returns the integer value of its argument (n). INT is used when it is necessary to ensure that
avalue is an integer (a whole number) rather than a floating point value. It is important to remember that the
value returned by INT will be less than or equal to any positive number to which the function has been
applied. This is because the action of INT rounds (n) down to the next lowest integer. For example:

3 REM #ffffEffEfsss
10 EEME®x INT dkk
15 REMEREREEEREREEE
20 LET I=INT(43.'3391)
30 PRINT I

will PRINT out 49. However, since in this case INT returns the next highest integer keep your wits about
you when applying INT to negative values. For example:

S REM #ffddecfisifddid
10 REM#z#E INT 2 ddxk
15 REMEfffisey
20 LET Y=INT(-25.9)
30 FRINT Y

will return 26.

RELATED KEYWORDS: none

LABEL
Used within Assembly code as an address pointer. For example:
JP LABEL

means jump (or go to) the LABEL and carry out the operation stated after LABEL, such as:

MEM-7 95

LABEL:NOP

NOP meaning no operaton to be carried out.

LEFTS
SYNTAX : v8=LEFT$(a$,i)
ABBREVIATION LEF:

This command facilitates the extraction of the left-most section of a string of characters.

Along with its related commands, RIGHT$ and MID$, LEFT$ enables a string to be sliced into smaller
groups of characters. In the syntax example above, a$ is known as the 'target string’, and LEFT$ will return
a 'sub-string’ of a$.

The target string can be a quoted group of characters or a string variable. Thus:

PRINT LEFT$("BATMAN",3)
and

PRINT LEFT$(A$,3)
are both legal statements.

The number of characters to be extracted is specified by the second parameter (i) and must be within the
range 0-255. When executing a LEFT$ statement, the computer counts the characters within the string in
question from left to right (with the left-most character in a$ counted as 1), until i characters have been dealt
with. If i is greater than the number of characters in the string then the entire string will be returned. If i is 0,
then a null string will be returned and if i is negative an 'Out of range’ error will stop the program.

10 REM #dfddddddickddss
13 REM #¥¥% LEFT$ ¥#¥
15 REM $Ridifsfsdsd
20 LET A$="MEMOTECH"
30 FOR I=1 TO LEN (A%)
40 FRINT LEFT$C(A$, 1)
SO NEXT I

RELATED KEYWORDS: RIGHTS, MID$, LEN

LEN
SYNTAX : n=LEN (a$)
ABBREVIATION : none

A function which returns the number of characters held in its argument (a$).

The LEN function is used when it is necessary to know how many ASCII characters are contained in a
particular string. Usually LEN is applied to a string variable, although the function can also calculate the

number of characters in a string which is literally quoted (i.e. PRINT LEN ("STRING")). The integer value
returned by LEN will be in the range 0-255.

Itis important to note that there must be a space between the LEN keyword and the first bracket, otherwise
a 'Not numeric’ error report will be generated. An important use of the LEN function is in the creation of

96

tabular screen displays:
10 REM #fffdfafaiisk
20 REM *®¥% LEN ¥E¥
20 REM sdcidoisgsciEoieg
40 CSR 10,32: PRINT "INFUT FIVE NUMEERS"
90 FOR A=1 TO S
60 CSRE 12,4+A: FRINT "NUMBER";Aj;
70 INFUT N&$: LET N=VAL(N%)
80 CSR Z0,4+A: FRINT CHR$(S)
90 LET L=LEN (N$)
100 IF N=0 THEN GOTO &0
110 CSE 33-L,4+A: FRINT N%
120 NEXT A

NOTE: Line 80 is equivalent to positioning the cursor and pressing EOL.

Since LEN can only be applied to strings, numeric data can only be operated upon by this function if it is
used in conjunction with STR$ (which converts numeric data into strings). If LEN is applied to a null string
(a$=""), zero is returned.

RELATED KEYWORDS: MIDS, LEFTS, RIGHTS, STR$

LET
SYNTAX : LET v=n

: LET v8="string”
ABBREVIATION s LE.

A statement which is used to assign values to variables.

LET statements are one of the most common constructions in BASIC. If we want to assign a value to a
variable, for example:

V=28

this is achieved by means of the LET statement. So the following format is required:

10 LET V=2.8
The actual assignment of variables is fairly straightforward. For example:
20 LET W=19

simply instructs the MTX to hold the value 19 in a memory location which can be accessed via a variable
called W. The value of W can be a redefined later in the program. For example:

50 LET W=W+10
tells the MTX to locate memory location W and add 10 to the value it already holds.

Assigning string variables works on the same principle as the definition of numeric variables, but the string
variable name must be followed by a dollar sign ($) and the text that is being assigned to the variable must

97

be within quotes, thus:
60 LET AS="HELLO"

RELATED KEYWORDS: none

LIST
SYNTAX S LIST
: LIST In,In
:LISTIn
ABBREVIATION L.

A command which displays the line(s) specified by In of the BASIC program currently held in memaory.

LIST is essential during the development of a program since it allows you to examine a single program line,
a series of lines or the entire program.

The command can be entered in a variety of formats. For example:

LIST
on its own will display to the screen the entire program currently in memory. If the program fills more than a
screenful of code the display will scroll upwards until it reaches the end of the listing. If you want to pause
the scrolling at any point you can do so by pressing the PAGE key. This will sound a bell which will be
repeated at regular intervals. To restart the scrolling press the PAGE key again, or if you want to stop the
scrolling press the BRK key.

LIST 100,100
will display line 100 on the screen.

LIST 100,200
will display the lines 100-200 inclusive.

LIST 100

will list the lines from 100 to the end of the program.

RELATED KEYWORDS: EDIT

LLIST

SYNTAX : LLIST i,i
LLIST
LLISTi

ABBREVIATION : LL.

Lists the program currently in memory to the printer.

LLIST is normally entered as a direct command (there are rare occasions in which it is used in a program),
and allows a program to be LLISTed to a printer. It works in exactly the same way as LIST. In other words:

LLIST
lists the entire program
LLIST 10

lists the entire program from line 10

98

10 LLIST 10,10
lists only line 10

10 LLIST 10,100
lists lines 10 to line 100

RELATED KEYWORDS: LIST,AUTO

LN
SYNTAX : v=LN(n)
ABBREVIATION : none

Function which returns base e logarithm of its argument.

LN (n) returns what is commonly referred to as the natural logarithm of n. The antilog of such a value can be
calculated by using EXP(LN(n)). When necessary natural log operations can be used as with common logs.
For example:

PRINT EXP(LN(N)+LN(V))

will print out the product of n and v

If nis a zero or a negative value the program will be halted with an 'Out of range’ error message.

RELATED KEYWORDS: EXP

LOAD
SYNTAX : LOAD **

: LOAD "filename”
ABBREVIATION : LO.

A command which LOADs a file in the MTX’s memory from an external storage system.

Let's run through the syntaxes of this command to determine which format should be used when! When
LOAD is used on its own as a direct command (LOAD "”) the MTX will LOAD the first program it encounters
on the cassette. However, if you use the LOAD "filename” syntax the computer will scan the cassette
looking for the specified program and once it has been found it will be LOADed into memory.

For further information about this command refer to chapter 5.

RELATED KEYWORDS: SAVE, VERIFY

LPRINT

SYNTAX : LPRINT a$
: LPRINT i

ABBREVIATION :LP.

Allows the computer's PRINT facilities to be directed at a printer rather than the VDU.
The LPRINT statement uses exactly the same formats as the PRINT statement to precisely to same effect.

The only difference between to two commands is that while PRINT produces a display on the screen,
LPRINT determines and formats displays on a printer.

99

Creative use of LPRINT in conjunction with selected control codes (see Appendix X), allows the regulation
of output to a variety of printers.

RELATED KEYWORDS: PRINT, LIST, LLIST, GR$

MID$
SYNTAX : MIDS(AS,i,j)
ABBREVIATION : ML

A string function which extracts a specified number of characters from a specified start point in a predefined
string.

Like LEFT$ and RIGHTS, the string function MID$ is used to perform string slicing processes. In some
respects the name of this keyword obscures its flexibility, since MID$ actually permits the extraction of
characters from any part of a string, not just the middle.

The numeric parameters that follow the string variable in brackets must fall in the range 0-255. The first
parameter (i) establishes the start point of the string to be extracted and the second (j) the number of
characters to be removed.

In the syntax statement above, if i is greater than the length of the specified string a null string will be
returned. If the second parameter (j) is greater than the length of the string the entire string (starting at i) will
be returned.

Let's take a look at some possible formats for MID$. Say our source string is:

LET SOURCE$="MICROWAVE OVEN"

Then:

I-ET SUB$=MID% (SOURCE%$, 1, 5)
FRINT SUB%

will PRINT out MICRO, and,

LET SUBZ%=MID$(SOURCE®$, 11,
LET SUB3Z%$=MID$(SOURCE®$,3, 1)
FEINT SUBZ$+SURZ%$

will PRINT out COVEN.

RELATED KEYWORDS: LEFTS, RIGHTS, LEN

MOD
SYNTAX : v=MOD(n1,n2)
ABBREVIATION : MO.

Numeric function which returns the remainder of the division of n1 by n2.

MOD allows us to establish the remainder of a division. It's implementation is quite straightforward. For

100

example, the statement:

10 LET R=MOD(2,2): FRINT R

will return 1 (since 3 divided 2 is 1 with a remainder of 1).

If the division of MOD’s parameters produce a result which is less than 1, the function will return the full
value of the number which is being divided. For example:

PRINT MOD(25,30)
will return 25.

The function will accept both positive and negative values. For example:
PRINT MOD(-3,2)

will return -1.

In the example program below we’'ve used MOD to get around the problem of INT rounding to the next
smallest integer. For example, if we require an integer value result from a division it's not inconceivable that
we'll be looking for the nearest integer to the result (not the next smallest). For example:

PRINT INT(3.85/2)

will return 1. However, since 3.85 divided by 2 is 1.925, 2 is clearly the nearest integer value.

10 REM sddikdddoioissgey

20 REM #®%% MOD ¥R

25 REM #sfddiioiiackss

30 GOSUBR S00

40 CSR 10,1: FRINT "WHEN CALCULATING X/Y:"

S0 GOSUB &00

€0 GOSUBR 700

70 IF Y-M<Y/Z THEN LET I1(3)=I(z)+1 ELSE LET I(3)

=1(2)

80 CSR 12,3: PRINT "IF X=";X$;" AND Y=";Y$
30 CSR 0,6

100 GOSUE 80O

110 STOF

500 REM ##% VARIABLES ##¥

510 DIM P$(3,102: DIM I(3)

520 LET S$=CHR$(11)+CHR$(S)

530 RETURN

E00 REM %% INFUT ¥

610 FOR A=1 TO 2

620 CSF 10,3: PRINT "ENTER A VALUE FOR “;

101

38 TP L TTHEN - PRINT "Y"3; ELSE . PRINT “X'g
€40 INFUT X: FRINT S%
€50 LET P$(A)=8TH$ (X)

€60 IF SGN(X)<x—1 THEN LET F$CAI=MID®(FHCA), 2, _EN
(FECA)ID

70 NEXT A

E80 RETURN

700 REM #if VARIAEBLES #fH¥

710 LET X$=FP$(1): LET Y4$=P%(2)

720 LET X=VAL(X$): LET Y=VAL(Y%$)
730 LET M=MOD(X,Y>: LET IcC12=X/Y
740 LET IC2)=INTCIC1>)>: LET H®="_"
750 LET R&=X$+"/"+Y&+"="

760 RETURN

800 REM #H¥¥ RESULT *xf%

810 FOR B=1 TO 3

820 READ F%,0%

30 LET L=LEN (F$): LET R=LEN (R$)
840 GOSUR 3200

850 FRINT

Ge0 NEXT B

870 REETUREN

200 REM ®%% FPRINT ®4%

910 FRINT F%

920 FOR E=1 TO L: FRINT MID$(G%,E,1);: FAUSE 100:
NEXT E

930 FOR H=1 TO 139-L: FRINT H$;: FPAUSE 80: NEXT H
EEQTF?R J=1 TO R: FRINT MID$(R%,J,12;: FAUSE 1003
950 PEINT TR

FE0 RETURN

1000 REM ¥f%¥ DATA FEX

1010 DATA ORDINARY,DIVISION,USING, INT FUNCT

1020 DATA WITH MOD TO,CALL NEAREST INTEGER

RELATED KEYWORD: INT

102

MVSPR
SYNTAX : MVSPR p,n,d

ABBREVIATION : MV,

A flexible sprite command which alters certain attributes of a previously activated sprite.

The command’s first parameter p determines the function to be performed and the number n is the sprite
number. The range of values for d depends upon the value of p.

p FUNCTION d

1 Move 1 step in direction d 0-8

2 Select sprite pattern d 0-127 (8*8 sprites)
0-31 (16*16 sprites)

4 Change to direction d 0-8

8 Plot a point at centre of sprite)

Any one of the first three functions (p=1,2 or 4) can be used in conjunction with the fourth function, p=8.
For further information on this command refer to the entry for ADJSPR and chapter 10.

RELATED KEYWORDS: ADJSPR, CTLSPR, GENPAT, SPRITE

NEW
SYNTAX : NEW
ABBREVIATION : none

A command that resets BASTOP, NBTOP, ARRTOP, BASTP0 and calls CLEAR.

As should be obvious from the definition above, NEW is probably the most uncompromising of the BASIC
keywords, since it completely wipes any BASIC program from memory. It also clears all the program’s
variables.

It is advisable to enter NEW as a direct command before starting any new program to ensure that it is
unaffected by any program lines left over from a previous listing.

RELATED KEYWORDS: RUN

NEXT
SYNTAX :NEXT v
ABBREVIATION :N.

Statement which determines the end of a FOR...NEXT loop.

MTX BASIC allows the loop variable to be omitted from a NEXT statement, although its inclusion does
clarify a listing (especially in the case of a nested loop structure).

For a description of FOR...NEXT statements see the entry under FOR.

RELATED KEYWORDS: FOR, TO, STEP

NODDY
SYNTAX : NODDY
ABBREVIATION : NODD.

103

The command used to access the Noddy language.

This command's sole function is to access the Noddy language and therefore it is usually entered as a
direct command. It can be used within a program but will stop any further BASIC processing.

It is useful to use the NODDY command in conjunction with PLOD when you are developing a Noddy
program, since all Noddy programs *RETURN to BASIC once they have been executed. However, by
using the following program you can return directly to Noddy.

10 REM #ddfddffdsssdiss
12 REM *¥%¥¥ NODDY #ix%
15 REM ®sffddffidssiss
20 PLOD "FILE"

30 NODDY

This program will PLOD the program called FILE (PLOD is Noddy's equivalent to the BASIC language’s
RUN statement) and once it has been processed it will return control to the Noddy language.

For further information on the NODDY command and the Noddy language refer to chapter 11.

RELATED KEYWORDS: PLOD

NOT
SYNTAX : NOT (c)
ABBREVIATION : none

Logical operator which inverts the logical value of the condition to which it is applied.

Since the MTX's logical operators do not facilitate bit-wise logical operations, and thus NOT can only be
applied to conditional expressions, its application is very straightforward. NOT simply reverses the logical
value of any condition it preceeds. For example:

10 FEM itsfdrssisddsd
12 REM ##% NOT dokk
15 REM ®dkdkkkskkdsisss
20 LET A=6: LET B=6

S0 LET N=(NOT aA=E)

40 FRINT N

will return 0, since the condition A=B is True, and thus the value created by NOT True is False (0). Now
change line 30 to:

30 LET N=¢ NOT A:*RE)

and the program will return -1, since the expression A>B is False. which inverted by NOT assigns the
computer's True value to N (-1). It's easy to see how this operator could be used to determine whether or

not a program is to be re-RUN. For example:

104

10 REM $¥dfiddiisdssss

12 REM #%% NOT 2 ##%

15 REM $fdfdiiisssssss

200 INFUT "AGAINT";A$

210 IF NOT A$="Y" THEN STOF
220 FRINT "REFPEAT FROGRAM"
230 GOTO 200

So unless A$="Y" is True, the computer will execute what is ironically the IF..THEN statement's True
option (i.e that A$ is NOT "Y") and STOP the program.

RELATED KEYWORDS:AND,OR,IF,THEN,ELSE

ON

SYNTAX : ON v GOSUB In, In,...
:ON v GOTO In, In,...

ABBREVIATION : 0.

Statement which when used in conjunction with GOSUB or GOTO, allows the flow of control to be
determined by the value of v and directed to one of the number of specified line numbers.

This statement often makes an appearance in menu-driven programs in which the user's input determines
which of a number of processes are executed by the computer. For example:

10 REM s$#sddddddgk

15 REM *¥% ON &%k

15 REM #ffdfodddidts

20 INFUT "ENTER O, 1 OR 2 "3V
20 ON V GOSUEB 60, 70,80

40 STOF

SO REM ikl kol g
93 REM *®%%¥ SUBROUTINES ##%
90 REM #ffdddrdesssdsiskokiis
60 FRINT "ZERO": RETURN

70 FRINT "ONE": RETURN

80 FRINT "TWO": RETURN

The use of the ON statement in line 30 will call the subroutine in line 60 if 0 is entered, line 70 if 1 is entered
and if 2 is keyed in the line 80 is executed. If V is not an integer then the INPUT will be rounded to the next
lowest integer. If the INPUT is neaative an 'Out of range’ error is generated. The rest of the ON statement
will be ignored if the value of V exceeds the number of specified line destinations. For further examples see
the entry for GOSUB.

RELATED KEYWORDS: GOTO, GOSUB, RETURN

105

OR

SYNTAX :cORc
:eORe
ABBREVIATION : none

OR is a logical operator which performs logical disjunction on conditions.

For conditional expressions linked by OR, the combined expression is evaluated as either True or False as
in the truth table below:

Condition1 Conditional Condition2 C10RC2
operator
TRUE OR TRUE = TRUE
FALSE OR TRUE = TRUE
TRUE OR FALSE = TRUE
FALSE OR FALSE = FALSE

Thus the result of two expressions combined using OR is True if either of both conditions are True, and
False only if both conditions are False. OR is useful in checking whether values are within acceptable
ranges. For instance, take the case of an input for the month:

2@ INPUT "MONTH (1-12) "M
219 IF M<1 OR M>12 THEN PRINT "WHAT?!!! TRY AGAIN ": GOTO Zgd

RELATED KEYWORDS: AND, NOT

ouT
SYNTAX :OUT pv
ABBREVIATION = 'OU.

Input/Output statement which sends a specified value (v) to the port whose code is established by the
statement’s first parameter (p).

RELATED KEYWORDS: LPRINT, LLIST, BAUD

PANEL
SYNTAX : PANEL
ABBREVIATION : PAN.

A command that gives you a 'window’ on the memory and registers.

By simply entering PANEL as a direct command eight registers are listed along with the addresses that they
hold and the contents of those addresses.

These appear at the top right of the screen, at the bottom a block of memory with its hexadecimal contents
is listed. By entering 12000 a block of assembly code is listed: this is the code the computer has used to
create the PANEL.

The PANEL can be utilised in a multitude of ways but its chief advantage is that it allows you to test
programs by showing the current state of the registers one stage (instruction) at a time.

RELATED KEYWORDS: PEEK

106

PAPER

SYNTAX : PAPER p
BASIC Token 7
ABBREVIATION : PA.

Sets a background colour for the MTX's text screen, which is determined by the statement’s argument (p).

PAPER utilises exactly the same colour codes as the INK statement, and you should refer to the INK entry
for a full list of the available pigments. In text mode it sets the background colour for the entire screen, and
cannot be used to colour individual sections of screen. The example program below demonstrates all the
possible PAPER variations in conjunction with the various INK combinations.

For further discussion of both PAPER and INK, see the graphics section (chapter 8).

EEM #dddcdddiidd ik

REM #®¥f FAFER #iX%
S REM skdokdcddkkbdddokdgk
20 FOR FP=1 TO 195

30 PAFER P

40 CSR 1,12: PRINT "PAPER "3 P
S50 FOR I=1 TO 15

EO INK I
70 CSE 1,4: FRINT "INK ";I

80 CSKE 16,5+I1: FRINT "INE"

90 FPAUSE 200

100 CSR 16,3+I: FRINT CHE$(S)
110 NEXT I

120 PAUSE 1000: CLS

30 NEXT F

o

S
1¢
1

RELATED KEYWORDS: INK, COLOUR

PAUSE
SYNTAX : PAUSE n
ABBREVIATION : PAU.

Halts the execution of a program for a specified period of time.

The length of time that a program is PAUSEd is dependent upon the value assigned to the PAUSE
statement. This value must be within the range of 0-65535, and the larger the number the longer the wait. It
is not possible to achieve precise time delays with the statement since there will always be slight variation
determined by the processes being executed at the time. This said it is fairly safe to assume that a PAUSE
of one second can be achieved by assigning n the value of 1000.

10 REM #®#ffifffsddddiist
15 FEM ®i%% PFPAUSE #$¥%

107

17 REM #dckdkddddddssss
20 FOR A=1 TO 10

SO FRINT A

40 FAUSE 23500

99 CLS
0 FAUSE 1000
70 NEXT A

RELATED KEYWORDS: none

PEEK
SYNTAX : PEEK addr.
ABBREVIATION : PE.

Statement which examines the contents of a specified memory location (addr.) and returns the value
contained in that location.

The value returned by PEEKing one of the MTX's memory locations will fall in the range 0-255, while the
address specified by the statement must be in the range 0-65535 if an 'Out of range’ error is to be avoided.
The MTX's PANEL facility offers users an unusually sophisticated tool for the examination of memory, but
PEEK is a more conventional BASIC statement which offers a more convenient method of examining a
single location.

RELATED KEYWORDS: POKE,PANEL

PHI
SYNTAX : PHI x
ABBREVIATION : PH.

This function is used to alter the plotting direction.

The value of PHI's parameter (x) is the angle of change, measured in radians (see ANGLE). Positive values
of x change the plotting direction anti-clockwise, negative values cause clockwise rotation. The following
example DRAWSs a ten sided figure on the screen:

1 REEM #Hdffddidsiss
3 REM #¥¥ PHI &¥%
S REM sfddckicokddk
10 VS 4: CLS

20 ANGLE O

20 PEUOF 12/ y395

40 FOR T=1 TO 10

50 DRAW 295

60 PHI PI/B

70 NEXT T

80 GOTO 80

108

For further information on this command refer to chapter 9.

RELATED KEYWORDS:

PI
SYNTAX : Pl
ABBREVIATION : none

The trigonometric constant which returns a value of 3.14159265.
The computer stores an accurate value of Pl so that it doesn't have to be recalculated each time that it is
needed. In the following example program, Pl is used in the calculation of the area of a circle:

1 REM FEERERERERRERR

3 REEM *¥¥% FPI FEE

S REM suiciicioiseisgoid

10 v8 S: CLS

20 FOR V=1 TO S

20 LET E=INTC(RND*30)

40 LLET A=FI&(RE™2)

S0 PRINT "IF CIRCLE RADIUS =";F
60 FRINT "THEN ITS AREA IS";A

70 FRINT
80 FRINT
P90 NEXT V

RELATED KEYWORDS: ANGLE, PHI

PLOD
SYNTAX : PLOD ”filename”
ABBREVIATION : PL.

The command used to run a Noddy program.

In the same way that RUN is used to execute a BASIC program, the PLOD command is used to execute a
Noddy program. Before you can PLOD a Noddy program you must be in BASIC and then you can use the
command either within a program or as a direct command. In either case the command must be followed by
the name of the program enclosed within quotes.

For further information about the PLOD command refer to chapter 11.

RELATED KEYWORDS: NODDY

PLOT
SYNTAX : PLOT x,y

Plots a point on the graphics screen at the co-ordinate x,y.

The graphic screen measures 256 (0-255) in the horizontal (x) direction by 192 (0-191) vertically (y). The

109

co-ordinate 0,0 is at the bottom left corner of the screen. The following program PLOTSs a dotted line across
the centre of the screen:

1 REM #ifddddddddsds

3 REM #¥%% FLOT #$#%#%

S REM %%f$$ddddtittt

10 V8 4: CLS

20 FOR T=0 TO 2535 STEF 4
30 FLOT T,96

40 NEXT T

S50 GOTO 30

For further information on this command refer to chapter 9.

RELATED KEYWORDS:DRAW, ANGLE, PHI, GR$

POKE
SYNTAX : POKE addr., i
ABBREVIATION : PO.

Statement which enables a single byte binary value (i) to be placed into the memory location specified by
the statement's first parameter (addr.).

For the majority of programming demands, the BASIC language is a perfectly adequate means of solving
problems with your MTX. However, there are circumstances which require a greater level of control than
BASIC can provide, but do not justify the development of customised assembly language routine. This is
where POKE statements come into their own.

The first parameter (addr.) which specifies the location must be in the range 0-65535 and the value to be
placed into the location (i) must be an integer in the range 0-255. If the first parameter falls outside this
range the program will continue, but no value will be stored anywhere in memory! If the second parameter
(i) is greater than 255, the computer will subtract 255 from the value specified and, starting from zero, will
store the remainder. Thus POKE 50000,256 will store 0, and POKE 50000,356 will store 100.

RELATED KEYWORDS: PEEK, PANEL
For further information on PANEL see chapter 12.

PRINT
SYNTAX : PRINT plist plist = list of print items
ABBREVIATION P

Statement to display PRINT items to the screen

The items to be displayed can be literally quoted strings which must be centred within double quotes:
PRINT "A STRING"

string variables:

LET AS="STRING VARIABLE" : PRINT AS$

110

iiterally quoted numeric data, which do not require quotes:

PRINT 2%45
and numeric variables:

LET A=32/7 : PRINT A
PRINT used by itself without any PRINT items displays a blank line on the screen. The PRINT statement is
described at some length in chapter 2 and further clarified in chapter 8, so we shall merely outline the
possible formats here:
i) PRINT items to be displayed literally to the screen must be enclosed with quotes, (e.g. PRINT "HJ&~A 54”)

ii) Any arithmetical expression to be calculated must not be included within quotes (e.g. PRINT 2.56%*4)

iii) Semi-colons after PRINT items leave the PRINT position set directly after the last character PRINTed, so
that the next item to be PRINTed will follow on. For example:

10 PRINT ”"A STRING AND ”;
20 PRINT "ANOTHER STRING”

will display A STRING AND ANOTHER STRING.

iv) The MTX's screen is divided into five PRINT fields. Including a comma between the PRINT items causes
the item following a command to start PRINTing at the first position of the next PRINT field:

10 PRINT 1,2,3,4
v) PRINT can also bé combined with the CSR command. For example,
CSR 10,10: PRINT "FRED”
will PRINT the literally quoted string "FRED" on the screen at the co- ordinates 10,10.

RELATED KEYWORDS: CSR

RAND
SYNTAX : RAND
ABBREVIATION : RA.

Numeric function which sets the seed value for the MTX's RaNDom number generator.

RAND is used in conjunction with RND in the creation of random numbers. If you RESET the MTX and then
RUN the following routine you'll be confronted with a sequence of five apparently random numbers in the
range 0-0.9999999. :

5 REM fEERFEEfsaiiiey
10 REM #%% REAND ¥EX
15 REM sfdcfdofsoorieis
Z0 FOR A=1 TO S

20 FRINT REND

40 NEXT A

111

MEM-8

RESET the machine again and enter and re-RUN the program. You'll discover that the RND function isn't
so random after all! In fact the computer will produce exactly the same numerical sequence. This is because
RND uses the computer's random number generator to produce values, and the generator creates a
numerical sequence by performing calculations on a base number. Unless it is otherwise instructed, it
always uses the same base for its calculations (the basis for these calculations is known as the random
number generator's "seed value”), and consequently always produces the same sequence of numbers.

RAND is the function which enables us to specify RND's seed value. This facility enables the creation of
predictable sequences of "random” numbers whose values are determined by the specified seed value, but

which are always the same whenever that value is used. To test this out, RUN our example program once
again, this time adding the following line:

15 REAND Z0O0

You'll discover that the computer generates a completely different sequence of "pseudo-random” values,
which will be repeated each time the program is RUN. This is because line 15 uses the RAND statement to
re-establish the specified seed value each time the program is RUN.

In order to create genuinely random sequences of random numbers the RAND value must be negative. Try
altering line 15 to:

15 RAND —-10

and RUN the program repeatedly.

For further information about controlling the range of values produced by the random number generator,
see the entry for RND.

RELATED KEYWORDS: RND

READ
SYNTAX : READ v$,v$,vS...
: READ v,v,v...
: READ vS$,v,v$,v...
ABBREVIATION : REA.

This statement is used to load the next DATA item into the variable(s) specified by READ.

The variable names which follow a READ statement can be string and numeric. However, the DATA which
is to be loaded into the READ variable(s) must be appropriate to the variable in question (i.e. string DATA
assigned to a string variable and numeric DATA to a numeric variable) or a ‘Mismatch’ error will be
generated.

When the DATA pointer in the MTX's memory has reached the last DATA item, the computer will generate
a 'No data’ error if any further attempt is made to READ DATA without prior use of the RESTORE
statement. RESTORE will return the data pointer to a specified DATA statement. For further details about
the use of this command, see the entry for DATA.

RELATED KEYWORDS: DATA, RESTORE

REM
SYNTAX : REM statement

112

ABBREVIATION : R

2 statement which allows REMarks to be inserted into a program without a 'Mistake’ error being generated
or the program being in any way affected.

These statements are of immense value to all programmers. Whilst their inclusion has no effect on a listing
when it is actually RUN, the function of the statement is to provide an internal commentary which explains
e action of a particular line or section of code. REM statements are normally included at the beginning ofa
ine, for example:

150 REM *** SUBROUTINE 1 **%*
they can also appear at the end of a multi statement line:
180 LET A=PI*R ~ 2: REM *** AREA OF A CIRCLE ***

The important point to remember is that the computer will ignore all the instructions following a REM
statement for the duration of the line in which it is included.

There is a tendancy to only use REM statements when a program becomes especially complex or
inpenetrable, on the grounds that short code will be self-explanatory. However, it can be argued that REMs
should always be used in programs, however brief or straightforward, since even a schematic commentary
of REMs can avoid many wasted hours of searching through unmarked listings.

RELATED KEYWORDS: none

RESTORE
SYNTAX : RESTORE In
ABBREVIATION : RES.

Statement which allows the contents of DATA statements to be READ more than once.

When processing BASIC programs, the MTX uses an internal pointer to keep track of the last DATA item
READ into the DATA variable(s). Under normal circumstances, once a DATA item has been READ it cannot
be READ again. However, the RESTORE statement resets the internal pointer to the specified line, thus
enabling the DATA to be used from that point onwards. For more details about this statement see the
entries for DATA and READ.

RELATED KEYWORDS: DATA, READ

RETURN
SYNTAX : RETURN
ABBREVIATION : RET.

Statement used to mark the end of a subroutine and RETURN control to the main program.

When a subroutine is called from the main body of a program, control is passed to the line number specified
by the GOSUB statement. When the instructions contained in the subroutine have been processed a
RETURN statement is required to return control to the line that follows the original GOSUB statement. A
RETURN without a GOSUB statement will halt the program with an error report. Nested subroutines require
a RETURN for each GOSUB statement.

For further details about subroutines see the entries for GOSUB and ON.

RELATED KEYWORDS: GOSUB, ON

113

RIGHTS
SYNTAX : v8=RIGHTS (a$,i)

ABBREVIATION : RIG.

A string function which enables a sub-string of a specific length to be extracted from the right-most end of a
predefined string.

Like MID$ and LEFTS$, RIGHTS facilitates the creation of a sub-string from a predefined string. It takes the
form:

L.ET SUE$=RIGHT$(a%, i)

in which SUBS is the variable name to which the new string will be assigned, and a$ is the source string
from which i characters will be extracted from the right-most end. i can be any value from 0-255 and a$
either a predefined variable or a literally quoted string within the brackets, (RIGHT$(’"RICHARD” 4)) would
return HARD. If i is O a null string will be returned, and if i is greater than the length of the source string (a$)
then the entire string will be returned. The following example should clarify the operation of this function:

10 REEM #$dcddckddobdddddddd
o REM F¥% RIGHT$ #kXk
15 REM #dckdsddddddiddhks
20 LET A$="RIGHTMOST"
30 ILET SUBS=RIGHT$ (A%,)
40 FRINT SUB%$

will PRINT out MOST to the screen. For more details about string slicing see the entries for LEFT$ and
MIDS. LEN.

RELATED KEYWORDS: LEFTS$, MIDS, STRS

RND
SYNTAX : v=RND
ABBREVIATION : RN.

Numeric function that generates a floating point value between 0 and 1.0.

Used in conjunction with RAND, RND is one of the MTX's most valuable numeric functions. It allows us to
create code that produces (ostensibly) random numeric data, which in turn means that we can introduce an
unpredictable element into our programs. (Think how tedious a game would be if the Invader/Spaceship/
Ghost always emerged from the same screen position !)

The values produced by RND are calculated by the MTX's random number generator. As we shall discover,
these numbers are actually only "pseudo-random”, but generally this qualification does little to detract from
the statement's value. The MTX creates its RaNDom numbers by performing a series of calculations on a
base number known as the random number generator's "seed value”. On power-up this seed value is
always the same, and thus the sequence of values which can be accessed by RND are always the same.
To test this out, switch your machine off and then on again and enter/RUN the following program:

10 REM #3ddfdsdddddsiss
12 REM #4#% FND 5 g S

114

1% REM ®fdddffkkdisidkE
20 FOR A=1 TO 5

20 FRINT END

40 NEXT A

The following sequence will be displayed on the screen:

6.25610352E-04
0.919647217
0.962387085
0.747253418
0.715896606

At first glance RND appears to be doing its job. The values produced don't appear to have anything in
common, and could thus be described as random. If you RUN the program again, this initial impression
appears to be confirmed. The computer will display yet another sequence of "random” values. But
appearances can be deceptive! Switch your micro off and on again. Re-enter and RUN the example. You'll
be confronted with exactly the same (pseudo) random sequence!

We can alter the sequence of numbers generated by the MTX by using the RAND function. Add the
following line to the example above:

15 RAND 1000

The RAND statement sets a seed value of 1000 on which the random number generator will perform its
calculations, and thus a different sequence of values will be display. Each positive value in a RAND
statement produces a different RND sequence, but each time that value is used the same sequence will be
produced. However, if RAND’s argument is negative, the numerical sequence will appear genuinely
random. Try changing line 15 to:

15 RAND =-1000

and repeatedly RUN the program. You'll get a different values on each occasion. So RND’s "pseudo”
randomness can be improved upon with very little effort. But is a random value between 0 and 1 of much
use to us ? Well, not very often, but there are ways in which the range of values produced by RND can be
extended. Let's say we want to produce a dozen random integers in the range 0-255.

10 REM #dfdfdiioiibdeiid

13 REM #F##® REND 2 FEE

15 REM #£ffffffdfsssdis

20 RAND -100

30 FOR A=1 TO 12

40 FRINT INT(ENDFZS5E)

S0 NEXT A

Note that the integer value produced by line 40 multiplies RND by 256, even though our specified range
0-255. This is because although the value produced by RND can equal 0 it never quite reaches 1.

Let's look another routine which demonstrates how we can set both an upper and lower limit for our random
sequence:

115

10 REM #fffddsdssstsdds
S REM ki END 3 s
15 REM #dfdsdddsdfsists
20 RAND -320

SO FOR A=1 TO 12

40 FRINT INTC(REND#811+175
SO NEXT A

This program prints out twelve random integer values in the range 175- 255. The way in which this program
sets the numerical limits should be obvious. Take a look at line 40. The difference between our upper and
lower limit is 80 (255-175). Since we have decided that our lower limitis 175, and 0 occasionally turns in a
RND sequence (and thus RND*0=0), we have to add 175 to whatever value is produced to ensure that our
result never falls below the lower limit. Since we have discovered that 0.9999999 is the largest value that we
can obtain from RND and we're after an integer sequence, it's no good multiplying RND by 80, since this
calculation would never produce our lower range value (the largest number we could hope for would be:

80%*0.9999999 = 79.999992

which the INT function would round down to 79). This is why we have used RND*81, which assuming a
maximum random value can produce 80.9999919. which INT will round down to 80.

RELATED KEYWORDS: RAND,

RUN
SYNTAX : RUN
ABBREVIATION : RU.

A command which clears all variables and commences execution of the BASIC program currently in
memory.

RUN is used as a direct command to start the execution of the BASIC program you have just LOADed or
keyed in. It can also be used within a program. For example:

1 REM #ffddsddst it

2 EEM #k% RUN %%

S REM #:dfidkfttitss

10 INFUT "DO YOU WANT ANOTHERE GO CY N 2 D%
20 IF Cs="Y" THEN FRUN

RELATED KEYWORDS: CLEAR, CONT, NEW

SAVE

SYNTAX ' SAVE ™
: SAVE “filename”

BASIC Token :

ABBREVIATION : SA.

A command that stores a file onto tape.

116

This command is used to SAVE a program or file on to a cassette. The first syntax above should never be
used, since you should always give the program yhat you wish to SAVE a filename by which it can be
traced. The filename can be of any length, although obviously should be kept as short as possible to make it
easy to enter and remember.

RELATED KEYWORDS: LOAD, VERIFY

SBUF
SYNTAX : SBUF n
ABBREVIATION : SB.

Reserves space in memory to create sound buffers.

This command is similar to DIM in that it is used to reserve space to create sound buffers in the memory for
use by the continuous sound command structure. The MTX automatically reserves space for one sound
buffer as you only need declare Sound BUFfers if you intend to use more than one continuous SOUND
command.

The maximum number of declarable buffers is 255, where each buffer declared reserves 12 bytes of
memory per channel. Since 4 channels are available, the statement:

10 SBUF 20

will reserve 960 bytes (4 channels * 12 bytes * 20 Sound BUFfers or 4*12%20=960). By allowing the
sound chip to retrieve the latest values contained in the buffers, the control processor is freed to perform
other tasks.

NB. If sound buffers are used in conjunction with the single disc system, the should be limited to 7 buffers per
channel. If more than 7 are used, you will need to reset the computer before any subsequent disc accesses
can be performed.

RELATED KEYWORDS: SOUND

SGN
SYNTAX :v=8GN(n)
ABBREVIATION : SG.

A numeric function which returns a value which indicates the sign or signum of its argument.

The SGN function returns 1, 0 or -1. It is used to indicated whether its argument is positive, negative or zero.
If nis positive then v=1, if n is negative then v=-1 and if n=0 then v=0. The following example program
demonstrates its use in a rather contrived routine:

10 REM #*d+fFfss+ssst

13 REM #®%% 8GN #¥%

15 REM fusdddodid it

20 CLS : FRINT "ENTER & NUMEER"
30 INFUT N

40 FRINT "YOUR NUMBER WAS "jN

S0 ON SGNNI+1 GOSUER 100,200, 300
60 INFUT "ANOTHER GO (Y/N)7T "; D%
70 IF Ds$="Y" THEN GOTO 10

a0 STOF

117

100 FRINT "A NEGATIVE VALUE": RETUREN
200 PREINT "ZEEEY: EETLEN
200 FRINT "A POSITIVE VALUE": REETUREN
By adding 1 to the value returned by the SGN statement in line 50, control is directed to the subroutine

which prints the appropriate status of the value of the INPUT (i.e. -1+1 = 0 = GOSUB 100; 0+1 =1 =
GOSUB 200; 1+1 = 2 = GOSUB 300).

RELATED KEYWORDS: ABS

SIN
SYNTAX : v=8IN(n)
ABBREVIATION : SI

A numeric function which returns the sine of its argument (n)

Like all the MTX's trigonometric functions, SIN returns a value measured in radians. To convert radians into
degrees use the following formula, in which r equals the number of radians:

degrees = r * 180/PI

The following program returns the SINe of angles from 0 to 360 in steps of five degrees:

10 REM f®dddsddksdkdobsisk

12 REM #®#% SIN F¥X

15 REM #$dffddddfoddiis

20 CLS

20 FOR A=0 TO 3260 STEF S
40 LET RAD=A¥FI/ 180

SO FRINT A, SINCRAD)

GO NEXT A

Notice the use of the degrees to radians conversion formula in line 40.

RELATED KEYWORDS: ATN, COS, TAN

SOUND

SYNTAX : SOUND c,f,v,fc,vc,d,m
: SOUND c,f,v

ABBREVIATION : SO.

The command used to create SOUNDs on the MTX.

This command can be used in two distinct ways. The type of application is determined by the number of
parameters used. If the SOUND command only takes 3 parameters the MTX takes it to be a direct sound
command. 7 parameters signify that the SOUND is to be extended through Sound BUFfers, and such a
statement is called continuous SOUND.

118

The first three of the statement's parameters are common to both versions, where c=channel,
f="frequency” and v=volume. However, this said, the "frequency” value does differ depending upon the
type of command used (see chapter 7).

The additional 4 parameters are only used by the continuous SOUND command. These are
fc="frequency” change, vc=volume change d=duration and m=mode. These parameters allow you to

vary the volume and frequency, specify the amount of time the sound is to be enveloped and decide if the
sound it to be linked to the preceding command.

Refer to chapter 7 for further information on the SOUND command.

RELATED KEYWORDS: SBUF

SPK$
SYNTAX : A=SPK$
ABBREVIATION : SPK.

SPK$ is the Screen-Peek function which peeks the character at the current cursor position and then
auto-increments the cursor location.

The character returned by the SPK$ function is an ASCII code. The example program below PRINTS text
onto the screen and then uses SPK$ to read the screen and store the text into the string variable A$.

1 REM $fffdsdsass

S REM #¥%¥ SPE$ R

7 FREM fif3dffsddEdss

10 V8 S: CLS : DIM A$(30)

0 CSR 2,6: FPRINT "TOD MaANY COOKES SFOIL THE BROTH"
320 CSR 2,6

40 FOR T=1 TO 30

50 LET A$=A%+SFES

€0 NEXT T

70 CER 2,12: PRINT A%

For further information on this command refer to chapter 10.

RELATED KEYWORDS: GR$

SPRITE
SYNTAX : SPRITE n,pat,xp,yp,xs,ys,col
ABBREVIATION A8

The SPRITE command is used to define the characteristics of a particular sprite. See also CTLSPR.

SPRITE is used to set up the initial attributes for a sprite shape. The parameters used by the SPRITE
command are:-

parameter meaning
n sprite number 1to 32
119

pat pattern number 0 to 127 (8*8 sprite)
0 to 31 (16*16 sprite)

Xp X position -4095 to +4095
yp y position -4095 to +4095
XS x speed -128 to +127
yS y speed -128 to +127
col sprite colour 0to 15

The example program places a black sprite in the centre of the screen.

1 FREM #ffidsfddsesdddt

2 REM ®%¥ SFRITE ¥k

5 REM #idfddidddiidiss

10 Vs 4: CLS

20 CTLSFE 2,1

320 BENFAT 3,0,60, 126,219, 255, 281, 126,36, 60
40 SFRITE 1,0,127,96,0,0,1

50 GOTO S0

For further information on this command refer to chapter 10.

RELATED KEYWORDS:CTLSPR

SQR
SYNTAX : v=8QR(n)
ABBREVIATION : SQ.

Function which returns the square root of its argument.

Another of MTX BASIC's valuable numeric functions, SQR returns the square root of any positive number.
However, if the value of its argument (n) happens to be negative, processing will be halted with an 'Out of
range’ error.

The simple example below shows the function in action:

10 REM Scfdsofekaakdkdokgg

13 FEM #®#3F SOQR EEE

5 OREM fdEfdikddsiidd

20 CLS

20 FOR I=43 T0O &0

40 FRINT "SR ROOT OF";I;" I8Y;S0RCID
S0 NEXT I

RELATED KEYWORDS : ABS

STEP (SEE FOR)

120

STOP
SYNTAX : STOP

ABBREVIATION : ST.
A command that halts a program.

This command tells the computer to STOP a program. You can continue processing from the line following
the STOP command by using CONT or GOTO In.
S REM EERRERfEidisd
10 REM ®%% STOP #¥%
15 REM $dddsdkdieidds
20 FRINT "WHEN THIS FROGRAM STOFS TYFE CONT!Y
30 PRINT "AND IT WILL CONTINUE TO RUN FROM "
40 FPRINT "LINE 70"
50 FPAUSE So000: CLS
60 STOF
70 FRINT "THIS WILL BE FRINTED WHEN THE "
80 FRINT "FPROGRAM IS CONTINUED"

RELATED KEYWORDS: CONT, GOTO, RUN

STRS
SYNTAX : a$=STR$(v)
ABBREVIATION : STR.

A string function which returns a string representation of its numeric argument (v)
STR$ is the function which enables string functions to be applied to numeric values by converting them
into a string format. For example, when the MTX PRINTs a positive value to the screen it includes a
leading space in the display. This can result in untidy screen displays when the following type of
statement is used:

40 LET V=61

50 FRINT "VALUE=";V;" UNITS"

However, by using the STR$ function the display can be tidied up by using one of the string slicing functions
(MID$ in this case):

20 LET V=61: LET A%$=8TR$ (V)
30 LET B#=MIDH (A%, Z,2)
40 FRINT "VALUE=";B$;" UNITS"

The inclusion of the leading space should be borne in mind when the STR$ function is used in the
comparison of strings. Thus, if '6510" and STR$(6510) were compared, the computer would include the
leading space in the result of the latter and find the two strings unequal. STR$ performs the opposite
function to VAL, which converts strings of numbers into their numeric value.

RELATED KEYWORDS: VAL

121

TAN
SYNTAX : v=TAN(n)

ABBREVIATION : TA.

A trigonometric function that returns the tangent of its argument (n).

Like all of the MTX's trionometric function, TAN calculates angles in radians (not degrees). Thus both its
argument and the value returned when the TAN function is used are expressed in radians. To convert
degrees to radians and vice versa, the following formulae must be used:

Degrees = r/PI*180 Radians = P/180

RELATED KEYWORDS: ATN, COS, SIN

THEN (SEE IF)

TIMES
SYNTAX : TIMES
ABBREVIATION Tl

Stores the current value of the MTX's real time clock in hours, minutes and seconds.

TIMES enables us to access the MTX's real time clock. Since it is the string form of a system variable it is
not possible to directly assign a value to TIMES. If you use it without a CLOCK statement, TIMES will return
the time that has elapsed since power-up. So if you want to know how many hours you've been hacking
away simply enter:

PRINT TIMES
The ability to discover how long your computer has been in action for may be interesting on occasion, but
doesn't suggest that TIMES is of enduring value. Thankfully, MTX BASIC also offers the CLOCK facility,
which enables us to set a start value for the characters stored by TIMES. In other words, a TIMES statement
allows us to turn your micro into a (very expensive!) digital clock.

Both TIME$ and CLOCK use hours, minutes and seconds as their temporal parameters. Thus if we ask the
computer to print TIMES$ when it is storing 12:30 it will return:

123000

CLOCK works on the same principle. If we want to set the computer’s internal clock to 12:30 we must enter:

1g CLOCK "1Z3gga"

Note that the micro's clock will run for a hundred hours before returning to "000000”. Although TIMES$
cannot be directly defined, as a string variable it can be subjected to string manipulation. Our example
demonstrates how TIME$ can be sliced and recycled!

S REM X¥EXEXXXXXERXRXRAXH

1¢ REM

15 REM ¥¥¥ TIMES *%*

28 REM

25 REM XXXX¥EXXHAERHEXX%X¥

30 DIM B$(14): FAFER 1: CLOCH "gagaoe:"

4@g GOSUB 200
S@ FOR A=1 TO S STEFRP 2

122

&8 CSR 92,7+A

7@ PRINT MIDS(TIMES,A,Z2)

89 NEXT A

?g GOTO 5S¢

200 REM H¥¥HXXAHXXHEANANNXNXH¥

295 REM

219 REM ¥%¥¥ SUBROUTINE ¥¥¥

215 REM

229 REM ¥X¥XXKXHXEXEXKXXXKX

239 PRINT "THIS PROGRAM HAS BEEN";
2490 PRINT " RUNNING FOR: "

25¢ FOR B=8 TO 12 STEF 2

269 READ Bs: CSR 12,B: PRINT Bs
279 NEXT B

2890 RETURN

399 DATA HOURS,MINUTES,SECONDS

RELATED KEYWORDS : CLOCK,PAUSE

TO (SEE FOR)

USR
SYNTAX : USR(addr)
ABBREVIATION : none

Function which calls a machine-code subroutine whose start address is established by the statement’s
argument (addr.).

The USR command is the traditional way by which machine-code subroutines are accessed from a BASIC
program. Machine code programming is beyond the scope of this book, but the principle of a USR
statement is quite strightforward. USR works in much the same way as GOSUB. It calls the machine-code
routine starting at the location specified (addr.), and executes the code until it is instructed to return to
BASIC.

RELATED KEYWORDS: CODE, PEEK, POKE

VAL
SYNTAX : v=VAL(a$)
ABBREVIATION : VA,

String function which returns the numeric value of the string of numbers contained in its argument

VAL performs the opposite function to STR$ (which converts a numeric value into its string representation).
If the computer encounters a non-numeric character in the middle of the string, it will ignore the string from
that point onwards. Thus:

10 REM ®idffdddfsssss
3 REM ®f% VAL kdi
15 REM ¥HEffddiiitss
Z0 LET N$="65XY10"
S0 LET V=VAL (N$)

123

40 FRINT V
will PRINT 65 to the screen
10 REM #dfffddsidsdsd
13 REM ®%% VAL 2 %
15 REM #dddddddddsss
20 CLS
20 INFUT "ANY NUMEBERE ";V$
40 LET B$="35"
50 FPRINT V$+EB$: FRINT
60 LET V=VAL(V$): LET B=VAL(E%$)
70 FRINT V+RB
80 STOF

In the above example, line 50 performs a simple string concatenation (and thus PRINTSs the input string next
to the 5 contained in BS). However, after VAL has determined the numeric value of these strings (line 60),
they can be added together and the result PRINTed out (line 70).

RELATED KEYWORDS: STR$

VERIFY

SYNTAX : VERIFY "filename”
: VERIFY 7

ABBREVIATION : VE:

An Input/Output command which makes it possible to ensure that a program has been correctly transferred
to a tape.

There are few more frustrating surprises than the discovery that a program you have SAVEd has been
incorrectly transferred to a tape. The VERIFY command offers programmers a means of ensuring that the
program that has been transferred to an external storage device is exactly the same as the one held in the
MTX's memory.

When the command is followed by a filename (which must be contained within quotes and be exactly the
same filename as the one used in the SAVE statement), the computer will search the tape until it locates the
specified file which it will then try to match with the program in memory. If the program has been incorrectly
transferred (or it's the wrong program!), the MTX will generate a 'Mismatch’ error message.

The sequence for the VERIFY operation is as follows:

SAVE "program”
Rewind tape
VERIFY "program”
Start tape

Press <RET=>

St

If the MTX appears to lock up’ in the course of VERIFYing a program, hold down the BRK key on the
computer and press STOP or PLAY on the cassette recorder, and then resave the program.

RELATED KEYWORDS: SAVE, LOAD

124

VIEW
SYNTAX : VIEW dir, dis

ABBREVIATION : VL
VIEW enables you to examine sections of the sprite screen that are not visible on the VDU.

The graphics screen can be thought of as a 'window’ into the sprite planes. The sprite planes measure 8192
* 8192 pixels, (-4095 to +4095) whilst the screen itself is 256 * 192 pixels. Initially the screen is set so that
position 0,0 on the screen is at position 0,0 on the sprite planes. The VIEW command moves the graphic
screen relative to these sprite planes, in direction dir for a distance dis. dir must be in the range 0 to 7 and
dis 0 to 255.

The example below places a sprite at the centre of the graphics screen, before moving the screen in every
direction by a distance of 100 pixels:

1 REM Sdddddddckddssd

2 REM #%% VIEW k¥#

9 REM ®FRFFFLREEFEEEE

10 V8 4: CLS

20 CTLSFR 241

30 GENFAT 3,0,60,126,219, 255,231, 126,26, 60
40 SFRITE 1,0,127,96,0,00,1
S0 FOR T=0 TO 7

60 VIEW T,23

70 FAUSE S00

80 NEXT T

90 GOTO 20

For further information on this command refer to chapter 10.

RELATED KEYWORDS: SPRITE, ADJSPR, MVSPR

Vs
SYNTAX :VSn
ABBREVIATION : V.

Used to select one of the computer’s screen modes or a user-defined virtual screen.

The computer will automatically switch to the type of screen that has been selected by the statement. It is
important to note that you cannot display the two text and graphics screens at the same time.

For example, VS 4 selects the full graphic screen. VS 5 selects the full text screen.
For further information on this command refer to chapter 9.

RELATED KEYWORDS: CRVS

125

CHAPTER 7 : SOUNDING OFF

SOUND AND THE MTX

The MTX is capable of generating an astoundingly wide range of sounds which can assault the senses
through the TV speaker or your hi fi system. In other words, your MTX can make music as loud as your
volume control (or ears) will permit. Not for the MTX the insipid whimpering which characterises so many
micros’ sound facilities - the MTX belts its sounds out in a loud positive voice!

There are no gimmicky "SPLAT” commands to give 'custard pie in the face’ effects, but most sounds can be
simulated using the MTX's highly flexible audio facilities. The only sound generation statement used by your
micro is, unsurprisingly, the SOUND command. However, its use in conjunction with the PAUSE and SBUF
statements facilitate the creation of almost any noise or musical creation.

The MTX has four sound channels, 0, 1, 2 and 3, all of which can be simultaneously activated. Channels 0,
1 and 2 are for the production of 3 note musical chords (one note from each channel), and channel 3 is a
‘pink noise’ generator which is used to create sound effects. Ultimately, this allows us to turn the keyboard
into a full blown synthesiser with a continual drumbeat. Before we can see how this can be achieved we
need to take a look at the nature of sound and how it is generated.

THE SOUND OF MUSIC

Western musical notation is organised in eight notes which are collectively known as octaves. On a
piano keyboard octaves are established in sequences of seven white notes and five black notes. The C
above middle C has a frequency of 512 Hz which is exactly double that of middle C, although the intervals
between the notes aren't equal.

The scale of C is played entirely on the white notes from any C to the C note one octave higher (eight notes
in all). The black notes, C#, D#, F#, G# and A#, are not part of the scale of C. The interval between C and
D is a tone, but the interval between E and F is a semi- tone.

By playing all the notes within any octave we create what is known as a chromatic scale. For example, the
chromatic scale of C consists of thirteen notes rather than the eight notes used in a normal scale. This
discrepancy is a result of chromatic scales progressing in semi- tone steps.

MICRO SOUND

Sound on your micro can be generated in two ways - direct sound and continuous sound. Since the simplest
of the two approaches is direct sound (which only requires three parameters), let's begin by taking a look at
the most direct method of letting your micro be heard! The three parameters used by direct sound are as
follows:

SOUND channel, *frequency, volume

* Itis important to note that in real terms the frequency parameter is a value that is inversely proportional to
frequency. Basically, the rule of thumb is the higher the value the lower the frequency.

The continuous sound command structure is more complex than direct sound as it requires the use of
seven parameters. Thus:

SOUND channel, *frequency, volume, *frequency change, volume change, time,
action.

Continuous SOUND statements work in conjunction with sound buffers which enables the MTX sound chip
to work independently from the main processor. This allows other parts of a program to be processed while

126

the sound chip is busy collecting values from the sound buffers in order to generate the appropriate sounds.

THE SOUND OF SILENCE

Before we learn how persuade the MTX to produce a noise (which isn't too difficult), we should take the
precaution of discovering how to turn it off (which can be tricky!). If a sound statement has been entered as
a direct command, or a program finishes but the sounds don't, resultant racket can be terminated by
pressing the CTRL key and G simultaneously or entering:

SOUND channel value, 0,0

if the direct sound format was used, or:
SOUND channel value,0,0,0,0,0,0

if the continuous sound format was used. However, should either of these methods fail, you can resort to
our final option! You can enter:

SEUF 1 : PRINT CHR$(7)

So far so good. However, if you need to silence a sound from within a program you will have to plan the
termination point in advance. Having located the appropriate point in the processing you can make use of
the following subroutine.

1000 REM SUBROUTINE TO TURN OFF SOLND
1010 SBUF 1: FRINT CHE%(7)
1020 RETURN

This routine will produce a short beep, after which peace and quiet will prevail. Alternatively, we could
replace the CHR$ statement with: SOUND 1,0,0,0,0,0,0. Right, now we know how to stop the SOUND
command let's see how we can start it!

THE SOUND OF SOUND

NOTE FREQ (HZ) MTX DIRECT MTX CONTINUOUS
C 256 488 3906
C# 271 460 3687
D 287 435 3480
D# 304 411 3285
E 322 388 3100
F 342 366 2926
F# 362 345 2762
G 384 326 2607
G# 406 308 2461
A 430 290 2323
A# 456 271 2192
B 483 259 2069
C 512 244 1953

The table above lists the values required by MTX BASIC to establish the frequency of thirteen notes starting
at middle C. From these values it is possible to calculate the frequency value of a given note in any octave.
It should be stressed that the values in the hertz frequency column are never used in their 'raw state’, but
their inclusion is justified by the fact that the frequency values used by your computer are determined by
calculations performed on these values.

We have already worked out the frequency values used by both direct and continuous sound and these are

127

listed in the MTX Direct and MTX Continuous columns. It should be stressed that these values have been
rounded to the nearest integer and are not totally precise.

CALCULATING FREQUENCY VALUES

The following formula should be used when calculating the value of the frequency parameter for the direct
sound command:

direct sound frequency = 125,000/Hertz value

So, to calculate the MTX direct sound frequency value for middle C you must divide 125,000 by 256. The
following formula can be used when calculating the value of the frequency parameter used by the
continuous sound command:

continuous sound frequency = 1,000,000/Hertz value

So 1000000/256 will return the value of the frequency parameter required to produce middle C using the
continuous sound command.

The method for calculating the hertz value of a note an octave above or below the octave described in the
table above is simple. You can either double the value for an octave above, or half the value for the octave
below. So, to calculate the hertz frequency of the G one octave higher than the one in our chart, simply
double 384 to produce a hertz frequency of 768. Similarly, to determine the frequency value of the G an
octave lower, halve 384 to produce 192. Having established the hertz frequency value for the desired note,
you must perform the same calculations outlined above to determine the value used by frequency
parameter, be it the direct or continuous sound command.

Alternatively, you could use the table we have provided to perform the calculation by doubling the relevant
frequency value for a note in the octave below or halve the value for a note in the octave above. For
example, let's suppose that we wish to calculate the MTX Direct sound’s frequency value for the C one
octave below 'middle C'. This parameter can be achieved by simply doubling 488 (the MTX Direct’s
frequency value for 'middle C’) and presto.

DIRECT SOUND

Having finally established how we can calculate the values of the frequency parameter, it's time we heard
the SOUND command in action. Key in the following direct sound statement which uses channel 0 to
produce a note:

SOUND 0,250, 10

The above code uses channel 0 to generate a high-pitched note with a volume of 10 (on a scale of 0-15).
Contrary to expectations the relatively low value of the statement’s second parameter (250) produces a
fairly high-pitched note! Remember to press CTRL and G simultaneously to stop the sound when you have
had enough.

In appendix 9 we provide the formula and table which clarifies the relationship between parameter values
and hertz frequencies. In this section we have established a chromatic scale for notes. By adding.

SOUND 1,600,10
SOUND 2, 300,10

we can produce a chord. Since it's possible to achieve billions of combinations of three numbers between 0
and 1023. you may be wondering why certain tonal sequences are used so often. Well, as experimentation
has proved, the vast majority of combinations sound awful! Sound can be a very effective form of torture
as well as a spiritually uplifting experience. In other words, finding a new chord which satisfies the senses is
no mean feat!

128

PAUSING SOUND

By now you've presumably realised that the PAUSE command is definitely self-explanatory since its sole
function is to PAUSE a program. Its argument is equally straightforward: the higher its value the longer the
PAUSE. However, one important point to be borne in mind when using this command is that it's not possible
to gauge the exact real-time duration of a PAUSE, since the effect of the statement is dependent upon
whatever other activities the MTX is undertaking when a PAUSE is executed. However, it is fairly safe to
assume that PAUSE 1000 will PAUSE for approximately one second.

@ =

The chart above enables you to establish PAUSE parameters for the simulation of the temporal
conventions of music (crotchets, quavers etc.). Since the objective of this chapter is to illuminate the MTX's
SOUND facilites we're forced to assume that our readers possess a certain degree of musical knowledge. In
other words, it's impossible to explain the meaning of a crotchet and related musical terminology without
expanding the chapter into and entire book of musical theory. This said, by RUNning the programs in this
chapter you should be able to glean a working understanding of the effects produced by parameter
values.The following program plays a demi-semi-quaver which is gradually extended to a semi-breve:

IO REM #ddckddddddidddsddd i kot dkk

10 REM &k FAUSE THE SOUND R o 4

) T 0 o B A o R 0 O e R 1 o e 0 1 e 3 o 3

20 LET A=30

30 FOR X=1 TO &

35 REM #ikdEfsdddddddeiss

40 REM #Fk¥ THE NOTE #dk

45 RFEM d#dfddddkddddsissd

S SOUND 0,488, 15

3T REM HEEEEEEEERE LR LR R R E R R ek
60 REM #%k THE LENGTH OF THE NOTE #k#%
65 REM FEEEFEEEEERERREEEE R R e R E R :
70 FAUSE A

75 REM ki aiidh iy
80 REM #%3% SWITCHING OFF THE NOTE #%#%
8% REM #diddidfkiddddsddddddisddddd s i
90 SOUND O,0,0

100 FAUSE 1000

105 EEM $fFEddfffdfdsm i omsgy

129

110 REM #%#% LENGTHENING THE NOTE %%
115 REM mﬁx#kﬁﬁmﬁﬁiﬁﬁﬁﬁ}i%iiﬁiﬁimﬁﬁ#ﬁm
120 LET A=Az

1350 NEXT X

CHANNEL 3

This sound channel should be considered independently from its three companions since it produces
noises rather than tones or musical notes. This is valuable when we are more interested in the creation of
sound effects as opposed to music.

The following program gives an example of all the eight frequency values.

S REM Rddciskbdddissesbil i e s
10 REM #%¥% CHANNEL 2 EXAMFLE 1 %
T o = g o O R e e O e e S AT SRR
20 FOR E=0 TO 7

30 C8R 10,10: PRINT E

40 SOUND 2,E, 15

S0 PAUSE S000

E0 NEXT E
Our example generates simulations of the following noises:

car horn

bagpipes

shiphorn

running motor
interference/gunfire
interference/gunfire
more interference/gunfire
geiger counter

NO O BEWN = O

It is difficult to provide a more detailed description of these noises, as, unlike visual effects, they're almost
impossible to describe! The best method of finding interesting or appropriate effects is to experiment. Here
is an interesting example:

5 REM mﬁﬁﬁi*x$$$$$¢x$$*$$$$xﬁmﬁ$m
10 REM ®EE CHANNEL 2 EXAMFPLE 3 s
1% REM mtmm$¢$$mﬁﬁﬁﬁ$mﬁimm$xxm$$
20 FOR F=1 TO ZO

3O FOR V=15 TO O STEF -1

40 SOUND 3,4,V

S0 FAUSE 200

GO NEXT V: NEXT F

70 SOUND Z, 0,0

130

CONTINUOUS SOUND

The concept of a continuous sound command is more accurately described as an extended sound
command. It employs more parameters than the simple direct sound command, and as a consequence is
far more flexible. Continuous sound requires a total of seven parameters, where roles of the first three
values correspond to those of the direct sound command (but are established by a different set of ranges).

Let's refresh our memories and take another a look at the syntax employed by the continuous sound
command.

SOUND channel,frequency,volume,frequency change,volume change, time, action
PARAMETERS

Channel: As with the direct sound command format, the channel parameter is used to select one of the four
channels, 0, 1, 2 or 3. So there is no change to this parameter.

Frequency: The frequency parameter used by the continuous sound command structure increases in range
eightfold. Thus it enables you to use values from 0 to 8192 which encompass the complete range of the
MTX's potential pitch. (Although it is possible to apply values greater than 8192 to this parameter, the effect
of a value is replicated according to its ratio to an end value of 8192, so the assignment of values outside
this range is pointless.))

Volume: The range of this parameter must also be increased when using the continuous sound command
structure. The effective range of the volume parameter is 0 to 1023. In effect, there are only sixteen levels of
volume available in MTX BASIC (including 0 - silence), and by multiplying the direct sound equivalent by 64
we can assign the appropriate continuous sound amplitude.

Frequency change: This parameter is used to change the frequency (or pitch) of a note. The value of this
parameter must correspond with the statements frequency parameter. Since the frequency value can be no
larger than 8192, modifications to this value are only meaningful if they fall within the range of + or - 8192.
Remember a plus figure gives a falling pitch and vice versa.

Volume change: Although any value in the range + or -32767 will be considered a legal parameter, the
range + or - 1023 is suffice to provide maximum flexibility when using the wider volume range in the third
parameter (volume).

Time; The value allocated to this parameter is measured in 64ths of a second, with a top value of 65535. In
other words, the Time parameter offers a maximum duration period of 1024 seconds - over seventeen
minutes! The fourth and fifth parameters (frequency change and volume change) are incremented by each
unit of time. So, let's say that you have assigned a value of 1000 to the volume parameter which must be
gradually turned down and, eventually, off. Under these circumstances you must set the time parameter to
1000 and the volume change parameter to -1. Thus for each unit of time the volume change parameter will
deduct one from the value of the volume parameter, which will gradually turn the volume down.

Action: This parameter determines whether or not two sounds are to be linked together. Its value is either 0
or 1, where 0 links the sounds together and 1 does not. Since a sound can only be linked to the SOUND
command which precedes it, the Action parameter must be set to 1 when entering the continuous sound
structure as a direct command. When linking SOUND statements together there is no need to give any
value but 0 to the volume and frequency parameters, since these values are established by the preceding
SOUND command.

Key-in the following example and listen to the continuous sound command structure in action:

10 SBUF 4
20 SOUND 1,3,30,5,1,750,1
30 SOUND 0,1,0,10,0,750, 1

The parameter values assigned can be variables or constants, or even the results of calculations returned

131

by keywords like SIN or COS. You may have noticed that a new command,SBUF, has been introduced in
the example above. This is because more than one continuous SOUND command requires space to be
allocated in the MTX Sound BUFfers in the same way as multiple values assigned to a variable require DIM
statements!

SOUND BUFFERING

YYou might still be wondering what advantages continuous sound has over direct sound. On the face of it
very similar results can be achieved using either form of sound statement by varying the frequency and
volume parameters within a loop whilst using PAUSE statements to regulate the duration of a sound. Even
though it is possible to achieve more or less the same effects using either command, the direct sound
command structure has the disadvantage of requiring an enormous amount of programming effort to
achieve its objective. More importantly, direct sound statements effectively tie up the resources of the
MTX's central processor and consequently prevent it from being able to process any other instructions.
However, a continuous sound command utilising the Sound BUFfers allows the CPU to process
independently, while the sound chip (effectively a miniature computer in itself) collects values from the
buffers and generates the appropriate audio output under its own steam!

Although the CPU pauses every 64th of a second and updates the sound chip's instructions, the speed at
which the MTX operates makes this interruption virtually indetectable!

The command SBUF is used to allocate space in the MTX's Sound BUFfers. The statement takes the
syntax SBUF X, where X is the number of Sound BUFfers required.

The allocation of a specified quantity of Sound BUFfers is similar to the DIMensioning of an array in that
both statements reserve a block of memory for each element declared. Each sound channel uses 12 bytes
per block, so if all three tone channels (0, 1 and 2) are in use, SBUF 10 requires 3*10*12 or 360 bytes.

You can declare a buffer of up to 255 blocks per sound channel, and as a rule of thumb should allocate two
blocks for each continuous sound command. If you only have one continuous sound command there is no
need to declare any Sound BUFfers, since the computer will automatically allocate enough memory for a
single command.

As the sound chip empties one buffer, the remainder move forward one position in the queue. Since the
sound is not automatically terminated the end values of the final buffer will continue unless you ensure that
the ultimate volume is 0.

ENVELOPES OF SOUND

If you attempt to graphically represent the sound made by a musical instrument, the result looks something
like this:

e

132

The sound represented by our diagram has four major determinants:

ATTACK a sharp increase in amplitude
DECAY amplitude decreasing
SUSTAIN remains at a steady volume
RELEASE volume fades away

AWM =

Essentially a sound envelope is a measure of volume and frequency against time, and each type of musical
instrument produces a radically different envelope shape.

Percussion instruments, such as drums, have rapid attacks which die very quickly, while flutes or violins
have more gentle attacks and their volume is sustained for extended periods of time (consider a wind
section, whose volume can only be sustained for as long as its player’'s breath holds out!).

The following program is an example of an envelope using the continuous sound command:

10 SBUF 2
20 SOUND 0,3306,300,1,-1,640, 1
20 EDIT 20

Line 30 allows you to alter any value, but you should maintain a relatively long duration (presently 640), if
you expect to assess the effect of the various parameters.

COMPUTERS AND SYNTHESISERS

A synthesiser is an electronic instrument that requires some form of keyboard input to produce the notes
required. The different sounds (and instruments) generated by the synthesiser are simulated by voltage
controlled electronic oscillators. The tone produced by these oscillators is further modified by voltage
controlled filters and envelope generators, giving sounds such as vibrato (warbling) and lengthy sustains.

Computers can be programmed to behave as crude synthesisers by transforming user-generated digital
input into its analogue equivalent. Such digital input can be stored in the micro’s sound buffers until it
reaches the front of the queue when it can be output as sound. (The electric piano program graphically
demonstrates this principle.)

ADVANCED MUSIC

As the frequency of upper C is double that of middle C we can easily calculate the frequency change for
each interval. (For the mathemeticians amongst you, the formula used is 1272 (the twelfth root of two).
However for our purposes, 1.0594631 is a more convenient representation.) Since the hertz frequency of
middle C is 256, we can calculate the hertz frequency of C# by multiplying 256 by 1.0594631. Similarly, to
get the frequency of U we simply muitiply the frequency of C# by the same number.

As we have already seen, the main point to be borne in mind when applying the results of such calculations
is that the MTX uses the hertz frequency to define the pitch of a note. This consideration is further
complicated by the fact that there are two versions of the SOUND command whose parameters utilise
different sets of ranges.

Let's quickly recap on the relationships between the hertz frequency and the MTX's frequency paramaters.
Divide a given number (let's call it X) by the hertz frequency and the MTX parameter is produced. In BASIC,
MTX frequency = X/hertz frequency.When generating direct sound X is equal to 125,000, while 1,000,000
must be used in the calculation of the continuous sound frequency parameter.

To obtain the values of notes in other octaves, the MTX parameter must be halved for each higher octave,

and doubled for each octave which is lower. Note that the maximum parameter for direct sound is 1023 and
8192 for continuous sound.

12

CHAPTER 8 : GRAPHICS WITH CHARACTER

Your MTX possesses a formidable armoury of graphics capabilities which facilitate both practical and
aesthetic application. In the first chapter of our graphics section we shall examine the techniques used in
the manipulation of the text screen. The following chapter will enable you to come to grips with the MTX's
High Resolution graphics screen features, which leads on to a final chapter which examines the use of
sprites on the MTX.

THE TEXT SCREEN

When you first turn on the MTX you are confronted with the Text Screen and whenever a program has
finished RUNning the computer will always return to the text mode. The selection of text or graphics mode is
established by the coding of your program. As you'll discover, MTX BASIC also offers the possibility of
creating several 'virtual screens’ within the larger main screen. But let's unveil the MTX's graphics potential
one step at a time. For the moment we'll concentrate on a single text screen.

Whenever a program is RUN the MTX automatically selects the text screen unless otherwise instructed.
There may be times when you will want to switch between different screens within your programs, so if you
want to select the text screen you will need to use the command VS 5. For instance:

16 VS 5 CLS

selects the full text screen. We will be including this command in most of the programs in this section. It
should be stressed, however, that this statement is not always essential as the MTX automatically selects
the text screen when no other is specified. Our example's second command, CLS, CLears the Screen of
any stray characters and renders it ready for use. CLS can be used in both text and graphics modes
whenever you wish to clear a screen display. Having programmed a fresh start for ourselves, the next thing
to do is to PRINT something. Add the following lines:-

SO0 FRINT "HELLO"
Z00 GOTO =200
210 REMf$:% FPRESS BREK TO EXIT #%%

When you RUN the modified code, the word HELLO should appear in the top left corner of the screen. Not
very exciting, but it's a start. Let's change the background colour of the screen by using the PAPER
command, whose argument determines the number of the colour required. While we're about it, we might
as well change the colour of the text. This can be achieved using the INK command, which once again uses
a colour code to define the pigment. Add the following line and the "HELLO" will be printed in black upon a
yellow background:-

20 FAFER10: INEKE 1

Our next example displays all of the combinations of PAPER and INK colours:-

1 REM ##% INE AND FPAFER EXAMFLE #i%
10 e ass I0LS

20 FREINT "AEBCDEFGHIJELMNOFORESTUVWXYZ"
30 FOR FAF=0 TO 15

40 FAFER FaAF

134

50 FOR FPEN=0 TO 15

60 INK FEN

70 FAUSE S00

80 NEXT FEN

30 NEXT FPAF
The main point of interest in this program is that not all of the colour combinations are readable. When
designing your own programs you must be careful to choose a suitable combination of PAPER and INK
colours. Also you should notice that the INK command changes the colour of all of the text on the screen,

since you can only have a maximum of two colours on the text screen - the text (INK) colour and the screen
(PAPER) colour.

Having added some colour to our display, our next task is to arrange our text in a more orderly fashion in
relation to the screen. After all, printing on the top line is rather boring and restrictive, isn't it? The MTX
possesses two methods of formatting text, the PRINT statement and the CSR command.

Type in and RUN the next example. (You should, of course, type NEW and then press the RET key to get
rid of any other program that might be in memory before starting.)

I 0 R O o o 0 a0

3 REM #k¥ FRINT ##x%

S REM #¥foffolgsdoiisk

1o ve-5: CLS

20 FRINT "HELLO, ": FRINT "MY NAME IS "

30 PRINT “FRED "

200 G0TO 200

210 REM #%% FREESS BRE TO EXIT FROGRAM #i#
On RUNning the program you should see three statements PRINTed on three separate lines. The computer
will always PRINT on a new line whenever it comes across a PRINT statement. However, there are some

special PRINT formats which alter the effects of a statement. Type in an alternative line 20. Only the two
commas are new so you can use the EDIT facilities to insert them into your existing lines if you wish:

20 PRINT "HELLO ",: PRINT "MY NAME IS ",

RUN the program again and you should see that the PRINT statements generate an alternative display.
The MTX text screen can be thought of as having five columns (or format-fields), each eight characters
wide. A comma in a PRINT statement tells the computer to start the next PRINT instruction from the
beginning of the next field or column, rather than the next line. Add line 40 to convince yourself that the
comma only affects the PRINT statement in which it appears:

40 PRINT "A"

The 'A’ appears on a new line because there is no comma ending the previous PRINT statement on line 30.
Add a comma to the end of line 30 and take note of the result.

A second print separator, as these characters are known, is the semi-colon. A semi-colon causes the
PRINT position to remain wherever it was after the last PRINT statement was executed. Changing the commas
in your program to semi-colons will highlight a hidden ability of the your micro. The program should now look
like this:-

135

10 VS 5: CLS

20 FRINT "HELLD "§: FREINT "MY NAME IS "j;

30 FPRINT "FRED";

40 FRINT A"

200 G0O0TO 200

210 EEM#k¥ FPRESS BRE TO EXIT #d®
The output is now arranged along the top line. What is the hidden ability? The fastest sex-change operation
in the world! When PRINTing numbers the computer will always PRINT a space in front of positive
numbers, instead of the + sign. This space is there to allow for the minus sign of negative numbers so that
numbers can be easily lined up in columns regardless of their sign. Before we move on to the CSR
command, add these lines to FREDA'S program to demonstrate the format when using numbers:-

5‘:) F:.F.INT "A“ . ”E‘“ i ”C“ 4 IIDII " IIEII

GO FRINT 1,Z2,3y,]

70 FRINT —1,-2,-3,-4,-5

For completeness, change all of the commas in lines 50, 60, and 70 to semi-colons and observe the
changes to the output when you re-RUN the program.

Using the PRINT command on its own to form screen displays is fairly limited in its usefulness, even when
using print separators. However, MTX BASIC provides us with the CSR command which enables text to be
positioned anywhere on the screen. The format of this statement is CSR x,y; this positions the cursor at
column x on row y ready to start PRINTing. The next following PRINT statement will start from position x,y.

The full MTX text screen facilitates 24 lines of text, each of which comprises 40 character positions or
columns (a total of 960 positions). The lines are numbered 0-23 and the columns run from 0 to 39, where
the top left corner of the screen is position 0,0. Using CSR x,y you can position the CurSoR anywhere on
the screen. If you have trouble remembering which direction is x and which is y then try to think of this
aide-memoire: X is a cross so wise up (y is up)!

The next example demonstrates how a character can be moved around the screen using CSR and PRINT
statements. This method of animation can be quite effective when used as a feature of your own games
programs. Later we'll unravel the mysteries of creating user-defined characters, but for now you'll have to
be content with moving a '*’ symbol around.

10 REM MOVEMENT DEMONSTRATION

20 VS §5F CBLS

20 REM #:3F% DEFINING VARIABLES #if%

40 LET X=0: LET Y=0: LET X1=0Q: LET Y1=0

SO REM #3#F SETTING UFR KEEYS i

GO REM ##k SETTING UF MOVEMENT ik

70 IF INEEY$="A" AND Y>>0 THEN LET YY1

80 IF INKEY$="Z" AND Y22 THEN LET Y=Y-1

20 IF INEEY®="N" AND X>0 THEN LET X=X-1

100 IF INEEY$="M" AND X<38 THEN LET X=X-+1

110 IF X<xX1 OFR Y«<>¥Y1 THEM CSE X1,Y1: FRINT " "“;

120 CSKE X,Y: FREINT "#";

1530 LET X1=X: LET Yi=Y

136

140 GOTO S50

When you RUN this program you'll be able to move the asterisk (*) around the screen using the keys A-up,
Z-down, N-left and M-right. This routine can be used as the basis for many types of games programs, so it's
worth examining in detail.

Line 40 sets up the variables X and Y. Lines 70 to 110 contain the routine that moves the shape in the
direction determined by the key being pressed. Note that all the statements which animate our asterisk are
virtually identical in format. Line 40 first checks whether the 'A’ key is being pressed, if it is it then checks the
value of Y. As long as the variable Y is greater than 0 a value of one will be deducted from the total value
which will cause the asterisk to move up the screen. In plain English, line 70 says "IF you want to move up
AND you are not at the top of the screen THEN move up one line.” The actual movement takes place in line
120, using CSR to position the CurSoR so for the time being the variable Y is altered.

The other three lines (80, 90 and 100) perform similar tasks for the other three directions and then the
computer reaches line 110. This line checks whether a movement is requested. If all of the values of X,Y and
X1, Y1 are the same then the shape will not move. If, however, any one co-ordinate has changed then the
shape will move and we must first of all remove the shape fromits old position. Thisis done by printing a space
at the old co-ordinates. Line 120 then prints the shape at the new position. In line 130 the old position is
updated to the current position before, in line 140, the computer repeats the whole process.

There are several BASIC commands that allow you to manipulate string variables in many ways. LEFT$,
RIGHT$, VAL, STR$ and so on are all covered elsewhere and will not be dwelt upon in this chapter. There
are two BASIC functions that are important to us at present however, CHR$ and SPKS.

The function CHR$(x) is used to obtain any character within the (extended) ASCII code. The ASCII code is
a standardised representation of the characters used by the majority of computers, and for a complete list of
these codes see Appendix 4. Although a number of these characters are not directly printable, CHR$(x) can
be used to access the majority of the set. For example entering PRINT CHR$(65) tells the computer to
PRINT an A on the screen, whilst PRINT CHR$(8) will PRINT a ‘back-space’ (move the cursor back one
position).

SPK$ is a function unique to MTX BASIC and can be extremely useful in the generation of screen displays.
SPKS is the Screen PeeK function which returns the character at the current cursor position, then moves
the cursor to the next PRINT position. There are no parameters associated with SPKS$, so the cursor must
be placed at the required position using CSR X,y before SPK$ can be used to read the character at that
position. The next program is an enhanced version of our earlier 'star mover example. The subroutine
starting at line 500 puts obstacles on the screen and line 85 uses SPKS$ to prevent you from bumping into
the obstacles. Type NEW, as usual, before keying in this program:

10 REM MOVEMENT WITH QOBSTACLES

=20 V8 5: CLS

30 LET X=0: LET Y=0: LET X1=0: LET Y1i=0

25 GOSUEBR 500

40 IF INEEY$="A" AND Y>>0 THEN LET Y=Y-—1
S0 IF INEEY$="Z" AND Y23 THEN LET Y=Y+i
€0 IF INEEY$="N" AND X0 THEN LET X=X—1

X

70 IF INEEY$="M" AND X<28 THEN LET X=X+1

80 IF X<*X1 OR Y«<>Y1 THEN CSE X1,Y1l: PRINT "3
E\?S\{lj:SF.: XrY: IF SPK$<>CHR$(3Z) THEN LET X=X1: LET
WO L8R X, Yr FRINT “#Uy
100 LET Xi=X: LLET Y1=Y

137

120 G0OTO 40

500 REM REANDOM OBSTACLES
510 FOR T=1 TO 15

S0 CSR RENDEZ8, RNDHEZE
550 FRINT CHE$(ES+RENDHZED
S0 NEXT T

530 RETURN

Line 85 prevents the 'star’ from running over any of the randomly placed objects. First of all, the CSR X,Y
instruction moves the cursor (which is invisible, of course) to the new position X,Y. SPK$ checks that there
is a space, CHRS$(32), at that position. If there is anything other than a space then the X,Y position is reset
to the old position X1,Y1 so that, in effect, no movement takes place. If there is a space then movement is
permitted. The actual movement is still carried out in line 90 just as in the earlier example.

This program seems to be working towards a game, doesn't it? If you constructed a maze instead of the
random obstacles and if you had a 'ghost’ or monster chasing you through the maze while you eat all the
dots that are scattered around you would have a fair rendition of a'PAC-MAN’ type game. What do we need
next? For now we'll leave the construction of the maze to you. Why not put the manual down for a while and
see if you can constuct the maze by yourself?. Don't worry if you can't because we'll be coming back to this
program later in the chapter and adding a routine that draws a maze for you.

As we have discovered, a PRINT statement enables characters to be PRINTed to the screen. But where do
these characters come from? Inside the computer there is an area in ROM in which the MTX stores all the
information required to make up each and every character. Each character is formed in a grid of 8 dots across
by 8 dots down.

Thus character grids comprise 64 dots (i.e. eight dots down and eight across). The dots that go to make up
this grid are called BITs (which is short for Binary digIT) and as there are eight bits to a byte the lines across
this character grid can be stored in a single byte. If a dot (or pixel as it is properly known) is ‘on’ then the bit
is set to a 1, if the pixel is 'off' then the bit is set to 0.

USER DEFINED CHARACTERS

The MTX makes the process of designing characters particularly easy as there is a special BASIC command,
GENPAT which is used to GENerate PATterns. By using GENPAT you can create your own charactes and
sprites. Since sprite creation is covered in chapter 10 we will concentrate on the creation of character shapes
in this chapter. The format for the GENPAT command is:

GENPAT p,n,d1,d2,d3,d4,d5,d6,d7,d8

It looks formidable doesn't it? However, despite appearances to the contrary it is quite simple to use.
Starting from the end of our syntax example, the numbers d1 to d8 are the eight items of data that are used
to define the shape of the character. As we have just seen, the data for the A shape is
16,40,68,68,124,68,68,0. When you create your own character shape you add up the bit pattern for each
row and use the resulting eight numbers, starting with the top row, in the GENPAT command to define your
own shape.

138

As previously stated, the GENPAT command is used to define sprites as well as user-defined characters.
The parameter p is used to tell the computer which type of shape we wish to create and this parameter
requires values in the range 0-7, which determine the type of the shape. A full explanation of the values 3-7
will be provided in chapter 10, so for the moment we shall concentrate only on the p values 0 to 2. Setting
p=0 allows you to redefine one of the ASCII characters from code 32 to code 127. Any, or all, of these
characters can be redefined using successive GENPAT statements. The second parameter, n, is the code
of the particular character that is to be redefined and so must be in the range 32 to 127.

Setting p=1 allows you to redefine one of the non-ASCI| characters, whose codes are between 129 and
154. These 25 characters cannot be typed in directly from the keyboard but can be PRINTed onto the
screen using the CHR$(x) function. They can be used in any situation where you need some user-defined
characters as well as the full standard character set. If p=1 the value for n must be between 129 and 154 to
specify the particular character for redefinition.

Setting p=2 allows you to create up to 8 multi-coloured user-defined characters where the characters have
the ASCII codes 147 to 154. Having previously defined the shape of one of these characters, using p=1,
you can then define the INK and PAPER colour for each individual row of the character. When using p=2,
each of the numbers d1 to d8 is used to define the colours for a single horizontal row rather than the

dot-pattern of the shape. The data values are made up using the colour numbers (0-15) where the total for
each row is:

VALUE= 16 * PAPER + INK

For example, you wanted the top row of your character to have a black PAPER colour and a light yellow INK
colour then the value for d1 would be:

VALUE(d1) = 16 * 1 + 11 = 27

You can only have two colours on each row, one PAPER colour and one INK colour, but you can define
different combinations of colours for each of the eight rows. You can, therefore, have up to 16 colours within

a single character, a graphics facility unique to the MTX range. Most other home computers struggle to
support four colours!

When creating your own character, the first step is to design the shape on an 8*8 grid like the one below
which illustrates the C character. If your character is going to be used on a text screen you can't define the
bit 0 and bit 1 columns. This is because the characters on the text screen are only six pixels wide as
opposed to the full 8*8 character that can be displayed upon a high-resolution graphics screen. When you
are happy with your shape you must add up the totals for each row to obtain eight numbers for the GENPAT
statement. Finally, you must select the character you are going to redefine and allocate the values of p and
n accordingly. For example:

Y CALCULATION DATA
A
L 1
u 2 6 3 1
E 8 4 2 6 8 4 2 1
S
L 64+32+16+8 = 120
* ok ok ok kK 128+64+32+16+8+4 = 252
* kX 128+64+32 = 224
* * 128+64 = 192
* x % 128+64+32 = 224
¥ x x Kk K X 128+64+32+16+8+4 = 252
* % K ok K % 128+64+32+16+8+4 = 252
* k* x % 64+32+16+8 = 120

@
~
(¢)]
[4)]
E=N
w
N
(e}

139

Right, now we have a PAC-MAN shape, let's replace the asterisk (*) character with it.
GENPAT 0,42,120,252,224,192,224,252,252,120

This can be typed in directly, as above, or you can add a line number and use the command within a
program. If you type it in directly (and press RET) then, whenever you type the "*' on the keyboard the
PAC-MAN shape will be PRINTed instead.

Adding the following line to our movement demonstration program will allow you to move the new shape
around instead of the "asterisk’.

19 GENFAT O, a2, 120, 252, 2824, 192, 224, 252, 252, 120

So, the first GENPAT paramater (p) tells the MTX that you wish to replace a character with an ASCII code
between 32 and 127 and the second paramater (n) tells it that the character you wish to replace is the
asterisk (*) as 42 is its ASCII code. If you key-in the movement program again with this additional line and
then RUN the program, you will see that the PAC-MAN is always facing to the right no matter what direction
he is moving, which is not very realistic, is it?

SIMPLE ANIMATION USING CHARACTER GRAPHICS

Simple animation can be achieved quite effectively on the text screen by creating several user-defined
characters and then PRINTing them alternately on the screen. In the case of our solitary PAC-MAN we
need to have a total of 5 shapes. We need four 'open-mouthed’ shapes for each direction of movement and
a single, general purpose 'closed mouth’ shape. The shape required for downward movement is as follows:

L R B 64+32+16+8 = 120

* k. ode ok k. 3k 128+64+32+16+8+4 = 252
* ok ok Kk ok ok 128+64+32+16+8+4 = 252
* ok * * 128+64 +8+4 = 204
x % * 128+64 +8+4 = 204
* * 128 +4 = 132
* * 128 +4 = 132
= 0

and so the GENPAT statement for our downward PAC-MAN is:
16 GENFAT Q,43, 120, 202, 252,204, 204, 1322, 132,0

Which redefines the character with an ASCII code of 43, the plus sign. Similarly, the upward facing shape is
defined by:

17 GENFAT O,44,0,132, 132, 204, 204, 252, 252, 120
and the left facing shape is defined by the following GENPAT statement:

18 GENFAT O, 45, 120,252, 28, 12, 28, 252, 252, 120
The final shape is the ‘closed-mouth’ shape, which is defined by:

19 GENFAT O, 46, 120, 252, 2092, 255, 252, 252, 2092, 120

140

If you try to RUN the program you will notice that our newly defined characters aren't actually being
PRINTed to the screen. This is because the asterisk is the ony character that is being PRINTed. Why don't
you see if you can get all of our PAC-MEN moving round the screen.

The following program listing is the completed PAC-MAN type game, using the shapes described above
and a similar method of moving around the screen as we used in the 'star mover' routines earlier in the
chapter. Points of special interest in this demonstration are, firstly the method for obtaining the simple
animation, lines 40 to 110. The variable A$ stores the relevant 'open-mouth’ shape for the direction of
travel. This is not directly PRINTed onto the screen. Instead line 87 increments a counter on each pass
through this section of the program between the values 0 and 4.

Line 89 then compares the COUNT. IF the value of COUNT is greater than 2 THEN B$ is set equal to the
‘closed-mouth’ shape, CHR$(46), ELSE B$ is set equal to the current ‘open-mouth’ shape A$. B$ is then
PRINTed onto the screen in line 90. The second interesting point is the simplicity of drawing a maze shape
using MTX BASIC. Twenty-three program lines, each of which PRINTs one screen line using Q for the walls
and a ' (SHIFT and 7) for the pills for the PAC-MAN to eat. You can create your own maze pattern by
altering these lines, 500 onwards.

10 REM FAC-MAN DEMO
15 GENFAT 0,42, 120,252, 224, 192, 224, 292, 252, 120
16 GENFAT 0,43,120,252, 252, 204, 204, 132, 132,0
17 GENFAT 0,<4,0,132, 122, 204, 204, 252, 252, 120
18 GENFAT 0,45, 120,252,28,12, 28, 252, 252, 120

13 GENFAT 0,46, 120,252, 252,

2,252, 252, 252, 120
20 BENFAT 0,36, 48,120, 180, 252, 252, 252, 252, 168
25 VS S5z CLS

30 LET X=1: LET Y=Z: LET X1=0: LET Yi=0: LET A%=CH
F$C32): LET B$=CHRE$(46): LET COUNT=0: LET SkK&=""

32 LET SCORE=0: CLOCE "000000"

24 LET G1X=35: LET G1X1=35: LET GilY=2: LET GlYi=Z
35 GOSUE S00

40 IF INKEY#$="A" AND Y>0 THEN LET Y=Y-1: LET A%=C

HF$ (440

SO IF INKEY$="Z" AND Y«23 THEN LET Y=Y+1: LET A$=
CHE$(43)

60 IF TINEEY$="N" AND X=:=0 THEN LET X=X-1: LET A%=C
HE$(45)

70 IF INKEY$='"M" AND X<28 THEN LET X=X+1: LET A$=
CHE$ (422

80 IF X<xX1 OR Y<>»Y1l THEN CSR X1,Y¥1l: FRINT " e

BS CSE X,Y: LET SK$=SFE$: IF SE$<:CHR$(32) AND SKE$
1:CHE$C(3Z39) THEN LET X=X1: LET Y=Y1

8& IF SkE$=CHR$(33) THEN LET SCORE=SCORE+1: CSE 15
yQ: FRINT "SCORE=";SCORE

87 LET COUNT=COUNT+1: IF COUNT:>4 THEN LET COUNT=0
g? IF COUNT:>2 THEN LET B$=CHRE$(46&) ELSE LET B%$=A

90 CSE X, Y: FRINT B$;
100 LET X1=X: LET Yl=Y
105 GOSUEB Z00

110 GOTO 40

200 REM MOVE GHOST 1

141

ET LET GiX=G61X-1 ELSE IF G1iX<X TH
+

LET G1$=SFK%$: IF Gi%$<:CHR®(3Z) AN
THEN LET G1X=G1X1 ELSE CSE G1X1,
Wovs: CSR GIX,G1lYi: FPRINT "$";

217 IF G1$:CHR$(31) AND Gi1$<CHR$(47) THEN FOR T=0

D Gi1%:=C
GiYi: FRIN

TO 15: PAFER T: FAUSE 100: NEXT T: GOTO 1000

220 IF BGlY:Y THEN LET G1Y=G1Y-1 ELSE IF GlY<Y TH

EN LET GilY= +1

2320 CSR BG1X G
$

C 1
n NT II$II.

IF
D G1%< >*CHE THEN LET GlY=G1lY
1¥1: FRINT : CSR G1X,G1Y: PRI
260 LET G1X1=6G1X: LET GiY1=G1lY

280 IF G1$>CHR$(31) AND Gi¢$ICHR$(47) THEN FOR T=0
TO 1S: FAPER T: PAUSE 100: NEXT T: GOTO 1000

290 RETURN

S00 REM FRINT THE MAZE

50z GENFAT 0,81,252,252, 252,252,252, 252, 252, 252
504 GENFAT 0,339,0,0,0,48,48,0,0,0

510 CSE O,1: FRINT "QEEAERAEEAGAGACEAEAACEAAELCEEE
QEEARERER " ;

S0 CBR O,

rrrry oy,

Gly
GlY: LET Gl$=SFK%$:
3?1

3

= FRINT "Q*rrrrosrrrryryyrrrrsrrysnsvyy
’

530 CSFE 0,3: FRINT "R’QORECEGEEEE’'EEAAGCLOEEEERAGE’TAEE

geeeees’ 2";

S40 CSR 0O,<4: FRINT "GQ’EEREREGEAEE'T GRLACHALCEREEEE’ QGG
geeeeea’ e ;

550 CSE O,
lll!!oDlD".

S0 CSE O,

5 F'F'.INT llG’!!G!G!I!!!!!P!!!I!rlr!!!t!!rlrl!
v
=8

000R’ 0RO ;
y 7
!
8
’

FRINT "G’QEC’°CRCE' A’ QEEERACAE’TREEERT
S70 CSE ©

DDOD""D

580 CSE 0, 8:
ODOD’DDDO”'

530 CSR ©,3: FRINT "QQEE’eeeeT’'a’'arrrrrrorprrr?
aaee’eeee;

E0O0 CSF 0O, 10: FRINT "Q'7777''QQEQ’E’'QA'QCEER’TE'E’GE
QC!!!V!!IIC!II;

€10 CSF ©O,11: PRINT "@'QREEER'EQEGA'E'QRT' 77 7'Q'Q'E0E
o’ eeeee’ " ;

E£x0 CSk O, 1Z: FRINT "G@'Q@EEER’’’’’r’r’pgrgeeee’ @’’’
T peeeatet;

20 CSR O, 13: FRINT "Q@'EREECETAGEATETQTTYY77'Q'Q’ Qc
oeraeeee’ o' ;

€40 CSF O, 14: FRINT "Q7’''’'’QRER'CE' Q' CEAAR'E’E’ QG
@myrrrr!l@n;

6550 CSR 0,15: FRINT "GGEE’GEGEG’’''Q'R’77'7''Q'Q’"”
TOERET ROA " ;

€60 CSE 0O, 1
rpee’ eree " ;

3
’
€70 CSF 0,17: FRINT "Q7'’’'QEEQE’'GEGR’'’7'' 11771 OGEEE
iotalels R X

E80 CSFE ©,18: FRINT "G'QQR’QEECEHE'OEEACETACEAACEEETARCEE
rpearrae’e";

FRINT "@'’’’QREE’'GEEE’ "' aQeR’

FRINT "QGEGEE’EEEE’CERT'T'ACLEE’EER’ 'R’

FRINT "QEEEE’GEEE’AE’ T’ ARECE’ AEER' 'R

6'}(-) CSF' ("’ 1':’: F'F'INT ”G\,DD',”"'r,,”!",,,,"',”
';;"'OO;D"; ' T

700 CSR O, 20: FRINT "0’(000G0EC0GEE’CERERERELEENET GG
0O0EEERE’ 0 ;

142

710 CSR 0,21: FRINT "Q’GEEEAAAEEEE'QAQE inlal
QEQGQQG@’&"; EEEEEARAEERE’T OC

7::.:0 CSE' (:),22: F'E"INT IIQ!!l7!,fP!FF"V!‘Ill"!llllll"
!’l’!’l’]@ll;

30 CSR 0,23: PRINT "QGEEARCEGLEEAEEEEEREEEEEAEECOCCE
gaeeeeeea” ;

800 RETUEREN

1000 REM END OF GAME

1010 V5 S5z CLS

1020 CSRE 4,3: FRINT "YOUR SCORE WAS ";SCORE
1030 CSE 4,5: FPRINT "YOU LASTED ";

1040 PRINT MID$C(TIME$,3,2);" MIN ";MIDS(TIMES,S, 2
; " SECS "

REFORMED CHARACTERS

There is another interesting and simple method of creating animated displays with user-defined character
graphics: By using the GENPAT command to change characters that are already on the screen, the
changes are made in real-time!

In the example which follows a block of A’s are initially PRINTed in the middle of the screen. The tricks start
at line 100 where, within a FOR...NEXT loop, the PATtern of the A is redefined. Type it in and give it a try.
Remember that this is only a demonstration and you can change it around any way you wish. Using
multi-coloured characters can be particularly stunning and don't forget that you can change several different
character patterns.

10 REM #Edfddfidifsisiisddsssddiiss
12 REM * DEMONSTRATION FROGRAM #*
14 REM #* CHANGE CHARACTERS £
1& REM ®* THAT ARE ALREADY ON ¥
18 REM # THE SCREEN *
70 REM #fddsdddddddsddadsdssiss
20 FOR T=2 TO 13

40 CSR 10, T: FRINT "AAAAAAAAAAAAAAAA"T;
45 FPAUSE 200

S50 NEXT T

100 FOR X=2 TO 7

110 LET Y=2"X

120 GENFAT O,65,YsYsYyVYrYyYy¥YyY
120 FAUSE 200

140 NEXT X

150 GATO 100

After you've RUN this short program you may not be over impressed by the results. Remember that it is a
demonstration program, you can write something better, can't you? When you have read through the next
chapter on high-resolution graphics, you can then come back to this program and write an example that
(tries) to perform the same task using the hi-res commands. In so doing you'll appreciate the speed of the
techniques we have just outlined.

143

MEM-1C

CHAPTER 9 : HI RESOLUTION GRAPHICS

SCREENS

In the pre-ceding chapter we took a fairly extensive look at the MTX's Text Screen. In this chapter we will be
exploring the capabilities and potential of the full Graphics Screen - the so-called 'High-Resolution Screen'.
As you probably know, the MTX's text screen is also known as the low-resolution screen, but before we go
any further, it is probably worth taking some time out to clarify the concept of screen ‘resolution’.

The full-size text screen allows us to place characters in forty columns across the screen and in twenty-four
lines down the screen (or up, if you're standing on your head!). You cannot, however, place a character
BETWEEN two column positions, nor BETWEEN two lines of text. The text screen should be considered as
a grid of 960 squares (40*24=960); thus, it is possible to place characters in a maximum of 960 positions
on the screen. The resolution of this type of screen is 960 squares, which is considered a low-resolution
screen.

We have already seen how each character displayed on the text screen comprises a series of dots in an
eight by six dot grid. We also established that it is possible to alter the dot (or pixel) pattern of any character
by creating 'user-defined’ characters. Thus it should be fairly obvious to the alert reader that the screen is
actually made up of many more pixels (short for Picture Elements) than the 960 character positions that the
text screen allows you to use.

Once the potential of this revelation has finally hit home, the graphics enthusiast will be relieved to learn that
it is possible (with a large amount of programming effort) to individually control these pixels. For instance, by
turning certain pixels on and others off we can produce a circle on the screen! In fact, the MTX graphics
screen and its associated commands offer a potential far in advance of the majority of micros in your micro’s
price range.

The full graphics screen is made up of 256 pixels across the screen and 192 pixels running vertically down
the screen. This gives us a total of 49,152 individually addressable pixels. Since it is possible to turn
individual pixels on or off (all 49,152 of them!) the full graphics screen is described as a 'high resolution’
screen. Later on in the chapter, you will see that the screen colour resolution is 6144 locations (which,
presumably could be described as as medium- resolution). But enough of theory! Let's see how we can
exploit the MTX's graphics facilities.

The full graphics screen is accessed by using the command:

VS 4

This should always be followed by the CLS command, which clears the screen to the current background
colour. The first important point to remember is that while it is possible to put text on to the graphics screen,
itisn’t possible to draw graphics on the text screen. You'll be glad to learn that it is just as simple to PRINT
text on the hi-res screen as it is to PRINT to the text screen. In fact, the hi-res screen accomodates the
majority of the text-handling functions that we saw in the last chapter.

This said, it is important to note that the size of individual characters on the hi-res screen is eight by eight
pixels and not six by eight pixels of the text screen. Since there are 256 pixels across the graphic screen,
the screen size for text becomes 32 characters (256/8) across, by 24 lines down and the characters are now
two pixels wider. When the standard character set is being used. the extra width of each character widens
the gap between each letter or number. When creating user-defined characters for the high-resolution
screen you must design your shapes using the full eight by eight grid or the resultant shapes will look rather
lopsided! You can see this quite clearly by changing line 20 of the PAC-MEM program in the last chapter.
Thus:

Z0 VS 45 CLS

144

When you RUN the program you should notice three things of particular interest.

1. The computer makes a laudible attempt at displaying the maze. Most home micros would have
floundered if they had been asked to shift from a text screen to a graphics screen. But not your MTX! The
maze from our PAC-MEM program has not retained its original shape because the parameters used by the
CSR command on the text screen are different to those which are applied to the graphics screen. On the
hi-res screen there are only 32 columns and consequently the x- parameter for CSR statement must be
within the range 0-31.

2. User-defined characters are still defined and manipulated in exactly the same way (however, you should
use the eight by eight grid when creating characters on the graphics screen). Similarly, all of the string
handling functions such as CHR$, LEFT$, RIGHT$ and so on are unchanged. In essence, text is handled
on the graphics screen in exactly the same manner as on the text screen, providing you allow for the shorter
line length.

The only commands that don't perform in exactly the same way on both screens are PAPER and INK. But
never fear - the MTX is equipped with the COLOUR command which provides access to the same facilities.
The MTX is unique in the home computer world as it permits a diverse mixture of graphical modes to
co-exist with very little programming effort.

3. The final point to notice as far as PAC-MEM is concerned is that the maze now displays blocks of vertical
stripes. These are caused by the wider characters used on the hi-res screen. The walls of the Text screen
maze were defined using a 6*8 character and the computer is now displaying an eight by eight character
with the first two pixels of each character row set to a zero. As previously explained, when creating
user-defined characters on the graphics screen you should remember to use eight by eight characters.

The MTX possesses a suite of customised BASIC commands and functions for use on the graphics screen.
The first we shall outline is the aforementioned COLOUR command, which takes the following format:

COLOUR p,n

where p is the parameter which establishes the display element whose pigment is to be defined and n is the
number assigned to the colour. The parameter p uses values in the range 0-4 to effect the following screen
criteria:

value of p function

PRINT BACKGROUND COLOUR
PRINT INK COLOUR

PLOTTING BACKGROUND COLOUR
PLOTTING INK COLOUR

SCREEN BORDER COLOUR

AWOWN=2O

The value of n can be any of the fifteen colour codes supported by MTX BASIC, or when set to zero can
specify transparent displays. (In other words, a zero allocation sets the foreground display colour to the
current background colour.) Unlike the PAPER and INK used on the text screen, a COLOUR command with
parameter p=0 or p=1 will only affect PRINT statements following the COLOUR command - it does not
effect the colour of text that is already on the screen. The following program will mutate the screen through
all fifteen colours:

10 REM #®ffdddddddddidiisiidids

12 REM # GRAFHIC SCREEN #

14 REM # DEMO FROGEAM 1 ¥

16 FEM #Efdfdfssdsssddidhitds

20 V5 4: CLS

30 COLOUR ©,1: REM BLACE FAFER

40 COLOUR 1,3: REM LIGHT BLUE INE FOR FRINT

145

o0 COLOUR 3y1: EEM BLACEKE FLOT COLOUR

&0 FOR T=1 TO 15

70 COLOUR Z,T: CLS : FAUBE 300

B0 NEXT T

30 GOTO 20

100 REM #%% FRESS BRE TO EXIT FROGEAM ¥

The most important point demonstrated by the above routine is the inclusion of the CLS command in line
70. You must clear the graphics screen before you attempt to change its background colour. It is not
possible to globally change the colour of the screen whilst maintaining the current screen display. Remove
the CLS instruction from line 70 and you will find that no colour changes take place. If the CLS instruction is
omitted, the COLOUR command will only change the background colour for the next plotting command.
Change line 70 and add line 75 to see the difference:

10 REM #dfdddddssssdisiotiisd

12 REM # GRAFHIC SCREEN *

14 REM #® DEMO FROGREAM 1 *

16 REM #Fidiffidddiiiisiiiiss

20 VS 4: CLS

30 COLOUR O,1: REM BLACE FAFER

40 COLOUR 1,5: REM LIGHT BLUE INE FOR FRINT
50 COLOUR Z2,1: EEM BLACK FLOT COLOUR

&0 FOR T=1 TO 13

70 COLOUR Z,T: FAUSE S0O0O

75 FLOT END#z35, END#1%31

80 NEXT T

90 GATO 20

100 REM #%% FRESS BRE TO EXIT FROGRAM ik

Now we have fifteen points PLOTted on the screen, each with a different background colour (of course you
can only see fourteen points because one of them is the same colour as the screen). Since line 75 PLOTs
these points at RaNDom positions around the screen the display will be different each time you RUN the
program.

Earlier we mentioned that the colour resolution on the graphics screen is not as great as the PLOTting
resolution. There are 49,152 individual pixels on the screen but only 6144 (49152/8=6144) separate colour
locations. Each location is eight pixels wide by one pixel deep, which will only permit one PLOTting colour
and one background colour within a single location. This is why our example displays fourteen horizontal
bars (the background colour), each containing a single PLOTted point. If you examine the display carefully
you'll discover a single point by itself, this is because the background colour for that point is the same as the
background colour of the screen.

Although the colour resolution on your micro is considerably more sophisticated than on most home
computers, there are invariably occasions when compromise is the order of the day. For instance, drawing
two intersecting lines, where each line uses different background and PLOTting colours, will cause a colour
abberration at the point at which the lines cross. This only becomes unacceptably conspicuous when
vertical or near vertical lines are used.

PLOTTING

PLOT is a simple command which allows you to activate individual pixels using the syntax:

146

PLOT x,y

where x and y are the co-ordinates of the point you want to PLOT to the screen. The x co-ordinate must be
within the range 0 to 255 (x is a cross, remember) and the y co-ordinate must fall between 0 and 191 .
Should either of these parameters fall outside their ranges your program will stop with an error report.

The following program PLOTSs points to the screen at random using a randomly generated colour for each
PLOT. If you allow the program to RUN for a while you'll be able to see the colour resolution display taking
shape. Even though computers are incredibly fast beasts you'll have to RUN this routine for about thirty
minutes to witness its full potential!

10 FEM fddfdsfsdsddsdesddiiss

12 EEM #® GRAFHIC SCREEN #

14 REM #* DEMO FROGEAM Z *

16 REM #fFFfFiFfdffisisddsdisss

20 V8 4: CLS

30 COLOUR Z2,RND#15

40 FLOT REND#255, RND*x191

50 GOTO 20
Remember, each sequence of eight horizontal pixels can only contain one PLOTting colour and each new
PLOT within a given sequence will change the colour of any other pixel PLOTted in the block in question.
By combining a number of PLOT statements we can use this command to draw lines and shapes. The

following program demonstrates the creation of a horizontal line starting at position 100,100 and ending at
position 200,100:

10 REM *¥+ifddsddiddsddrddsssss

12 REM % GRAFHIC SCREEN ¥

14 REM #* DEMO FROGRAM 3 %

16 REM #®ifsfssdddssdifssiiiiy

20 VS 4: CLS

30 COLOUR 3, 15

40 FOR T=100 TO 200

50 FPLOT T,100

&0 NEXT T

100 GOTO 100
Although such a routine effectively demonstrates the action of PLOT, in real terms code like this becomes
redundant when we recognise the power of the LINE command, which is faster and much easier to use. As

you would expect, LINE draws a line on the graphics screen between two sets of co-ordinates. The syntax
for a LINE statement is:

LINE sx,sy,ex,ey
where sx and sy are the start co-ordinates of the line, and ex and ey are its end co-ordinates. As always, the

co-ordinate parameters must be within the range 0-255 for sx and ex, and 0-191 for sy and ey. The following
program uses LINE to draw a box.

10 REM £iff++FdddiEEdssdsfEddEsF
12 REEM # GRAFHIC SCREEN S

147

1 REM ¥ DEMO FROGREAM 3 *

16 REM #®iff$dddfssiiidsssissssd

20 VS d: CLS

S0 COLOUR 3, 13

40 LINE 100, 100, 200, 100

S0 LINE 200, 100,200,350

0 LINE 200,50, 100,50

70 LLINE 100,50, 100,100

100 6OTO 100
When designing screen displays it's a good idea to sketch out the required pattern before you start to write
the program. This is especially important if you want to create complicated patterns which use constant

co-ordinates (as opposed to variable co-ordinates calculated by the program). By outlining your design on
paper you will save yourself hours of programming ‘'guess-work'.

Picasso could probably have created more satisfying designs than those produced by the following
program, but he would never have been able to match your micro’'s speed:

10 FEM ##fFddifddEsdissrssisss
12 REM #® GRAFHIC SCREEN ¥
14 REM * DEMO FROGREAM 3 S
16 REM #ifdddiddisisddiiiiiy
20 V8 4: CLS

20 COLOUR 3,END*15: CLS

40 LLET X1=0: LET Y1=0

50 FOR T=1 TO S0

60 ILET X=RND#255: LET Y=RND#131
70 LLINE X1,Y1,X,Y

8O LET X1=X: LET Y1=Y

90 NEXT T

100 FAUSE 1000

110 GOTO 20

The last of the MTX BASIC graphics commands that we shall look at in this section is CIRCLE. There are no
prizes for guessing the function of this keyword! The syntax for the statement command is:

CIRCLE x,y,r

where x and y are the co-ordinates of the centre of the circle, and r is the radius (measured in pixels). As
with all of the other graphics commands, the CIRCLE must stay within the confines of the screen, otherwise
the program will stop with an error report. The following program shows the CIRCLE command in action:

10 REM #3f¥fdfddsdddedsbsdd st
12 REM # GRAFHIC SCREEN %
1l REM % DEMO FROGRAM 3 *
16 FEM #3Hiddfddddsedsdssrisns
20 VS 4: CLS

148

30 COLOUR 2,6

40 COLOUR 3,1: CLS

S0 FOR T=10 TO 80 STEF S

£0 CIRCLE 10+T#2,95,T

70 NEXT T

100 60TO 100

110 REM #%% FRESS BRK TO EXIT FROGREAM #iH¥

The trigonometric purists amongst you will probably have noticed that the circles produced by this routine
are more oval than circular. Why should this be the case, since the circle’s radius is constant and the
computer is measuring the radius in pixels? Well, as we have already discovered, each pixel is wider than it
is high, and consequently a circle created from rectangular pixels will necessarily resemble an elipse. This
is undoubtedly a shortcoming of micro graphics, but one which is shared by every other home computer on
the market.

By combining the three graphics commands - PLOT, LINE and CIRCLE - with the potential of PRINT and
user-defined characters, you should be able to develop programming techniques which will satisfy your
graphical requirements. Apart from the dramatic displays required by a games program, these commands
also facilitate the creation of graphs, bar charts or pie charts which enable you to turn visually tedious
textual displays into graphically satisfying representations of serious data. The MTX is particularly suited to
this type of application because of the ease with which it facilitates the combination of text and graphics on
the screen. Why don't you take another break and try writing some programs which exploit the flexible
graphics commands we have dealt with so far?

TURTLE GRAPHICS

The graphics screen, as we have seen, is made up of 256 pixel positions across the screen and 192
positions down the screen. Lines are created by defining their start and end co-ordinates within this
256%192 grid (where position 0,0 is the bottom left-hand corner of the screen). You'll doubtlessly be
intrigued to learn that this system of referencing screen positions uses 'Rectangular Cartesian Co-
ordinates’, which are rather similar to the grid references of maps. Although such parameters are perfectly
adequate for most applications, they obviously become a trifle cumbersome in the design of more complex
shapes.

A few years ago the problem of teaching young children to write computer programs was radically
advanced by the introduction of a new computer language called LOGO. LOGO is easy to learn and fun to
use. LOGO's accessability is primarily explained by the fact that it uses a small, friendly robot to control the
creation of graphical displays. When LOGO was designed, its command structure was deliberately kept
simple. Consequently the language only utilises self-explanatory commands such as TURN LEFT, MOVE,
TURN RIGHT, PEN DOWN and PEN UP.

The crucial difference between this system of creating designs and the more complex Cartesian
Co-ordinate system is that the movement of the LOGO robot (or turtle as it came to be known), is
considered in terms of its CURRENT POSITION, and not defined in terms of a pre-defined display position. It
is obviously a lot easier to tell the turtle to 'turn left and then move 10 positions forward’, than trying to work
out the co-ordinates of the start and finish positions of the line required.

While the graphics commands available in MTX BASIC cannot really be described as genuinely
'LOGO-like', the dialect offers four graphics statements that are based on the same co-ordinate system.
This system is known as the 'Polar Co-ordinate’ system because it always uses the current position as its
point of reference.

The first of these 'LOGO-like' commands is ANGLE, which establishes an initial plotting direction in terms of
an angle from the horizontal. Note that this command's definition makes no reference to distance, since the
only function of the ANGLE statement is to specify a plot direction. The syntax of ANGLE is:

149

ANGLE x

Where the value of x is measured in radians. For those of you who are used to measuring angles in units of
degrees (99% of the population, no doubt), we should make it clear that there are 2*PI radians in a circle
(which is 360 degrees) and 1 radian is equal to 57.2957795 degrees! For a system that is supposed to
simplify matters, we seem to be dealing with values that are more than a little complicated.

The secret of success when considering angles in terms of using radians is to think of 180 degrees as 1*PI
radians (don't bother to work out the exact value, let the computer cope with the multiple decimal places!).
Obviously any other angles can be expressed as a fraction of Pl and the table below offers the degree to
radian conversion for a number of familiar and useful angles.

DEGREE TO RADIAN CONVERSION
DEGREES RADIANS

360 2*P|
270 3*Pl/2
180 Pl
90 P2
60 PI/3
45 Pl/4
30 PI/6
22.5 PI/8
15 PI/12
10 P1/18
7.5 Pl/24
5 PI/36
1 Pl/180

An ANGLE statement with an argument of 0 determines a horizontal plotting direction facing to the right.
Similarly, ANGLE PI/2 (90 degrees) establishes a vertical plotting direction facing upwards and so on. The
function of ANGLE will become more apparent once we have taken a look at the next command in this
sequence, the DRAW command:

DRAW x

where x is the length of the line (measured in pixel units) to be drawn. This provides us with two forms of
graphical instruction, one of which specifies direction (ANGLE) whilst the other determines the distance
(DRAW) to be drawn. We can now move on and draw a line utilising a routine like this:

20 VS 4: CLS
30 FLOT 100, 100
40 ANGLLE FI/Z2
S50 DREAW Z0
100 BOTO 100
The effect of this program is the production of a vertical line which is 50 pixels length. Although this is not

intrinsically very exciting, the best is yet to come!

Although your micro will always remember the current plot direction, the PHI command can be used to alter
this direction. Whenever the MTX encounters PHI it adds the value of the statement’s argument to the plot
direction currently stored in the computer's memory. Let's take a look at the ways in which this command's
effects can be exploited. Consider how you would go about drawing a square on a piece of paper. If the
square has sides which are 50 units long, you would have to complete the following procedure:

Starting with the first vertical side (ANGLE PI1/2) you would draw a line whose length was 50 units (DRAW

50). Next you would turn left (PHI P1/2) and draw a second line (DRAW 50). A second turn to the left (PHI
P1/2) would be followed by a third line (DRAW 50). To complete the square, a third turn (PHI P1/2) would

150

have to be followed by the last line (DRAW 50). The following program turns LOGO into BASIC:
20 VS 4: CLS
S0 FLOT 100,100
40 ANGLE FPI/Z
S0 DREAW S50
60 PHI Pl1/2
70 DREAW S50
80 PHI PI/Z2
90 DREAW S0
100 PHI FI/Z
110 DRAW S0
120 GOTO 1z0

This program produces a square which is plotted without reference to screen co-ordinates (apart from the
initial PLOT command in line 30). The most interesting point to note when using polar co-ordinates to alter
the position of our square is that it only requires the modification of the initial PLOTting position (line 30). If
you add the following lines to DEMO PROGRAM 2 you can draw 21 squares:

25 FOR T=€0 TO 100 STEF 2

30 PLOT T,T

115 NEXT T

If you attempt to reproduce our last example’s screen display by using LINE statements the advantages of
polar co-ordinate based commands will become clear. Returning to the original version of DEMO
PROGRAM 2, the orientation of the square can obviously be modified by changing the initial plotting
direction (line 40). We'll leave this particular development as an exercise for our more imaginative readers!

The final LOGO-type command offered by MTX BASIC is ARC. The syntax for ARC statements is:
ARC x, theta

The ARC command enables the creation of an arc of a circle with radius x through an angle of theta (where
theta is measured in radians). To draw a complete circle using ARC you would have to specify an angle of
2*PI (360 degrees). The angle (theta) established by the statement's second parameter is always added to
the current plotting direction, in much the same way as a position determined by a PHI statement. This is
demonstrated in the following example which adds rounded corners to our square:

20 V8 4: CLS

23 INK 1

30 FLOT 100, 100
40 ANGLE PI/2Z2
SO DRAW S0

&0 ARC ZO0,FPI/Z2
70 DREAW S0

80 ARC 20,FI/Z
90 DRAW S0

100 ARC 20,FPI/Z2

151

110 DRAW S50

120 ARC 20,FI/2
130 DRAW S50

140 GOTO 140

Once again, the time has come for you to put down your manual and revel in the fruits of your studies! We
have now covered all the MTX drawing commands operative on the graphics screen. You can combine
them in any way you choose (including PRINTing text on the screen), and the only limitation which can
inhibit the potential of your graphical creations is your own imagination! So take a break and let rip!

ATTRIBUTING VIRTUAL SCREENS

Welcome back! There are only three MTX graphics commands which remain to be explained in this section.
The first is ATTR, an exclusively graphical command and the other two are unigue to MTX BASIC - DSI and
CRVS.

ATTR is short for ATTRibutes and is used to alter the effect of screen-based statements like PRINT and
PLOT. The syntax for ATTR is:

ATTR p,n

The statement's p parameter is used to establish the display element to be controlled, whilst the value of n
actually switches control on (n=1) or off (n=0). Once an ATTRibute has been turned on, the results of all
other display commands operating on the graphics screen are modified. An ATTR statement will continue to
exert its influence until it is turned off again. It should be stressed the ATTR command has no effect when
used on the text screen, and is only of value when utilising the graphics screen.

The effect of using p=0 is to reverse PAPER and INK colours for all subsequent PRINT statements. This
process is known as reversed PRINTing. The reversed print facility is very useful when specific lines on the
screen require highlighting. For instance:

10 REM d#ddfddddeiide st s

12 REM 44 ATTRIBUTES B 3

14 FEM #k% DEMO PROGRAM 1 ik

16 RFEM #dddddsssddiddid it ids

20 V8 4: CLS

S0 ATTRE 0,0: EEM #x% TURN OFF ik

40 L8R S,4: FRINT "GAME OVER"

S0 ATTR O, 1: REEM #33 TUEN ON #i%

0 CS5F 3,61 FRINT "FLAY AGAINT"

70 ATTRE 0,0 EEM #®if% TURN OFF aGAIM #i%

280 CSK Z,20: PRINT "FRESS ANY KEY TO FLAY AGAIN

30 FAUSE S0

100 ATTR O, 1: REM ##% TUEN ON AGAIN i

110 CSE 2,20: FRINT "FRESS ANY KEY TO FLAY AGAIN "

120 FAUSE 50

130 IF INEEY$<:"" THEN STOF ELSE GOTO 70

152

The flashing effect produced by this program is achieved (in lines 70 to 130), by alternatively PRINTing
normal and reversed characters at the same screen position. Each time a PRINT statement is executed it
wipes out any characters already displayed at that position.

The effect of using p=1 is to reverse the pattern of pixels that are switched on. This produces a different
display to that created when p=0 because, in this case, the ATTR command will reverse (or turn off) only
those pixels that are ON. The use of p=1 almost overPRINTS one character with another, but not quite.
Overprinting implies that one character is PRINTed on top of another without wiping out the first. The ATTR
1,1 command does just this, except under circumstances in which there is already a pixel ON, and the new
character also attempts to turn ON. The result of this type of graphical confation is to turn the pixel in
question OFF, which often has the effect of rendering alphanumeric characters unreadable. This said, it's
worth noting that this consequence of the ATTR function can be profitably exploited when applied to

user-defined characters. The following example shows the effect of using ATTR 1,1 on the letters of the
alphabet:

20 V8 4: CLS
20 FOR T=0 TO :
40 CSR 3, T

S0 FOR X=0 TO 23

60 FRINT CHRE$(ES-+XD;
70 NEXT X

80 NEXT T

90 FAUSE 1000

100 ATTE 1,1

110 FOR T=0 TO 23

120 CSRE 3, 7T

130 FOR X=0 TO =25

140 FPRINT CHR$%(ES+X);
150 NEXT X

160 NEXT T

170 GOTO 170

.
)

The last two values for the control parameter p are used with graphics-based commands like PLOT and LINE
(as opposed to the character-based commands). If p=2, pixels will be unPLOTted. In other words, pixels in
the INK colour will be reversed to the PAPER colour. The effect of this parameter is demonstrated by the
following program:

20 V8 d4r CLS

30 ATTR 1,0: EEM TURN OFF OVERFRINT
40 FOR T=0 TO 130 STEF 3

SO LINE O, T, 255, T

60 NEXT T

70 FAUSE 1000

80 ATTE Z,1: FEM TUREN ON UNFLOT

S0 FOR T=0 TO 130 STEF 10

100 LINE S50, T, 200, T

153

14
12

15

0
o}

(@]

NEXT T
ATTR Z2,0: REM TURN OFF UNFLOT
GOTO 130

This program should first draw a screenful of normal horizontal lines. Lines 80-110 will then unPLOT the
middle of every other line on the screen and effectively erase the lines in question.

The final legitimate value for ATTR's p parameter is p=3. When you turn this ON by coding the statement
ATTR 3,1 anything plotted in the background colour takes on the foreground pigment, whilst the foreground
display takes on the background colour. In other words, an unplotted point is plotted and a previously
plotted point unplotted! Although you can't use this command to PRINT characters over graphics displays,
you can draw graphics over previously PRINTed text.

When an ATTR 3.1 command is being processed the CLS instruction does not clear the graphics screen.
Instead, these parameters allow you, for example, to change the PAPER and INK COLOUR of the display.
Try the following program and you'll see how ATTR 3,1 allows you to superimpose a variety of shapes:

10
1z
1)

FEM #tddffdddedsdsdbdesddsd s
FEM FdE ATTRIBUTES FEE
FEM $%%+ DEMD FROGRAM 3 ##F%
[R 0 e 0 e e e . A o s e e % 3
V8 4: ATTR 3,1

EPEOUE! Oy,<4: COLOUR 1,15: COLOUR Z,4: COLOUR 3,1

CSE 7,9: FRINT " THIS IS o
CSR 7,10: FRINT "A DEMONSTRATION"
CSR 7,11: FRINT " OF ATTR 3,1 "
FOR T=20 TO 170
LINE 30,Ty215,T
NEXT T
CIRCLE 122,95,80

FLOT 20,30

ANGLE O

DRAW Z05

FHI FI/Z: DEAW 130

FHI FI/Z: DRAW 205

FHI FI/Z2: DREAW 130

FOR T=1 TO 15: LS

COLOUR ZyEND#15

COLOUR 2, T

FALISE 1000

MNEXT T

ATTR 3,0: FEM TURN OFF OVERFLOT
GOTO =220

154

Although all the variations of the ATTRibute statement can be combined, there are few situations in which
such a fusion would be required. This said, it's worth noting that if you do decide to combine ATTR
functions, the results produced by ATTR 2,1 and ATTR 3,1 are quite interesting - nothing happens! This is
not as daft as it seems. As you'll see in the next chapter, your MTX offers a PLOT- SPRITE facility which
makes use of the plotting positions on the graphics screen (more on this later). Secondly, when using the
Polar Co-ordinate command system (ANGLE, DRAW, PHI etc.), it is possible to modify the plotting position
without affecting the screen display. In other words, MTX BASIC allows the simulation of the PEN-UP and
PEN- DOWN commands which are normally only available to LOGO programmers.

USING VIRTUAL SCREENS

So far we have considered the text and graphics screens as immutable fields of display. We'll now reveal that
MTX BASIC makes it possible to divide the screen into a number of smaller screens, which can be defined
using your micro's Virtual Screen facility.

When you first turn on your computer (and whenever you are faced with the BASIC 'Ready’ prompt after
RUNning a program), the MTX screen is divided into three separate (but invisible) display areas.

The top nineteen lines of the screen are referred to in MTX BASIC as Virtual Screen 1 (VS 1) - the listing
screen. The next four lines are referred to as Virtual Screen 0 (VS 0) - and this is the entry screen where you
enter program lines. The screen's bottom line is Virtual Screen 7 (VS 7) - the message screen, used by the
computer to display error messages. Each of these screens is entirely independent, which means that no
display function appearing on one screen interferes with another screen’s display. A unique MTX BASIC
feature facilitates the creation of customised Virtual Screens which can be defined to satisfy the display
requirements of specific programs. The statement which enables the creation of user-defined virtual
screens is CRVS. It takes the following format:

CRVS n.t,x,y,w,h,s

This rather formidable set of parameters determine the following display criteria:

n Screen identification number (0-7)
t Screen type. 0=text 1=graphics
X X Co-ordinate of top-left corner
of VS screen
y Y Co-ordinate of top-left corner
of VS screen
w Width of virtual screen in characters
| Depth of virtual screen in lines
s Number of characters per full line
n Let's look at each parameter in turn. The first is n, the screen number, which must be in the

range 0 to 7. This said, you mustn't forget that the computer uses some of the screens
represented by these values for its own purposes. To be on the safe side, you should only
use screens 2, 3 and 6 when defining your own display area, as on returning to the “Ready”
prompt the computer redefines VS 0, 1, 5, 7.

B~ The second parameter, t, defines the screen type - t=0 accesses the text screen and t=1
specifies the graphics screen. Remember that you can’'t mix screen types. You cannot
create a smaller graphics screen within the main text screen (or vice versa). Neither can
you simultaneously display two different types of virtual screen. It's either text OR graphics
- like oil and water, they don’t mix!

X The next pair of parameters (x and y), are the co-ordinates of the top left corner of your
Virtual Screen. These parameters are measured in characters and lines from the top left
corner of the main screen. These parameters use exactly the same principle as that
employed by the CSR command to position the cursor - forty characters wide for the text
screen and thirty-two characters wide on the graphics screen.

W Following the x and y parameters are the values which specify the width (w) and the depth

155

(1) of the Virtual Screen (again measured in characters across and lines down the screen).
The final parameter determines the number of characters per full line for the screen type
(i.e. 32 for a graphics screen or 40 for the text screen).

One of the most valuable features of user-defined Virtual Screens is that they operate
independently from the main screen and each other. For example, when using the graphics
commands, plotting co-ordinates start at 0,0 in the bottom left corner of every virtual screen
that has been defined, NOT the bottom left corner of the main screen. Similarly,
co-ordinates for CSR statements take their start positon from the top corner of the current
Virtual Screen.

When using graphics screens, the colour of each Virtual Screen can be independently
modified, using straightforward COLOUR commands. On the text screen, however, you
are still restricted to a single PAPER and INK colour for the entire screen - in general the
use of virtual text screens is more restricted than equivalent graphics screens.

Once a Virtual Screen has been defined (using CRVS), it can be called into use within a
program by using a VS (screen number) statement. All subsequent commands will be
directed to the specified screen until another VS instruction is encountered.

To give you a taste of the potential offered by the Virtual Screen facility, the following
example creates a television screen on your television screen! It's best if you do a cold start
before typing in this program, so RESET the machine and away you go:

10 REM
© REM
- FEM
FEM
20 VS 4
20 COLOUR
COlLLOUF
SO FLOT
ANGLE O:
FHI FI/Z:
FHI FI/Z:
90 FHI FI/Z:

Fk
A

O,

2y

DEMO FROGRAM

7
Fi-

COLOUR 1,5:
COLLOUR 3,

T

50,320

DRAW 130
DEAW
Di=alW 1350
DREAW 130

130

100

110

FILOT 70,47:

FHI FI/Z:

0 S0 0 0 . e . A e A . e A . O S
VIETUAL SCREEN

% 5 e 3
1 %%

2 0 2 S 0 2 e A A R R B e B g B Dl

COL.OUR

CLS

DEAW 8=

Gy 5

FHI FI/:2:
FHI FI/Z: DREAW
FHI FI/Z: DRAW
CIRCLE 175,140,10
CIFRCLE 175,110,535
CIRCLE 175,80,5

CIRCILE 175,50,3

CRVS Z,1,39,7,10,11,322
COL.OUR O,7: COLOUR 1,5:
COLOUR 2,7: COLOUR Z,S

DREAW 30
=

90

COLOUR

4,5

156

210 VS 2

220 PRINT CHR$(Z2733"F"3;: REM TUREN ON AUTO SCROLL
220 FOR W=1 TO 10: FOR T=0 TO Z5

240 FRINT CHR$(ES+Ti;

250 NEXT T: NEXT W

260 FAUSE 1000

270 VS 4: CSE 4,2Z: FRINT "BACK TO THE MAIN SCREEN"
280 FAUSE 1000

290 Vs 2: LELS 3 CS5R 0,2: FPRINT " AN EXAMPLE
OF VIETUAL SCREENS"

300 GOTO 300
Obviously this crude demonstration program could be enhanced by the addition of text PRINTed to the

'screen within a screen’. You could even move up-market and code your own graphics to this Virtual
Screen, although remember that your plotting must be contained within the confines of the smaller

Virtual Screens in the textual mode can be usefully developed in conjunction with DSI, the final command
to be discussed in this chapter.

Dsl

DSI (short for Direct Screen Input), is another command unique to MTX BASIC. As its full name implies, DSI
allows us to enter any type of data from the keyboard. The command is radically different to other forms of
data entry (INPUT, EDITOR and INKEY$), since it permits ANYTHING typed from the keyboard to be acted
upon and/or displayed to the screen. This includes cursor controls, colour changes and any form of input.
The DSl facility is terminated by pressing the <RET> key. The following program allows you to roam freely
around the screen. When you have finished, press <RET> and the program will end. This is your chance to
let rip at the keyboard without worrying about the dreaded error messages!

10 REM #ddddfddddsfdssidsdssfaigs
12 REM #*%#% DIRECT SCREEN INFUT k%
14 REM $## DEMO FROGRAM 1 &%
16 REM ddfidiisssdsiisiiidibdsiddk

30 DBI
40 STOF

DSl offers access to the ESC and CTL sequences listed below in addition to the display facilities provided
by the standard character set. However, if you decide to utilise the ESC/CTL codes you must ensure that
you enter the codes in the correct sequence, otherwise the MTX will return an SE.B error. When using CTL
sequences you should simultaneously press the CTL key and the nominated key. When using ESC
sequences you should first press the ESC key, followed by the nominated key.

EFFECTIVE SEQUENCES DURING DSI

SEQUENCE EFFECT
CTL W Tab back one position
CTL] Set page mode
(o] % Set scroll mode
cTL” Turn cursor on

157

CTL — Turn cursor off

CTLD Change PAPER colour.
Letters A to O then selects
colours 1 to 15

CTLF Change INK colour.
Letters A to O then selects
colours 1 to 15

ESCAPE SEQUENCES

ESC | Insert a line at the current

cursor position
ESC J Delete a line at the current cursor position.
ESC K Duplicate the current line

on the line below. This deletes
the current contents of the new
line

See also Appendix 2

Whilst DSl is a unique and flexible enhancement of BASIC, the statement does not actually allow you to
enter information into your program. To do this you must make use of the SPK$ command which reads this
type of data into a string variable which is stored for further use. Our next example uses DSI to enter data on
to a Virtual Screen and SPK$ to read the screen into a variable:

3 REM #Fddddddddddcdddfosss
10 REM #3%4% DSI DEMO = #$%$i%
15 REM #fddddsdsdddsssd st
20 V8 5: CLE : DIM A$CZ40)
30 CRVS 2,0-0,20,0,20, 12,40
40 INK 3: FAFEERE 1

20 V5 Z: CLS

&0 DSI

70 CSRE 0,0

B0 FOR T=1 TO 240

30 LET A$=A%+SFES

100 NEXT T

110 CLS = VS S

120 C8FE 0,0: FRINT "YOU TYFED :_”;A$

140 GOTO 140

When you RUN this program, you can display anything you want on the Virtual Screen we have created on
the right-hand side of the full screen. Your display always starts at the top left corner of VS 2, but the
program enables you to relocate it at any position required. Once you are happy with your input you should
press <RET> to end the editing session. The program will pause for a second and then store the entire
virtual screen; this is accomplished by means of the SPK$ function and a FOR...NEXT loop. Finally, the
program rePRINTs your data on the full screen.

When creating your own programs you could, of course, use this type of code for other purposes. The
implementation of this form of data entry is clearly more flexible than the use of INPUT or EDITOR
statements because it allows you to format your entry in any way you please. As you know, INPUT
statements will only allow entry on a single line and do not permit the use of a comma within a single entry.
There are no such problems with DSI!

158

CHAPTER 10 : SPRITE GRAPHICS

SPRITES AND HOW TO CONTROL THEM

Your MTX is capable of displaying up to thirty-two sprites on the screen at any one time. The sprites you
define can be one of three sizes and each sprite can be allocated to any of the sixteen MTX colours. Sprites
can move independently of a BASIC program or controlled from within a program. Three dimensional
effects can be simulated with the use of the built-in sprite priority which enables sprites to be moved in front
of one another. Sprites can even be controlled when they are not visible on the screen!

In the pages that follow we shall examine the commands which facilitate the creation and animation of
sprites. These features of MTX BASIC are both powerful and sophisticated, so don't be discouraged by
their apparent complexity. The fact of the matter is that it's relatively simple to create fast action games in
BASIC once you've developed a working knowledge of the mechanics of sprite graphics. The essential
point to remember is that because all sprite commands are interrelated, it's not possible to activate a sprite
until the entire sequence of relevant commands have been grasped.

CTLSPR (parameter),(value)

The CTLSPR command (ConTrol SPRite) assigns global values which determine the nature of all
subsequent sprite creations. Any value set by this command affects all of the sprites in the same way. This
contrasts with the SPRITE command (see below) which will only affect a specified sprite. Only one
‘parameter’ can be specified within each CTLSPR command, and it must be a value 0-6. The
consequences of each ‘parameter’ value are itemised below, along with the appropriate ranges required by
the statement’'s second parameter (value):

parameter= 0

value range: 0-255
controls the speed of movement of all the sprites, where 1 is the fastest speed and
increasing numbers produce lower speeds up to 255. However, the slowest speed is
obtained by using a value of 0! This parameter is used in conjunction with the SPRITE
command to determine the overall speed of each sprite. CTLSPR parameter=0 will
determine how often the sprites are moved, a value of 1 will give a movement every master
interrupt cycle, a value of 2 will give a movement every other cycle, and so on. As you will
see later, the SPRITE command's distance parameter determines the size of each
movement. Remember that whilst the CTLSPR command establishes a general speed
factor, the SPRITE command determines a different speed for each sprite.

parameter=1

value range: 0-7
the CTLSPR command is used to control the range of movement by which all sprites are
constrained. A value of 0 will result in no movement, whereas a value of 7 will produce a
movement of 7 pixels in the appropriate direction. The value of this parameter is that it can
be used in conjunction with the MVSPR command to move any sprites a standardized
distance in any direction. Parameter 1 has no effect when used with the SPRITE
command, only when it is used with MVSPR.

parameter=2

value range: 1-32
tells the computer how many sprites are to be shown on the screen. This value must be the
total number of sprites that you want to use and must be declared before you use any
sprites. Failure to do so will cause the program to stop with an error message. If, for
instance, you try to use four sprites after declaring only three then the program will stop
when the first attempt is made to display the fourth sprite.

159

MEM-11

So, as you design a program you must keep a close count of the number of sprites on the
screen. Although you have the option of declaring all 32 sprites whether you require them
or not, such a decision will considerably slow down your program. The computer will act as
though it controls all 32 sprites, even though only 3 or 4 may be actually in use. The MTX
will also allocate memory, for every sprite declared in much the same way as it allocates
memory when dimensioning an array. So unnecessary declarations of sprites should be
avoided by establishing your programming requirements at the planning stage.

parameter=3

value range: 0-32
declares the number of orbiting sprites required in a program. The range of values for this
parameter is 0 to 32, although the value allocated must not be greater than the total
number of active sprites.

This is as good a time as any to outline the characteristics of an orbiting sprite. If so instructed
a sprite will orbit, and if it goes off the edge of the screen, will shortly (depending upon its speed)
reappear on the opposite side of the screen, as if it had gone all the way round the back of the
TV set!

parameter=4

value range: 1-32
the CTLSPR command allows you to define any one sprite as a so-called PLOT SPRITE. A
plot sprite behaves differently from the other sprites. Instead of directing its movement via
the normal sprite commands (SPRITE, MVSPR and so on) plot sprites follow the points
and lines created by other MTX BASIC graphics commands (i.e. LINE, DRAW, PLOT,
CIRCLE etc.) The centre of such a sprite will always be determined by the position of the
currently plotted pixel. Only one plot sprite can be displayed on the screen at any given
time, although it is possible to switch alternatively between a number of different sprites
using the MVSPR command.

parameter=>5

value range: 0-32
the CTLSPR command defines the total number of independently mobile sprites. The
actual movement is defined by the SPRITE and ADJSPR commands. Whilst it is possible
to declare more self motivated sprites than you intend using at any one time, you cannot
assign a value in excess of the total number of activated sprites (defined by parameter=2).
Your program will stop with an error message if you attempt to create more moving sprites
than the number of active sprites previously declared.

parameter=6

value range: 0-3
there are four variations of sprite shape available to MTX programmers. Assigning a value
of 0 to this parameter will display the standard eight by eight pixel sprite. A value of 1 will
double the size of a standard sprite whilst a value of 3 will produce a double sized sixteen
by sixteen sprite. All sprites must be the same declared size, and it is not possible to mix
different sized sprites on the screen.

GENPAT

The GENPAT command is the MTX's GENeration PATtern creation command. As we have seen, it can be
used in the definition of user-defined characters, but also enables programmers to control the shape of a
sprite. Compared to the contortions that some computers go through when defining a character or sprite,
GENPAT is a delight to use. The syntax for the command is as follows:

GENPAT p,n,d1,d2,d3,d4,d5,d6,d7,d8

Although at first glance the statement's parameters appear complicated, establishing parameters for
GENPAT statements is really quite simple. The parameter p specifies the type of object to be defined.

p=0 Redefines ane of the ASCII characters. where n takes the value of an ASCII code in the range 32 to
127.

160

p=1 Redefines one of the non-ASCII characters, where n takes a value between 129 and 154. These 25
characters can be PRINTed to the screen using the CHR$ function. They can be used when a program
requires the complete standard character set to be intact. The first fifteen can be summoned by
Function keys 2 — 16.

p=2 When parameter p is equal to 2 you can create up to eight multi- coloured characters, where n takes
the value (in the range 147- 154) of one of these characters. Having previously defined the shape of
one of these characters (using p=1), you can define the INK and PAPER colours for individual rows
of a character. When using p=2, the parameters d1 to d8 are used to define the colours for a single
horizontal row, which is established by means of the MTX colour codes. The total for each row is:

VALUE=16 * PAPER + INK

The creation and use of user-defined characters is discussed in chapter 8.

p=3 Defines an eight by eight pixel sprite shape. This is the same size as the normal user-defined
characters displayed on the graphics screen. You can define up to 128 shapes of this size, although
only a maximum of 32 sprites can be displayed at any one time. You can, however, create
sophisticated animation routines by using the ADJSPR command to mutate a single sprite through
several shapes.

p=4 As well as the standard eight by eight pixel sprite you have the alternative of using sprites four times

that size (sixteen by sixteen pixels). Such sprites can be created by a separate definition of the four

eight by eight blocks. The parameter p=4 is used to define the top left-hand corner of your creation.

Defines the bottom-left block of the sixteen by sixteen sprite.

Defines the top-right block

Defines the bottom right block

Il
~N O

ol

T T T

When defining the larger sprite you can only create a total of 32 shapes (128/4=32).

Moving on to the second value of the GENPAT's argument, the n parameter takes a slightly different role
contingent upon the value of p, but always serves as a pointer for the shape. For example, when defining an
ASClII character, the value of n is determined by the ASCII code of the character to be re-defined. Similarly,
when defining the shape of a sprite, n becomes the shape pointer (or number) used by SPRITE, MVSPR
and ADJSPR statements. The table below lists the ranges of n in relation to the values of p:

n

32 - 127
129 - 154
147 - 154
0-127
0-31
0-31
0-31
0-31

©

NOOEAEWN=2O

The statement'’s final parameters (d1 to d8), contain the data of the shape to be created. The creation of
characters has already been explained at some length in chapter 8, so we'll only provide a brief resume in
this chapter. If you have any problems related to the concept of user-defined characters refer to the

Each value assigned to the d1-d8 parameters describes a horizontal row of eight pixels, where each binary
digit (or bit), represents one pixel in the row. By totalling the bits which are 'set’ (or 'on’) in each row, we can
obtain the appropriate value for each of the eight remaining parameters. The parameter d1 determines the
value of the top row of the character and d8 the value of the bottom row. The process of establishing values
for these parameters is the same for characters, eight by eight sprites and each quarter of the sixteen by
sixteen sprites.

The only situation that requires an alternative process to determine the values for these parameters is when
GENPAT's first parameter is equal to 2. This process is explained at some length in chapter 8, but to refresh
your memory remember that each row of characters is calculated using the formula:

161

value of parameters d1 to d8 = 16 * PAPER + INK

Of necessity. MTX sprite statements are interdependent. Consequently it's virtually impossible to
demonstrate any of the commands we've discussed so far without precipitating more confusion than
clarification. This said, we can still offer an example of GENPAT format which will ultimately clarify the
effects of the command! The statement below is the syntax required to define a sprite as a box:

GENPAT 3,0,255,129,129,129,129,129,129,255

This statement will create a shape whose pointer is 0. At this stage, such information will not mean very
much 1o you since nothing can actually be seen on the screen. But never fear! Once we've tackled one
further command we’ll have enough information to actually get a sprite up and moving on the screen, so
persevere a little longer!

SPRITE

The sprite command is, in many ways, the most important command of this series. Altogether, SPRITE has
seven parameters which between them define the shape to be used, its position on the screen, and the
speed and colour of the sprite. The syntax for the SPRITE command is as follows:

SPRITE n,pat,xp,yp,xs,ys,c

Parameter n This parameter is used to tell the MTX which sprite is to be affected by the SPRITE
command, this value assigned to n is the pointer number of the desired sprite which must be
within the range 1 to 32.

Parameter pat This parameter is used to determine the shape (or pattern) to be allocated to sprite n. The
pattern must have been previously created by the GENPAT command and with standard
eight by eight sprites, p can lie within the range 0 to 127. A maximum of 32 larger sprite
patterns can be defined so the pat parameter will have to be within the range 0 to 31 when
using sixteen by sixteen sprites. Remember, you cannot display different sized sprites on the
screen at the same time.

Params xp,yp These parameters are used to position the sprite on the sprite plane. You can think of each
sprite as having its own plane upon which to move.

_
—_—
—_—
—
|
—
J‘ 30 31
29
28
etc
etc

In this way it's possible to use sprite graphics to create three dimensional effects, but one miracle at a time!
For now we'll examine the more conventional exploitation of the sprite planes.

Each sprite plane comprises a grid of 8192 by 8192 pixels, and a specified sprite can be placed anywhere
on this grid. The co-ordinates range from -4095 to +4095 in both the horizontal and vertical directions,
where the co-ordinate 0,0 is normally the bottom left corner of the graphics screen. However, it should be
noted that since the screen is only 256 pixels wide by 192 pixels high it is not possible to display the entire
sprite plane at any given momemt. Consequently it's best to think of your TV screen as a ‘window’ which
enables you to see a section of the sprite plane.

If the parameters xp and yp are assigned values that cause the sprite to be placed outside the visible screen
range. you'll obviously not be able to see the sprite in question. On the other hand, this aspect of the sprite

162

plane can be used to good effect since it enables you to smoothly scroll the sprite on to the screen from a
hidden position.

So, the range of values that can be assigned to xp and yp is -4095 to +4095. However, it is advisable to
note that if you assign a value to xp that is outside the range of 0 to 255, or if yp is assigned a value outside
the range 0 to 191, it is quite likely that the sprite will not actually be displayed on the screen. Later in this
chapter we'll show you how to move the ‘window’ around the sprite plane area by using the VIEW command.

Params xs,ys The parameters xs and ys are used to determine the speed of independent movement in
the x and y directions. Both of these parameters use values within the range -128 to +127.
If xs=0 or ys=0 there will be no movement in the specified direction, so you will need to
assign 0 to these parameters if you don’t want the sprites to move independently.

Although there are three more sprite commands yet to be detailed, we have (at last!) reached a point where
we can place a sprite on the screen. Let's make our spritely move!

PLACING A SPRITE ON THE SCREEN

1. Use the command CTLSPR to give the computer general details about the sprite(s) you wish to use;
the number of sprites to be displayed, their size etc.

2. Use the GENPAT command to define the shape of the sprite(s).

3. Use the SPRITE command to display the sprite(s) on the screen at the desired co-ordinates.

The following program places a single sprite on to the middle of the screen:

10 REM #Fsfdfifdisididaiaddiisioiid g

20 REM #%% SPRITE DRMONSTRATION ##i

20 REM %%# FROGRAM 1 k4 3

40 REM ddddiiiiididieisiiiiiai i

S0 VS 4: CLS

&0 CTLSFR 2,1

70 CTLSFR 6,0

80 REM *%4 SHAFE NO. 1 SFACE INVADER #i¥

90 GENFAT 3,1,20,28,62,127,62,28,42,73

100 SFRITE 1,1,127,396,0,0,1

110 GOTOD 110

115 REM #%% FPRESS BRK TO EXIT FROGEAM HHE#
When you RUN the above program you'll be confronted by a black Space Invader positioned in the middle
of the screen. Line 50 accesses the graphics screen and then clears it. The next two lines (60 and 70) set
the CTLSPR parameters we wish to change and line 60 tells the MTX that only one sprite is going to be
used. Line 70 makes it clear that this sprite will be of the standard eight by eight pixel variety. Any

parameters that aren't altered will be set to zero by default. Line 90 defines sprite shape 1 to be the invader
and the following line (100) uses the SPRITE command to set sprite 1to shape 1.

So our first sprite is positioned in the middle of the screen and, as no speed values have been defined, our
creation is stationary. The final parameter in this SPRITE command sets the colour of the sprite and as the
value of one has been used the sprite is black. Line 110 is used to keep the program running, otherwise the
computer would immediately return to the text screen without giving us a chance to see the sprite! Thus,
you'll need to press the BRK key to exit the program.

Now that there's a real live sprite on the screen you could try adding some lines and experiment with your
new found knowlege. For example, the sprite can be made double sized by changing line 70 to:

163

70 CTLSFR &,1

and you can move the sprite by adding the following lines:

595 FOR XP=0 TO 25

100 SFRITE 1,1,XP,396,0,0,1
105 NEXT XF

110 GOTO 335

Similarly, the sprite will change colour if you make the following lines:

395 FOR T=0 TO 195
100 SFRITE 1,1,127,96,0,0,T
105 FAUSE 1000
110 NEXT T
115 REM #F%% FRESS BREK TO EXIT FREOGREAM Hiduk
120 GOTO 95
Adding these lines will display the sprite in all of the available colours. You can also change the shape of the

sprite by changing line 90. Here are a few suggestions. Type them in (one at a time of course), and note the
results.

90 GENFAT 3,1,0,3,14,31,126,31,14,3

or
S0 GENFAT 3,1,60, 126,219,255, 231, 126, 26,60
or 7
0 GENFAT 3,1,0,0,246,33,126,120,112,0
or
90 GENFAT 3,1,16,186,134, 16,56, 124, 56, 16
or

90 GENFAT 3,1,0,68, 124,124, 124,84, 16, 16

It's possible to display up to thirty-two sprites on the screen at any one time. The following program verifies
this claim but only uses eight different shapes:

10 REM #idddfdddiidtdddssddissydsddss
20 FEM ##% SFRITE DEMONSTEATION k#k
20 REM ### FROGRAM = Ek 4 >
S0 FREM dddddddddddiidiiii s ik i sk
50 VS 4: CLS

€0 CTLSFR 2,32

70 CTLSFR &,0

80 GENFAT 3,0,20,28,62,127,62,28,42,73

164

S0 GENFAT 32,1,0,3,14,31,126,31,14,3

92 GENFAT 2,2,60,126,219,255,221,126,36,E60
24 GENFAT 3,3,0,0, 246,33, 126, 120,112,0

96 GENFAT 32,4,16, 186, 124, 16,56, 124, 56, 16
298 GENFAT 32,5,0,68, 124, 124, 124,84, 16, 16
100 GENFAT 2,6, 165,66,66,326, 24,60, 30, 129
102 GENFAT 32,7,16, 16,84, 124, 124, 124,68, 0
110 FOR SFP=22 TO 1 STEF -1

120 SFRITE SF,RND#8, 40+8F*®35, Z0+8F£S5, 0, O, RNDH 16
130 FAUSE 1000

140 NEXT SF

1530 GOTO 130

160 EEM ##¥% FPRESS BRE TO EXIT FROGRAM #i:k

The shape and the colour of each sprite is chosen at RaNDom in line 120, which is itself within a
FOR...NEXT loop that counts through all thirty-two sprites. Notice that as each sprite is displayed it appears
to be in front of the previous sprites on the screen, thus achieving a three dimensional effect. There are two
other aspects of this program which are worthy of note. Firstly, some of our random sprite colours clash with
the background colour of blue. In your own programs you should choose the colours carefully and not at
RaNDom as has been done here. Secondly, you can use calculated parameters within any of the
sprite-related commands, you're not restricted to literally quoted values.

Let's now move on to the last of the three sprite commands:
MVSPR p,n,d

The MVSPR statement is a general purpose command that can simultaneously perform a variety of
functions, depending on its parameters. Four different functions are available and they are detailed below:

parameter action
1 move sprite
2 select sprite pattern
4 redirect sprite movement
8 plot a point at the centre of the sprite

The second value, n, is the number of the sprite that you are dealing with. The third value, d, contains the
value of the action that is specified by p, and will have different ranges depending upon the required action:-

p range of d
1 0-8 where 0 and 8 are the same direction
2 0-127 (8*8 sprites)

0-31 (16*16 sprites)
4 0-8 where 0 and 8 are the same direction
8 not relevent

When using the plot-sprite parameter, 8, the value of d will not have any direct effect. Simply specifying p=8
is sufficient to cause a pixel to be plotted at the current position of the centre of the specified sprite.

One problem that may confound you when making use of MVSPR centres around establishing a value ford,
which must be specified with these multiple instructions. If, for example, you wish to move in direction 3 whilst
at the same time changing to sprite shape 3 then you might conceivably attempt to add the two numbers
together to give a value for d of 6. The complete instruction would then be:

165

MVSPR 3,1,6

However, such a statement will undoubtedly cause the MTX a great deal of confusion. Being a mere
computer, it is unable to translate the value 6 into 3+3. This is, when you think about it, quite reasonable
since 2+4=6 and 5+1=6 and 1+5=6 etc,etc. In other words, the computer is unable to decipher the value
6 into your required combination of responses. This said, it IS possible to combine activities within a single
command, but only certain combinations are permissable. In particular, any ONE of the first three
parameters (i.e. p= 1,2 or 4), can be combined with the final parameter (p=8), but no other combination is
permissable. In particular, combinations of the first three parameters are not permissable because of the
inherent confusion over the resulting combination of n values.

ADJSPR p,n,v

The ADJSPR command allows you to ADJust any one of the parameters of the SPRITE command.
Because it is only concerned with a single parameter this command will be executed considerably faster
than the full SPRITE command. When using ADJSPR, the parameter p takes the following values:

p meaning

sprite pattern
sprite colour
sprite X position
sprite Y position
sprite X speed
sprite Y speed

bW —=O

The second value used by this statement is n, which is simply the number of the sprite to be modified.

The final value, v, is the figure by which you will ADJust the appropriate parameter. The range of values that
can be used for v will, of course, depend upon which of the parameters is to be altered. The following list
details ranges for all of the parameters:
p v
0-31 16*16 pixel sprite
0-127 8*8 pixel sprite
0-15
0-255
0-255
0-255 128-255 indicates movement to the left
0-255 128-255 indicates movement downwards

o

(62 IR SN s I \0

10 REM #ffdddddiiddddisiiisisdsdsssss

20 REM #£%% SFRITE DEMONSTREATION ¥k

S0 RFEM #idddifisdsaiiiiiiiiia ity

50 V8 4: CLS

60 CTLSFR 2,1

70 CTLSFR &,

80 REM #i¥k SHAFE NO. 1 SFACE INVADER #ik#%
20 GENFAT 32,1, 20,28,62,127,62,28,42,73
100 SFRITE 1,1,127y96,0,0,1

110 GOTO 110

166

When you have typed in the above program and RUN it you should see the all too familiar black Space
Invader in the middle of the screen. Adding the following lines will allow the sprite to move across the screen
from left to right:

110 FOR T=0 TO 255
120 ADJSFRE 2,1, T
30 NEXT T

140 GOTO 110

The program continues to repeat lines 110 to 140 until you press the BRK key. Try changing line 120 to:

120 ADJSFRE 3y1,T

When you RUN the modified program you will see the invader move from the bottom of the screen to the
top. Unlike the previous example, this program doesn't repeat but stops with an error report! The reason for
the error lies in line 110, which should be changed so that the value of T always falls within the correct range
of 0-219.

110 FOR T=0 TO 219

Now your program should RUN quite happily until you press the BRK key. You may be wondering why the
range of positions with the SPRITE command is -4095 to +4095, since the ADJSPR command can only
use 0-255 horizontally and 0-219 vertically. As we have already seen, the SPRITE command is used to
position a sprite anywhere upon the sprite plane. However, the ADJSPR command can only be used to
make adjustments to sprites that are visible on the screen. So, the value used to position a sprite using
ADJSPR are the screen co-ordinates, not the sprite plane co-ordinates.

Under these circumstances it is reasonable to expect an error message if you try to move a sprite that is not
visible. However, you should note that you cannot make ANY ADJustment to a non-visible sprite.
Attempting to do so will always stop your program with an error report, which is definitely unhelpful if you're
trying to defend the civilised world from hoards of alien invaders! To satisfy yourself that this is true, first
change line 100 to:

100 SFRITE 1,1,128,-96,0,0,1

Now, if you change the parameter value in line 120 to, for example, 5 you will receive ar error report as
soon as you RUN the program. This is because the sprite is located at position 128,-96 which is off the
bottom of the screen.

We've chosen to discuss parameter problems at this point in an attempt to highlight the interrelated nature
of the MTX's sprite commands. As we've progressed through this chapter you've undoubtedly realised that
we've used variations of the demonstration program. This approach, although frowned upon by the
advocates of structured programming, is acceptable when exploring your computer's capacity. This said, it
should be admitted that, to a certain extent, you've been lead down the garden path in order to illustrate one
of the biggest problems that plagues program constructon. When you change one part of a program you
MUST ALWAYS determine the effect of the change on the rest of the program. A single change to a
program often causes unpredictable effects elsewhere and this type of bug will often be the hardest to
locate and correct.

The deliberate mistake in the last example is simply that we forgot to tell the computer that we wanted our

sprite to orbit. When the sprite goes off the screen it is ‘forgotten’ about and then generates an error report
the next time it has to perform an ADJSPR!! Restore line 120 and add the following line:

€5 CTLSFR 3.1

The complete demonstration program should now look like this:

167

TR EREREF KKK KR KK KK KKK KKK KKK N HHX
20 REMX*¥¥ SFRITE DEMOMSTRATIOM XXX

20 BEM¥*¥ FEQZRAM XK

GC PEMX¥¥XXFERAFEXAXEXAXLXIFEEXXKFXEX

=5 VYS 4: CL3

&0 CELUTER-Z,1

U5 LTLUERR 2,1

L CTLEPR &,0

I ROM¥¥¥ SHAPE NO. 1| SPACE IMVADER *¥¥
9G GENMFAT 3,1,20,28,62,127,62,25,42,73

SFRITE 1.1,128,-96.0,0,1
FOR T=C TO 2i°

ACISPR 3,1,T7

MEAT T

SO07T9 116G

i
LR = O
{6 S o 0 2 S

Pt s
I
2

Again, try changing the parameter for the ADJSPR command and you will now see that invisible sprites can
be altered. In fact, it is now possible to make any adjustments to the invisible sprite. When you have several
sprites within a program, some orbiting and others that don't, then you will have to keep track of the
non-orbiting sprites before using the ADJSPR command.

VIEW direction,distance

The VIEW command allows you to move the graphics screen around the sprite plane. The distinction
between this command and sprite movement commands like ADJSPR, is visually subtle but, none the less,
important.

The sprite commands SPRITE, ADJSPR, MVSPR and so on allow you to control the position of a single
sprite anywhere within the sprite plane. Similarly, the VIEW command allows you to move the graphics
screen around on the sprite plane, thus allowing off-screen sprites to become visible (assuming you tell the
MTX that the sprites are orbiting).

When using the VIEW command sprites remain in the same position on the sprite plane and the VIEWing
area is moved in the chosen direction. VIEW can also be used very effectively when manipulating a
complicated multiple-sprite whose movements would normally appear jerky and unrealistic. The solution to
this problem is to move the background, leaving the sprite at the same sprite plane co-ordinates, thus giving
the impression of movement.

The same rules apply to non-orbiting sprites when using VIEW. Non-orbiting sprites that go off the screen
cannot then be altered with ADJSPR. Equally, non-orbiting sprites that disappear from the screen when using
VIEW will not reappear when the screen is returned to its former position — the sprite will be lost forever. Of
course, this is not the case with sprites that have previously been declared as orbiting sprites, as you can see
from the following program (our friendly space-invader again!):

O T o 5 TG o o g 8 ol o S i o e o o 0 A O . G .
20 REM ##¥d SFRITE DEMONSTRATION f#k
S0 REM EEE FROGRAM <4 Fokd
£ T =0 = i e S e o e A A 9 e <R e 70 . . . 3 S e A o e 0 O 0 8
S0 Vs 4: CLS

168

&0 CTLSFR 2y 1

€5 CTLSFR 3,1

70 CTLSFR &,0

80 REM #%% SHAFE NO.1 SFPACE INVADER *i¥
I0 GENFAT 3,1,20,28,62,127,62,28,42,73
100 SFRITE 1,1,127,36,0,0,1

110 IF INKEY$="M" THEN VIEW O, 10

120 IF INKEY$="N" THEN VIEW 4,10

130 IF INEKEY$="A" THEN VIEW &,10

140 IF INEEY$="Z" THEN VIEW 2,10

150 GOTO 110

[

When you RUN this program you'll see the invader in the centre of the screen. Pressing the ‘M’ key will
move the graphics screen to the right, making the sprite appear to move left. Similarly, the ‘N’ key will move
the screen to the left, 'A’ moves the screen upwards and 'Z’ moves it down. In all cases the sprite will appear
to move in the opposite direction!

Using the VIEW command you could create a marvelous STAR-TREK game, searching through the
galaxies for new alien life forms, boldly going where no computer has gone before! VIEW is another
command unique to MTX BASIC and shows, once again, how powerful and sophisticated the BASIC
language can be if a little thought is put into the design of the computer.

PLOT SPRITE

We have mentioned the PLOT SPRITE a number of times in passing through the past three chapters. Now
is the time to examine this phenomenon in greater detail.

Any individual sprite can be defined as a PLOT SPRITE. Once defined, the sprite in question will follow any
plotting to the graphics screen, and the effects can be very interesting. For example, having defined a sprite
as a plot-sprite you can draw a circle and the sprite will follow the circle as it is drawn. The next program
uses the command to display a disoriented spider weaving its web:

10 REM #ftddddsfdfiiad iy
15 EEM #®XXE FLOT SFRITE R
20 REM ##%% DEMO FROGRAM 1 #3F
25 REM dddddddiiisiiiikiiiiiaid
20 V8 4: CLS

40 CTLSFR Z,1: CTLSFR 4,1

50 GENFAT 2,1,20,28,62,127,62,28,42,73
£0 SFRITE 1,1,127,36,0,0,1

70 LET X=RND#¥255: LET Y=RND#131
g0 LET X1=RND#255: LET Y1=RND#131
90 LINE X, Y, X1,Y1

100 LLET X=X1: LET Y=Yl

110 GOTO 80O

All the work of drawing the RaNDom web is performed by lines 80 to 110, which is about as compact a

169

routine as you'll find. To carry out the same functions on any other computer would involve pages of
program and the end result would be far too slow to be realistic. On your MTX all the hard work is done for
you by the computer, which is just how it should be in the nineteen eighties!

When we discussed the ATTR command in the previous chapter we mentioned that nothing happens to the
result of plotting or drawing when combining ATTR 2,1 and ATTR 3,1. We then went on to say that this wasn't
at all crazy but actually very useful when using plot-sprites. Now we'll see how, and why. Insert the following
line to our plot-sprite program and you will see that our plot-sprite/spider, by all appearances, meanders
around the screen with no visible means of support:

45 ATTR Z,1: ATTR 3,1

In order to return the program to its original state, with the sprite drawing the LINEs, it is not sufficient to
simply delete line 45. Remember that ATTRibutes will remain 'on’ or 'set’ until such time as they are
switched off (i.e. until such time as the value of the second parameter of the ATTR command is equal to
zero). Consequently you will need to change line 45 to read:

45 ATTR 2,01 ATTR 2,0

In this introductory manual it is not possible to examine all of the complexities of high-level graphical
generation. However, let's hope that this graphics section has started you along the road of understanding.
The full graphics capabilities of the MTX now await your every command! Whether you use your computer
for business or pleasure, for VAT returns or Space Invaders, the graphics facilities should never let you
down, provided that you have a clear understanding of the task that you wish to fulfil. First create the picture
in your mind and then create it on the screen!

The last program in this chapter is a simple game using sprites for all of the moving objects. You may well
like to alter and improve upon it, perhaps by adding some scenery in the background, or even interesting
sound effects. Don't forget to do a cold start before you start keying-in. Remember to SAVE the finished
program onto a cassette before you RUN it, just in case it is more than the spaceships that crash!

The instructions are simple. Use the keys 4-LEFT,8-RIGHT and 6-FIRE and shoot down as many invaders
as possible. If more than 10 get past your defences then the game, and the world, is lost.

170

CHAPTER 11 : THE NODDY LANGUAGE

NODDY

Your MTX has three languages resident in its memory - Assembler, Noddy and BASIC. In this chapter we
will be taking a look at the Noddy language. This is a language that has been designed to simplify text
handling and, as it only uses eleven commands, it is very easy to get to grips with. In order to exploit this
language to the full you must get used to the idea of coding it in conjunction with BASIC. In essence, Noddy
provides you with a simple way of storing and displaying textual information. In other words you can create
well designed textual screens and wonderful adventure games within a BASIC program by calling on a
specific Noddy file. It is very simple to switch from BASIC to Noddy without losing any files resident in
memory.

To access the Noddy language type in as a direct command NODDY (or NODD.) and press the <RET>
key. The screen will display:

Noddy>

This 'Noddy>' prompt is the equivalent of the BASIC Ready prompt. It is there to tell you that the MTX is
ready and awaiting instructions. The first thing that the Noddy language expects us to do is to create a file
name, which is simply a name or label given to each specific Noddy page of text. Let's call our first file EG:
S0 type in EG and press <RET>. If you typed this in lower-case (as opposed to capitals), you will have to
use the lower-case version of a filename each time you want to recall that particular file, since the Noddy
language distinguishes between the two.

Having created our file the screen is cleared and the filename displayed at the top left-hand corner of the
screen. Fill the screen with information, but do not press either the CLS or RETURN keys. You can move
around the screen using the cursor control keys, the BS key and line feed key. If the CLS key is pressed
(accidentally) you will lose the file that you are currently working on.

When you have got used to the 'feel’ of using the Noddy screen and want to leave the file press the <RET>
key. The difference between the effect of using the <RET> key and the CLS/ENT key is that whilst the CLS/
ENT key erases the file from memory, the <RET> key simply exits the file and stores it in the MTX's memory
(thus making it possible to come back to it at a later date).

Once the <RET> key has been pressed you will leave the file and the ‘Noddy='" prompt and cursor will
reappear at the bottom of the screen. We now have a file called EG which can be accessed at anytime.
However, the file will be lost if you:

a) switch off the machine
b) NEW the memory (when you are in BASIC)
c) RESET the machine (using the keys placed either side of the space bar)

To check the file is in memory you can use the DIRectory command, DIR which lists all the current Noddy
files. This command must be entered in capitals, otherwise the MTX will think you are creating a new file.
So, type in DIR and press <RET>. The screen should clear and the filename EG be displayed in the top left
hand corner of the screen. To return to the EG file all you have to do is type in EG and press <RET>.
Before you read any further try opening a few more files and then displaying their names using DIR, once
you feel perfectly at home with this process clear the MTX's memory (using one of the methods mentioned
above).

Right, create the EG file again, and type in:

This is a Noddy file

171

Now create a new file called PROGRAM and we will take a look at how to create a program using the Noddy
language. In order to let the computer know that we are issuing commands (as opposed to entering text) all
Noddy commands must be preceded by an asterisk (*). Return to the PROGRAM file (assuming you are
not already in it) and type in the following program. Remember that all commands must be entered in
capitals if they are to be recognised as legitimate Noddy commands. Don't forget that you mustn't press
<RET> until you have finished keying in the entire listing.

*DISPLAY EG.
*PAUSE
*RETURN

Press <RET> and presto ... nothing happens! In order to run a Noddy program we must return to BASIC.
To do this simply press the CLS key followed by <RET=>. Don't worry, in this instance it is perfectly safe to
use this key, which only causes problems when you are actually in the process of creating a Noddy page.
Now that we are in BASIC we can run the PROGRAM by using the PLOD command. Type in:

PLOD "PROGRAM” <RET>

and the screen clears and displays the file called EG. Return to Noddy and recall the PROGRAM file by
typing in PROGRAM and pressing <RET> so that we can take a look at the commands that were used to
create this program. The first command was:

*DISPLAY EG.

This instruction, as you might expect, tells the computer to DISPLAY the file EG to the screen. You will
notice that the filename was followed by a full stop (.). This must always be used when a filename is being
referred to within a Noddy program, since it instructs the MTX to search for the file in question. If this
punctuation is omitted the Symbol? error report is returned informing us that the computer was unable to
complete its search.

The next command in our program was:
*PAUSE

The *PAUSE command stops the execution of a program for approximately one second each time it is
used. So, if we had wanted to display this file for three seconds we would have had to key in:

*PAUSE
*PAUSE
*PAUSE

The final command that was used in this program was:
*RETURN

This command is always entered at the end of a Noddy program, instructing the MTX to RETURN to BASIC.
If you omit this command the Symbol? error report will be displayed.

Once you have switched between BASIC and Noddy a few times you will begin to find it very tedious having
to key in PLOD "xxx” to run the program and then NODDY to return to Noddy. So, you will be pleased to
hear that both of these commands can be entered in a program format,thus:

10 PLOD "PROGRAM”
20 NODDY

Try RUNning this program and you will see that the Noddy PROGRAM displays the EG file for
approximately one second and then returns to Noddy instead of BASIC. Leave this program in memory and
just EDIT line 10 if you want to PLOD a different Noddy program. Apart from these considerations it is also
very useful to be able to call upon the Noddy screens from within a BASIC program, particularly when you
need to display impressive textual displays. Creating such screens from BASIC with the use of PRINT
statements is unspeakably laborious.

172

One of the most impressive features of the Noddy language is the simplicity and speed at which a program
can be entered. This is because all Noddy keywords (except DIR) can be abbreviated to their first letter and
it is unnecessary to start a new line for each keyword. However, you do have to leave a space between the
keyword and its parameter. For example, a space must be left between *DISPLAY and EG., and its
omission will return a Symbol? error report.

This said, it is sensible to leave a few spaces between each command in order to make the program legible,
otherwise it becomes very difficult to read a program when lines of symbols are joined together. Take a look
at the listing below and you will see how difficult it is to read, despite the fact that it is a very short program.

*D EG.*P*P*P%*R

Create a new file called EG2 and then key in 'Please make an input and then press the <RET> key'. Now
create another file called PROGRAM1 and key in the following:

*DISPLAY EG2.
*ENTER
*RETURN

The *ENTER command is not dissimilar to the BASIC keyword INPUT, since it halts the execution of a
program until an input has been made. This facility can usefully be incorporated into a BASIC program. For
example it could be used in conjunction with a set instructions saying something to the effect of 'Press the
<RET=> key to continue’.

If the truth were to be told an *ENTER command used in this way does seem rather a waste of time, but by
using it in conjunction with the *IF command it has far greater possibilities. The *IF command is followed
by two parameters. The first specifies the input that is required by the program and the second is called a
pointer or label. The function of the second parameter (let's call it y) is to force the MTX to jump to the next y
it finds. In order to avoid any confusion, the y that it is searching for is preceded by a ~. This prevents the
MTX from attempting to PLOD the program from the wrong point. Create a new file called PROGRAM3 and
then take a look at the following program which demonstrates this command:

*DISPLAY EG2.

*ENTER

*IF YES,y

*DISPLAY EG.
y *RETURN

This example *DISPLAYs the EG2 file and then waits for an input. The *IF command looks at the input to
see whether it is the same as its first parameter (which in this case is YES). If they match it will then look at
the second parameter (y) and scan the rest of the program for a matching ~y which it will locate before the
*RETURN. If the input wasn't YES the MTX would have moved on to the next command and subsequently
*DISPLAYed the file EG.

~

There are a couple of points to bear in mind when using the *IF statement. The first parameter cannot
contain any spaces and the pointer flag (*y) must precede the asterisk (*) of a command.

The second parameter is referred to as a pointer because it is used to point to another part of the program:; it
doesn't have to be in lower case but it does help to clarify the listing if it is. As this is the most complex of the
commands we have so far discussed, let's quickly recap how it works and what to look out for.

a) The first parameter is the desired input (x)

b) The second parameter is the pointer flag (y)

c) If the input matches the first parameter it searches for the pointer flag ("y)

d) The pointer flag (*y) must precede the asterisk of a command

e) If the input does not match the first parameter (x) it moves on to the next command
f) There should be no spaces contained in the first parameter

The next command we shall look at is *GOTO. This command is used to GO TO a previously defined

Noddy program file. There is only one occasion when this command cannot be used, and that is when a
filename contains a space. If you attempt to GOTO this type of file the program will crash and a 'No data’

173

error report returned. Create a new file called PROGRAM2 and enter the following listing:

DISPLAY EG2.
*ENTER
*GOTO PROGRAM.

You will notice that the *RETURN command has been omitted in this program. This is because the *GOTO
statement passes control to another program which contains the necessary *RETURN command.
However, the omission of the *RETURN statement is bad programming practice, so let's add it to the
listing. The PROGRAMZ2 file should now look like this:

*DISPLAY EG2.
*ENTER

*GOTO PROGRAM.
*RETURN

Let's quickly run through this program. The program *DISPLAYs the file called EG2 and then awaits an
INPUT (which is activated by <RET=>). Once this has been done, the *GOTO tells the MTX to GO TO afile
called PROGRAM. When the PROGRAM file is accessed it is then activated, thus displaying the file called
EG. You will notice that the filename specified by the *GOTO command is followed by a fullstop to indicate
to the MTX that it must search for a filename.

It is also possible to *GOTO the same program file, which has the effect of running a program from the
beginning of the file. This kind of structure is sometimes used in conjunction with the *IF statement. Create
a new file and call it PROG. Now key-in the following:

*DISPLAY EG2.

*ENTER

*IF YES,y

*GOTO PROG.
~y *RETURN

This program will end once YES has been input otherwise it will keep on repeating itself. Even though the
*GOTO command can be used quite effectively in this manner the *BRANCH command is more
commonly used. The *BRANCH command is followed by one parameter which is a pointer flag that acts in
the same way as the second parameter of the *IF statement. Create a new file called PROGRAM4 and we
will rewrite the above program using the *BRANCH command.

~x *DISPLAY EG2.
*ENTER
*IF YES,y
*BRANCH x

~y *RETURN

This program produces exactly the same display as the earlier *GOTO example but, as you can
see, it is more efficient. Pointer flags are extremely useful because they enable us to create efficient and
well structured programs. Before moving on to look at any new commands, let's construct a couple of
programs which emphasise the value of pointer flags. Create a new file called PROGRAMS and key-in the
following program:

~x *DISPLAY EG2.
*ENTER

*|IF YES,y

*IF NO,n

*IF MAYBE,m
*BRANCH x
*BRANCH x
*GOTO PROGRAM.
*RETURN

<33

174

This program asks you to make an input and with the use of the *IF and *BRANCH statements, decides what
to do with it. If you "ENTER YES the program *RETURNS to BASIC (label x). If NO is *ENTERed (label n) the
program BRANCHes to x and the prompt remains on the screen. If the input is *"MAYBE the program GQOes
TO afile called PROGRAM (label m). Finally, if anything else is entered the program BRANCHes to X and re-
displays the request for an input.

This type of program is very useful when you need to provide users with a menu of options. To demonstrate
this concept create a new file called EG3 and key in the following:

Please press a number to perform the desired function:

1. Returnto BASIC
2. Read the EG file
3. Read the EG2 file

Now create another program file and call it PROGRAMS.

~x *DISPLAY EG3.
*ENTER
*IF 1,a
*|F 2,b
*|F 3,c
*BRANCH x
~“b *DISPLAY EG.
*PAUSE *PAUSE *PAUSE

*BRANCH x

~“c *DISPLAY EG2.
*ENTER
*BRANCH x

~a *RETURN

This program provides the user with a menu of options. If 1 is pressed the MTX will *RETURN to BASIC
(label a). If 2 is pressed the file called EG will be displayed to the screen for approximately t‘hree seconds,
followed by a reapperance of the menu. When 3 is pressed the EG2 file is displayed until an input has been
made, when, once again, the menu is displayed in all its glory.

STACKING THE ODDS

All the files we have created so far have been stored in the MTX's memory in the form of a stack. This stack
is very similar to a stack of plates or a pile of paper. When you want to look at a piece of paper you search
through the pile until you locate the sheet required, and then remove it to examine its contents. Similarly,

when you examine a Noddy file it must be removed from its position in the stack before it can appear on the
screen.

The *STACK command enables the user to look at program files one after the other in any order. The

specified filenames must be separated by commas and the final filename in the statement must be followed
by a full stop in order to indicate a file. Thus:

*STACK PROGRAM, PROGRAM1, PROGRAM2.

As the programs are arranged in the stack on a ‘first in last out' basis, the MTX will start by locating
PROGRAM2, then PROGRAM1 and finally PROGRAM. The *STACK command is used in conjunction
with the *ADVANCE statement whose job is to instruct the computer to progress through the program
stack, removing and executing each program in turn. However, an important point should be considered
when using these commands: each program file will only be executed if the preceding file does not contain
a *RETURN command, since such a statement will automatically *RETURN control to BASIC. In order to
avoid such a situation we must substitute the *RETURN statements in our example programs with
*ADVANCE statements. Let's move on and create a new file called EG3. Now enter 'PLEASE PRESS
RETURN' and then change the PROGRAM2 file so that it *DISPLAYs EG3.

175

MEM-12

*DISPLAY EG3.

(Tnis is only a cosmetic modification which will enable you to distinguish between the PROGRAM1 and
PROGRAM2 files). Now create a new file called PROGRAM?7 and you will be able to see these commands
in action.

*STACK PROGRAM7,PROGRAM,PROGRAM1,PROGRAM2.
*ADVANCE

(You will have to press the BReaK key to exit from this program.) Our latest example creates an eternal loop
since none of the files contain *RETURN statements. Consequently the *ADVANCE statement will
perpetually select and execute the programs stored in the stack.

You might be wondering why the above example included PROGRAM?7 in the *STACK statement. The
main reason for this is that its omission would generate a 'No call’ error message because the PROGRAM
file contains an *ADVANCE command. Under these circumstances the MTX will attempt to pull the next
program off the stack only to discover that there is no program left to call.

A more elegant method of exiting this program could be facilitated by the inclusion of a *RETURN
statement in the last program to be executed. So change the PROGRAM file into its original form by
replacing the * ADVANCE statement with *RETURN. We must also make the modification to PROGRAM2
since it contains a *GOTO PROGRAM command and thus PROGRAM7 would be halted as soon as the
*RETURN command had been executed. So, let's take out this *GOTO command altogether.

Now all we need to do is make a final cosmetic change to the PROGRAM?7 file. As the PROGRAM
*RETURNS to BASIC before the *ADVANCE command has a chance to call the PROGRAM?7 file we might
as well delete it. Thus the PROGRAM?Y file should now look like this:

*STACK PROGRAM,PROGRAM1,PROGRAM2,
*ADVANCE

When we PLOD this program it will *RETURN to BASIC once all the current files have been executed.

It is also possible to extract a program file from the stack without actually executing it. This is acheived with
the use of an *OFFSTACK statement. Let us suppose that we wanted to pull PROGRAM1 off the stack but
we didn't want to RUN it. By inserting an *OFFSTACK command into the preceding program file (in this
case PROGRAM2) we can bypass PROGRAM1.

Insert an *OFFSTACK command before the * ADVANCE command in the PROGRAM?2 file.

*DISPLAY EG3.
*ENTER
*OFFSTACK
*ADVANCE

On PLODding this program you will see that the PROGRAM1 file has been ignored. Thus when the <RET>
key is pressed (in PROGRAM2) the control of the program skips over the PROGRAM1 file and executes the
PROGRAM file,

PRINTING NODDY FILES

When we want to print out a Noddy file we cannot make use of LLIST or LPRINT but must utilise the Noddy
command *LIST. To print out the Noddy file EG you must simply open a file (let's call it LIST) and then enter
In a one line program that reads:

*LIST EG.

(Note the full stop.) However, before you can PLOD this program you will have to set up your printer so that
it will accept a line length of 39 characters. The manual that comes with your printer will tell you how to alter
line length.

176

LPRINT CHR$(27);"Q”;CHR$(39);
will initialise the DMX 80 printer to print 39 characters per line.
Once the printer has been set up you are ready to PLOD the LIST program.

NODDY KEYWORDS

We have included the following summary of Noddy keywords as a quick reference guide. The majority of
Noddy commands must be preceded by an asterisk (*) and all must be entered in capitals.

ADVANCE

SYNTAX: *ADVANCE
ABBREVIATION: *A

This command normally operates in conjunction with *STACK and is used to pull program files off the stack
and execute them. Each program file that is accessed in this manner must replace its *RETURN command
with an *ADVANCE statement if you require the next program that is extracted to be executed. If the
*RETURN is retained, the MTX will immediately *RETURN to BASIC when it encounters the statement. If
all of the *RETURN commands have been replaced with * ADVANCE the first program file following the
*STACK command must contain the name of the program file itself. Thus, the following program file is
called eg.

*STACK eg, fred, flo.
* ADVANCE

This program will extract the files flo, fred and eg from the stack and execute them in that order. Providing
the MTX doesn’t encounter a *RETURN command the program will run indefinitely and the only way of
breaking into it is by using the BRK key.

The reason this example requires the inclusion of its own progam filename is because none of the extracted
files contain *RETURN commands (they have been replaced by * ADVANCE statements). If it is omitted a
'No data’ error message will be returned. This is because the fred file will attempt an *ADVANCE only to
discover it has no place to go.

BRANCH

SYNTAX: *BRANCH x
ABBREVIATION: *B

This command is similar to the BASIC keyword GOTO and is used to *BRANCH to any point within a given
program file. The statement's only parameter is referred to as a pointer or label since its role is to determine
the point to which control is to be directed. When the MTX encounters the *BRANCH command it looks at
its parameter and then scans subsequent lines of the program until it encounters the character specified. In
order to avoid any confusion, the character which serves as the statement’s destination flag (i.e. the
character for which the *BRANCH statement searches) has the ~ symbol preceding it which ensures that
the program *BRANCHes to the correct point.

~x *DISPLAY FRED.
*ENTER
*IF YES.y
*BRANCH x

~y *RETURN

This program will *RETURN to BASIC if YES is *ENTERed, and any other input will cause the *BRANCH
command to return control back to the beginning of the program.

177

DIR

SYNTAX: DIR
ABBREVIATION: NONE

DIR is short for DIRectory and is used to display all the Noddy files currently in the memory. It can only be
entered as a direct command and is the only Noddy command that does not require a preceding asterisk.
The statement must, however, be entered in capitals. A lower-case version of the command will be
interpreted as a new file called 'dir', since the MTX makes a distinction between upper and lower-case
characters.

DISPLAY

SYNTAX: *DISPLAY filename.
ABBREVIATION: *D

This command is used to DISPLAY another Noddy file to the screen. The filename must be followed by a
full stop which tells the MTX that it must search for a file. If the full stop is omitted a 'Symbol?’ error report
will be returned, and this message will also occur if there is no space between the filename and the
keyword.

*DISPLAY FRED.
*PAUSE
*RETURN

This program will *“DISPLAY the file called FRED for approximately one second before *“RETURNiIng control
to BASIC. You will generate a 'No Data’ error message if you attempt to *DISPLAY a non-existent file.

ENTER

SYNTAX: *ENTER
ABBREVIATION: *E

This command works on a similar principle to the BASIC keyword INPUT. It halts the execution of a
program until an input has been made, and the input is entered by pressing the <RET> key. If you
press the <RET> key without making any input, control will simply be passed to the following command.

*DISPLAY FRED.

*ENTER

*RETURN

Our example will *DISPLAY the file called FRED and then wait for an input followed by <RET> before
*RETURNIing to BASIC.

GOTO

SYNTAX: *GOTO filename.
ABBREVIATION: *G

This command passes control to a specified program file (it can be the file in which the statement appears).
The filename that follows the "GOTO must be followed by a full stop which tells the MTX to search for a file.
If this full stop is omitted a 'Symbol?" error will be returned. This message will also be returned if you omit the

space between the keyword and the filename. You cannot *GOTO a filename that contains a space, if you
attempt this or if the file does not exist you will find yourself up against a 'No data’ error message.

178

*DISPLAY FRED.
*ENTER
*IF YES,y
*GOTO FILE.

~y *RETURN

This program will *DISPLAY a file called FRED and then wait for an input to be made. *IF the input is YES
the program moves on to the *RETURN command. If any other input is made it *GOTOs the file called
FILE.

IF

SYNTAX: *IF X,Y
ABBREVIATION: *|

This command is used in conjunction with the *ENTER command. It examines user-generated input from
which it determines the nature of subsequent processing. The statement's first parameter contains the input
response that will be judged True or False. If the input entered by the user of the program matches *IF’s
first parameter, the computer will search the program for the character flag defined by the statement's
second parameter. To ensure that the MTX does not jump to the wrong point in the program the destination
flag is always preceded by the ™ symbol. The *IF statement's second parameter is referred to as a pointer
(or label), since it determines the point to which the program must jump if the input test is judged True. If the
input does not match the *IF statement’s first parameter the control of the program is passed onto the
command that follows the *|F statement.

*DISPLAY FRED.

*ENTER

*IF YES,y

*GOTO PROG.
~y *RETURN

This program *DISPLAYs the file called FRED and then waits for an input to be made. The *IF statement
basically says 'IF the input was YES then go to "y'. In other words, if the input is YES the program will
*RETURN to BASIC. If anything else is *ENTERed control passes on to the command following the *IF
statement (i.e. *GOes TO a file called PROG).

There are a couple of rules to remember when using the *IF statement. The first parameter can contain no
spaces and the pointer flag (y) must precede the asterisk (*) of a command.

LIST

SYNTAX: *LIST filename.
ABBREVIATION: *L

This command is used to print out a program. However, before you can print a program out you will have to
set up the printer to accept a line length of 39 characters.

*LIST FRED.

The above statement will print out the file called FRED. (Don't forget to use the full stop after the filename.)

OFFSTACK

SYNTAX: *OFFSTACK
ABBREVIATION: *O

This command tells the computer to extract but not execute the next program from the stack. *OFFSTACK
is used in conjunction with *STACK and * ADVANCE statements.

179

PAUSE

SYNTAX: *PAUSE
ABBREVIATION: *P

Each time this command is used it * PAUSEs a program for approximately one second. In other words, if
you want to *PAUSE a program for three seconds you must enter the command three times. *PAUSE is
usually used in conjunction with the *DISPLAY command in order to give users a chance to read the file
that is being *DISPLAYed to the screen.

*DISPLAY FRED.
*PAUSE
*PAUSE
*PAUSE
*RETURN

This program will *DISPLAY the file called FRED for approximately three seconds before *RETURNing to
BASIC.

RETURN

SYNTAX: *RETURN
ABBREVIATION: *R

This command must always be included in a Noddy program since its function is to *RETURN control to
BASIC. If it is omitted a 'Symbol?' error report will be returned. If you want to return to Noddy after
PLODing a program you must PLOD the program within a BASIC program and include the return to Noddy
command in the following type of statement:

10 PLOD "FRED”
20 NODDY

This program will PLOD the file called FRED and will then return to NODDY once this operation has been
concluded.

STACK

SYNTAX: *STACK (own).filename,filename....,filename.
ABBREVIATION: *S

This command enables you to execute multiple programs within a single program, where each filename is
separated by a comma except the last which must be followed by a full stop. *STACK is used in conjunction
with the * ADVANCE command which extracts programs from the stack in the order specified by the
*STACK command and then executes them.

The syntax above shows that sometimes the first filename following *STACK is that of the file in which the
command appears. This format is only used when there are no *RETURN commands included in any of
the extracted programs (for further explanation of this refer to the *STACK entry).

*STACK fred, freda, jack, john

will first extract the file called john, then jack, followed by freda and finally fred.

N.B. A good way of remembering the Noddy Keywords is this association:

P PLOD B BRANCH E ENTER

L LIST I IF A ADVANCE
O OFFSTACK G GOTO R RETURN
D DISPLAY S STACK

180

CHAPTER 12 : THE MTX ASSEMBLER

WHAT IS ASSEMBLER?

Having discussed BASIC at some length and outlined the essentials of Noddy, the time has come to
introduce the programming facilities offered by the MTX Assembler. The principles of Assembly language
programming are extremely complex; a thorough introduction to the subject deserves a book to itself, and
thus well beyond the scope of this manual. However, since the MTX's Assembler facilities are one of the
machine’'s most powerful features, no introduction would be complete without a brief outline of the language
it accesses and the reasons why all BASIC programmers should consider learning how to harness its
power.

English is referred to as a high level language because it utilises very complex conceptual and syntactical
structures which, precisely because of the scope of expression offered by such complexity, enable us to
issue sophisticated instructions or statements in very few words. At the other end of the communication
spectrum, there are low level languages which require step by step instructions, with each element of a
process represented by a signifier from the language in question, before any intent can be unambiguously
expressed.

Although computer languages are far less complex than the languages with which humans communicate,
PASCAL, ALGOL, FORTRAN, COBOL and BASIC are also considered 'high level’ because, like English,
they facilitate ‘conceptual’ rather than 'elemental’ communication. The following analogy should help to
clarify the difference between high and low level languages. Consider the English instruction "go and make
a cup of tea”. As soon as you hear this you understand what is expected of you. However, a lower level
language would require more instructions. For example:

BOIL KETTLE

PUT TEA IN POT

POUR WATER INTO TEAPOT
POUR TEA

GIVE TO DRINKERS

Even when a problem presented to the computer has been broken down in this manner, the machine will
still be unable to directly understand any stage of the process. This is because micros make use of
‘'machine code’, the lowest possible level of language. So, moving down theé language levels, the machine
code version of the tea analogy becomes:

IDENTIFY KETTLE

IDENTIFY TAP

MOVE KETTLE TO TAP

TURN TAP ON: IS KETTLE FULL?
IF NOT GOTO IS KETTLE FULL

TAP OFF

MOVE KETTLE TO STOVE

IDENTIFY MATCH

IDENTIFY GAS TAP

STRIKE MATCH

ETC,ETC.

As you can see, the process of simplifying the components of a problem generates an enormous list of
instructions and decisions. The level of simplification required by a language is determined by the
simplification of the processor in question - i.e. a Z80 chip (as with the MTX) or a human brain.

In the same way humans automatically break down the apparently simple instruction "make a cup of tea”
into conceptual components, computers break down a high level language, such as BASIC, into simple
instructions which can be executed by the microprocessor. When you enter a program in BASIC, each
element of every instruction is translated into machine code by the 'interpreter’ which resides in the MTX's
BASIC ROM (Read Only Memory).

181

Like BASIC. machine code can be entered directly from the keyboard. The advantage of writing programs in
machine code is that they are executed considerably faster than their BASIC equivalents. This is because
the MTX doesn't need to waste any time interpreting each instruction before it can be executed.

The machine code used by all digital computers is made up entirely of 0's and 1's. These zeroes and ones
represent either voltage low (0), or voltage high (1), and are used to regulate the electronic circuitry at the
heart of every microcomputing operation.

Unsurprisingly, the human brain tends to find sequences of zeroes and ones very confusing. Thankfully, the
MTX is blessed with an instruction based language facility called an Assembler, which can be used to make
machine code more meaningful to humans.

Assembly code uses mnemonic (aids to memory) instructions and the MTX uses the Z80 Assembler
language. The sequence of zeroes and ones below is an example of a typical machine code instruction
(Z80):

10000110

(You'll be thrilled to learn that this particular instruction 'adds' the contents of the address held in the HL
register to the Accumulator.) The corresponding assembly code instruction is:

ADD A,(HL)

Even without understanding the operation performed by this instruction, it should be clear that the
mnemonic instruction (ADD A,(HL)) is a lot more meaningful than its machine code equivalent (10000110).

ADVANTAGES AND DISADVANTAGES

It tends 1o be both easier and faster to write bug-free programs using a high level language such as BASIC,
than attempting the same task using a low level assembly code language. BASIC listings are shorter, more
readable and to a great extent machine independent - which means a program can work on different
computers with minimal alteration.

However, although the commands used by high level languages are more powerful (because they've been
designed to be user friendly rather than machine friendly), there are many unnecessary instructions and
transfers made to the micro's memory. This drastically slows down the running speed of a program and also
uses a great deal of valuable memory space.

Another disadvantage of BASIC is that it's an 'interpreted’ language; when a program is RUN each line has
to be translated into machine code before it can be executed. Most other high level languages are compiled,
which means that the whole program is translated into machine code before it's RUN. This not only
dramatically increases the speed of execution, but also means that any line encountered more than once
will not have to be 'reinterpreted’! When the MTX encounters a BASIC FOR...NEXT loop structure, it will
have to reinterpret’ the statements within the loop on each pass.

The table below shows the amount of time it would take each different language to process the same
program, and will hopefully clarify the inefficiency of high level languages:

ASSEMBLER 10 Seconds
COMPILED LANG. 25/30 Seconds
INTERPRETED LANG 200/300 Seconds

So the main advantage of Assembler/machine-code is the speed at which it activates commands.
Assembler programming also has the hidden advantage of helping us understand the mechanics of data
processing, thus adding a practical dimension to the theory of efficient coding.

Since assembly language coding is such a time-consuming business, most programmers avoid writing

complete programs in the language. Instead, selected routines are coded with the aid of the Assembler,
which are called from a standard BASIC program. Let's take a look at how the MTX Assembler facilities can

182

be accessed from BASIC.

GETTING INTO ASSEMBLER ON THE MTX

Having hopefully aroused the interest of BASIC programmers unfamiliar with the world of machine-code
programming, the time has come to send them away in search of a Z80 tutor. As we have established, the
object of this section is to offer an introduction to the use of the MTX Assembler as a tool. To achieve this
objective within the space available, we must assume a working knowledge of the coding facilities to which
the Assembler provides access. In spite of appearancss to the contrary, the intent of this preamble is to
seduce those of you unfamiliar with Z80 programming into taking an interest in this MTX facility. Your
computer's Assembler is one of the machine’'s most advanced features and, if you take the trouble to
master the language it utilises, will prove of enduring value.

The immediate appeal of the MTX Assembler when compared with such facilities on other micros, is that it
is incredibly easy to use. It is called from BASIC as a straightforward 'in line’ assembler and only the
machine-executable object code is stored in memory. Readable assembler SOURCE code is generated by
disassembling the object code in question and inserting the relevent text and labels stored in tables below
the object code.

Before we go on to explain the simple command sequences which access the facility, there is an important
point to be stressed which must be borne in mind whenever programming assembler routines. Since the
code you create will be stored as a BASIC line, the actual location of your code will change if the BASIC
program is modified or extended. This location change will sometimes result in a final version of a program
that will not RUN. However, it is relatively simple to resolve this problem since the code can be reassembled
by re-entering the assembler at the code line before exiting once again.

Having resolved this potential source of grief at the outset, let's press on in a more positive vein and
examine the mechanics of accessing the Assembler.

WRITING IN ASSEMBLER

As we have already explained, MTX assembler code is held in a BASIC line. Consequently our first task is
to let the computer know the line number in which the code is to be held. This task is performed by the
ASSEM statement entered as a direct command. For example:

ASSEM 10

defines line10 as an assembler code line. A statement of this type is entered by pressing the <RET> key,
which will clear the screen and generate the:

Assemble>
prompt in the bottom left-hand corner of the screen. You are now in the assemble mode! The effect of this

process is to neutralise the action of BASIC commands like LIST and RUN. Your MTX is now anticipating
one of the following assembler instructions:

C - Clear screen P - Print to printer
L - List to screen T - Top of program
E - Edit Insert (by default)

Having established a start point for our routine and itemised the commands which facilitate its creation, let's
take a look at how the MTX Assembler enables such code to be written.

The first step in the creation of your assembly code is to simply press the <RET> key once again. As the
command list above reveals, this process accesses the INSERT mode (which is entered by default). Once
this is accomplished an ’Insert>" prompt will appear at the bottom of the screen. A four digit hexadecimal
number and flashing cursor will be displayed a few lines above this prompt. The hex value represents the

183

memory location to which the next instruction will be assigned. Finally, to the right of the cursor will appear
the instruction RET. So at this stage our screen display will look something like this:

Hex addr no. RET
Insert>

At this point things become even simpler! By making use of the EOL key on the numeric keypad you can
erase the RET instruction and enter the first instruction of your routine. Once this has been keyed-in and
edited, it can be entered by pressing the <RET> key. This will cause the instruction in question to
disappear and the hex value to be incremented, indicating the location that will be assigned to the next
instruction and the instruction currently at that location.

Having completed your routine, press the CLS key on the numeric keypad followed by <RET=>. The screen
will be cleared and the Assemble> prompt returned.

You are now faced with a number of options. It could be that you require a listing of the completed routine to
be displayed on the screen. This can be achieved by pressing ‘T’ followed by <RET>. This sequence will
set the program location pointer to the first instruction of the assembler routine. If you then press 'L’ followed
by <RET> the routine will be listed on the screen.

When there is more code than will fit on a single screen, the first screenful will be displayed followed by a
bell prompt which indicates there is more code to follow. The next screenful can be displayed by pressing
any key on the alphanumeric keyboard.

If you want to stop the listing, simply press the BRK key on the numeric keypad. Once the listing process
has been completed, the Assemble> prompt will re-appear at the bottom of the screen, indicating that the
MTX is awaiting further instructions.

So how can we edit our routines? Well, let's take a look at a simple example. In the following routine, the
data stored in the five bytes starting at DATA are transferred to the five bytes starting at COPY:

GBOO7 LD HLy DATA
BOOA D DE, COFY
800D LD EBC, 3
Bolo LDIF

sola EET

BO13 DATA: DE 12,#3, ".0W"
8018 COFY: DS 5

801D RET

BOLE FET

Symbol s

DT é BG13 Oy gl

Now suppose we decide that we only want to transfer the first two bytes of data. This would require a
change in the instruction at 800D. We will have to make use of the assembler's editing facilities to make the
following modification:

800D LD BC,2

To access the edit mode simply enter 'E’ followed by the location holding the instruction to be modified. In
this case:

E #800D
Note the hex number must be preceded by the hash (#) symbol (obtained by entering a SHIFTed 3 from the
main keyboard). Once this has been keyed-in, press the <RET> key. This operation will cause the

specified instruction to be displayed. To make the required change, move the cursor along the line with the
arrow keys and when it covers the '5’, simply press the '2". This will change the action of the instruction.

184

Once the editing is complete press <RET> to consign it safely to memory. This done, the MTX will display
the next line of the routine for editing.

To exit the edit mode, press CLS <RET> and the assembler will be ready to receive further directives.

At this point it's worth mentioning that a routine’s labels provide an alternative means of accessing particular
instructions. For example, in the routine we have just modified we could make a change to the value at 8013
by utilising the label associated with this location. By entering:

E DATA <RET>
we can cause the appropriate line to be displayed for editing.

When you are finally satisfied with the fruits of your labour, you can exit the assembler and return to BASIC
by pressing CLS <RET=. If you now list your BASIC program in the usual manner (i.e. entering L. or LIST),
you'll notice that the MTX has inserted the line number (at which you specified the storage of the assembler
routine), followed by the label CODE. CODE is not a BASIC statement, but simply acts as a tag which
indicates the location of an assembler routine. Following the CODE line, you'll find the full assembler listing,
after which the remainder of the BASIC code will appear.

At this point it's worth reiterating the warning given at the beginning of this section. The bulk of
machine-code routines are location dependent and having completed an assemble routine any subsequent
editing of BASIC code will relocate the assembler instructions. So your routines will almost certainly have to
be reassembled after a BASIC edit session. We'll repeat the outline of the sequence required for such an
operation. Once BASIC editing has been completed you must enter:

ASSEM In <RET>

where In is the line number at which your code is stored. This done, you complete the reassembly process
by exiting in the usual manner (i.e. pressing CLS followed by <RET>). This process will achieve a
reassembly of your code at its (hopefully) final resting place in the completed program. One obvious
precaution you could take, which (in many cases) will enable you to avoid this problem altogether, is to
place your CODE line(s) as near the start of the BASIC program as possible.

Having outlined the use of the MTX Assembler as a programming tool, for ease of reference it is probably
worth reiterating the syntax and action of each of its commands. However, before so doing, a few words
about the number systems accepted by the facility.

The MTX Assembler will accept values expressed in either a decimal or hexadecimal format, assuming the
former by default. A number will only be interpreted as a hexadecimal representation if it's prefixed by a
hash (#) symbol (SHIFT and 3). Words are stored according to the time- honoured Z80 convention -
low-byte first, then high-byte.

ASSEMBLER COMMAND OUTLINE

As we have seen, the MTX Assembler uses only six commands, one of which (Insert) is assumed by
default.

LIST
SYNTAX : L <hex/dec loc> or <label>

If entered without a parameter, L will list the entire assembler routine from the current position of the
location pointer. If a location or label is incorporated in the statement’s format, the listing commences from
the point specifed. The command only displays a screenful of code at a time. If the bell prompt sounds this
indicates that maore code follows and any key-press (on the alphanumeric keyboard) causes the next
screenful to be displayed.

185

EDIT
SYNTAX : E <hex/dec loc> or <label>

Accesses the assembler's edit mode. If E is entered without a parameter, the instruction displayed on the
screen for editing will be determined by the position of the location pointer. When a location or label is
included the instruction stored at the specified position will be displayed. The arrow keys facilitate
movement over the current edit line.

To delete a line of assembly code, enter the edit mode at the required line and erase the instruction leaving

the HEX number. When <RET> is pressed, the instruction will be deleted and the remainder of the code
adjusted to fill the free space.

INSERT (default mode)

SYNTAX : <hex/dec loc> or <label>

To enter the Insert mode it's only necessary to press the <RET> key in response to the Assemble>
prompt. This produces the display of the current code location into which an instruction can be inserted. The
line will take the form of a hex number denoting the next location at which an instruction can be stored. If no
instruction has been previously assigned to the location, the hex value is automatically followed by RET

which must be deleted. This can be achieved by: pressing EOL <RET> (after an instruction is inserted)
or, alternatively, overwritten by an instruction (if it was long enaugh).

PRINT

SYNTAX : P <hex/dec loc> or <label>

If entered without a parameter, P will print the entire assembler ROUTINE to the printer trom the current
position of the location pointer. If a location or label is incorporated in the statements format, the print
commences from the point specified.

CLEAR

SYNTAX :C
C followed by <RET=> will clear the screen.

TOP OF MEMORY
SYNTAX : T

This final assembler command requires no parameters. lts execution returns the program line location
pointer to the start point of the routine currently being assembled.

To exit a given mode, simply press the CLS key on the numeric keypad followed by <RET=. This will return
the Assemble> prompt.

To exit the assembler, return to the Assemble> prompt and enter CLS followed by <RET=>. This will return
the MTX to BASIC.

This concludes our introduction to the method of accessing the MTX Assembler and the commands by
which itis controlled. Before moving on to outline the power of the MTX's PANEL facility, the following notes
should be considered when using Z80 code to create programs with the MTX Assembler.

ASSEMBLER NOTES

The execution of machine code:

186

The task of executing machine-code routines can be accomplished in one of two ways. By now you should
be familiar with the simplest solution to the problem, since it is implicit in our introduction to the MTX
Assembler. If the machine-code routine is located in such a way that it interrupts the flow of the BASIC
program, the computer will be forced to treat it as a hurdle which must be overcome (or processed!) before
the remaining BASIC code can be executed. In other words, the only way the MTX can pass a strategically
placed machine-code routine is by processing it (in anticipation of the RET statement that will return control
to BASIC).

When a given routine is required more than once in a program, the simplest approach is to incorporate the
codeline in a BASIC subroutine which can be called as and when required. This enables the codeline to be
placed near the beginning of the BASIC program, thus reducing the number of occasions the 're-
assembling’ process is required as a consequence of BASIC editing.
The second method of accessing a machine-code routine is by means of the USR statement. Although the
need for such a command is considerably diminished by the facilities offered by the MTX Assembler, its
implementation is quite straightforward. When the computer encounters a statement such as:

100 LET X=USR(32775)
control will pass control to the machine-code routine at the location specified by the statement’'s argument.
Once it has been executed the control returns to BASIC and USR holds the current value of the BC register
pair. This can now be accessed via its variable (in the case of the example above we could PRINT X), or by
using the format:

120 PRINT USR(32775)
Pseudo operations:
Although they bear more than a passing resemblance to Z80 instruction mnemonics, pseudo operations
are, in fact, a means of reserving space in memory and defining its contents. Only three such operations are
required by the MTX Assembler - DB, DW and DS. The following section outlines the role and syntax of
each instruction.
OPERATION:DB - DEFINE BYTE
SYNTAX: <label:>DB<hex/dec>and/or ”<string>" and/or <label>
Defines the contents of the byte of memory specified by the instruction's argument. Its parameters can be
numeric (expressed as either decimal or hexadecimal values), alphanumeric, or the low byte of a label. (It
should be noted that although the use of a label will generate an out of range error, but by ignoring the
message the low byte of the label can caused to remain in memory.)
2.0PERATION:DW - DEFINE WORD
SYNTAX: <label:>DW<hex/dec> and/or <label>
This instruction assigns the value specified by its argument to a word (i.e. two bytes). The assigned value is
stored high byte first, and is thus compatable with Z80 word instructions.
3.0PERATION:DS - DEFINE SPACE
SYNTAX:<label:>DS <dec/hex>

Instruction which reserves the quantity of memory space (between 0-255 bytes) specified by its argument.

187

The following examples should help to clarify the various format options applicable to such operations:

DATA: DB 10,#20,"HIGH"
DB "SCORE"

JMPTAB: DW START,START1,0,#FOE3
DW HIT,WIN

BUFFER: DS 50
DS #40

Comment insertion:

The addition of comments to MTX assembler instructions takes the standard format. In other words, they
must be prefixed by a semi colon (;) and are delimited by the end of line. The inclusion of comments after
non-executable lines requires the use of NOP. For example:

NOP ;Routine to show comments
NOP

ROUTE: INC A
RET

Listing, Loading and Saving:

Because of the way assembler code is stored on the MTX (i.e. as a BASIC line), the listing, saving and
loading of assembler code uses exactly the same methods as those employed when carrying out the
equivalent operations for BASIC code.

Non-standard features:

Programmers with previous experience of assembler facilities will have noted a number of significant
differences between the MTX Assembler and other assemblers. Such distinctions are undoubtedly positive,
since they centre around the fact that the facility has done away with the need to specify the origin of object
code or provide endless lists of assembler directives. Such economies have resulted in an assembler that is
unusually easy to use and relatively fast (approximately 2-3 seconds for an 8K program).

Finally, it should be noted that although the Z80 instructions usually associated with loading the
stack-pointer with HL,IX and 1Y are not directly available from the assembler, they can be accessed as
follows:

Normally: Use instead:
LD SP HL DB #F9

LD SP,IX DB #DD,#F9
LD SPIY DB #FD,#F9

Restart for screen output:

All screen output ROM calls are accomplished by means of RST 10 calls. The effecis of a given call are
determined by the data following RST 10. Since the data in question is actually stored in the path of the
program, you may initially find this approach a little confusing, but in fact it's simplicity itself! This can
hopefully be demonstrated by getting down to specifics.

1.Writing ASCII to the screen

RST 10 to pass representations of registers B and C to the screen:

188

8007 LD BCy "THM"

006 EST 10
BOOR DE 1392
800C RET

Whilst this demonstrates the principle of the operation, it's not particularly interesting. The next routine is
slightly more significant:

8007 LD E,=o

8O0 LD Hly DATA

gO0C LOOF: LD Ay CHLD

OO LD E,O

BOOF LD CyA

8010 RST 10

Bl DE 192 ywrite BC token
8012 INC HL

BO13 DEC E

8014 JEONZ, LOOF

8016 FET

8017 DATA: DE " MEMOTECH"
8020 FET

Symbol s

DATA BO17 [.D0OF 8000

2. Messages to the Screen
The format which follows shows how we can send a complete string and hence avoid the inherent
complications of the last routine:

8007 EST 10
2008 DE #8C, "MEMOTECH L.TD"
8015 RET

The byte following the RST 10 instruction takes the following form:
7 6 5 4 3 2 10
1 0 ¢ <« n —

in which bit 5 indicates that the routine should go on to interpret the data following the instruction, and n is
the number of bytes in the string.

3.VS and RST 10
The format for the Virtual Screen instruction byte takes the following form:

7 6 5 4 3 2 10
0 1 ¢ * ¢clse—n —

¢ is the continuation bit; n the selected Virtual Screen; cls the screen clear option.* indicates that the bit can
assume any value and have no operational effect when used in this mode.

4.Single Byte to Screen
This call facilitates a single byte screen transfer. It takes the following form:

7.6 5 4 3 210

0 0 c * * * * *
c=continuation bit;*=no operational effect in this mode, whatever its value. The effect of this call is
demonstrated by our next example which makes use of RST 10 and CALL #79 (keyboard input). The
routine enables its user to ramble around the screen creating a display which echoes keyboard input.

189

BO0OT STakT. Call. #79
SOOA JE 2y BTART
8O0 LD EyA

BO0D LD By@

SO0 FET 10

BOL10 Di

801 CF 13

goLs JEOND, BTaRT
BalE b T

Symbol sz

START HOO7

5.RST 10 and Control Codes

One of the most powerful RST 10 calls combines the instruction with the MTX's Control Codes. These are
represented by the first thirty-two codes of the ASCII set, and can be considered "invisible” in that they
cannot be PRINTed to the screen.

Finally, the following chart lists the commands that can be accessed via RST 10, along with their ASCII
codes:

ASCII CODE FUNCTION

1 PLOT XY

2 LINE X1,Y1,X2,Y2

3 CURSOR XY

p BELL
10 LINE FEED

CURSOR DOWN

11 VERTICAL TAB

12 CLS/HOME

13 CRGE RETURN

14 CTLSPR P, X

15 GENPAT P,N,D0,D1,D2,D3,D4,D5,D06,D7
16 COLOUR PN

17 ADJSPR PN,V

18 SPRITE N,P.XP,YP,XS,YS,COL
19 MOVSPR P.N,D
20 VIEW DIR,DIS
21 INSERT KEY
22 DELETE KEY
23 BACK TAB
25 TAB KEY
26 HOME KEY
27,65 ATTR P,STATE
27,89 CRVS N, T XY WH,S
27,90 VS N
27 67 GRS X.Y,B (result in work space)

THE PANEL FACILITY

Even with only a rudimentary grasp of the principles of machine-code programming. the PANEL facility will
prove to be a godsend to your programming development. After you've mastered your computer’'s more
conventional features, experimentation with PANEL's potential will almost certainly persuade you to regard
it as the dark horse amongst the MTX's features!

190

PANEL is normally entered from BASIC as a direct command. Its execution forces the computer to draw
aside the veils that cloak the inner workings of the MTX by offering a window which displays the computer’'s
memory and registers. Thus PANEL allows the direct examination of the Z80 registers and sections of
memory. The obvious value of this feature is that it offers MTX programmers unrivalled debugging facilities,
providing a means of stepping through a flawed creation instruction by instruction! Let's take a look at the
options open to us when the PANEL mode is entered.

Having made it clear that the mode is normally accessed from BASIC by the use of PANEL as a direct
command, it's worth mentioning that it can also be entered from within a program as a BASIC statement or
in an assembly routine using RST 38.

The top right of the screen displays the Z80 registers, whilst the bottom of the screen presents a section of
the MTX's memory. Having entered the PANEL mode, standard keyboard response is neutralied and the
MTX will expect the single keypress input corresponding to the facility commands listed below. Before
looking at the action of these commands, let's see how cursor control is accessed.

The PANEL display presents two cursors (>), one for the registers and one for the memory block.

<RET> moves the memory cursor forward
T moves the memory cursor up
(down cursor) moves memory cursor down
- moves memory cursor back
moves the register cursor

The command list which follows should give you a hint of the power and flexibility of PANEL. One of the few
valid "obvious truths' that are applied to the over-mystified world of machine code is that it is indisputably a
pain to debug. There's no point pretending that the MTX PANEL will answer all your problems, but
intelligent experimentation facility will undoubtedly enable you to reduce the tedium coefficient normally
associated with the fault-finding process!

As we have already established, all PANEL commands are accessed via a single keypress - which in most
cases is the first letter of the full command name. Once a command letter has been entered, the selected
operation will either be immediately executed (as in the case of Clear), or else produce a command prompt
at the bottom the screen. The initial evocation of a PANEL command does not require <RET>.

On obtaining the command prompt, you must key-in the hex number(s) of the location(s) appropriate to the
selected command, which is then executed with <RET>. The only exception is the BASIC prompt, which
will return to the BASIC mode in response to a "Y' input.

In the majority of cases, PANEL commands which generate a prompt should never be entered without
parameters. This is particularly true of commands like GO and MOVE, the execution of which, if ill-
considered, can often have tragic effects on your code. It should always be borne in mind that the power of
the PANEL mode is precisely that it enables you to tamper with your creations at source, with all the
dangers that such an innovation implies. In short, experiment with test material before meddling with (the
unsaved version of) anything you value!

With one exception, the execution of a PANEL command will produce an empty prompt line which indicates

that the facility is awaiting further instructions. However, DISPLAY will continue to present the locations
indicated by the memory cursor until <RET> is preceded by invalid (i.e. non-hex) input.

THE PANEL COMMANDS

All commands are accessed by a single keypress, normally the first letter of the command name.

191

MEM-17

BASIC

Facilitates exit of PANEL mode and a return to BASIC. Generates an 'Exit?’ prompt, to which anything other
than 'Y' <RET> will ensure a perpetuation of the current mode.

CLEAR

Erases displays generated by the LIST command, and returns the screen to the display format encountered
on entering PANEL.

DISPLAY hex loc.

Displays the location specified by its parameter (hex loc.). If the command is entered without a parameter,
PANEL will display the location currently indicated by the memory block cursor. When DISPLAY is
executed, PANEL's ‘'memory window’ (i.e. lower display) will re-form to present the memory area around
the location specified. The location in question and its contents are presented at the bottom of the PANEL
screen, followed by the flashing cursor. <RET> without additional input will cause the memory cursor to
move on to the next location, which will then replace the display of the location that was initially specified.
The contents of the current location line can be altered if a new (hex) value is entered (followed by
<RET>). PANEL will continue to present consecutive locations until a non-hex value is entered.

If display is followed by '." memory at the value of the register pointed to by the register cursor will be
displayed.

GO hex loc1 (TO) hex loc2

Command which enables a program to be RUN, the start and end points of which are specified by hex loc1
and hex loc2 respectively. When GO is accessed, its command prompt appears, indicating that the
program’'s start point (hex loc1) is required. Once this has been entered followed by <RET>, the TO
prompt will appear, and the program's end- point location (hex loc2) must be entered, enabling the
execution of the specified code.

ASCII/HEX DISPLAY

Unlike most of the other PANEL commands, the ASCII/HEX toggle is not accessed by its initial letter, but by
entering I. It requires no parameters, since its function is simply to determine whether hex or ASCII
representations are displayed by the memory window and the location line produced by DISPLAY. The
action of the command is to replace hex with ASCII. and vice versa.

LIST hex loc

List code from location specitied by its parameter. If hex loc is omitted, the display generated will be
determined by the progran pointer's current position. A LIST display is created to the left of the register
block, and can be cleared by means of the CLEAR command.

If list is followed by "." code will be listed from the current value of the program counter.

MOVE hex loc1 (END) hex loc2 TO hex loc3

The command sequence initiated by MOVE allows a defined section of memory to be moved to a specified
location. The first command prompt (Move>) requires the start point of the memory area to be specified
(hex loc1). When this has been entered, the End> prompt appears, requiring the input of the end-point
location (hex loc2). Finally, the TO= prompt requests to location (hex loc3) to which the section of memory
is to be moved.

192

REGISTER hex
Command which allows you to change the register currently indicated by the register cursor according the

the value established by the statement’s parameter (hex). If the command is entered without a parameter, it
cannot be executed and PANEL simply awaits subsequent instructions.

SINGLE STEP

This command is entered without parameters, and facilitates the execution of the command at which the
program counter is currently located.

TRACE

This command is entered without parameters. Its action is exactly the same as that of SINGLE STEP,
except that calls are treated as a single instruction.

REGISTER TOGGLE

Like the ASCII/HEX toggle, the command that allows access to the top display’s alternate register uses an
unrelated command letter - X. Entered without parameters, its action enables PANEL to display the
registers using one of two register sets.

193

Absolute Address

AC
Access Time
Accumulator

ADC

Address
Algorithm
Alphanumeric

Array

ASCH

Assembler

Backup
BASIC
Baud Rate

BCD

Benchmark

Binary
BIT
Boolean Algebra

Bootstrap

Branch

Buffer

Bug
Bus

Byte

Centronics

Chip

Command
Compiler
Constant

CP/M

CPU

Crash

Cursor

Data

boc

GLOSSARY OF TERMS

Information or data held in a computer is found by the address of its location. In
machine code programs, the number defining an address is called an absolute
address

Alternating Current

How long it takes to reference an item in memory.

A type of register

Analogue to digital converter. Converts analogue signais into digital signals, would
you believe! There are also digital to analogue converters, which work in the opposite
direction

Each memory location has an address, used to find data or a program instruction
A set of steps for performing a task

Numbers. letters and sometimes other things

An arranged set of values linked by some kind of logical relationship. Each element in
an array has a unigue reference.

American Standard Code for Information Interchange. Pronounced 'Askey . it's just a
way of representing alphanumeric characters in binary. Difficult to get away from this
one. it crops up all over the place

A programming language one step away from the zeros and ones the computer
understands and uses. Assembly code is the coding for a program written in
assembler.

When things go wrong. it you haven't got one, you're in trouble

The Beginner's All-Purpose Symbolic Instruction Code.

Number of bits per second transmitted along a line

Binary Coded Decimal A way of expressing decimal numbers using bits. Uses four
binary bits for each decimal number.

A standard set of tests for seeing how fast a computer can perform. Used mainly in
comparing one computer with its rivals.

Number system using only two digits, 1 and 0

Binary digit. Either a zero or a one, it is the basic unit of information storage.

Set of logical instructions written using algebra, with an answer either TRUE or
FALSE

A set of instructions held permanently in the computer which have to be loaded
before the computer can load programs

In programming terms. a branch is a part of a program where a decision is made and
the program flow 1s transterred depending on the result. This is a conditional branch.
An unconditional branch is something like the GOTO statement, where the program
control jumps somewhere else without a decision being made.

Somewnhere data 1s stored temporarily, until the CPU is ready to process it. Also used
to allow one par of the computer to work at a different speed from another part

We all get these, so don't worry. A software error
A set of connections which allow a route around the computer for signals

A set of bits, the smallest unit that means anything. One byte is normally represented
by 8 bits. and represents a character or number.

A manufacturer of printers. Very popular. Lucky you've got a centronics type
interface

This 1s what most people call an integrated circuit. It's a tiny piece of silicon, and the
bread and butter of computers. (No jokes please.)

An instruction 1o the compuler to tell il to do something
Translates source code into object code.
Something (either a number. or a string) which doesn't change

Stands for Control Program/Monitor. A widely used and well recognised operating
system which makes available 10 you a weallh of software packages

The Central Processing Unit is a complex chip where all the logical and arithmetic
operations are carried out. It's your computers brain

Something that happens to programs When a program crashes it's because the
computer has encountered an instruction which has totally contused it, so instead of
getung an error message you usually get nothing. or lots of rubbish displayed on the
screen

The cursor tells you where the character you are about 1o type will appear. it's the
blob on the screen that's about the size of an ordinary character

Data s information which can be processed. stored or produced by a computer

Stands for Direct Current A constant voltage

194

Debug

Disc

Dump

Edit
Emulator
EOF
EPROM

Execute

File

Flag

Floppy Disc
Flowchart
Gate

Gigo

Glitch

Hard Copy
Hardware

Hertz (Hz.)

Hex

Input

o
Integer
Intertace

Joystick

Kilo (K)

Line Number

LOAD
Location

Machine Code

Memory

Menu

Microcomputer

Microprocessor

Microsecond (us)

Millisecond (ms)

Monitor

Nibble

Non-Volatile

Null String

The identification and removal of errors from a program.

An L.P. shaped plate covered in magnetic material which can store information or
data on ils concentric tracks. Discs have a fast access time, because the read/write
head can position itself quickly over the required data without having to read all the
preceding sterage area

To make a backup of a section of memory by printing it, or sending it to a backing
store, 1o give a security copy usually

To change data from what it was to what you want it to be
Software which enables one computer to duplicate the instruction set of another
Stands for End Of File

Erasable, Programmable Read-Only Memory

The carrying-out of a program or single instruction.

A file is a block of data organised so that it can be stored and retrieved as required.
Files always have names.

An indicator used to indicate something about data. For instance the Z80 CPU has a
flag which tells you whether the |ast operation performed resulted in zero or non zero.

Cheap, flexible store for data

A graphic way of representing the order of a set of events.
A single logic function.

Garbage in, garbage out! Antiquated expression, but | like it.

A spike of electrical noise. You don't want any of these. Can destroy your memory
contents.

A paper printout of your program or data is called hard copy

Hardware is the physical bits and pieces (chips etc.) that make up your computer.
Measure of frequency meaning cycles per second.

In everyday mathematics we use decimal, or base 10. Hexadecimal is a number
system in base 16 and uses the numbers 0 to 9 and letters A to F (representing 10
through 15).

Information placed into the computer's memory is input data, and may originate from,
for example, the keyboard.

Abbreviation of Input/Qutput.
A whole number.

Software or hardware, or both, used io enable the computer and a peripheral to talk to
each other.

Used mainly to enable games to be played on a computer. We all know what a
joystick is anyway, don't we?

Generally means one thousand, except when referring to memory size when it means
1024

The number required at the beginning of a line in BASIC is its line number. The
program is always executed in line number order, unless you use something like a
GOTO or GOSUB statement.

The placing of data in memory from a backing store or program

Same as absolute address

Literally the language the computer understands. Machine code is the language all
other languages have to be franslated into before the computer can execute a
program.

Storage inside the computer for data and programs, measured in bytes.

List of choices open to the user, usually encountered as the first page, or screen of a
program.

A small computer using a microprocessor chip. In the MTX series computers, the
microprocessor is the Zilog Z80.

The chip used in your computer as its CPU. Microprocessors crop up everywhere
these days, in ovens, Hi Fi équipment, they are even responsible for telling you to put
your seatbelt on in a Maestro

One millionth of a second

One thousandth of a second.

Think of it as a high definition television that can be used only as a display screen

Half a byte, i.e. usually four bits.

Most of the contents of memory are lost when the power is turned off. Non-volatile
memory doesn't disappear. For example, the information in ROM is non-volatile.

An empty string. The string must exist, and it must have nothing in it for it to be a nult
string

195

Number-Crunching

Object Code

On-Line

Operand & Operator

Operating System
(08S)

Qutput

Overflow

Pack

Page

Paging

Peek

Peripherals

Pixel

Poke

Port

Program
PROM
RAM

Record

Register

Reset

Reserved Word

ROM
RS232
Run

Scroll

Software

Source Code

String

Subroutine

Syntax

Vanable

Volatle

Zilog

Performing complex calculations quickly

A form of code the computer understands. If you write your program in a high level
language. (source code) it has to be translated into object or machine code before the
computer can act on it. This is a binary version of the source code and is produced by
the compiler

Peripherals connected to and communicating with a computer are said to be on-line
Machine code instructions can be divided into these two parts. The operator is the
process which is carried out, e.g. add, subtract, etc. and the operand is the data the
process i1s carned out on, usually a number

Software which supervises the running of other programs. CF/M, developed by
Digital Research Inc. in 1976 is an excellent operating system for use with Z80
microprocessor computers like the MTX series

The results that the computer makes available to the user (either on the screen or as
a printout, maybe)

When the space allowed for the answer of an arithmelic expression is too small, an
overflow condition will occur. The Z80 CPU has an overflow flag

A way of compacting information to economise on storage space inside a computer

A block of data, as displayed by the television set or monitor. Sometimes a page is
made up with several frames, or screens, of data

Switching between blocks of computer memory

A BASIC command which allows you 1o read the contents of a specified memory
address

Devices linked to the computer to enable it to gather and display information; e.g. a
printer, or a TV screen are peripherals

Picture element. It's the smallest area of display that the computer can control. The
more pixels you've got. the higher the resolution of your computer.

BASIC command which places integer values into a specified memory location

A socket on the computer into which an IO device can be plugged

A sel of instructions which the compuler carries out.
Programmable Read Only Memory
Random Access Memaory

A grouped set of related data or information. A file is generally made up of lots of
records

A special storage location in the CPU which holds data on which calculations are
performed

On the MTX series computers the two keys on either side of the space bar are the
Reset Keys Reset means the same as Initialise, and once pressed, the computer
returns to the state it was in when you first switched on.

A word that has a specific meaning to the compiler. so it cannot be used as a variable
name in a program

Permanent Read Only Memory

A type of interface

A command used to tell the computer to execute a program

The continuous movement of the dispiay on the screen. Usually scrolling means that
the latest line entered 15 added at the bottom and all the other lines move up one,
causing the top line to disappear from view

The program itself, 1.e as opposed o Hardware

What is actually wntten by the programmer betfore it is converted to object or machine
code

A sequence of records: words. letters or numbers

Often a part of a program will need to be repeated several times during the ‘run
Instead of writing the section each time you need il, a subroutine means you can write
it just once, and call’ or use it as needed

Computer languages are very precise. Statements need to be in the correct order in
the program, or it will crash. The rules which decide the grammar of the language are
its Syntax

An element of a program that can have various values. Itis a label used to refer to an
area of memory

Opposite of non-volatile

The last word in integrated logic”. The manufacturer of the ZBO micro chip used in
the MTX series compulers

196

OQONOOTOAWN —

—r ok ek ok b
WON=-O

MTX SERIES SOFTWARE APPENDICES

Codes of Control

Escape Codes

Error Messages

ASCII Codes

Codes of Colour

Keyword Abbreviations

Radian to Degree Conversion Chart

Function Keys

Absolute Directions

System Variables

Sound Table 1 : Memotech/Hertz Frequencies
Sound Table 2 : Frequencies for Chromatic Scale of C
Sound Table 3 : Noise

Sound Table 4 : Volume

197

APPENDIX 1 : CODES OF CONTROL

All of the following control sequences are achieved by pressing the CTRL key and its parameter
simultaneously.

CTRL A PLOT XX

CTRL B LINE X1,Y1,X2,Y2

CTRL C CURSOR XY

CTL Dn Sets background colour to n

CTLE Erase to end of line

CTL Fn Sets foreground colour to n

CTLG Sounds the bell

CTLH Backspace, cursor left

CTLI Tabulate the next block of eight columns
CTLJ Line feed, cursor down

CTLK Cursor up

CTL L Clear screen and home cursor

CTLM Carriage return, cursor to left edge of screen
CTRL N CTLSPR P, X

CTRL O GENPAT P,N,D1,02,D3,D04,D5,06,D7,08
CTRLP COLOUR PN

CTRL Q ADJSPR PN,V

CTRLR SPRITE N,P.XP,YP,XS,YS,COL
CTRL S MOVSPR P,N.D

CTRLT VIEW DIR.DIS

CTRL U INSERT KEY

CTRL V DELETE KEY

CTRL W BACK TAB

CTRLY TAB KEY

CTRL Z HOME KEY

CTL] Page mode

CTL \ Scroll mode

CTL - Cursor on

CTL _ Cursor off

APPENDIX 2 : ESCAPE CODES

All of the following ESCape sequences are activated by pressing the ESC key followed by the escape
character(s), (do not press ESC and the characters simultaneously).

ESC A ATTR P,STATE

ESC 'Y’ CRVS N-T.X.YWH.S

ESEG *Z’ VS N

ESC C GR$ X,Y.B (RESULT IN WKAREA)
ESC BO American character font

ESC B1 English character font

ESC B2 French character font

ESC B3 German character font

ESC B4 Swedish character font
ESC B5 Spanish character font

ESC | Inserts a blank line at cursor line
ESC J Deletes the current cursor line
ESC K Duplicates a line

ESC Xc Simulates CONTROL character ¢

198

APPENDIX 3

Params

Incorrect or wrong number of parameters for a
function or command.

Mistake

A mistake has been made which should be
obvious from the context.

A

Dot outside virtual screen.

SE.A

Screen type not in type table.
SE.B

Invalid ESC sequence.

SE.C

Command not valid for this device.
SE.D

Switch to absent Virtual Screen.
SE.E

Invalid UDG/UDG type.
Symbol?

A symbol is missing, such as
)‘!‘,‘l) HTOH’ Y!THENI!,H'H

Not numeric

A number is expected.

Not a string
A string is expected.

Boolean?
A truth value is expected.

Mismatch

An illegal relationship between different types
of values.

BK

Break in tape LOAD or SAVE.

No data
No data for READ or No page for NODDY.

Overtiow
Number too big.

Div/0
Division by zero.

Out of range
Number is not in a valid range.

ERROR MESSAGES

No space

To define an array

To expand a program

To assign a string to a character array
To periorm a large operation.

Subscript
A Subscript is out of range or there are too many.

Gosub
Too many GOSUBS (more than 34).

Undefined
A variable is being used before it exists.

Array exists
An array has already been defined.

No FOR

A next has been encountered without a matching FOF

No call

A RETURN has been encountered without a matching

GOsuB.

No line
A reference is made to a non-existent line.

199

APPENDIX 4 : ASCII CODES

ASCII HEX DEC ASCII HEX DEC ASCII HEX DEC
NUL 00 0 / 2F u7 | 5E 9y
SOH 01 1 0 30 48 — 5E 95
STX 02 2 1 31 Lg [| 60 96
EL.X 03 3 2 32 50 a 61 97
EOT ou 4 3 33 51 b 62 98
ENQ 05 5 4 34 52 c 63 99
ACK 06 6 5 35 53 d 6U 100
BEL 07 i 6 36 54 e 65 101
BS 08 8 7 37 55 f 66 102
HT 09 9 8 38 56 g 67 103
LF 0A 10 9 39 57 h 68 104
VT 0B 11 : 3A 58 i 69 105
FF ocC 12 : 3B 59 J 6A 106
CR 0D 13 < 3C 60 k 6B 107
S0 OE 14 = 3D 61 1 6C 108
SI OF 1,5 > 3E 62 m 6D 109
DLE 10 16 ? 3F 63 n 6E 110
DC1 11 17 [| Lo 6U o] 6F 111
DC2 e 18 A 41 65 p 70 1 1
DC3 13 19 B L2 66 q T 113
DCY 14 20 C 43 67 r 72 114
NAK 15 21 D Ly 68 s 73 115
SYN 16 22 E 45 69 E T4 116
ETB 17 23 F Lé 70 u 5 117
CAN 18 24 G u7 71 Y 76 118
EM 19 25 H 48 72 W 7T 119
SUB 1A 26 i 49 73 X 78 120
ESC 1B 27 J LA T4 y 79 121
FS 1C 28 K LB 75 Z TA 122
GS - 1D 29 L LC 76 | 7B 123
RS 1E 30 M 4D T i) TC 124
us 1F 31 N UE 78 & 7D 125
space 20 32 0 4F 79 =] TE 126
! 21 33 P 50 80 DEL TE 127
i 22 34 Q 51 81
i} 23 35 R 52 82
& 24 36 S 53 83
% 25 37 T 54 84
& 26 38 U 55 85
: 27 39 v 56 86
(28 40 W 57 87
) 29 U1 X 58 88
* 2A e Y 59 89
+ 2B 43 Vi 54 90
, 2C 44 m 5B 91
- 2D 45 | 5C g2

2E 46 L 5D 93

W Denotes characters that change according to which character set is selected. See table

200

Country A x
o/ & / s/ &
v/ &//82/E/8 £
Hex. »/&§/85/8/ 8§/ &/ 5/8
code/ 5 /& /S8 /5 /8 /o /f/F
23 # # # £ # = # Pi
24 3 3 $ $ $ o] $ $
40 @ a § (a (@ E (a (a
5B [2 A [&£ | A © i
sc | N [¢co6 [v]@[o6 N[N
sD |] s U T Al ALle]|
5E A A A A A U A A
60 . v ® v 0 é U 1
78 { e a { ® a a
7C l u o) : o] o] 0 n
7D } € u } a a e 1
7E - B £} ~ -~ i i ~

APPENDIX 5 : CODES OF COLOUR

The following table provides a list of the colours and the numbers by which the Memotech will recognise
them.

Transparent
Black
Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan
Medium Red
Light Red
10 Dark Yellow
11 Light Yellow
12 Dark Green
13 Magenta

14 Grey

15 White

CoOo~NOOUkEWN—=O

201

ABS
ADJSPR
AND
ANGLE
ARC
ASC
ASSEM
ATN
ATTR
AUTO
BAUD
CHR$
CIRCLE
CLEAR
CLOCK
CLS
COLOUR
CONT
COS
CRVS
CSR
CTLSPR
DATA
DB

DIM
DRAW
DS

DSl
EDIT
EDITOR
ELSE
EXP
FOR
GENPAT
GOSsuB

AB.
AD.

ANG.
AR.

A.
AT
AU.
B
CH.
Cl.
CLE.
CLO.
C.
COL.
CO.
CR.
Cs
CT
D.

DI.
DR.

DS.

E
EDITO.
EL
EX.

E

GE.
GOS.

APPENDIX 6 : KEYWORD ABBREVIATIONS

GOTO
GR$

IF

INK
INKEY$
INP
INPUT
INT
LEFTS
LEN
LET
LINE
LIST
LLIST
LN
LOAD
LPRINT
MID$
MOD
MVSPR
NEW
NEXT
NODDY
NODE
NOT
ON

OR
ouT
PANEL
PAPER
PAUSE
PEEK
PH

P
PLOD

G.
GR.
l.
INKE.
INP.
LEF.

LE,
LIN.
L.
LL.
LO.
LP.
MI.
MO.
MV.
N
NODD.
NOD.

0.
ou.
PAN.
PA.
PAU.

PH.

Pi:

PLOT
POKE
PRINT
RAND
READ
REM
RESTORE
RETURN
RIGHT$
RND
RUN
SAVE
SBUF
SGN
SIN
SOUND
SPK$
SPRITE
SQR
STEP
STOP
STR$
TAN
THEN
TIMES
TO
USR
USER

VAL
VERIFY
VIEW
VS

APPENDIX 7 : DEGREE TO RADIAN CONVERSION CHART

DEGREES RADIANS
360 2% Py
270 3*Pl/2
180 PI
90 PI/2
60 PI/3
45 Pl/4
30 PI/6
22.5 PI/8
15 PI/12
10 PI/18
75 P24
5 P36
1 P1/180

202

APPENDIX 8 : FUNCTION KEYS

The Function Keypad can be used to customise the computer for a particular application. There are eight
keys marked F1 to F8.

Try this program:

10 PRINT ASC(INKEYS$)
20 GOTO 10

If you press any key, you will see its ASCII code displayed and the shifted value if the shift key is pressed
simultaneously.

F1 128 SHIFT and F1 136
F2 129 3 ; F2 137
F3 130 i ¥ F3 138
F4 131 i i F4 139
F5 132 " b E5 140
F6 133 $ " F6 141
F7 134 ’ TR 142
F8 135 " ! F8 143

If required, character patterns can be assigned to the function keys using the GENPAT statement.
For example,

10 GENPAT 1,129,32,80,136,136,248,136,136,0

will make F2 produce a character 'A’.

THE NUMERIC KEYPAD

The Numeric Keypad has been designed for use with application programs. Notice that the Break key is in
the top right hand corner of the numeric pad and you must decide if you want to allow this key to Break in or
not. To use the numeric pad, press the shift key and one of the numbers. In this mode the Break/9 key will
give a 9 and not Break.

There is however a numeric padlock which is set by a Bit in the keyboard flags. If this bit is set, the number
pad will be locked to Numbers but for safety the Break key will over-ride the 9. To use the 9 you must turn off
the Break key, by switching the Break key bit in the Interrupt flags INTFFF.

e.g.

10 POKE 64145,132

20 POKE 64862,13

30 PRINT INKEY$:GOTO 30

APPENDIX 9 : ABSOLUTE DIRECTIONS

Some graphics commands, including MVSPR, and VIEW, use a direction parameter to specify one of seven
directions. These are illustrated in the diagram below.

203

—

APPENDIX 10 : SYSTEM VARIABLES

FAS?2 CTRBADR Ds 40 Control buffers for sound

FA7A LSTPG Ds 1 This contains the number of 32K RAM
pages present - 1

FA7B VARNAM Ds 2 This contains the address of the

bottom of the variable name table

FAZD VALBOT DS 2 This contains #FF. VALBOT plus 1 is
the address of the bottom of the
variable value table

FAZF CALCBOT DS 2 This contains the address of the
bottom of the calculator stack

FAS1 CALCST DS 2 Stack Pointer
This contains the address of the top
of the calculator stack + 1, ie the
next available free byte

FAS3 KBDBUF DS 2 This contains the address of the
Keyboard Buffer

FABS USYNT DS 4

This contains the syntax bytes which are used to tell the computer what to
expect when the BASIC command word USER is met. These bytes may be defined
by the operator, as listed below. They are examined from the top bof the
four byte block to the bottom, and the last one must contain a RET
instruction.

FAB? USER DS 3

This contains the address of the routine which will be jumped to when
the BASIC command word USER is met. It usually contains RET, but may be
redefined. I+ vyou wish to put a new jump address into USER, it is
important that it is changed in reverse order, ie HFABB +irst, then
HFABA, then #FAB89?, otherwise the computer will jump to 0000, which is
equivalent to a RESET. This basic idea applies to all jump locations.

eq original contents of USER........

FA89 C9 RET
FAZA 00 not used
FABB 00 vet

to force a jump to #DOFF

FAB9 C3 JUMP instruction to.... {change last
FA3A FF Low byte #irst, then {change second
FASB DO High byte {change first

204

Etfect of various Syntax Bytes in the USYNT location

Syntax Syntax checked for
byte (decimal)

0 Numeric Expression

1 String Expression

2 Arithmetic Expression

3 List of Expressions separated by "," or ";*
4 List of numbers separated by "," in range 0 to 64K
S List of Arithmetic Expressions

& Single number in range O to 64K

7 Allows anything, ie no checking

8 Checks syntax for INPUT statement

2 Checks syntax for IF statement

10 Checks syntax for STEP in FOR statement

101 GOTO or GOSUB

12 I=(arithmetic expression) in FOR statement
13 Numeric variable or nothing

Any value greater than 32 will cause the computer to expect that value
to be input.

FAGC DS 3 Not used by computer, however a
JUMP address here will be saved
to tape.

FASBF I0PL DS 1 Pointer to the List device; see
below.

FAZ0 REALBY DS 1 PANEL breakpoint

Stores byte of breakpoint in GO,
FAZ1 KBFLAG DS 1 See below.

FAR2 STKLIM DS 2 STACK Limit.
Points to top of free space.

FAZ4 SYSTOP Ds 2 Points to top of variables to be
saved.
FA96 SSTACK Ds 2 , Points to start of Machine

Stack. This value is loaded into
the SP (Stack Pointer) register
whenever the machine goes back
to basic, or an error oOCCcurs.

FA98 USERINT DS =3 Contains JUMP address used
dependent upon the bit set up in
INTFFF at H#FDSE; see below.

FAZB NODLOC Ds 3 Contains JUMP address used by
the MTX RING Local Area Network.

FAZE FEXPAND DS 3 PANEL expansion.

Before executing a PANMEL command the
computer looks here for a JUMP ins-—
truction. MNormally contains RET.

205

FAAL

FAA4

FARS

FAAZ

FAAZ

FAARA

FAAC

FACC

FACF

FADI1

FAD2

FAD3

FAD4

FAD3

FAD&

FAD8

FB41

FB43

FB44

FB435

FBa4&

FB48

FB49

USERNOD

NBTOP

NBTPG

BASTOP

BASTPG

BASBOT

BASTPO

ARRTOP

BASELIN

BASLNP

PAGE

CRNTPG

PGN1

PGN2

PGTOP

GOSTACK

GOPTR

GOSMUM

FORCOUNT

CTYSLT

DATAAD

DATAPG

DESAVE

DS

DS

DS

DS

DS

DS

Ds

DS

DS

DS

DS

DS

DS

Ds

Ds

DS

32

105

206

NODDY expansion.
Works as FEXPAND above.

Top of NODDY in current page
Current NODDY page.

Top of BASIC in current page
Current BASIC page

Value fram which virtual
adresses are calculated,

normally #4000

Top of each BASIC page, (max 16)

Points to top of Arrays

Contains number of current line
being executed.

Contains page number for BASELIN

Contains current page
configuration.

Contains number of current BASIC
page.

Space for temporary variable used
BASIC Interpreter

Space for temporary variable used
BASIC Interpreter

Contains address of top of
current page

GOSUB Stack.
Stores GOSUB return addresses

Pointer into GOSUB stack for
next return address

Number of GOSUBS on GOSUB stack

by

by

Counter of No. of nested FOR loops

Selects Keyboard configuration
for different countries

Data pointer for READ statements
Page number holding data above

Stores the current BASIC program
position on saving to tape.

FB4B START DS 200H-3 Start of Keyboard Buffer

FD48 SETCALL DS 3 Temporary jump address location used
for Single stepping in PANEL

FD4EB RICHJIL DS 3 Temporary variable used for
Single stepping in PANEL

FD4E USRRST Ds 3 This location is examined on
calling RST 38 or on a Non

Maskable Interrupt. It normally
contains RET.

FD51 USERIO Ds 3 This location is examined on
calling KBD at #79. KBD reads
the Keyboard, and leaves the
result in A.

FDS4 USERROR DS 3 This location is examined before
an error message is displayed.

FDS? CLOCK DS 7 Real Time Clock.
Contains time in format:

Byte no:l 2 3 4 5 &6 7
HHMMSS X
where X counts up from 48 to 173
in 125ths of a second. The data

is displayed in PANEL as ASCII.

FDSE INTFFF DS 1 See below
FDSF CASBAUD DS 1 Cassette BAUD rate
FD&O MIDVAL DS 1 Contains a reference value +for

tape save, load and veri+fy, and
varies with different BAUD
rates. Eg it the length of a "1"
pulse is 100 units and the
length of a "o" pulse is S0

units, then MIDVAL will be
approx 75 units for that BAUD
rate.

FD61 RETSAVE DS 4 Start address for auto load

FD&S VAZERO Ds 2 Virtual Address of bottom of
BASIC

FD&? VERIF DS 1 Flag for VERIFY or LOAD

FD&8 TYPE DS 1 Flag for SAVE or LOAD

207

MEM-1!

FD&?

FD&A

FD&C

FD&D

FD&F

FDZ71

FDZ23

FDZ5

FD7é

FDZ77

FD79

FDZ7B

FDZC

FDZ?D

FD7E

FD7F

FD81

FD32

FD34
FD86
FD87
FD39
FDSB

FD8D
FD8F

CONTFLG

CONTAD

CONTPG

ASTACK

TMPHL

TMPA

STACCT

PRORPL

IOPR

AUTOIN

AUTOST

AUTOCT

LASTKY

LASTASC

LASTDR

RNSEED

BREAK

COMMAND

ERRPOS
FLAGS1
ITYPE
MAFD
MBCD

MDED
MHLD

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS
DS
DS
DS
DS

DS
Ds

NN NN

* ok K ok

208

Continue flag.

0 implies cannot continue after
BREAK key pressed or STOP
command

Address of BASIC line to
continue from after BREAK key or
STOP

FPage number for above

Contains address of Machine
stack used by PANEL

Stores HL during page switching
Stores A during page switching

Temporary variable used by maths
routines

See below

See below

Increment for Auto Line
Start value for Auto Line
Counter for Auto Repeat
Last key pressed

ASCII of last key read

Current drive line in use in
keyboard scan

Seed for random number routine
Break key flags

Contains address of first
command executed i+ direct

Contains address of syntax error

Flags displayed in PANEL

Temporary variable used by PAMNMEL

Used by PANEL for temporarily
storing alternate register set

FDZ1
FDZ3
FD9S
FD?7
FD29
FD9B
FD?D
FDPF

FDA1

FDA3
FDAS
FDAG
FDAB
FDAA
FDAC
FDAD
FDAE
FDAF
FDBO
FDB1
FDB3
FDBS
FDBZ
FDB?
FDBB
FDEC
FDBE
FDC1
FDC3
FDCé
FDC?
FDC?
FDCB

FDCC

FDD1
FDD2
FDD?
FDD8
FDD?

FDDE

FDF2

FEOZ2

FEO4

MAF
MBC
MDE
MHL
MIX
MIY
MSP
MPC

MEMPOINT

WCHJIUMP
POINTERR
DADD
INDEX
DBYTE
LINKER
EDIT
LENGTH
DETYPE
DTYPE
DISAD
DPROG
LABTABL
APROG
ENDTAB
COMMENT
COMAD
ADLABEL
INDEXLAB
DATALAB
DBLABEL
BASEM
CURLAB

ACC1

OP1

oP1L1
YORN
SIGN
MEM1

CoPY

INTTAB

GASH

TEMP

DS
Ds
DS
DS
DS
DS
DS
DS

Ds

DS
DS

Ds
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS

DS
DS
DS
Ds
DS

DS

DS

Ds

NNNNNNNRN

N

=ANNEFWUNWN=NNNNNESRR~=~~~NRNMNN~N

)

U= =]
k %k 3k k K

16

d ks ok K ok kK

Used by PAMEL for temporarily
storing register set

Pointer into memory for [PANEL
display

Variables used by Assembler
and PANEL.........

Symbol table address
Start of assembly code program

Accumulator used by Maths routines,
contains +five byte <floating point
number

Temporary variables used by maths

Temporary location for a

floating point number

Contains copy of tape header
information

Interface for European Keyboard
layouts

Temporary variable used by sound

Temporary variable used by sound

209

FE19
FE16&
FE18

FELA

FE3F

FE43

FE47

FE4B

FE4C

FE4D

FE4E

FE4F

FESO

FES1

FES2

FES3

FES4

FESS

FFSS

FF36

FF3S7

FF3S8

FFS9

FFSB

CHAN
FRE®
voL

00 00 00 00

00 00 00 00

00 00 00 QO

o1

o1

01

e]e}

00

Q0

o0

00

00

Qo0

00

00

00

Q0

00 00

00 00

DS 2
Ds 2
DS 2

WKAREA:

BSSTR:

SPEED:

SPBASE:

MVUDIST:

NOSPR:

DLSPNO:

PLSPNO:

MUNO:

DELSPR:

VCOUNT

VDPSTS:

SPRTBL

SMBYTE:

LENLO:

LENHI:

VINTFG:

CHPFTR:

CURSCR:

210

These three locations hold the three
parameters used by the direct sound
statement. They can be poked with
the ranges of values used by this
command . Calling H8F&6 will set the
sound chip going using these values

Ds 37 Escape seguence data
collection area

DEFS 12 Screen Workarea

DEFB 1 Unit of sprite speed

DEFB 1 Temporary variable

DEFB 1 Unit of distance for MVYSPR
DEFB O Number of active sprites
DEFB O NMumber of circling sprites
DEFB O Current Plot Sprite number

DEFB O Mumber o+ sprite for move
caommand

DEFB O Temporary variable
DEFB O Counter for cursor flash

DEFB O Copy of VDP status
register

DS 256 Control buffers for
sprites

DEFB O Size and magnitude of
sprites

DEFB 0O Control variable for ARC

DEFB O Control variable for ARC

DEFB O Sprite interrupt flag: i
this contains zero it is
safe to write o the
screen

DEFB 0,0 Character pointer

DEFB 0,0 Points at start of current
screen data below

These blocks of data contain the virtual screen parameters used at switch-
may

Dh. They

FFSD
FF&l
FF&S
FF&7
FF&B

FF&C
FF70
FF74
FF76
FF7A

FF7B
FF7F
FF83
FF85
FF89

FF8A
FF8E
FF92
FF94
FF98

RESS
FF2D
FFAl
FFA3
FFAZ

FFAS8
FFAC
FFBO
FFB2
FFB&

FFB?
FFBB
FFBF
FFC1
FFCS

FFC&
FFCA
FFCE
FFDO
FFD4

00
Q0
00
F1
Q0

00
Q0
00
R
00

Q0
Q0
00
F1
00

00
05
00
iF
e]e]

20
o]6]
00
Fi
00

20
10
00
D1
00

20
10
00
D1
00

00
00
00
00
00

00
28
Fl
Qo0

00
ic
o |
00

00
QC
Fi
00

00
14
YE
00

00
20
F1
00

Q0
oC
o §
00

00
0C
1F
00

00
00
00
00

be changed using CRVS,
Virtual screen byte format table below

00
i8

Fi

00

18

Fl

00

18

F1

00

OE

1F

00
18

F1

00

o8

1F

00

083

1F

00

00

00

Q0
28

00

00

28

00

1C

28

Q0

OA

28

Q0

00
20

Q0

00

20

00

00

20

10

00

Q0

00

SCRNO:

SCRN1:

SCRNZ:

SCRN3:

SCRN4:

SCRNS:

SCRNé6:

SCRNZ:

POKE or from Assembler code - see

DEFB

DEFB

DEFB

DEFB

DEFERB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

21

0, 0,0,0,0,40,24,;40,0241

241,0,241,0,0

0,0,0,0,0,28,24,40,0,241

241,0,241,0,0

0,0,0,28,0,12,24,40,0,241

241,0,241,0,0

0,0,0,10,5,20,14,40,0,31

31,105 3150,0

32,0,0,0,0,32,24,32,0,241

241,0,241,0,0

32,0,0,0,16,12,8,32,0,241

209,0,31,0,0

B32,0,0:0: 16 12;8,32,0,31

209,0,31,16,0

0,0,0,0,0,0,0,0,0,0

0,400,050

FFDS TYPTBL: DS 24

This area holds the page number and address of the routines for particular
screen types. The table is organised into three byte blocks, allowing up
to 8 screen types. Currently only 4our screen types are defined:

Screen Type Characteristics
0 40 column text only
1 32 column graphics
2 40 column text and graphics
3 80 column text and graphics
q4 - 7 Undefined
FFED 00 OVRLAY:

This is a 3 byte JUMP location which is examined prior to accessing a
virtual screen. It allows the user to redefine the format of the next
screen to be called.

FFFO IJTABLE DS 16 Interrupt jump table
Virtual Screens - byte format for each screen
Byte(s) Contents
1 Various Bits indicate Screen type, Auto Scroll, Cursor flash,

Page mode

2+3 Current PRINT position within this screen in col,row format,
eg could be #OF #HOF indicating 15,15

4+35 Absolute top left hand corner, represented as above
&+7 Width of screen, and no. of lines in chars

8 Line width of physical screen

9 Contains the character under the cursor

10 Shows Border colour

11 Shows PRINT colours as INK, PAPER

12 Shows PRINT attributes

13 Shows PLOT colours as INK, PAPER

14 Shows PLOT attributes

15 Counter for number of lines scrolled so far

212

INTFFF FDSE
USERINT FAP8

Every 125th of a second an interrupt occurs, the clock is updated, and bit >
of INTFFF is toggled. If bit 7 of INTFFF is 1, and any of the USER bits in
INTFFF are 1 a call is made to the USERINT location. I+ all three USER bits
in INTTFFF are set, USERINT is called three times.

INTFFF Bit © Sound routine called
1 Break key tested
2 Keyboard autorepeat enabled
3 Sprite movement and cursor flash enabled
4 USER bit-USERINT called if set
b USER bit-USERINT called if set
& USER bit-USERINT called if set
7 Clock bit-toggled every 125th of a second

LASTDR FDZ7E

During an interrupt the keybpoard is scanned to see if the break key has
been pressed. Because this involves outputting data on the keyboard drive

lines, the interrupt routine may upset a user initiated keyboard scan. To
prevent a conflict the operator should load LASTDR with the data to be
output ©on the keyboard drive line immediately before performing the
cutput. The interrupt routine outputs this data again before returning to

guarantee that the drive lines are left the same as when the interrupt
routine was entered.

PRORPL FD7S
I0OPL FASF
I0PR FD76

I+ PRORPL = 1, output will be sent to the device specified by IOPL
If PRORPL O, output will be sent to the device specified by IOPR

IOPR and IOPL can be set up as follows:!

IOPR/IOPL = O output goes to the screen

IOPR/IOPL = 1 output goes to the Centronics printer port

IOPR/IOPL = 2 output goes to the R3232 port channel 0
KBDFLG FA?1

Bits set have the following effect:
Bit 7 set Alpha lock on

S5 set Toggles between page and scroll modes
2 set Locks numeric keypad

213

APPENDIX 11 : SOUND TABLE 1

MTX/HERTZ FREQUENCIES

FREQUENCY = 4000000/32*n (where n is the value)
Direct sound frequency parameter=125000/Hz frequency
Continuous sound frequency parameter=1000000/Hz frequency

* DIRECT ** SBUF RESULT (Hz) DIRECT SBUF RESULT (Hz)
10 80 12500 560 4480 223
20 160 6250 580 4640 215
30 240 4166 600 4800 208
40 320 3125 620 4960 201
50 400 2500 640 5120 195
60 480 2083 660 5280 189
70 560 1785 680 5440 183
80 640 1562 700 5600 178
90 720 1388 720 5760 173

100 800 1250 740 5920 168

110 880 1136 760 6080 164

120 960 1041 780 6240 160

130 1040 961 800 6400 156

140 1120 892 820 6560 152

150 1200 833 840 6720 148

160 1280 781 860 6880 145

170 1360 735 880 7040 142

180 1440 694 900 7200 138

190 1520 657 920 7360 135

200 1600 625 940 7520 132

210 1680 595 960 7680 130

220 1760 568 980 7840 127

230 1840 543 1000 8000 125

240 1920 520 1020 8160 122

250 2000 500

260 2080 480 *(for three parameter SOUND command)

ggg g;jg 322 **(for seven parameter SOUND command)

290 2320 431

300 2400 416

310 2480 403

320 2560 390

330 2640 378

340 2720 367

350 2800 357

360 2880 347

370 2960 337

380 3040 328

390 3120 320

400 3200 312

420 3360 297

440 3520 284

460 3680 271

480 3840 260

500 4000 250

520 4160 240

540 4320 231

214

APPENDIX 12 : SOUND TABLE 2

FREQUENCIES FOR CHROMATIC SCALE OF C

The table below lists the frequency values for the chromatic scale of middle C.

NOTE HERTZ DIRECT CONTINUOUS
C 256 488 3906
C# 271 460 3687
D 287 435 3480
D# 304 411 3285
E 322 388 3100
F 342 366 2926
F# 362 345 2762
G 384 326 2607
G# 406 308 2461
A 430 290 2323
A# 456 271 2192
B 483 259 2069
Cc 512 244 1953

215

APPENDIX 13 : SOUND TABLE 3

NOISE
DC (periodic noise) SBUF R
0 0 Shiftrate = 7812.5Hz
1 8 Shiftrate = 3906.25 Hz
2 16 Shiftrate = 2604.17 Hz
3 24 Shiftrate = CHANNEL 2
Pink Noise
4 32 Shiftrate = 7812.5Hz
5 40 Shift rate = 3906.25 Hz
6 48 Shiftrate = 2604.17 Hz
7 56 Shift rate = CHANNEL 2
APPENDIX 14 : SOUND TABLE 4
VOLUME
Direct Com. SBUF Result (DB)
0 0 OFF
1 - 256 -0
2 512 -2
3 768 -4
4 1024 -6
5 1280 -8
6 1536 -10
7 1792 —-12
8 2048 -14
9 2304 -16
10 2560 -18
11 2816 -20
12 3072 22
13 3328 —24
14 3584 —26
15 3840 -28

216

MTX SERIES TECHNICAL APPENDICES

Introduction Overall Description
Technical Specification

System Bus

System Block Diagram

Electronic Circuit Schematic

(i) Z80 Programming Summary

(i) Z80 CTC Programming Summary
(iii) Z80 DART Programming Summary
Video Display Processor

Sound Generator

Memory Maps

Input/Output Port Summary

Parallel Printer Interface

Parallel Input/Output Port

Memotech DMX80 Printer

PAL Listings

CONOTOOOO A~ WN —

A A ki ek
AWN=O

Some of the illustrations used in the technical appendix appear by permission of Zilog Inc and Texas
Instruments Inc.

1 INTRODUCTION

Overall Description

The MTX500 Series personal computer systems are high performance 8-bit computers uniquely designed
to operate in memory intensive ROM-based or DISC-based environments. The choice of the Z80A
Microprocessor and the TMS 9918A series video processor as the key components of the hardware
architecture is consistent with a low cost ROM-based system with colour TV output plus the capability to
expand to accomodate a fully RAM-based Disc operating system such as CP/M, utilising a high quality 80
column colour monitor output.

The memory size can be either 32K or 64K Bytes as standard, expandable to 512K Bytes. There is a
separate 16K Byte dedicated video memory. A 24K Byte ROM contains MTX-BASIC, the system monitor,
supplementary languages and utilities. The standard interfaces included are tape cassette (Read/Write to
2400 baud), Keyboard, Cartridge Port, Twin Joysticks, Parallel Centronics type printer port, uncommitted
Parallel Input/Output port, Colour TV output with sound, composite video output-monochrome or colour,
and audio output. Optional interfaces include a completely independent twin RS232C with buffered bus
extension, Local Area Network, Colour 80 Column Board, Floppy Disc System, Silicon disc fast access
RAM boards, and a Winchester Disc System.

The Keyboard consists of 79 full travel typewriter style keys mounted on a steel base plate which is fitted to
the Aluminium enclosure. Aluminium was chosen for good heat dissipation, durability and RFI shielding.

217

2 TECHNICAL SPECIFICATION

HARDWARE

CHASSIS

Two front-hinged black anodised brushed aluminium extrusions are separated at the rear by a black plastic
moulding. The extrusions act as heatsinks for the voltage regulation circuitry. Two matt black powder
coated stamped aluminium endplates, are secured by 3 screws each.

Dimensions in millimetres: Width 488 Depth 202 Height 56
Weight: 2.6 kilograms

KEYBOARD

A 1mm mild steel sheet is bolted to the upper chassis and supports 79 keys which are interconnected by an
independent p.c.b. The keys are arranged as:

Standard U.K. QWERTY layout with 57 professional typewriter keys, standard pitch and spacing. Keys F
and J are recessed for easy fingertip location wherever possible. Foreign language keyboards are
available.

| WVEMOTECH MTXSIIE____

o] [HiHHBENN B

7 4

£]
[
[o]
=
[+

2

==
[

o
5

mC .
2N
FEE
F;

o] [@] m] 7] [¥] [v] (1] [0] [{]
[F]

H
giE
gl
g

o™

1
IEEE
AEEE

) [a] o) 4] [3] (&) [t] [[F] () [rer) [
swer (2] [x] (e [v] &) [w] (W] [<] 21 (7] (=] fowm] L)W
] [
L J

Twelve dual function keys are arranged as a separate numeric keypad with cursor control and editing keys.
Eight function keys (programmable in conjunction with shift to provide 16 user definable functions).
Two unmarked keys, which must be depressed simultaneously to reset the computer.

Auto repeat is standard on all keys.

218

CPU BOARD

Mounted in the lower chassis, the CPU board accommodates:

Zilog Z8OA CPU operating at 4MHz.

24K of ROM which contains:

MTX BASIC—incorporating sophisticated MTX LOGO-type graphics commands.

MTX NODDY-interactive text manipulation routines.

FRONT PANEL DISPLAY—-incorporating Z80 Assembler/Disassembler plus Z80 Register, Memory and
Program display and manipulation routines.

VIDEQ DISPLAY PROCESSOR-with 16K dedicated video-RAM.

USER-RAM-32K on the MTX500 and 64K on the MTX512. User RAM size is constant under all display
formats.

VIDEO BOARD-for television and sound signal encoding.

REAL TIME CLOCK

CHARACTER SETS-Numeric, upper case, lower case, user-definable characters and user-definable
sprites. Resident international character sets and appropriate keyboard layouts for UK, USA, France,
Germany, Spain and Sweden. Character sets for Denmark and Italy are also available.

EXPANSIONS

Up to two expansion boards may be added internally. These may be Memory (RAM) Boards, Program (ROM)
Boards or the Communications Board.

MEMORY BOARDS

RAM may be increased by the addition of boards which provide 64K, 128K or 256K of memory, up to a
maximum of 512K,

COMMUNICATIONS BOARD

Available as an internal expansion, this board carries two completely independent RS232 interfaces
(running at up to 19 200 baud) with full handshaking and modem communication lines, and also the disc

drive bus. The Communications Board is required to run the FDX disc based systems and the
MTX Node/Ring System.

NODE/RING SYSTEM

Communications software and interfacing enabling construction of MTX Ring Systems. The systemis
interrupt driven and runs in conjunction with the twin RS232 Communications Board.

Compatibility of the memory boards and communications Board is given below.

Compatibility table of internal expansion boards

RAM boards

64K 128K 256K Commes. board
64K * * * *
128K * * * *
256K * * * *
Comms. board * * *
* = compatible

219

ROM Expansions

Via the cartridge port or internal bus these provide:

Hisoft Pascal

Local Area Network software
MTX Newword, Business, Education and Games software

Display

Colour TV and/or Video Monitor

40 column x 24 line display as standard, with optional Colour 80 column board. (FDX or HDX disc based
system required).

Display Facilities:

FULL SCREEN HANDLING

EIGHT USER DEFINABLE VIRTUAL SCREENS

SCREEN FORMATS

Text: 40 x 24 characters

Text with graphics: 32 x 24 text with 256 x 192 pixels in 16 colours

Graphics Facilities

Up to 32 independently controllable user definable sprites, plus pattern plane and backdrop plane. High
level sprite-orientated graphics commands.

Input/Output

Provided as standard:

CASSETTE PORT (variable rate, default to 2 400 baud)

UNCOMMITTED PARALLEL INPUT/QUTPUT PORT

TWO JOYSTICK PORTS with industry standard pin-outs

FOUR CHANNEL SOUND UNDER SOFTWARE CONTROL—-three independent voices plus pink noise
output through TV speaker, or through separate Hi-Fi output

MONITOR OUTPUT—-composite video signal (1V peak to peak)

CARTRIAGE PORT

PARALLEL PRINTER PORT (compatible with Centronics-type printers)

Available as an expansion:

COMMUNICATIONS BOARD WITH TWO RS232 INTERFACES and disc drive bus

SUITABLE PRINTERS - Centronics-type parallel printers and RS232 serial printers (requires
Communications Board)

Power Supply Unit

Input: 220/240 VAC 50/60 Hz. or 110/115 VAC 50/60 Hz.

Qutput:22.5 VAC. 1A tapped at 18V and 9V.

Dimensions in millimetres: Width 92 Depth 110 Height 70

Weight: 1.0 kilogram

The PSU is double insulated and has a side mounted rocker switch which is internally illuminated when the
unit is on. The mains transformer is located between two groups of four anti-vibration, noise absorbing
rubber mounts. Extensive strain relief mouldings are incorporated in the PSU casing to support the input
and output cables. The output cable terminates in a 240 degree. six pin DIN connector. The PSU is supplied
as a sealed unit.

220

MTX Series Disc Based Systems

These are the:

Single Floppy Disc System
and the
FDX Floppy Disc System

Both of these systems require the Communications Board within the MTX computer and the twin disc system
requires 64K of RAM. Both systems have the following features:

A 19 inch wide chassis comprising four black anodised brushed aluminium extrusions. Black powder coated
end plates are each secured by six screws. The chassis contains a card cage which can accommodate:
One computer expansion board

One Colour 80 column board

Four silicon disc memory boards

One floppy disc controller board

An integral power supply which also powers the MTX computer.

Inputs can be 240/220 VAC 50/60 Hz or 110/115 VAC 50/60 Hz.

Parallel port for bus expansion

Two slots are provided on the front face for horizontally mounted five and a quarter inch disc drives.
External battery backup facilities are optionally available

A license to use the Digital Research Inc. CP/M 2.2 operating system is provided with the FDX and HDX
systems, as is CP/M itself.

HDX Winchester Disc System. This configuration offers either 10 or 20 megabyte hard disc storage. If uses
a Z80 H processor running at 8 MHZ.

The HDX includes a single 1 megabyte TEAC 54" floppy drive.
Colour 80 column board

Mounted in the FDX or HDX systems the board permits the use of colour programs requiring an 80 column
screen running under CP/M 2.2, such as Colour Newword. Also available is the wide range of existing CP/M
based software.

80 Column board-Input and Output

RGB monitor output with selectable positive/negative sync.

Monochrome composite video output, 1V peak to peak, negative sync.
Light pen input

Single channel sound

Screen display formats:

80 columns x 24 lines text (max)

160 x 96 graphics mode

Two alternate 96 element character sets with true lower case descenders.
4K ROM based graphics characters

Teletext compatibility

High speed glitch free screen update (average 25 000 baud)

The Colour 80 column board provides a complete emulation of a CP/M terminal via ROM software, and
features:

Full cursor control

Vector plot, point plot

Powerful editing facilities with screen dump

Complete attribute control for colour and monochrome displays

Silicon Discs

These are a quarter or one megabyte fast access RAM boards which are full emulators of CP/M drives 0 to
13. Four silicon discs may be mounted within the HDX or FDX chassis, providing from one to four
megabytes per card frame. However, the silicon disc controllers can supervise four logical drives, of up to
eight megabytes each giving a maximum silicon storage of 32 megabytes. This is in addition to the four five
and a quarter and/or eight inch conventional floppy disc drives handled by the floppy disc controller board.

221

Numerous advantages include:

Speed-up to five times faster than a Winchester disc, and fifty times faster than a floppy disc.

A dramatic increase in efficiency of proven eight bit CP/M software to 16/32 bit software levels, obviating the
need for complex and costly memory management techniques

Permits single floppy disc CP/M system which is ideal for database manipulation, word processing and
compilation.

Greatly reduces disc wear and prolongs life of mechanical disc drives, enhancing reliability especially in
disc intensive transactions.

Floppy Disc Controller Board

This board uses the full Western Digital 1791 chip and supports most CP/M drives, including all types 0to 13
which range from single sided single density tive and a quarter inch floppies to double sided double density
eight inch floppies, using SASI (Shugart) standard interfaces. Any combination of four SASI compatible
drives can be controlled. The WD 1791 controller set together with a bipolar DMA controller provides a high
speed processor interface minimising latency and facilitating rapid data transfer especially on high capacity
discs. Variable and fixed write precompensation is software selectable. Bus extenders permit the
connection of external floppy drives.

222

APPENDIX 3 MTX SERIES SYSTEM BUS

COMPONENT SIDE

30 <| i 30 =—
J10 Jo
— | i |

The system Bus comprises the full Z8OA bus, power supply rails, ROMpak enable (GROM), ROM page
ports RO to R2, RAM page ports PO to P3 and serial clock lines 01 and 02.

All lines are externally available on J10, which is a 60 way (30 + 30) 0.1" card edge plug, or internally on JO
which is also a 0.1” 60 way card edge plug.

IEO

Z o~
— o e
>3 w »—»—N o
Igpmm)&wmggﬂquw>>>w1‘1f22l£:’2l.—n-—l:IEJ
uqqqge.[qqctqQDCth‘.l‘ccz_;(LIgz—'D.D.D:l&u’)
RERE AARA 1]
3=
A I [
112 13 le s 16 17 I8 19 Lo ln 12 113 15 116 117 118 [19 J20 |2 23 124125 627282930
Jo & no
| |
8 4| 8
| >
bbb 2 Vel xR
- - &m0 = = o~ >
2333532355888 573 lmlzmg,gkﬁﬁﬁmf:o
'd : n’_Dm w
m% v

NOTE :- JI0 ALSO HAS KEYWAY BETWEEN 26 AND 27

Note: (1) J10 is a mirror image of JO
(2) component side = A
Solder side = B

223

MEM-1¢

APPENDIX4 SYSTEM BLOCK DIAGRAM

ShcaDE
ROM
Z80A CPU
RAM 5
1/0
DECODE
cTC PRINTER PAGE PORT
IN 8,9,A,B
ouT 8,9,A,B
IN 0,4 OUT 4 ouT ©
\
3 =
2
=5
RS232C KEYBOARD VDP n Q9
JOYSTICKS =
IN C,D,E,F IN 5,6 OUT S * +
ouT
c,D,E,F IN 1,2
ouT 1,2
ENCODER
PIO SOUND CASSETTE 1/F +
TV
IN 7 ouT 7 IN 3 OuT 6 ouT 3

224

APPENDIX5 ELECTRONIC CIRCUIT SCHEMATIC

MTX 500 4000-04

€961 AT 3tva 190 NMvHO

EOLIS quyo8 HILNAWOD

Ao
v
%70-000%7 005 XIW] =
3 = 3 B }
u e2zzz3gffdnafe.vngeeznzzanlierza - '
HO310W3W H % 0 aur sur ur a0y sy aur Buin wr [
8 a 7 t
o % o !
P! L2 o sa]>] k2] 22]] o2] @] i e 2 m#q o) m .
& k L AL L
- | ¥
IRERSEEERETEREREREREEE RN ES S A q Q
FRRRR ST EEETTRRRERE RS ARE LIS 2 alsglo el
- T - = |
L 4
3 £t GN SZ NIIMIE AVMATH SYH OSI¥ OV 310N
ro
ML
45-0 . \“L ast
.H 0 Al
arfoL h eIT T LU
naunﬁ o7
a0] s 16
G n Juul _vh;._) ﬂ o
w02 73| 62 1imsz oL
%, i el Lo
A5+O; 0 an S0 T 552
203 L]
vsiL
) O a6
o+ M sseTdl 15d -
s it "0 sro0mL V62665
Mo u0 153" e
jr—a st O 55
G,
sS40 ; ouer eeiro
s 7aa e
J—|‘M=M
e
[* F0OTNL
b 80 et
i .
e
f—sio4 N —_—
e—* ey "0 d L8¥
e cau H—om —m
] tg——8an 5 40
MI'ﬂnx & M‘UE 3 M
L+ a8y 8 - 740
e cax f——eo8x - w0
7 e ¥ sHa
] > . 0
I
2 353ye— BisIge————— e =
L
P ET]
L 4 i -
0 EF] 5 AS
Loude—gle0 Of—e 021 WadRY = o L10de——] ¢ Hde—)ca wfg—e0 hd
5084 &30 safr—w9021 zue—— 50 sof—ssm1 9 ' 9 Nige—— {30 sol5—e90 -
P I L5 oA 50 cuzsm o) fde—g §Md @50 gy SO[E—*50
0L 3 20 = 20 a1 1k vaf—7a1 7104+ L . 7
Coude—gf 0, fOfr—eEad e st 0 . g (0 oo COlE—sEa
20ya4—3170 sof—+za2) tae——d 10 a—ez0n 210a%—g] tMd+—lza wofg—=1a -
1de——| 10 wafg—e 1071 o e 1027 i 10de——g| L == I ot 10 P oo 3 ol = H
EGKAO|N.UO " QUM-\!EDUA Dn.|m 00 gﬂ\Oﬂﬂu.‘ 0 L0d¢—i o 56 D.u-m-lf"bﬂ 1HANVO- M_.U = 3 nv T |) g
1 [‘.m e |H nw il i
7100 _|I1|‘|8 no (N ganvo i e
0L L8
-
hs*
ariTNL TR
v ;ri!a Lne—g5 0 ofg— cane—gur trp—a
& an 3 a0 T 90 saf— 3021 .Ilﬂ! avfr—=sa
Lo 7 qxﬂxﬁ g suoe—ggP ,‘.Sz.wﬂ.xs.‘ L .:Nﬂq.m‘ i
™ o A fn_[!a 740 77 al—e 7021 e—im vh— 70
Popggry T 0 Qi Oy ER Smﬂ.... i go LA SR [cuoe gt &1 3 ve W {0, Orf—erd
5 —5 o v 5 ro [Ad % 0 2H0e———— |0 L0f—* 2A314— g
o S bn— —— 3 o W It i w—*wa was—gg———¢ 0 o> 1@ A whi—
wlg—=e00 L —por = 8 . oMfg——=00 e oo oafr— 0@t A ovls
£z|] wui £u| | ws| uf (u] 9w su 2L 4

225

MTX 500 4000-04

ks : 26
a 2 K CSTT OUT
3 26 o o
4 29
L L] H 24 o0 Lo—ean3
ale—0to 4 ase P ang 4
a2 e—0- £ -0—4 :-Jw o M O g0z i
= —y
L et |1 Yo
A2 e—Y L] e
se— 3 moma |0 Qfm.hél-: L
0| s
e 0
= e : " s Jraofon [|
c o
o —12 [—eps WalT o—a * S — &R
v Eol.”N I.:M 00 Wt i 6t i mIT RIE I
B e oo g Lo M 2)Jsc) RESET
- USRDe— e, o Loa
BESET o lrreey Juz04 Lo 78
ﬁ.. ov - 7 OH S
LK
b [rpp— : X
J # - o2e— oz L v.. NE
0 10708
25V
RIS 1836
or |f30r

PU PHI

c PH

*LSEE |
aze—3c np

ae—2p n

226

MEMOTECH
%LN ﬁw *_,I_N TN *;I_N _FI_N E fN TRE MTX 500 4000-04
%0 o 3 03 D o5 06 o COMPUTER BOARD 150y
DRAWN DBL DATE JuLY 1983

PAL BOARD

oanve—

AD

4ugol AZL®
I 2

¥oze

L1
L7

T J—
]

HOEE
754

Frarn

HOSS!

£9Y

AD

———= 90/46

A-8

—_— — —% % o — % o — — — o

688IWT

(AZUSI07
87l

L7

SEI46

A-Y

Azl - ——t

P e e

AD

i
[

|
¥
ZHW BLIEEY 7
£v1X

%62

(3,14
£5Y|

Az

(AZU) 9107
B 5 971

7] 3
(Az09107
9721

Ml
1Sy

Az

[TE)

olanv

227

NTSC VIDEO BOARD

_ P
|~T A0 e
0a T 294 -0—
i — o WNI
" e 90 — e
152
OWQ_>CJ||’+ 7
FLL S HrkE ol A
s T mw.wm - r-P.I..mmw 96146
Eoh] 3]
ur
_ AUl
_ 4y
_ [35]
9 | A8, s
S06ENT i
A \dE 0]
TND X 0_; _n_
iany As* T8 (A1) 9407
T _ FEINEE (AZUNOY
8-5821 W) i3 8720
P i §
G Ty T
pns o3amf; & s
&
H
L3135 TINNYHD
A=Y
7 al - T
8| 1
2.4 15| Ag,
; sou] A9, a ——roianv
AL £
_, HAOOL a2 ﬂmﬂnu He
AL ~ 0 - £yl U0l ==
t 3] P55 2 A o
ur 1A 71 e
A
| s lmaeo.
7”2l
ZHWSYSELS £
£IVLY
AQ
%&GH.H.; 53
AZL)
S o —_—

228

MEMORY EXPANSION BOARD

L
QYv08 NOISNVdX3 | __30ss!
£861 AON
AHOW3W 00§ X1W | Ji00
HO3LOW3NW R

o B/

A

oy3s o oy

70 43S WdII3Y LY £d

a 9a 1¢) 70 €0 20 1a oa
YA 1Y 4 Y 4 Y 4 I 4 4 4 .L a2l Al

id

ld 031210

034sn8

od L

NI
Z um* £Z
AN

N
M ———-QV3Y
SY Y- LSYY
Y ISYD
SYIrer 1S¥D
vary | woy | vaw | ey | vair | vowr | vawy - S.M VAN
Vg9V
N r———
&9 2y | s 7V 7 1<
0z2l 101 LTR]] L 720l TR 1] £Vl o
I AL
,.{...'1.‘ \vdmW
O¥fg———#=0VdW
N 9— [w_— 3 i] m—_] w__ g m; m_ El ﬂl :ﬂé
4
AS*
La 90 sa | €0 za \a
P2 A Y A T 4 W Y A 1 4 ! 4 I
gory | ovow | ovawr [ovaw | ovar | vy | vary
45} L1 821 £121 uot b1l 621

w_w g 9 @ w__] m; 8

ﬁ]

..i £

9— [

uvm LIVH

O4 DO3YN A0 A~ AST L0 S0 €0 10 SV £ Y 6V LV A0 7Y Y OV
e
a
6L 8l af oy sy wy €y u Uy o 6 8 Ly 9 S v £ z L
AWM AN Y
DHOI 13S3¥ A0 AZlL AS® 90 ¥0 Z0 00 W LY O 8y 9¥ SY £V I¥ WOY9
XdW
s "SI 40
HS 34 S 8]
£ £21 . Jmmmm LY
ST 7 LSIST7L (n .
e Y
= N5 = af b W
3] AQ . 8 SY
[I - £y
ol Bl L, oy 7y
Q9 19 8 v 2y
LVl ——] LA Al o
avein-a——=El oy 4 2
d gl wvzsw 2V
SV E—SA S oy o
7VdH {7k klm KXW
EVal 4 EA g
dHt——g A oy Y5 AQ
IV LA v
7 9
OVl ——5{0A oVl Sy 8 |
= ._mmmoill'ma.
i
F 4 s B LY,
5 4
A [V0w
m@.ﬂ||'_<
Y6V
mm|.'o<
d.m|||.oq
m||'.:<
,w|*m_q
—0d
= 1d
r—2d
»mll!.mm
= Wd/3
™43

AS*

229

Z80 PROGRAMMING SUMMARY

APPENDIX 6i

MAIN REG SET
A

ALTERNATE REG SET

™
”~ -
ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A F
B8 [B c
GENERAL
D E 'R E' PURPOSE
REGISTERS
H L H L
INTERRUPT MEMORY
VECTOR Immnmwx
|
INDEX REGISTER IX SPECIAL
moexweomrer | (UneosE
STACK POINTER SP
PROGRAM COUNTER PC
CALL nn Unconditional call subroutine at
location nn
Z80-CPU
INSTRUCTION SET CCF Complement carry flag
CPs Compare operand s with Acc.
ADC HL, ss Add with Carry Reg. pair ss to HL = ke
. CPD Compare location (HL) and Acc.
ADC A, s Add with carry operand s to Acc. decrement HL and BC
ADD A, n Add value n to Acc. CPDR Compare location (HL} and Acc.
ADD AT AddReg.r o Acc. ki il Y o
until BC=
ADD A, (HL) Add location (HL) to Acc. .
CPI Compare location (HL) and Acc.
ADD A, (IX+d) Add location {1X+d) to Acc. increment HL and decrement BC
ADD A, (IV+d} Add location (1Y+d) to Acc. CPIR Compare location (HL} and Acc.
increment HL, decrement BC
ADD HL, ss Add Reg. pair ss to HL repeat until BC=0
ADD IX, pp Add Reg. pair pp to IX CPL Complement Acc. (1's comp)
ADD IY, rr Add Reg. pair mto 1Y DAA Decimal adjust Ace.
AND s Logical "AND’ of operand s and Acc. DECm Decrement operand m
BIT b, (HL) Test BIT b of location (HL) DEC IX Decrement 1 X
BIT b, {IX+d) Test BIT b of location (I1X+d) DEC 1Y DitrsmsitiV
BIT b, (1Y+d) Test BIT b of location (1Y+d) DEC ss Dlacreiient Rag. paiéa
BiTb, r Test BIT b of Reg. r oI Disable interrupts
CALL cc, nn Call subroutine at location nn if DINZ e Decrement B and Jump

condition cc if true

relative if B0

El

EX (SP), HL
EX (SP), IX
EX (SP), 1Y

EX AF, AF*

EX DE, HL

EXX

HALT
Mo
M1
M 2

IN A, (n)
INr, (C)
INC (HL)
INC IX

INC (1X+d)

INC 1Y

INC (1Y+d)
INCr

INC ss
IND

INDR

INI

INIR

JP{HL)
JP(IX)

Enable interrupts

Exchange the location (SP) and HL
Exchange the location (SP) and IX
Exchange the location (SP) and 1Y

Exchange the contents of AF
and AF’

Exchange the contents of DE
and HL

Exchange the contents of BC, DE,
HL with contents of BC', DE’, HL"
respectively

HALT (wait for interrupt or reset)
Set interrupt mode 0
Set interrupt mode 1
Set interrupt mode 2

Load the Acc. with input from
device n

Load the Reg. r with input from
device (C)

Increment location (HL)
Increment 1X
Increment location (I X+d)

Increment 1Y

Increment location (1Y+d)
Increment Reg. r
Increment Reg. pair ss

Load location (HL) with input
from port (C), decrement HL
and B

Load location (HL) with input
from port (C), decrement HL and
decrement B, repeat until B=0

Load location (HL) with input
from port (C); and increment HL
and decrement B

Load location (HL) with input
from port (C), increment HL
and decrement B, repeat until
B=0

Unconditional Jump to (HL)

Unconditional Jump to (IX)

JP (1Y)

JP cc, nn

JP nn

JPC, e

JRe

JP NC, e

JRNZ, e

JRZ e

LD A, (BC)
LD A, (DE)
LD A, I

LD A, (nn)
LD A, R

LD (BC}, A
LD (DE), A
LD (HL), n
LD dd, nn
LD HL, (nn)
LD (HL), r
DI, A

LF IX, nn
LD IX, (nn}
LD (I1X+d), n
LD (IX+d), r
LD 1Y, nn
LD 1Y, {nn}
LD (1Y+d), n

LD (1Y+d), r
LD (nn), A

LD (nn), dd
LD {nn), HL

LD {nn), 1X

Unconditonal Jump to (1Y)

Jump to location nn if
condition ¢c is true

Unconditional jump to location
nn

Jump relative to PC+e if carry=1

Unconditional Jump relative
to PC+e

Jump relative to PC+e if carry=0

Jump relative to PC+e if non
zero (Z=0)

Jump relative to PC+e if zero (Z=1)
Load Acc. with location (BC)

Load Acc. with location (DE)

Load Acc. with |

Load Acc. with location nn

Load Acc. with Reg. R

Load location (BC) with Acc.
Load location (DE) with Acc.
Load location (HL) with value n

Load Reg. pair dd with value nn

Load HL with location (nn)

Load location (HL) with Reg. r
Load | with Acc.

Load I1X with value nn

Load 1X with location (nn)

Load location (I1X+d) with value n
Load location (IX+d) with Reg. r
Load 'Y with value nn

Load I'Y with location (nn)

Load location (1Y +d) with value n
Load location (1Y+d) with Reg. r
Load location (nn} with Acc.

Load location {nn) with Reg, pair dd

Load location (nn) with HL

Load location (nn) with IX

230

LD (nn}, 1Y
LD R, A
LD, (HL)
LD r, (1X+d)}
LD r, (1Y+d)
LDr,n
LDr, ¢

LD SP, HL
LD SP, IX
LD SP, 1Y

LOD

LDDR

LDI

LDIR

NEG
NOP
OR s
OTDR

OTIR

ouT (C), r

OUT (n), A
ouTD

ouTl

POP IX
POP 1Y
POP aq
PUSH IX

PUSH 1Y

Load location (nn) with 1Y
Load R with Acc,

Load Reg. r with location (HL)
Load Reg. r with location (1X+d]
Load Reg. r with location (1Y +d)
Load Reg. r with value n

Load Reg. r with Reg. r’

Load SP with HL

Load SP with IX

Load SP with IY

Load location (DE) with location
(HL), decrement DE, HL and BC

Load location (DE} with location
(HL), decrement DE, HL and BC;
repeat until BC=0

Load location (DE) with location
(HL), increment DE, HL,
decrement BC

Load location (DE) with location
(HL), increment DE, HL,
decrement BC and repeat until
BC=0

Negate Acc. (2°s complement)

No operation

Logical ‘OR’ or operand s and Acc.
Load output port (C} with location
(HL) decrement HL and B, repeat
until B=0

Load output port (C) with location
(HL), increment HL, decrement B,
repeat until B=0

Load output port (C)} with Reg. r

Load output port (n) with Acc.
Load output port (C) with location
(HL), decrement HL and B

Load output port (C} with location
(HL), increment HL and decrement
B

Load I X with top of stack

Load 1Y with top of stack
Load Reg. pair qq with top of stack
Load IX onto stack

Load 1Y onto stack

231

PUSH qq
RES b, m

RET

RET cc

RETI
RETN
RLm

RLA

RLC (HL)
RLC (1X+d)
RLC {IY+d)
RLCr
RLCA

RLD

RR m
RRA

RRC m
RRCA

RRD

RST p

SBC A, s

SBC HL, ss

SCF

SET b, (HL)
SET b, (1X+d)
SET b, (1Y +d)
SET b, r
SLAm

SRA m

SRL m
SUB s

XOR s

Load Reg. pair qg onto stack
Reset Bit b of operand m

Return from subroutine

Return from subroutine if condition
cc is true

Return from interrupt

Return from non maskable interrupt
Rotate left through carry operand m
Rotate left Acc. through carry
Rotate location (HL) left circular
Rotate location {I1X+d) left circular
Rotate location {1¥+d) left circular
Rotate Req. r left circular

Rotate left circular Acc.

Rotate digit left and right between
Acc. and location (HL}

Rotate right through carry operand m
Rotate right Acc. through carry
Rotate operand m right circular
Rotate right circular Acc,

Rotate digit right and left between
Acc. and location (HL)

Restart to location p

Subtract operand s from Acc. with
carry

Subtract Reg. pair ss from HL with
carry

Set carry flag (C=1)

Set Bit b of location (HL)

Set Bit b of logation (I1X+d)

Set Bit b of location (1Y +d)

Set Bit b of Reg. r

Shift operand m left arithmetic
Shift operand m right arithmetic
Shift operand m right logical
Subtract operand s from Acc,

Exclusive ‘OR’ operand s and Acc.

APPENDIX 6ii Z80 CTC PROGRAMMING SUMMARY

CTC CHANNEL INTERRUPTS WHEN 01, IS DECREMENTED TO 004 REGISTER SELECTION

DECIMAL COUNTS SELECT LINES CHANNEL
TIME CONTENT TO INTERRUPT Ccs, Csy SELECTED PRIORITY
01 ! 0 0 0 HIGHEST
L] []
0 1 1
[] []
FFy 255 1 0 2
00y 256 1 1 3 LOWEST
READ = DOWN COUNTER, WRITE = CONTROL REGISTER
Interrupt Vector Word
T T T W
{0, 0s]0s [0, D, DRD‘JDOI
i l— 0 = INTERRUPT VECTOR WORD
o 1 = CONTROL WORD
SUPPLIED
BY USER
CHANNEL IDENTIFIER

(AUTOMATICALLY INSERTED

BY CTC)

0 0 = CHANNELO
0 1 = CHANNEL1
1 0 = CHANNEL 2
1 1 = CHANNEL 3

Channel Control Word

[D,FDG‘DS‘DA Dy /D, | D, | D, |

INTERRUPT —I L CONTROL OR VECTOR

1 ENABLES INTERRUPT 0 = VECTOR
0 DISABLES INTERRUPT 1 = CONTROL WORD
MODE RESET
0 SELECTS TIMER MODE 0 = CONTINUED OPERATION
1 SELECTS COUNTER MODE 1 = SOFTWARE RESET

PRESCALER VALUE* ———— TIME CONSTANT
1 = VALUE OF 256 0 = NO TIME CONSTANT FOLLOWS
0 = VALUE OF 16 1 TIME CONSTANT FOLLOWS

CLK/TRG EDGE SELECTION
0 SELECTS FALLING EDGE
1 SELECTS RISING EDGE

TCy
TCs
TCs
TCa

TIMER TRIGGER*

0 = AUTOMATIC TRIGGER WHEN
TIME CONSTANT IS LOADED

1 = CLK/ITRG PULSE STARTS TIMER

*TIMER MODE ONLY

Time Constant Word

[D, D, D, o.lojjozLDQDO]

J

L

TC,
TC2

232

TCy

Z-80 DART

Read and Write

Registers

APPENDIX 6iii Z80 DART PROGRAMMING SUMMARY

CHANNEL SELECTION

cio B/A FUNCTION
0 0 CHANNEL A DATA
0 1 CHANNEL B DATA
1 1] CHANNEL A COMMANDS /| STATUS
1 1 CHANNEL B COMMANDS / STATUS

READ REGISTER 0

Rz CHARACTER AVAILABLE
INT PENDING (CH. A ONLY)

Tx BUFFER EMPTY

READ REGISTER 1°

ALL SENT

NOT USED

PARITY ERROR

Rx OVERRUN ERROR
FRAMING ERROR
NOT USED

*Used Wiln Special Receve Conaition Mode

Ir

WRITE REGISTER 0

]

[] [] o REGISTER 0
L] 0 1 REGISTER 1
o 1 [REGISTER 2
[} 1 1 REGISTER 3
1 [] REGISTER 4
1 0 1 REGISTER §

NULL CODE

NOT USED

RESET EXT/ISTATUS INTERRUPTS
CHANNEL RESET

ENABLE INT ON NEXT Rx CHARACTER
RESET TxINT PENDING

ERROR RESET

RETURN FROM INT (CH-A ONLY)

NOT USED

«+s+co00
~+0o0--0o
“c-0+0-o

WRITE REGISTER 2 (CHANNEL B ONLY)

[0, Tos [0, 70,70, 0, 0, 0,

L v
vi
v2
va INTERRUPT
va VECTOR

WRITE REGISTER 4
CICCACACACAERCA
L pamiry ENABLE
PARITY EVENIDDD
NOT USED
1 STOP BIT/CHARACTER

1% STOP BITS/ICHARACTER
2 STOP BITS/CHARACTER

NOT USED

“<0co
~“o-e

X1 CLOCK MODE
X16 CLOCK MODE
X32 CLOCK MODE
X84 CLOCK MODE

=00
~o=0

oco
Al

USED WITH “EXTERNAL/
cTs STATUS INTERRUPT"
NoTusep | MOCE
BREAK

READ REGISTER 2

[0: [0, [0, Jo. Jou 0. [0, [0

E vo
vies
var

V3™ | INTERRUPT
va VECTOR
Vs

ve

v?

=

**Vanable If "Stalus Alfects
Vector Is Programmed

WRITE REGISTER 1

D, |0, | D, D.

233

' L exrinT enasLe
Tx INT ENABLE
STATUS AFFECTS VECTOR
(CH. B ONLY)
0 0 RxINT DISABLE
0 1 RxINT ON FIRST CHARACTER OR ON
10 INTON ALL Rx CHARACTERS (PARITY | SPECIAL
AFFECTS VECTOR) RECEIVE
41 INTON ALL Rx CHARACTERS (PARITY | CONDITION
DOES NOT AFFECT VECTOR)
WAIT/READY ON RIT
WAIT/READY FUNCTION

t— WAIT/IREADY ENABLE

WRITE REGISTER 3

0,0, [0,]0.]0,]0, 0, [0,]

—L Rx ENABLE
NOT USED (MUST BE PROGRAMMED 0)
AUTO ENABLES
Ax § BITS/ICHARACTER

0

0 Rx 7 BITS/ICHARACTER
1 Rx 6 BITS/CHARACTER
1 Rx 8 BITS/ICHARACTER

~a-0

WRITE REGISTER $

D; 0, 0

I_l— NOT USED
RTS
NOT USED
Tx ENABLE

SEND BREAK

Tx 5 BITS (OR LESSYCHARACTER
Tx 7 BITS/ICHARACTER
Tz 6 BITS/ICHARACTER
Tx 8 BITS/ICHARACTER

DTR

0
0
1
1

~o=0

APPENDIX 7 VIDEO DISPLAY PROCESSOR

FIGURE

1 - TMS 9918 VDP BLOCK DIAGRAM

10,7 MH
CRYSTAL

i

o] B

BORDER AND

TMS9918A

TMS8928 A
9929A

EXTN_VDI }

/

}

g

TEXT COLOR

ADGRESS/DATA
MULTIPLEXER

cLock |
GENERATOR
2

SPRITE
NUMBER
STORAGE

FIFTH

SPRITE

ADORESS OUTPUTS 0 1

REGISTER BUS &/

COMMAND
REGISTER

COMMAND
E‘
—

SPRITE
ATTRIBUTE ‘

coLgR

DECODER
VIDEO
LoGIc

COLOR

]
B
H
e
2|8 seRITE |
15K commen |
e
H
H
2
H
H

CHARACTER

PRIORITY - MULTIPLEXER

AND COLLISION DETECT

COUNTER

|

I

coLor
COLOR

HORIZONT AL
COUNTER

FOREGROUND
BACKGROUND

[

SPRITE «1
coLon
SPRITE «2
cowon
SPRITE «3
COLOR

oL

SPRITE aa
coLon

IEE

T
PATT SHIFT
REGISTER

FONTROL

The Video Display Processor (VDP) used in the MTX Series is the TMS9918 Series. The TMS9929A is
used in computers for the European market, and the TMS9928A is used for North America. The VDP is 11O
mapped at ports 1 and 2. (MODE = 0 for port 1, and MODE = 1 for port 2.) The colour difference signals are
encoded, mixed with sound and fed to the appropriate RF modulator, dependent upon the country for which
the machine is intended.

CPU Interface Control Signals

The type and direction of data transfers are controlled by the CSW, CSR and MODE inputs. CSW is the
CPU-10-VDP write select. When it is active (low), the 8 bits on D7-DO0 are strobed into the VOP. CSRis the
CPU-from-VDP read select. When it is active (low), the VDP outputs 8 bits on D7-D0 to the CPU. CSW and
CSR should never be simultaneously low. If both are low, the VOP outputs data on D7-D0 and lalches in
invalid data

MODE determines the source or destination of a read or write data transfer. MODE is normally tied to a
CPU low order address line.

CPU WRITE TO VDP REGISTER

The VDP has eight write-only registers and one read-only status register. The write-only registers control
the VDP operation and determine the way in which VRAM is allocated. The status register contains
interrupt, sprite coincidence and fifth sprite status flags.

Each of the eight VDP write-only registers can be loaded using two 8-bit data transters from the CAPU
Table 1 describes the required format for the two bytes. The first byle transferred is the data byte. and the
second byte transferred controls the destination. The most-significant bit of the second byte mustbe a "1
The next four bits are "Q’s, and the lowest three bits make up the destination register number. The MODE
input is high for both byte transfers.

To rewrite the data for an internal register after a byte of data has been loaded, the status register must be
read so that internal logic will accept the next byte as data and not as a register destination. This situation
may be encountered in interrupt-driven program environments. Whenever the status of VDP write
parameters is in question, this procedure should be used. Note that the CPU address is destroyed by
writing to the VDP register.

CPU WRITE TO VRAM

The CPU transfers data to the VRAM through the VDP using a 14-bit autoincrementing address register
Two-byte transfers are required to set up the address register. A one-byte transfer is then required to write
the data to the addressed VRAM byte. The address register is then autoincremented. Sequential VRAM
writes require only one byte transfer since the address register is already set up. During selup of the
address register, the two most significant bits of the second address byte must be 'O’ and 1" respectively
MODE is high for both address transfers and low for the data transfer. CSW is used in all transfers to strobe
the 8 bits into the VDP. See Table 1.

TABLE 1-CPU/VDP DATA TRANSFERS
WRITE TO VDP REGISTER

NT

¥

]

STATUS
REGISTER

<
£3
NAME BASE ©
REGISTER
i
3 2
COLOR BASE wm ﬁ|
N > _HIVUI_,UI..UI
sl =gl =gz
PATTERN BASE 9 r S % ws - we
REGISTER F] mDu Mm Mm WW m-.m
g &3 BE[DE (82| 3
< H
2
e memwmmﬁ
0ESCRIPTOR
L
AECISTER <
SELECT g%
L DECODER 3 = a s e -
EH 3 H AN B I
s E CPUTATABUS £ egollEs
8 ~ it i H]
|

CPUDATAPORT (0 7

RAM DATA INPUTS (8

n

s
1
]

P|
ORERATION MsB BIT LSB CSWCSR MODE
7 6 5 4 3 2 1 0

Byte 1 Data Write D7 D6 D5 D4 D3I D2 Di oo 0 1 1

Byte 2 RegisterSelect 1 0 O 0 O RS2RS1T RSO 0 1 1
WRITE TO VRAM

Byte 1 Addresssetup A7 A6 A5 A4 A3 A2 At AOQ 0 1 1

Byte 2 Address set up 0 1 A13 A12 A1l A10 A9 AB 0 1 1
Byte 3 Data Write D7 D6 D5 D4 D3 D2 D1 Do 0 1]

234

‘Ajuo 1nojoo 1apiog moys o) Aedsip ay) sasneo Bunjuelg

Aeydsip aanoe ay) se|qeus |,

sue|q 0} BaIe AB|dsIp SAOR 8y} S8sned [,
21qesIp/e|qeUS MNY18 9 1g

(uonesado X W) uoneiado WyH %9l S10918s |,
uonesado WyY b S19918s 0,
uonoaias i/ £ 4118
SIIQ |0IUOD VOGO A 8 SUIRIUOD | HI1SIDIY
induy capia [eueIxa sajgesip 0,
Indu 08PIA |BLIBIXS SB|qRUS |,
a|qesip/e|qeua 08pIA jeussixg 019
‘(€ ¥g spow) £ L g

5.0
2Q 1SNW PUB 8SN ININJ 10} PAAISSEL S8 §1iq JBYJO |y "SIq [013u0D uondo 4aA OMI SUIBUOD 0 HILSIDIY

gis1Bas yora o uondiosap e si Bumoljo) ay |

SHILSIOIY dAA "2 I9Vl

X7INO Qv3d
{=Y43IAGWNN I1TIUdS HLATIA > 2 SS | SNLYLS
40700
dO¥aNOVE/0 400703 LX3L {1l UN07T10J LXIAL—> L
Ssavaaqv
iSvd ¥OLVYINIO
NY31Ivd JLIY¥dS 0 0 0 0 0 9
{——SSJY¥aqv 3svd IAT4YL IILNEGIYLIY FITHIS—> 0 S
SS3YAAY ISVH
HOLYHINID NHALLVd 0 0 0 0 0 fr
SSIHAAQY ISVd ITAVI ¥4n0T0D > £
SSAYAAVY ISvd IATAVI JWYN 0 0 0 0 4
OVW 3JZIS 0 CH LW dI JNVIE A9l /h L
A3 EH 0 0 0 0 0 0 0
0 I 4 € 14 S 9 L LICRES RICR|
as7¢ 114 >ESN

$IN0j0J 1xa) pue doipyoeq aulap o) pasn si 2 1disibay IWYHA JO S%20|0-NS SNOLBA JO SUDIIBIO|
Buiels Apoads 1Byl sanjea uRued 9 ybnoiy g siasibay ‘sepow pue sainies) J(A SNOUBA 3jqesip
10 ajgeus 0) sbey ueod | pue o siesibay 'z ajge | w umoys aie si91s16a1 Ajuo-ajum 4ap wbie ayy

SHILSIDIH ATTNO-ILIHM

(mO]) @nI2B SI pA/H UBUM
WYHA 8ul 01 Indino s1 gleq “(MO)) 8A0E SI Sy Uaym INAINO SI SSAIPPE UWN0D 3y) (MO]) aAlOR S| Sy
usyMm INING S1 SSAUPPE MOJ VLA BUL '(2AY-0QY) SNG BIBp/SSaIpPE NYHA 2U) J2A0 INYHA 24} 0) Blep
pue ssaIppe Byl ulog sINAINO daA 8yL {(20H-0ay) SNg BIEp peal WYHA aui U0 daA au) o) ejep sindino
WYHA 8U L "S8ul| [01ju02 88ii) PUEB S8SNQ BIED 110-B [BUOHDSJIPIUN OM] JO SISISUOD S3BHaIUI WYHA-dOA aUL

STVYNODIS TOHLNOD IDV4HILNI WVHA

INYHA 2yl saysaal Ajjeonewoine dgaa 9y J9jsuel) BIEp WYHA-NdD B Buunp WydA 8y) woy ejep ul
SPE2. JO Ul BJep S2J0S OS[B J(A 94 L 21k} paqLasap se abews 0apia oyl $$8001d 0} J8PJO Ul NYHA 83Ul Wolj
BJED SaUDI3) JAA SUL "SS2IPPR WYHA 11G-¢1 B Buisn WyHA 10 S81Aq $8E'9L 01 dn $S3008 UBD JaA 24L

FJV4HILNI WVHA/JAA

WVHA ysase)
10U S80P JAA Ul 'BAIOR S1 Ul | ISTY BU) BIIUM “PaxUe(q S! ABidsIp ay) yBnoy) uane INYHA 2Ul Usaljel 0)
S8NUIUGD "18ABMOY ‘ddA 8YL 0. B Sawo2aq | Jais1bal ggA Ul iig MNY1g 8y} a0uls payue|qg Ajleonewojne
st Aejdsip oapia ayy “1 pue p s181s16as JQA SJEaID PUB 'SBIBS UMOUY O} SISJUNCD [BOIUSA PUB [BIUOZLOY
ay sjas ‘abpa Buiey SI Yim SHOO0ID (B SBSIUOIYDUAS 1989) [BUISIXS SU| "SPUOJASOIIIL £ JO WNWIUIW
® IO} MO| PIBY 20 ISNW pue (mo|) aAoe si indul | 3SIH au) Jansuauym pasiieniul Ajleusaixs st QA aul

NOLLYSITVILINI dAA

‘peas si 13isibas
SNIBIS ayl uaym psses|o ale sidnuaju) - |, B siJaisibas sniels ayl jo 1q 4 8yl pue |, B st | Jaisibal dga
ul (3)1) g aigeus JdnuBJUI By} UBYM aANDE SIINdINo | N| aU L (BdUBWY UHON 09/1) PUCDSS 0G/| AJaAa Inoge
SI UoIYM ‘uBdS ARjdsIp aANOB YoeS JO pua 8yl je 1dnuaiu ue ajessuab o) pasn st uid jndino | NI JOA UL

LdNHYILNI dAA

dnjas ssaippe HBumoj|0] SPUOIBSCIDIW £ PUE J8]SUB]| BIEp B Buimo)jo)
aAq WYHA Ul U219 01 Spuosasoonu g Algieunxoidde sannbas ggA 9y “SIBJSURI BIBDP aul J0) mO| pue
siajsuel) 81Aq ssaippe ayl Jo) ybiy st JAOW (1 BIQeL 88S) ‘NdD Yl O 18JSUBI] BIEP |SII} BU) 10} S|qB|IEAR
aq ||Im BIER PEAI PUE PAIBINUN S| NYHA 01 81940 peaJ B "ABM SIY] Ssasppe ay) dn Bunas Ag 's.0 aq Isnw alAq
SSaIpPE PUODAS B JO S JuedubIS 1Sow om) Ayl 1a1si6as ssasppe ayy jo dmas Buung dn 1as Apeasie st
12151681 SSBIPPE BY) B3UIS J3JSURI] BJAQ-BUO B AUO 3)iNbas SPEal BIED WYHA [B1lUSNDag "pajusWaIouIoiNe
uayl s| i21516a) ssaippe ayl "a1Aq INYHA DISS2IPPE Ayl WOy BIEp 8y} peas 0} palinbai uay) St ajsueln
ajAg-auo y "1eysibai ssaippe Bunuawasouioyne ay) Buisn 4aa aul yBnosy) WY A WOl Bjep Speal Ndo ayl

WVHA WOH4 av3d Ndd

paiinbal s1 uoielado peas B [BYl JJA 2l [eubis 0] pasn s1 4SO 1ajsuel
ay) 1oy ybiy s1 3QOW 18)suell alkg-a|buis B yim sa1sibas sNBIS BY) JO SUBIUOD B} PEaI UBD NdD Byl

H31SI93H SNLVLS d0A WOHL V3 NdD

0o 0 1 0a 1a 2a €a ra sQ 9a . peay eleq € aiig
L L0 8Y 6Y OV LIV IV €EiY 0 0 dnjesssaippy g eiig
L L 0 oy v v €V ¥¥ SV 9V IV dn 185 ssaippy | ai4g

WVHA NOYd av3d

1 0 1 0a 1 20 eQd #a SO 9d .4 peay eleq | alig

H31SI193H 4AA WOH4 av3d

235

BITS IE (Interrupt Enable)
‘0’ disable VDP interrupt
1" enable VDP interrupt

BIT 43 M1,M2 (mode bits 1 and 2)
M1,M2 and M3 determine the operating mode of the VDP:

M1 M2

0 0 Graphics | mode
0 Graphics Il mode
1 Multicolour mode
0

Text mode

co=-0g
w

0
0
1
BIT 2 Reserved

BIT 1 Size (sprite size select)
‘0" selects Size 0 sprites (8 x 8 bits)
'1" selects Size 1 sprites (16 x 16 bils)

BIT O MAG (Magnification option for sprites)
‘0" selects MAGO spriles (1x)
‘1" selects MAG1 sprites (2x)

REGISTER 2 defines the base address of the Name Table sub-block. The range on ils contents is from 0 to
15. The contents of the register form the upper 4 bits of the 14-bit Name Table addresses; thus the Name

Table base address is equal to (register 2) * 400h

REGISTER 3 defines the base address of the Colour Table sub-block. The range on its contents is from 0 to
255. The contents of the register form the upper 8 bits of the 14-bit Colour Table addresses; thus the Colour
Table base address is equal to (register 3) *40h.

REGISTER 4 defines the base address of the Pattern, Text or Multicolour Generalor sub-block. The range
of its contents is O through 7. The contents of the register form the upper 3 bits of the 14-bit Generator
addresses; thus the Generator base address is equal to (register 4)* 800h

REGISTER 5 defines the base address of the Sprite Attribute Table sub-block. The range of its contents is
from O through 127. The contents of the register form the upper 7 bits of the 14-bit Sprite Attribute Table
addresses; thus the base address is equal to (register 5) *80h.

The VDP registers define the base addresses for several sub-blocks within VRAM These sub-blocks form
tables which are used to produce the desired image on the TV screen. The Pattern Name Table, the Pattern
Generator Table and the Sprite Generator Table are used to form the sprites. The contents of these lables
must all be provided by the microprocessor. Animation is achieved by allering the contents of VRAM in real
time.

The VDP can display the 15 colours, plus transparent shown in Table 3. The VDP colours also provide eight
different grey levels for displays on monochrome lelevisions; the luminance values in the table indicate
these levels, 0.00 being black and 1.00 being white. Whenever all planes are of the transparent colour at a
given point, the colour shown at that point will be black

REGISTER 6 defines the base address of the Sprite Pattern Generator sub-block. The range of its contents
is 0 through 7. The contents of the register form the upper 3 bits of the 14-bit Sprite Pattern Generator
addresses, thus the sprite Pattern Generator base address is equal to (register 6) *800h

REGISTER 7 The upper 4 bits contain the colour code of colour 1 in the Text mode. The lower 4 bits
contain the colour code for colour 0 in the Text mode and the backdrop colour in all modes. See Table 4 for
colour codes.

STATUS REGISTER

The VDP has a single 8-bit status register that can be accessed by the CPU. The status register contains
the interrupt pending flag, the sprite coincidence flag. the fifth sprite flag, and the fifth sprite number, if one
exists. The formal of the status register is shown in Table 2. A discussion of the contents follows.

The status register may be read at any time to test the F, C, and 58 slatus bits. Reading the status register
will clear the interrupt flag, F. Asynchronous reads will, however, cause the frame flag (F) bit to be reset and
therefore missed. Consequently, the status register should be read only when the VDP interrupt is pending.

INTERRUPT FLAG (F)

The F status flag in the status register is set to ‘1" at the end of the raster scan of the last line of the active
display. It is reset to a ‘0’ after the status register is read or when the VDP is externally reset. If the Interrupt
Enable bitin VOP register 1 is active ('1°), the VDP interrupt output (INT) will be active (low) whenever the F
status flagis a '1".

COINCIDENCE FLAG (C)

The C status flag in the status register is set to a '1' if two or more sprites "coincide”. Coincidence occurs if
any two sprites on the screen have one or more overlapping pixels. Transparent colour sprites, as well as
those that are partially or completely off the screen, are also considered. Sprites beyond the Sprite Aftribute
Table terminator (D016) are not considered. The 'C’ flag is cleared to a ‘0" after the status register is read or
the VDP is externally reset

FIFTH SPRITE FLAG (5S) AND NUMBER

The 5S status Flag in the stalus register is set to a 1" whenever there are five or more sprites on a horizontal
line (lines 0 to 192) and the frame flag is equal 1o a '0". The 58 slatus flag is cleared to a ‘0" after the slatus
regisler is read or the VDP is externally reset. The number of the fifth sprite is placed into the lower 5 bits of
the status register when the 5S flag is set and is valid whenever the 5S flag is '1". The setling of the fifth
sprite flag not cause an interrupt. The VDP operates at 262 lines per frame and approximately 60
frames per second in a non-interlaced mode of operation.

TABLE 3-SCREEN DISPLAY PARAMETERS

PARAMETER PIXEL CLOCK CYCLES

HORIZONTAL PATTERN/MULTICOLOUR TEXT
Horizontal Active Display 256 240
Right Border 15 25
Right Blanking 8 8
Horizontal Sync 26 26
Left Blanking 2 2
Colour Burst 14 14
Left Blanking 8 8
Left Border _13 A9

342 342

236

EXTERNAL VIDED = =

PaMOI|e st 1n0joo anbiun auo ‘uoiisod yoes UM exid ¢ X p B
S! 4d1um Jo yoea ‘suoiysod gy x 19 Jo pub e OlUl U8%01q S1 UBaILS BY) 'apow AN0J0DMNINW U "UBBIDS B1UB By}
10} Paulap aie $1N0j00 OM} PUE UBBIDS Y} UG Jeadde 10U 0p sajuds ‘apow i1xa) uj ‘spow siy) ul UBaIos By}
uo suosod 1xel ¢ X Ot 8. 813y, ‘suoiisod ixe) pajies ‘sjexid g x g 10 sdnoJ6 ojul uasouq s BuUBlg Waley
8yl 'apouw 1xa] uj ‘uosod uiaped aibuis e ul pasn aq Aew jusiedsuel) snd sinojoo gy
ulalied e Jo aul| Yoea 4oy snoj03 snbiun om 10 UOID2Ias ay) smojle os|e apow || sawydes
89/ 3y} 40} suouyep waned gg; ‘awayos Burddew anbiun e ybnouy; ‘sapinosd |pouw ||
uiened yoee Joy pamojje $IN0j00 anbun om} yym suolisod usayed ga, ay; 10} pauyy
alqissod 962 ‘apow | soydein uj “sepow soydesb ay ui ussios 83U} uo suosod wened 4z X 2E a1
aJay) 'spexid 26| X gsz s1 abew 1IN} 8y} dUIS “suomsod wisyed pajjea ‘staxid g x g jo sdno.b ol dn uayoIq
8Q 01 aueld wislied 8y} asnes sapow || solydess pue | soydess apow 4n0jCONIN pUE ‘Bpow 1xa] ‘apou ||
soiydelsn ‘apow | soydess :auejg ulayed ay) uo teadde jey; sspow Aeidsip 1nojoo 08pIA INOJ SBY JgA 8yl

S3NVId AV1dSIA JAA 2 JUNDI4

i

1

|
e

SPRITE 31

|

UB|d uianed ay) uo jaxid e 18A3UBYM "SIsjoR.IBLD 4O Susaned oydeib ay)
NN “1%8] 8yl Ul pasn s1 aue|y wiapey 8YL 'SIN20 SIY) JansuBYM
e sapino.d saisibas sniejs daA 384yl 1es o Bey sauspiouics

TE?

&
85 {
=
=8
Ery

Il

SPR

BACKDROP PLANE
—— 1 SPRITE 8

10 48quinu 8y} UO UCHOLISA. B OS[E S| 2iay "IN0joo a)uds ay) Aq pace|das Alreanewoine ae saueid jamo| ay)
JO $1N0j0I 8y} "Juasedsues-uou si 12x1d ajuds ay) ‘1enemoy Il ‘sued ey ybnouy) uaas 8g Ued aueld |xau ay)
10 In0jod 8y} ‘Juasedsuey) s1 sue)y ajuds e ui jaxid e lanauayp eue|dq uislie ayj o} usoelpe A@jeipawuw
aueid ay) uo sI g awids pue ‘aued 1saybiy 10 apisino 8y} uo s o 8ludg ‘Jussedsuel aq os|e Aew ajuds
Yora jo ped Jo |y Jusiedsues si ajuds ayy Aq pasanos jou sueld ay) jo ped Auy ‘sueid si uo eae jaxid 2t
X2E10'9L X 91 '8 X § UB JaA0D ueD sajuds ayj Jo yoeg ‘lussedsuey Ajleonewoine are PUE 8powl jxa] ay) ul
pasn jou aue Aay) "sapow solydelsy pue anojoonnpy 8U} Ul S8)UdS 2E au 10y pasn ase saue|d ajudg 2¢ ay)

PAT
MUL
PLAN

ko osiemr | SPRITE &
SPRITE 5

[—1

o
=

SPRITE 4
SPRITE 3
v w5
J2%
o
at o
© % C
oo =
e
2EE
R
- ® £
Sa
258
x 235
$£3
587
== 5
DoD
528
S 40
w @ T
25 g
@®
:Eg
e -]
[H=Toat
3=
EoS®
32
TS5 %
as o
o= 9
£c2
F=a
¢ g
c 8.
SED
oaas
gES
s92
T C

pajoajas
10U S apow 0apiA [eusalxe Byl yi ¥oBlq O} Siinejap Ajleanewoine doupyoeq ay ‘epos wasedsues ay)
Sureluoo Jajsibias 1nojod doipyoeq ay) udym £ iais1bai ggp ayl ui paioss si N0jod Jjnejap ay | "eale Aejdsip
BAILJE BUY} J0} IN0J0O JN.yap BY) Sk pue Ssapioq Aeidsip sy soy pasn inojoo ajBuis & Jo sisisuoo doupyoeq ay)
urd indur 08pIA [euIaixe ayl Aq paunap si abew sy “auejy OBPIA [eussix3 ay) si sueyd Ajuond 1samoj pue
BUl Base Ul Jabie| s1 yoiym ‘dospyoeq ay)
solydeis ‘jxa] ey} Aq pajessuab sebew:
Bd 8yi si auelgd auds ay) puiyag ‘sjaxid

CEX ZePue ‘spxid 91 X 9| ‘sjaxid g X g :sozis 3341 Ut a1qe|IeAR Bl seludg Aj1eiNooe Alaa 1NOge paoLw
pue pauoiysod aq ues ajuds aul ‘sjaxid jo suugy ul ale aluds ay; jo S8JBUIPIO-00 ay) Boulg wa.edsuel)
ale "Jjes) ajuds ay) apisino 'Seue|d audg ay) jo seale YL (WYHA Ut sajeuipio-00 [BIIL8A pUB |BjuOZII0Y
Aq pauyep aie uaaios 8ul uo suomsod asoym spalqo wianed sie ssudg) ajuds aibuis e wieyuoo Aew
Yoea saueid zg 1suj ay) juiod ey} 1e juasedsuel) aq jsnw aued rey) jo Juosy w saueld e ‘ybnoay) MOYs o}
Apaond saybiy ayj uo Alua ay) ‘usaios au) uo
d Juaiayip omy uo Salllua om) araym sasen u) Ajoud 1846y aney jamain
34l 0} 1585010 saue|d uo sj8lgo ‘saueid ayj Jo yoes jo uoliulap ay) smoys g ainbiy sayjaboy payompues
saueid Aeidsip jo 10s & se pabesiaua 9Qq 1sag ued jey) ueelds ay uo abewr ue sheidsip gana ayj

SPRITE O

SAYvY08 AV14SIa 03aIA

l—i
o
SPRITE 2

SPRITE 1

@

c

&

a

o

S

Q

a

v

©

c

G

=

€

[

=

@

<]

o

g

c9g
2 iapiog doj
£l Buiuelg doj
€ oufg [eaiuap
€ Buiyueig woyog
ve lapiog wonog
261 Aeidsiq anoy [eoap
SANVTd AVTdSIA ddA *2 34n9I4 aNf IVDILHIA

237

TABLE 4. Colour Assignments

COLOUR COLOUR LUMINANCE CHROMINANCE
(HEX) (DC VALUE) (AC VALUE)
0 Transparent 0.00 -

1 Black 0.00 -

2 Medium Green 60 60

3 Light Green .80 53

4 Dark Blue 47 73

5 Light Blue 67 60

6 Dark Red 53 53

7 Cyan .80 73

8 Medium Red .67 73

9 Light Red 80 73

A Dark Yellow 87 53

B Light Yellow 1.00 40

C Dark Green 47 .60

D Magenta 60 47

E Grey f

F White 1.00 -

Graphics 1 Mode

The VDP is in Graphics 1 mode when M1, M2, and M3 bits in VDP registers 1 and 0 are zero. In Graphics 1
mode the Pattern Plane is divided into a grid of 32 columns by 24 rows of pattern positions. Each of the
pattern positions contains 8 X 8 pixels. The table in VRAM is used to generate the Pattern Plane. A total of
2848 VRAM bytes are required for the Pattern Name, Colour and Generator tables. Less memory is
required if all 256 possible pattern definitions are not required. The tables can be overlapped to reduce the
amount of VRAM needed for pattern generation.

~—— PATTERN POSITION 0

BASE ADDRESS 0 PATTERN POSITION |
' PATTERN
. 2 32 POSITION 31
111
1
2 BASE PATTERN
ADDRESS SN ﬂ
N = . BM PATTERN = 24 POSITIONS
am « 7 fEBYTES) —
766
67 T
PATTERN ATTERN
»
NAME TABLE Mw”” PATTERN ECANE POSITION

787
PATTERN

GENERATOR TABLE

COLOR; [COLORg]

PATTEAN
COLOR TABLE

FIGURE 2-8 — PATTERN MODE MAPPING

The Pattern Generator Table contains a library of patterns that can be displayed in the pattern positions. It is
2048 bytes long, and is arranged into 256 patterns, each of which is eight bytes long, yielding 8 X 8 bits. All
of the "1's in the eight-byte pattern can designate one colour (colour 1), while all the '0's can designate
another colour (colour 0)

The full 8-bit pattern name is used to selecl one of the 256 pattern definitions in the Pattern Generator
Table. The table is a 2048-byte block in VRAM beginning on a 2 kilobyle boundary. The starting address of
the table is determined by the generator base address in VDP register 4. The base address forms the three
most significant bits of the 14-bit VRAM address for each Pattern Generator Table entry. The next 8 bits
indicate the 8-bit name of the selecled pattern definition. The lowest 3 bits of the VRAM address indicate the
row number within the pattern definition

Eight byles are required for each of the 256 possible unique 8 x 8 pattern definitions. The first byte defines
the first row of the pattern, and the second byte defines the second row. The first bit of each of the eight
bytes define the first column of the pattern. The remaining rows and columns are similarly defined, Each bit
entry in the pattern definition selects one of the two colours for thal pattern. A "1’ bit selects the colour code
(colour 1) contained in the most significant four bits of the corresponding colour table byte. A 0’ bit selects
the other colour code (colour Q). An example of paltern definiion mapping is provided below.

Row/byte Column B

1

c.,mw
* kX

* |8

* Kk

NOOAsEWN=O
*

IR EERE R
cocococooo0o©
C-0CO0O ==~
O—- 000 =0 =N
C—-000 =0 =|w
cs-0o0o—~0=ls
[et (5]
ccoocoooom
coocooocoolN

1 —— PATTERN —— I—— PATTERN DEFINITION ——I

The colour of the '1's and '0's is defined by the Pattern Colour [Table that contains 32 entries each of which
is one byte long. Each entry defines two colours: the most significant 4 bits of each entry define the colour of
the '1's, and the least significant 4 bits define the colour of the '0's. The first entry in the colour table defines
the colours for patterns 0 lo 7; the next entry for patterns 8 to 15, and so on. (See Table 4 for assignments.)
Thus. 32 different pairs of colours may be displayed simultaneously

The Pattern Name Table is located in a contiguous 768-byte block in VRAM beginning on a 1 kilobyte
boundary. The starting address of the Name Table is determined by the 4-bit Name Tablebase address field
in VDP register 2. The base address forms the upper four bits of the 14-bit VRAM address. The lower 10
bits of the VRAM address are formed from the row and column counters.

Each byte entry in the Name Table is the name of or the pointer to a pattern definition in the Pattern
Generator Table. The upper five bits of the eight-bit name identify the colour group of the pattern. There are
32 groups of eight patlerns. The same two colours are used for all eight patterns in a group; the colour
codes are stored in the VDP Colour Table. The Colour Table is located in a 32-byte block in VRAM
beginning on a 64-byte boundary. The table starting address is determined by the 8-bit Colour Tablebase
address in VDP register 3. The base address torms the upper eight bits of the 14-bit Colour Table entry
VRAM address. The next bit is a ‘0" and the lowest 5 bits are equal to the upper 5 bits of the corresponding
Name Table entries.

Since the tables in VRAM have their base addresses defined by the VDP registers, a complete switch of the
values in the tables can be made by simply changing the values in the VDP registers. This is especially
useful when one wishes to time slice between two or more screens of graphics.

When the Patiern Generator Table is loaded with a pattern set. manipulation of the Pattern Name Table
contents can change the appearance of the screen. Alternatively, a dynamically changing set of patterns
throughout the course of a graphics session is easily accomplished sincesall tables are in VRAM.

238

ONiddYW JOOW 11 SIIHIVHD — 01-Z IBNOIS

1w
80107 Mu3LIvS

A
o wwdiive [
s
aom
[T .
om: wuiLiva
™
o
[P R TN
s w >
im Wwliiv
i1
el 2
an "
e "
1vvs
R 1 wonrsow wiiava—of] OsYWINID NelLITa
wotsor —(J 1 7 B
e e
. -
~& s =
I YN o
. P2 NOIIEO) MUDLAYS] |
wounos =] a0 B = "
miLave 011 ywnsi
e fra— s
waanw o
= e NuBLIYE
I .q
NOLISOY 1+ MOULITOu Nw L1 ve Loead
waLive
©%014804 WD LIYS TR
An WYY
[

'uaa.0s Aejdsip ay) 0) dew Saweu saiy) asayl
MOY OSIE 8I0N '9|qE JOJBIaUSD) WIdled 8yl JO S320|q 831y) 2yl ul Saujua Jolesausb wianed o) puodssnod
£d'2d’ 1 d saweu waned jey) ajoN ‘awayos buiddew spow (| soydein) ay) jo aidwexa ue si OL-g anbiy

‘5,1, 8 0118s @ 1snw 5,857 ay) '€ sa1sibas gga ur aseq unojod ayi jo gSw eyl jo buipeol sy Aq pajonuco
S| SIUL CINWHA Ul 9|gel 8y} jo uoiedo| ay) Joj 1dadxa ajqe) I0JBsaUSY) ulaled Ul JO 1Byl x| Ajoexs
S| awayoas buissaippe ay) ‘uoniuyap ulaned Buipuoodsailod ay) jo salAq bia ay) jo yses 10} (IN0JOD pue
| Jnojoa Apoads Aenbiun o) qedes ay) sapiaod yowm saiAq ybia sy ajqe) Jnojon uisied ayl ul Ajue
yoe3 'salkg gr0z Jo $390|q |enba aaiy) ojul pajuswbas s1 pue Buo| salAg pyL9 OS[E SI 8jQe) JNOJOD BY)|

‘S.1.JIB 0} 198 8q I1snw $.gS7 8yl ¢ Jaisibas 4ga
ui aseq Jojelauab uisned sy) jo gS 8l UO paskeq AJowaw ¥g| J0 jjey Jamo| 1o 1addn ay) ul payeso) aq Aew
pue sauepunoqg aiAqopy 1ybia uo s|e) ajqe| I0jRIBUAL) WBYRY Ay "3|qR | BWeN WIdled 8y jo juawbas
Yoea Ul 85U0 ‘SBwI 8aIy) pasn aq |m aweu wayed yg-g ue payoeds Ajanbun ase suwaped ga/) ‘snyy
‘Aleanoedses %901q 91Aq 8Y0Z PAYI PUB %00iq 81AQ BYOZ PUGDSS Byl Ul SUONIULBP wialied 30UsIaja) SHI0|q
PIY) PUB PUODBS BY) OSIMEYIT "8|GE | JOjRIBUSY) WBlEd 8y ul sBIAg 8p0Z Jeddn Byl ul punoj suoniulap
wiajed aoualajal ‘pay 1addn ay) Ul pUNoy SaLWBU JBU) 0S YIBS SBLWEU §6Z JO $X20|q 8.y Olul pajuawbas
OS|e S 3|qe| SWeN uidlied 8Y| dueld WallRd ay) O SBAE PAIY] PUB PUOISS Bl O} PUOdSaLInD a|qe]
10]BI2UBE) WIBjIEd By} JO SHOO0|Q PAIY] PUB PUOSAS Ay Ul SUONIUYSp wisled aSIMaNI ‘Usa.os Aejdsip eyl
jo payy Jaddn ayy ur suolisod wialed 0] puodsaiioo pAIYl 1S1) BY) Ul SUORILYBP uBlied 'Yoee salkg gpoz 10
$)00|q [enba 881y} Ojul B|GE |, 10JRIBUBY) UIBHE BY] SuawBas os(e pue ‘yoea suonisod waled 95z jo sued
|enba as.y) ojur usauos Aejdsip ays sjuawbes 1eremoy ‘apouw || SoIYde.D) "LOIIAS SNOIASI BUY) UI PESSNOSID
awayos Buissaippe ay) Buisn passaippe ag Aew suoniuyep weled 96z Jo wnwixew e ‘yibus) ui sig
g Aluo ase seweu wiayed apow | soydels) ay) asnesag ‘ussIos Aejdsip ayl uo suomsod wianed goz ayi
0) puodsa1i02 YIIUM SBLIUS B9/ SUIRIUOD S|qe | BWeN Walled apow || saydess) ay) ‘apow | saydelsy axi

apow || soydess) ay) jo abesn
1INy auy wawajduwi o1 pasinbas s (sa1Aqojy Z1) WyHA jo unowe Jabie) v ‘wayed g x g 8y} jo alAq yoea
10y payoads aq Aew sinojod anbun omi sny | “wajed soydesd g x g ydea Ul PEPNIOUI SI UOIBLWIC)UI INOJO
210W ‘Aj[EUONIPPY "UBBIIS 0BPIA BUI LD suolisod wened (pZ X ZE) 892 AUl JO Yoea 10j 8pew aq Aew Anjua
10je18u8b weied anbun e ey os swened jo Areiqy 1abre| e smoje) 1daoxa apow | solydeio o) repwis
S apow || sadesn sy L = SN PUB'D = ZW ‘0 = LN SIIG 8pow uaym apouw || salydeis) ayy ul St 4aA suL

apoW || salydesn

‘uonesausb uisled 10) papaau WYHA 0 JunoLe
auy aonpai o} padde|iaA0 aq Ued sa|qe} ay) ‘paiinbail jou a1 suoniuyep wened ajqissod 95z |8 Ji papaau si
Aowaw s$87 '$8|GE] J0JBIBUSD) PUB INO|0D ‘SWEN ‘WIBNE 8U) J0) paiinbai a1e s81Aq WYHA BYEZ 10 [BI0) Y

Sse eve 33
iverove o€
6€22EC 62
Leg vee 82
€ee9le i2
Sie'g0e 9¢
02”002 S¢
6617¢61 e
1617¥81 €e
£817941 cc
SL1789l e
4917091 (V4
86172st 6l
LSLvrL 13
EP179EL PAS
SEL8el 9t
rrA AN 13
6LL7ELL vl
L POL £l
£01L'96 2l
S67'88 L

ki oL

8

8

L

9

S

14

£

=11 4
S8 i
L0 0

ON NH3Llivd 'ON31A8

ajqe} Inojod uldned § 374v.L

a|qeL
aweN wsled ay) ul ssujua Bunepdn Ajpiew sasinbai spoalqo jo uoijow yBnos ey sjoN “Ajgleudoidde dn
19 8|ge| BWEN Wslied PUB J0IBIBUSY) UIBliEd 8l puB 'paulep aq ued suiajied aidinw uay] ssienbs g
X g Jojjews oju) dn uaxoiq 8q pinoys ainby ay) 'eunby 1abie e Aejdsip 01 "pauyap aq o} pasu pinom usejed
auo Ajuo “Jajjews Jo sjexid g 'x g 8z1s Jo 198lqo ue Aejdsip 0| auelg uialed ay) Buisn pauuos aq ues sebews)

‘a|qe | SweN waled ay)
0} 1o $8p02 ||QSY Jadoid syl 1um ‘usR1ds 8y} uo abessew [enyxa) e Juud o} 18s inojoa sedoid ay) ypm dn
PBPEO| 8G PINOM 8|gE | INOJ0Y LISNB BU) 1XaN ICIBIAUIL) LIsled U Ui 91 | 18quinu wajed ojul papeo)
aq pinom Yy, Jana| ay) 10j uisned au) “6'e ‘wianed 1By} 10} SBP0D ||DSY 1G-8 8y} O} puodseiiod si8quInu
wiayed ayj 1Byl ABM B UONS U I0IRIBUSD UIGNEY U} Ojul papeo| aq WBIW 18s 1810 1BYD [IDSY SN (B0
ayy "isiy Jojerausn) wialed ay) oyl papeo) AjjeoidAl si18s JaloeIRYD palisep ay) ‘suoneaydde jenxa) o4

239

Multicolour Mode

The VDP is in Multicolour mode when mode bits M1 = 0, M2 = 1, and M3 = 0. Multicolour mode provides
an unrestricted 64 x 48 colour square display. Each colour square contains a 4 x 4 block of pixels. The
colour of each of the colour squares can be any one of the 15 video display colours plus transparent.
Consequently, all 15 colours can be used simultaneously in the Multicolour mode. The Backdrop and Sprite
| active in the Multicolour mode

The Multicolour Name Table is the same as that for the graphics modes, consisling of 768 name entries.
The name no longer paints to a colour list; rather colour is now derived from the Pattern Generator Table.
The name points to an eight-byte segment of VRAM in the Pattern Generator Table.

Only two bytes of the eight-byte segment are used to specify the screen image. These two byles specify
four colours, each colour eccupying a 4 x 4 pixel area. The four MSB's of the first byte define the colour of
the upper left quarter of the muiticolour pattern; the LSB's define the colour of the upper right quarter, The
second byte similarly defines the lower left and right quarters of the multicolour pattern. The two bytes thus
map into a 8 x 8 pixel multicolour pattern.

The location of the two bytes within the eight-byte segment pointed to by the name is dependent upon the
screen position where the name is mapped. For names in the top row (names 0-31), the two bytes are the
first two within the groups of eight-byte segments pointed to by the names. The next row of names (32-63)
uses the third and fourth bytes within the eight-byle segments, The nex! row of names uses the fifth and
sixth bytes while the last row of names uses the seventh and eighth. This series repeats for the remainder of
the screen.

A T8
ROW O
clo
° L]
ROW 0 ﬁ.griio
ROW O
SR clo]
NAME
L n ROW 1
27 S Gln]
T
8BYTES G | H ~
1 W] "o"?
MIN] aows
[r]
- ROW 23 o)
w [row2
PATTERN NAME PATTERN
TABLE TABLE VIDEO DISPLAY
M [N
o T o3
BYTES POINTED TO
BY NAMES

FIGURE 2-14 - MULTICOLOR MODE MAPPING

The mapping of VRAM contents to screen image is simplified by using duplicate names in the Name Table.
Since the series of bytes used within the eighl-byte segment repeats every four rows, the four rows in the
same column can use the same name. Then the eight-byte segment specifies a 2 x 8 colour square pattern

on the screen as a straightforward translation from the eight-byte segment in VRAM pointed to by the
common name.

When used in this manner, 768 bytes are still used for the Name Table and 1536 bytes are used for the
colour information in the Pattern Generator Table (24 rows x 32 columns x 8 bytes/pattern position). Thus a
total of 1728 bytes in VRAM are required. It should be noted that the tables begin on even 1K and 2K
boundaries and are therefore not contiguous.

Text Mode

The VDP is in Text mode when mode bits M1 = 1, M2 = 0, and M3 = 0. In the Text mode, the screen is
divided into a grid of 40 text positions across and 24 down. Each of the text positions contains six pixels
across and eight pixels down. The tables used lo generate the Pattern Plane are the Pattern Name Table
and the Pattern Generator Table. There can be up 1o 256 unique palterns defined at any time. The pattern
definitions are stored in the Pattern Generator Table in VRAM and can be dynamically changed. The
VRAM contains a Pattern Name Table which maps the pattern definitions into each of the 960 pattern cells
on the Patlern Plane. Sprites are not available in Text mode.

TEXT MODE NAME TABLE PATTERN POSITIONS

0 1 38 | 39

__QE ch

ACTIVE DISPLAY AREA

s
958|959

As in the case of the Graphics modes, the Pattern Generator Table contains a library of text patterns that
can be displayed in the text positions. It is 2048 bytes long, and is arranged in 256 text patterns, each of
which is eight bytes long. Since each text position on the screen is only six pixels across, the least
significant 2 bits of each tex! pattern are ignored, yielding 6 x 8 bits in each text pattern. Each block of eight
byles defines a text pattern in which all the "1's in the text pattern take on one colour when displayed on the
screen, while all the '0's take on another colour. These colours are chosen by loading VDP register 7 with
the colour 1 and colour 0 in the left and right nibbles respectively.

In the Text mode, the Pattern Name Table determines the posilion of the lext pattern on the screen. There
are 960 entires in the Pattern Name Table, each one byte long. There is a one-to-one correspondence
between text pattern positions on the screen and entries in the Pattern Na ‘e Table (40%24 = 960). The
first 40 entries correspond to the top row of text pattern positions on the screen, the next forty to the second
row, and so on. The value of an entry in the Pattern Name Table indicates v =h of the 256 text patterns is
1o be placed at that spot on the Pattern Plane. The Pattern Name Table is lc..ied in a contiguous 960-byte
block in VAAM beginning on a 1 kilobyte boundary. The starting address of the name table is determined
by the 4-bit Name Table base address field in VOP register 2. The base address forms the upper 4 bits of
the 14-bit VRAM address. The lower 10 bits of the VRAM address point to one of 960 pattern cells. The
name table is organised by rows. Each byte entry in the name table is the pointer o a pattern definition in
lhe Pattern Generator Table. The same two colours are used for all 256 patierns; the colour codes are
stored in VOP register 7.

As its name implies, the Text mode is intended mainly for textual applications, especially those in which the
32 patterns per line in Graphics modes is insufficient. The advantage is that eight more patterns can be
fitted onto one line; the disadvantages are that sprites cannot be used, and only two colours are available
for the entire screen. With care, the same text pattern set that is used in Text mode can be also used in
Graphics | mode. This is done by ensuring that the least significant 2 bits of all the character patterns are
‘0. A switch from Text mode to Pattern mode, then, results in a stretching of the space between characters,
and a reduction of the number of characters per line from 40 to 32. As with the Graphics Modes, once a
character set has been defined and placed into the Pattern Generator, updating the Pattern Name Table will
produce and manipulate textual material on the screen.

240

‘uonesauab ajuds 10 painbas pyHA
JO junoue ay) aanpal o} paddepano 8q UBD S8|GE) AU "9A0QE PAQUOSIP SE PAUILOYS 3q OS|E UBD Bjqe. 12
|Nquiy eludg ay | "pasnbai Jou aie suonuyep wiened ajuds ajqissod 95¢ Ile yi paunbas s1 Ascwaw ssa)
Anuesyiubis ‘sajqe iojessuer) uialeyd pue awey ajuds ay) 1o} pasinbal ase o WVYHA 912 I0 [B10}

TWYHA
u1 @)4q auo Buibueyos Alduns Aq sajuds ayj jo fe Jo ued jno jue(q o) Jasn ay) spwied osie)i 'pasinbas azis
wnuwiuiw ay) o} pauapioys 8q o} e|qe | aINQUNY 21udg syl snwiad sIyL “a|qe] SINauNy Sluds ay) u Ajus
Aue jo pjay uonisod [eoman au) i (910Q) B0Z O @NjeA & SpuUl QA Bl §! pajeulua) si buissesoid ajudg

"UCHEJO| UBBIOS BWES BU) Je SIIq L, anBY Sajuds BAIOR OM} JBABUSYM | B O]
19s s1.1a1s1631 smeis JaA ay) ui Beyy snjeys ssuepiouiod ay | Bunoeya B0UBPIDUIOD BjldS sapincid O Bul

‘auds gg x g e
Buipieih ‘eaue joxid g x Z e ojul sdew mou g yoee jdeoxe 1=3ZIS'0=DVI Se aweg L=3ZIS' | =9y
‘|exid 8uo-0J-ig-auo |Is s) Busddeyy “enids |axid g| x g| €]
ynsaJ ay} :adeys ajuds ay) suyap ol ajqe | J0jeIBUSL) 3judS au] Ul pasn aie SalAq | L=3ZI1S'0=9vYW
‘9L X 91 01 dds ay) jo azis ay Buygnop Ajaanoaye
‘uBaIds AL 3y} uo sjaxid g x g ojul sdew Jolesauan ajudg ay) ul g Yoes 1BABMOY
‘e|uds ayy aquosap 0} ajqe| J0jesBusY) BdS Byy Ul Pasn s eie salhq wbig :0=3ZIS' | =DV
uasoya suondo ON :0=3ZIS'0=DVYW

818y paquosap aie suondo ay) “suondo snouea au} Joajes
0} pasn aie | sa1sibes JaA Ul SIG IZIS PUB DWW BYL ‘Paisap ji pasn aq ued sjaxid gxg uey) sepids 13617

JaisiBas sniels ay oju papeo) st ajuds yyy Bunejoin sy) jo Jequinu
8y} pue ‘|, e 0} 18s SI J9)sibal sniels A Byl Ul ig ajuds uyy ey ‘|ioulByuNg aull jeyl uo pade|dsip
Jou aJe sapuds Juanbasqns pue yyy ay) “Ajewiou pakejdsip aie auly au) uo sajuds Apsond-1saybiy inoy sy
'PBIB|OIA S1 3|NU SIU) J| "BUl| [BIUOZIIOY BUO U pakeidsip aq ued 1Y} $3)1dS UN0J O JWI| WNWIXEW © $1 818y)

'seluds | 3Z|S 10}
payipow Anybis s1 uonew.oy sseippe 3yL "wiaped 8juds ay) uiyim Jaquinu mos ay) o) [enba are Sg € 15e|
AU puE ‘awieu Sluds o} |enba a.e SSBIPPE AU} JO SHQ B 1XAU Y] "SSAIPPE WYHA IG-bL 8y} 10 suq jueoiubis
1S0W € 8U} SW.0) SSaIppe aseq ay | g selsibas Jga 8yl Ul ssaippe aseq Jojesausb ajuds ay) Aq pauuajep
SI 910B} AU} JO SS8IpPE BUILBIS Ay Pesn 8q 0] IN0JOD USIBdSUER.) By} asnes s.0. ‘iod eyl e paulap aq
0} 8)uds ay} @sned J0jesBuaY) Buds sy IS |, 8y "adeys s ajds e Apoads o) asn 0} 300|q ajAq Wb yoiym
saljads ‘uayl ‘Anue sjqe | ainqupy ajuds ay) jo 81Aq payl ay L ‘yoee selhq g O $320|q 952 ojui pebuese
11| 'ssuepunog alAqojn z eyl uo buuuiBaq Buo| salhq 8702 JO WNWIXew € SI 8|qe | 10jeIaus”) ajuds ay)

‘doipyoeq 8yl Jo sepioq puey Ya| aul yim depano o) ajuds syl ssnes 2¢€ 01 ¢ abues
ay) ul (Anua ay) w z 81Aq) Juswaoe dsip [BJUOZIIOY 10} SanjeA “doipyoeq sy Jo aBpa ya) sy wouy w paa|g
0} ajuds e smojie sy ‘siexid 2 Aq 1) au) o) PaYIYs I ajlds auy jo uolisod [ejuozuoy 8y ' |, 0] 19§ UBUM
‘Buiyiou sa0p " 0, & 01 195 UaYM 11 SIUL (D) 11g %2017 Aue3 8yl S11q weayubis jsow ay) (sapod Jnojod
10} g 8|qe | 985) Siiq p 18mo| S| Ul Bjuds By} JO IN0J0D Y} SURIL0D Aljue 8|qe | sINquUiY auds syl Jo p e1Ag

2pow odeID SwaNed 8yl Ul ey} O} JBjiwiS SI Bweu sjuds 8y “ege)
J0jeiBuaY) B1dS ay ‘uonuyep sweped syuds ay) o) Jajui0d 1g-g U SISIY] a1 %00] pINoys a)uds auj jeym
sayivads |ey aiqe Jojesausn ajudg ay) o Jajuiod ay) sureuod Anuae ajge] ainquily aids aul jo £ alkg

‘ydeubesed Jaie| & ui paguasap se ‘pasn si Aljua ajqe] anguy aidsg
8yl Jo a1Aq paiyl 8y} ui g [eads B 'dospsoeq 8y1 Jo abipa yaj ay) woyy ul paaq 01 sayds MO|[e 0] 'UB310S
8yl jo apis Jybu euy) woy w paaq o} sjuds B moje SSZ Jo Aluioin 8y} ul senjea Juawaoeldsip |BlUOZLIOY
‘Aepwis doipyoeq ay) jo ebpe woyoq auy) W0Jj Ul paalq 0} ajuds syl MOJjB |6 01 L0Z JO aBues ay) ui sanjea
‘asimay ‘dospyoeq auy) jo abpa doj ay woy U1 paajq,, o) ajuds B moje (0 0} 91 13) 0 pue Lg- usamiag
luawaoe(dsIp [BAILEA J0) SanjeA jeyl ul ‘paubis Arened s ajAq sy auyy w luswaoeidsip ay| ‘doipxoeq
ay) puiyaq woy Aeidsip ay) ojul 8juds B aAOW Of Jojewiue sy} smojie siy| doipxoeq ay) Ag main wosy
uappiy st doipxoeq ay) sdeusao eyl aluds ay) jo wed ay) Ajjewsou pakedsip si doipxoeq 3y} uIyIMm St ey)
ajuds sy jo ped auy ‘dospxoeqg auy) Buiddejianc aie ajuds e jo uoiysod Ajua ue jo selhq om) 1Sl By} Uaym

‘uaxe) aJe sjusweinseaw (e ey} ejuds sy)
10 j9xid ya| Jaddn ay) woyy 1 Jey) ajoN "doipxoeq 8y) jo abps ye| ay) jsurebe dn slds 8y} siing o Jo anjea
v ‘Aeidsip sy jo abpa yay ay) woy ajuds ay) jo wawaoedsip [BIUOZUOY 8y} SaqLOsap selAq puooas auy)
“ease doupyoeq ay) Buiyano) ‘uasios sy jo doj ayy je dn Paunqg ajuds sy sind |- Jo anjea e jey) yans pauyap
st "sjaxid ui ‘usaios ay) jo do} sy} woyy sjuds 94} Jo BIUBISID [BOILBA BY) SBIRJIPUI BIAQ ISIY By “Aejdsip
au} uo sjuds syl Jo uomisod ay) SuLLIBISP B|qE] BINGUNY 8iudg ay) Jo Ajus yoea jo salkq om) Isuy ay)

2€ siaxid 2xg 2ex2e I L

g siaxid gxg 9ixg| 1 0

2e 1exid ajbuis 9ix9} 0 L

g 1exid a)6uis x8 0 0
NH3LIVd/SILAg NOILNTOS3Y V3uv OYW 3218

siewuo) wianed ajuds g 37gvL

'IN0jos pue ‘aweu uiayed sjuds 'uonisod ajuds ay) Apoads
Uo1ym salAq 1noj surejuod Anua ajqe] ainquiy a1udg yoe3 “ejuds yoea Joj Aijus ajqe | anguyy au; Ul salAq
N0} BUI JO 3UO 108138 SIIG Z 1SOMO] BUL “J8quinu ajuds ay) o) [enbs aJe SSa.ppe WYHA 843 Jo S)iq § |xau
8UJ "SSBIPPR WYHA 1'Q ¥} 8U) JO SIIQ UBASs Jeddn ay) Swuo) sselppe aseq ay| G 1eis16as ggp U1 SSauppe
8Seq a|qe) anquIy Sluds ay) Aq pauiwssiep s1 9ige) SINqUIY By} JO ssaippe Buluels ayj Aepunag
2M4g-gz1 & uo BuluuiBag WyHA U 00|q B14Q-g2 | SnonBiuoa e Ul pajeso) si e|qe | ainquiy ejuds ey “Buoj
salkq 821 = Zexb S10IQR L ainguiy eudg ay | ‘uo os pue ‘aued | apids 8yl uo ajuds ay) o) 1xau ay) ‘aue|d
0 @juds ay) uo ajuds ay) 0} spuodsanoy Anua 1S4y 8Y) JBY) OS paiaplo 8.k S8UIUB BU | “SJAQ INOJ JO SISISUCD
Alua yoe3 ‘e|qe | ainqupy ajuds ay) Ut sainua Z¢ are auay ‘Aejdsip Joj a|qe|ieAe Sa)lds ZE aIe aiay) 20uIg

'S @|qe) ur uaAib ase sjewlo; ulened 8judg B
$400] 81uds 3y} jeym S8quUOSaP a|ge | JolBIBURY) BJUdS U] BIILM 'UBBIIS aul uo sieadde ajuds ayy asaym
sayads ajqe | siNquily 8luds Byl 1Byl Ul Wwiea. uiayed sy wi sjuajeainbe sy} O} JejWIS BIe $3|qe) asay |

elqe | JojeIausy aluds auj pue aiGe | BINqUIY Sludg ay) e sajuds BULSP Jeul WA Ul 5%00q-gns 8y

Hasn ayuds ayj jo apisino
Juaiedsuel) Ay ase seury adg zg ay| ‘epow Xal ay) up eanoe Jou ase sads ay) swayed [eads
Buirow Ajuroows pue Apoinb jo poyiaw npamod Ing ajdwis e sapinoid siy) uibuo ajuds ay) Buuyapes
Aq j@x1d Aq jexid peaow Ajises aq ues ajuds ay) ‘uwiajed ajuds ay) je J1auios puey yo| doj ay) Ag psuyep si
a)uds e Jo uoneoo| au| ‘Buikepsnc wayed 19A3HINW pue LONOW Yoows apiaoid yaiym suseped ucnewiue
[e1oads ase sajuds ay) ‘saueid oapian Aluoud 1saybiy ay) uo salluds zg o] dn aney ueo Aeidsip oapia au)

sojuds

‘vonesauab uisned Joj papaau YA JO JUnowe
auy) 80npa1 o} paddeiano aq ues sa|qel ay) ‘pannbal jou aie suonLYap uiened 2|qissod 952 |ie j pasnbal
s Alowaw ssa7 "se|ge JOIRIBUBD PUB BWeN LIaNEy By Joj painbe) aie s81AQ WYHA SOOE JO [BI0] v

31sibay 4aA swes sy 1O SUq ¢ Juedubis jsea) ayl Ul 1 ydIyM
(0 1n0j03) 8p0o2 NOjOD JBYIO BY) S10RjaS 9.0, v "£ 19151681 4QA J0 Sug ¢ JuRDyILBIS JSOW 3y} Wl paurejuoa
(1 1N0j02) 8p0d INO|CD BY) S19818S g |, v “wieped 1BU} 10} SIN0J0O OM) 8L} JO BUO S}o8jas uouyap wayed
ayi u Aua 1ig yae3 's.0, aq S11q 8s8Y) Jey) pepuawwwooas AIBuosns isAemoy ‘sl)| ‘pasn jou aie 8JAq yoea
Ul SIIG JUBOYIUGIS ISBB| OM BUL "MOJ PUOJBS BY} SBUNAp 2)4q PUOIAS 8yl pue ‘wianed sy jo mos isiy ay)
saulap @14q is1y ay] "suoiuyep wsned g x g snbiun 8|qissod 952 ay) Jo yoes Joj pasinbas aie salAg 1ybig

‘UoNIUeP wiened By} UIYIM JAGINU MOJ BY] O}
[enba a1e SSeIPPE WYHA 9U1 10 SIIG £ 1S8mo| 3y “uoliulep waped Pajoajes sy} jo aweu Jig-g au} 0} [enba
8l sliq g jxau ayy “Anus sjqe l0jeiausy) uiayed Yoes 10§ SSBIPPE WYHA 1G-p 1L 8y} j0 syg Jueoyubis
1S0W € 3U} S0} SSaIppE 8seq ayL ‘v 191s16a) JgA Ul SSeippe eseq Jojelauab au) Ag pauiwalap s ajqe;
ayi jo ssauppe Buels sy “Arepunog sihqomy z e uo BuiuuiBag wyya ul %ooiq 814a-8p0z © s! a|qe) ay |
3|Qe} Jojesauab uialed ay) ul suoniuyap wianed ggz su) J0 BUO 12818 0] Pasn s| aweu uiaied ug-g (I} ay

241

APPENDIX8 SOUND GENERATOR

The sound processor used in the MTX500 Series computers is the Texas Instruments SN76489A sound
generator IC. This device is /O mapped as follows:

Data is mapped to output port 6
Strobe line is mapped to input port 3

To write data to the device send valid data to output port 5 and then strobe the data into the device by
performing a dummy read from input port 3. The time interval between successive reads must be at least 32
clock cycles (32 T-states).

D5 = L 16 vcC
D6 2 - 15 Du

DT 3 — 14 CLOCK
READY i 13 D3
WE 5 12 p2
0E 6 — 11 D1
AUDIO OUT 7 — O 10 Do
GND 8= 9 N.C.

DESCRIPTION
The SN764B9A digital complex sound generator is an &) L/Bipolar IC designed to provide low cost

tone/noise generation capability in microprocessor systems. The SN76489A is a data bus based IO
peripheral.

RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN TYP| MAX | UNITS

Supply Voltage, VCC 45 5.0 55 \

High Level Output Voltage, VOH (pin 4) 55 v

Low Level Qutput Current, IOL (pin 4) 2 mA

Operating Free-Air Temperature, TA 0 70 oc
OPERATION

1 Tone Generators

Each tone generator consists of a frequency synthesis and an attenuation section. The frequency synthesis
section requires 10 bits of information (F9-F0) to define half the period of the desired frequency (n). F9is the
mosl significant bit and FO is the least significant bit. This information is loaded into a 10 stage tone counter,
which is decremented at a N/16 rate where N is the input clock frequency. When the tone counter
decrements to zero, a borrow signal is produced. This borrow signal toggles the frequency flip-flop and also
reloads the tone counter. Thus, the period of the desired frequency is twice the value of the period register.

The frequency can be calculated by the following:
o N
32n
where N = ref clock in Hz

n = 10 bit binary number

The output of the frequency flip-flop feeds into a four stage attenuator. The attenuator values, along with
their bit position in the data word, are shown in Table 1. Multiple attentuation control bits may be true
simultaneously. Thus, the maximum attenuation is 28 db.

TABLE 1 Attenuation Control

BIT POSITION

A3 A2 Al A0 WEIGHT

0 0 0 1 2db
0 0 1 0 4 db
0 1 0 0 8db
1 0 0 0 16 db
1 2] 1 1 OFF

2 Noise Generator
The Noise Generator consists of a noise source and an attenuator. The noise source is a shift register with

an exclusive OR feedback network. The feedback network has provisions to protect the shift register from
being locked in the zero state.

TABLE 2 Noise Feedback Control

FB CONFIGURATION
0 "Periodic” Noise
1 "White” Noise

Whenever the noise control register is changed, the shift register is cleared. The shift register will shift at
one of four rates as determined by the two NF bits. The fixed shift rates are derived from the input clock.

TABLE 3 Noise Generator Frequency Control

BITS

N/512

N/1024

N/2048

Tone Generator Channel 3 Qutput

S

NFO | SHIFTRATE
0
1
0
1

The oulput of the noise source is connected to a programmable attenuator as shown in figure 4.

3 Output Buffer/Amplifier

The output buffer is a conventional operational amplifier summing circuit. It sums the three tone generator
outputs, and the noise generator outpul. The output buffer will generate up to 10mA.

4 CPU to SN76489A Interface

The microprocessor interfaces with the SN76489A by means of the 8 data lines and 3 control lines (WE, CE
and READY). Each tone generator requires 10 bits of information to select the frequency and 4 bits of
information to select the attenuation. A frequency update requires a double byte transfer, while an
attenuator update requires a single byte transfer.

If no other control registers on the chip are accessed, a tone generator may be rapidly updated by initially
sending both bytes of frequency and register data, followed by just the second byte of data for succeeding
values. The register address is latched on the hip, so the data will continue going into the same register.
This allows the 6 most significant bits to be quickly modified for frequency sweeps.

5 Control Registers

The SN76489A has 8 internal registers which are used to control the 3 tone generators and the noise
source. During all data transfers to the SN76489A, the first byte contains a three bit field which determines
the destination control register. The register address codes are shown in Table 4.

242

1AL venenusiiy

I = S oy e ey Y ol
O 12
—O
—0 oo
=0 1o
ta
O o st
=0 vQ C1
0 so &
=0 90 i1
=0 ta ot

[[a[]m]

Guwy epny

uonuERusLIy

wneang |

iy

0
Ty 10103080 buoy

Bunsing Sowuy

vousnuaLY

Ly *01840URD suay

wouEnus LY

ey

[
(15

INdINO OIPNE By} S(0AUOO YIIUM BIBP U} SIBJSUB.) 10858001d0IOIW BU) YoIyM yBNoIY) aceaiul g 8
[ljesed € Sey vE8F9LNS 8UL “J3)nq INAINO 18WWNS OIPNE UB PUB SI0JEN|USHE JOJRIBUaE |enplAIpuI “18[B0S
#00j0 B tojesaual asiou eiqewwe.bosd e ‘siojesauab suo; siqewwesboid 231y JO SISISUOD 801A3p SIYL

NOLLdIHOS3a WYHDYIQ 20149

H H j
H q H
1 H 9
1 1 1
AQV3Y am 30
1NdLNO SLAdNI

ajqe) uonoung S 37GV.L

31A9 ANOD3S

31AE L1S¥IS

‘mojaq umoys s1 Buiwn ey
uawalels anJj ayj o) ob o} pasesas s

SUBJ] BIEp 8y | ‘pejajdwos si I8jSUBI BIEP 8U] UByMm (dnyind jeuwsaixa)
‘30 jo abps buipea) ay) Buimoljoy AjgteipatuLw (abejjon moy) ajels

as[e) &y} 0] pa|ind S| PUB 19jSUBJ} SIY} O] J0SSBI04d0IOIL BUY) 821u0youAs 0} pasn s INdino AQy3Y J0109}103
uado ay] “18ys16aJ |02U0D BY) O BIEP BY) PEO| 0} 38[942 Y202 Z¢ Ajeiewixaidde saunbas VB8YILNS 8yl

<Viva>

<————31A8 ONOJIS———

‘Wl Siy) Je piieA ag IsNW SIUsiu0d sNq elep 8y JaisiBal [04u0d ajeudoidde
8l 0} SN BIEP BY] o SUal0d 8y} saqoxs [eubis M By} ‘anul S| 30 UAUM IN930 UED BIEP OU ‘any)
S 30 ssajun ‘(ebeljon mo)) aieis anuy ay) ojur 39 buded Ag V68FILNS 8yl 5120195 J0553001d0sdiw 8y

<Haav

sjewo ejeq £

ov v 2v ev o4 4 2
934> 0

(soysues) aihg 8|buig) sojenuany ajepdn

04N 14N 84 X o0d 14 ey
<-1dIHS> <yaavy 934>
0 L

(18jsuel)y aihg eibuls) a0inog ssion ajepdn

> <

31A8 LSHIJ >

_! vd S4 94 /4 84 64 X O 04 4 &4 ©4 o4 iH 29 1
R — 1] — =< viva > <HOQY 934>

0 0 z

(1a)suel) B1Ag OM]) Aouanbaig siepdn

‘MOjaq UMOYS e eiep Jajsuel Of palinbas sjeuno) ay)

Sjewlod ejeq 9

NOILYNNILLY ISION L 1 1

1OHLNOD 3SION 0 ' L

NOILYNNILLY € INOL b 0 L

AON3NOIH4 € INOL 0 0 L

NOILVNNILLY 2 INOL L L 0

AONIND3HA 2 INOL 0 1 0

NOILYNNILLY L INOL L 0 0

AON3ND3HS | ANOL 0 0 0

43151934 TOHINOD NOILYNILS3a 04 L] e

PI2Id SSRIPPY ia)siBay v 3TAVL

243

APPENDIX9 MEMORY MAPS

The paged memory map structure of the MTX Series computers has been designed to operate in two
modes.

1 ROM BASED (RELCPMH = 0)

ROMs are mapped from 0 to 3FFFh. The 8K (2000h bytes) monitor ROM is always available in area 0 to
1FFFh and the paged ROMSs of 8K (200h bytes) each are mapped from 2000h to 3FFFh as eight pages 0 to
7 set by R2,R1,R0 in the page port write only register. Up to 512K of RAM is mapped on 16 pages (0 to F)
set up by P3,P2,P1 and PO in the page port write only register. The area C000h to FFFFh is a 16K (4000h
bytes) block common to all RAM pages. The 32K (8000h bytes) block from 4000h to BFFFh is mapped as
16 pages. The 32K bytes of RAM for an MTX500 is mapped from 8000h to FFFFh (page 0). The 64K byles
of RAM for an MTX512 is mapped from 4000h to FFFFh (page 0). The additional 16K is mapped from
8000h to CO00h on page 1

2 RAM BASED (RELCPMH = 1)
All ROMSs are switched out in this mode, and up to 16 pages of 48K (CO00N bytes) are mapped from 0 to

BFFFh. These pages are set by P3 P2,P1 and PO in the write only page port register. In the area CO00h to
FFFFh is a 16K block (4000h bytes) of RAM common to

D7 D6 D5 D4 D3 D2 D1 Do
RELCPMH R2 R1 RO P3 P2 P1 PO

Write only page port register. output port 0

0 2000 4000 8000 Co00 FFFF
1

0 SYS-B 512 5001512 500/512 a
I

1 SYS-C (128a) 512 !
|

2 (128¢) (128b) 4000h 2
MONITOR |

q (128e) (128d) BYTES 3
~

4 A DISC (128g) (1281) COMMON 4
I

5 DISC (128h) BLOCK 5

6 [

7 CART 7

8

A2.R1A0 9

A

(128K Add-on lo
64K MTX512 shown B
n brackels (a-h))

c

D

E

ﬂ

ROM BASED MEMORY MAP. RELCPMH - 0
P3.P2P1.PO

0 4000 8000 Co00 FEFF
512 512 512 512
(128a) (128b) (128c)
(128d) (128e) (128f) 4000h
(128g) (128h) BYTES
COMMON
BLOCK
RAM BASED MEMORY MAP. RELCPMH -~ 1 P3.P2P1 PO

(128K Add-on 10 64K MTX512 shown in brackets (a-h))

244

INPUT/OUTPUT PORT SUMMARY

APPENDIX 10

‘SHuN uoIsuRdX3 9SIP AU Ul SLOd -] PXBOG-HO S B|QRIIEAR 8Q (M SPIEMdN Y0Z S8SSIPPE L0y
|0UOD BI0WSI B118SSED J0) PAAIBSI U4 | YiM Pasnun Apuaund aie yJ| o} Yy SHod

[0AUCo guo 40
101102 Yy2 30
B1Ep g4oa0
BIED Y40 D0

'1HYQ 8y} 10§ suod ajum/peal snonbiuos 1noj ese asay |
440°30'a0'00

auou-jne afipe 31 150-INdur gyo go

L %900 185 | Hyg-Ino EL/ZHWH-INdu 242 Yo
0 %2012 J8S | Hvya-Ino €1/ZHWp-Indul LYo 60
198UU02 OU-INO AINIdaa-indul gyo go

‘010 YO8Z @U} JO S|3uuByd noj 8yl 1o} Suod slum/peas snonbiuoa 1noj ase asay |
ugo'v0'60'80

‘81510 Buisn 101u02 Indino ayels-L) Yim Indino payole| e 11 “0lg 8y} Jo pod Jndino su SISIYL P'(L)LNO
1ndino

"8LSNI pateubisap ‘aul siqeus syl uo asind moj aanoe ue yim Buipeas

1oy ur payoef aq Aew ejeqd *(01d) 1Hod indino indut jajjesed peniwwosun ay) Joj Lod Indut aul st sIyL p'(2)NI
LNdNI

uzo

(€)1 Buisn
paqoais Ajuanbasqns st yoiym sojesauab punaos ayy Joj ejep pay2ie| apiacid o) pasn st yod syl p'(9)LNo

1Nd.1no

£0 PUE 2Q UO PeaI S| YIIMS 8p03 AjUnod |Iq oM} 8Y] "Xujew

PIROGADY (11 X8 9U) JO (1L PUB 0Q)) Seul asuas ueayiubis sow oM} ay) ul peas o) pasn si od SiyL p(9INY
1NdNi

uso

‘XUjew preoghey (LXg a8yl o Saul| aAup g ey} sapinoid pod payadie| siyj p(S)LNO
1ndino

“XLew

PIEOQABY QL X8 8LJ} JO BUI| BSUBS 1Iq UB) Byl WOJ| SHQ 8 lueaubis jses| ay) peas ol pasn si pod siy) P(SINI
1NdNI

yso

“(¥)NI Buisn yby pasioy
3Q PINoYs 3g0H.LS puodasoniw | Aplewxosdde jo Aejap 18yuny B Jaly ‘MO 3G0HLS 39210} 01 (OINI
Buisn puooasosow | Ajarewxoidde jo Kejep e Jaye pagouis aq pinoys ejep uay) 'pa108|as pue ASNg lou
SPEaJ (Y)NI U0 SNEIS uaym “Hod SiU) Olul payle) 3G PINOyS Bjep prep ‘elep Jajuud 1q 8 18)|eded P'(v) 1NO

1lndino

ubiy anioe sles papajas uisiuud 1978 = £0
uby annoe Aidwe seded 34 = zq

MO| 8Alde 1013 = |1

aull axeyspuey ybiy aaloe ASNg = 0Q

Hod saiund jaiesed adf) sououag ay) o sniels ay) Butoyuow o) pod 219qu & S siy) ppINI

1NdNI
uvo

‘Buuayy ssed mo| pue (20Ax8P0Z-) uonenusye Jayr (D1W) Indino ayesses ay) uo sieadde
PUE PaLole| s11q elep SIYL '0Q uo paoed Si Bjep piiea "aul [elas indino ayesses ay) si siyy p(e)iNo

1Ndino

‘(EINI Butsn ui pagouis aq Aew ejep [euoiippe 2iojeq pasdea aney
1SN $810A2 %00 ZE 1SBA| JE JO |BJ0) v "aul| siy) buisn uy pagoss Ajsjeipawwi aq Aew eep (g) pod ndino
BUi 01 pAYDIE| USaQ Sey elep Jaly “Jojesauab punos ay) ojul 8qoLs JNdino Le se pasn s aul siyy (£)NI

1NdNI
yeo

{1 = epow) alum daa p(z)LNO
1ndLno

(1 = apow) peai 4ga p'(2)N)
1NdNI
uzo

(0 = apow) 8lum 4aa p(1)iNoO
1NdLno

‘Indui 8pows 01 PalYAULId SI |y Bl SSAIPPE NdO 0BZ 810N 'S8UBS BLEESWL Ul UO UOHBJUBLINIOP aag
"daA 8ul 10} spod ajumpeas snonBRuod om) apinoud zo wod yum 1eyiaboy (g = apow) peal 4aga pP(LINI
LNdNI

yio

‘lasay
Ndd uo 0 0 18sa1 st yoje| ay] ‘(1 = Q) wajshs paseq WVH B 10 (0 = £q) waisAs paseq woy e sauyep
£ Wq pue ssauppe abed WOy ay) sauyap ()Y uq ¢ ay) 'ssaippe abed Wy'd 8yl sauyap (1)d e1qqiu ay) asayp

HWJO3H = 20
cd = 9a
4 =6a
0d =va
£d = €a
ed =¢ea
id =10
0d = 0Q

:smojjo) se s dew yq 8y “ssaippe abed Aowaw souysp P (0 1nO
1Nd1no

'SPUGIBSOIDIL MOy € LBY] B10W Jo pouad B 1aA0 Bulpualxa suno Jdnuaul ue uim IEOHLS

19521 0} @anoesd poob ag pinom i mo| si 3EOHLS 8ym 1dnusjul jo wena syl uj “(p)N| Ag 10 1383y
NelD U J8une HOIH 1858! S1 aul 3gOY 1S 841 "MO1 0 (mo] 8An0B) 3gOH LS J81und ay) 1os o} pasn si (0)NI
LNdNI

yoo

dew LOd SaLas X LIN 8Ul SaqUOSap uoNoss siy|

245

Plugs into Centronics Interface

APPENDIX 11 PARALLEL PRINTER INTERFACE

STROBE 1 19 0V
DATA 1 2 20 OV
DATA 2 3 21 0V
DATA 3 4 22 0V
DATA 4 5 23 0V
DATA 5 6 24 0oV
DATA 6 T| g |25 OV
DATA 7 8 26 0V
DATA 8 9 27 oV
NC 10 28 0V
BUSY 11 29 0V
PE 12 30 OV
SLCT 13 31 NC
NC 14 32 ERROR
NC 15 33 0V
ov. 16 34 NC
ov 17 35 NC
(NC 18 36 NC)

MTX500 Series Centronics Type Parallel Printer I/F Connector
34-Way (17+17) Right Angle Header Plug

34-WAY RIBBON

CABLE

+«—Pin 1 Connector

18

CENTRONICS CABLE CONNECTOR

246

36

19

Plugs into Printer

APPENDIX 12 PARALLEL INPUT/OUTPUT PORT

This is an uncommitted TTL compatible PI0 and uses port 7, and is available on an internal 20 pin DIL
socket. The port is normally transparent but input data may be latched by taking INSTB to a logic low. The
output port is normally tri-state but may be made active by taking OTSB to a logic low. Only TTL compatible
signals may be used. The 5V current drain must not exceed 20mA.

POT 0 £{==--1 20---=> POT 1
POT 2 {=--=2 19==-=> POT 3
POT U Cau=w=l 18-=-=> POT 5
POT 6 {====U4| JT [17====> POT T
OTSTB {====5 16====> 0V

PIN 0 <-=---6| 8C |15----> PIN 1
PIN 2 <{-==-T7 14==-=> PIN 3
PIN 4 <----8 13wus==> PIN 5
PIN 6 {====9 12====> PIN 7
INSTB <---10 11eee=> 45V

13 MEMOTECH DMX80 PARALLEL PRINTER CONNECTOR

SIGNAL RETURN SIGNAL DIRECTION

PIN No. PIN No.
1 19 STROBE IN
2 20 DATA 1 IN
3 21 DATA 2 IN
4 22 DATA 3 IN
5 23 DATA 4 IN
6 24 DATA 5 IN
7 25 DATA 6 IN
8 26 DATA 7 IN
9 27 DATA 8 IN
10 28 ACKNLG ouT
11 29 BUSY ouT
12 30 PE ouT
13 = SLCT ouT
14 - AUTO FEED XT IN
15 - NG -
16 a CHASSIS-GND
18 . NC

19-30 : GND -
31 . INIT IN
32 : ERROR ouT
33 - GND -
34 v NC -
35 - - -
36 - SLCT-IN IN

247

APPENDIX 13 MEMOTECH DMX80 PRINTER

Control

Control
COMMAND Code INPUT FORMAT

CARRIAGE RETURN CR LPRINT CHR$(13);
LINE FEED LF LPRINT CHR$(10);
VERTICAL TABULATION VT LPRINT CHR$(11);
FORM FEED FF LPRINT CHR$(12):
HORIZONTAL TABULATION HT LPRINT CHR$(9):
SHIFT QUT SO LPRINT CHRS$(14);
SHIFT IN S LPRINT CHRS$(15);
DEVICE CONTROL 1 [s]e3] LPRINT CHRS(17);
DEVICE CONTROL 2 pc2 LPRINT CHRS(18);
DEVICE CONTROL 3 Dc3 LPRINT CHRS(19});
DEVICE CONTROL 4 DC4 LPRINT CHRS(20);
ESCAPE ESC LPRINT CHR$(27);
BACK SPACE BS LPRINT CHRS(8):
DELETE DEL LPRINT CHRS(127);
BELL BEL LPRINT CHRS$(7);
NULL NULL LPRINT CHR$(0);
PICA PITCH DESIGNATION ESC+P+(1) | LPRINT CHR$(27); “P" CHR$(1);
ELITE PITCH DESIGNATION ESC+P+(0) | LPRINT CHR$(27); "P"; CHR$(0).
DOUBLE WIDTH
ELONGATED SETTING ESC+W+(1) | LPRINT CHR$(27); "W", CHR$(1);
CHARACTER
DESIGNATION RELEASE ESC+W+(0) | LPRINT CHR$(27); "W" CHR§(0);
EMPHASIZED SETTING ESC+E LPRINT CHR$(27). "E";
CHARACTER
DESIGNATION RELEASE ESC+F LPRINT CHR$(27): “F".
DOUBLE PRINTED SETTING ESC+G LPRINT CHR$(27); “G",
CHARACTER
DESIGNATION RELEASE ESC+H LPRINT CHR$(27). "H",
UNDERLINE SETTING ESC+=+(1) | LPRINT CHR$(27), "'~ ". CHR3(1).
DESIGNATION

RELEASE ESC+-+(0) | LPRINT CHR$(27); "~ ": CHR$(0);
SUPERSCRIPT DESIGNATION ESC+S+(0) | LPRINT CHR$(27); 'S", CHR$(0):;
SUBSCRIPT DESIGNATION ESC+S+(1) [LPRINT CHR$(27); "S™; CHR$(1);
SUPERSCRIPT/SUBSCRIPT RELEASE | ESC+T LPRINT CHR$(27). T,
ITALIC FONT SETTING ESC+4 LPRINT CHR$(27); "4";
DESIGNATION

RELEASE ESC+5 LPRINT CHR$(27); 5",

COMMAND Code INPUT FORMAT
FORM LENGTH DESIGNATION (LINE | ESC+C+(n) |LPRINT CHRS$(27); "C": CHRS(n),
NUMBER)
FORM LENGTH DESIGNATION (INCH | ESC+C+ |LPRINT CHRS(27); "C"; CHRS(0);
NUMBER) (0)+(m) CHR$(m):
Ve INCH FEED | ESC+0 LPRINT CHR$(27); "0";
LINE %2 INCHFEED | ESC+1 LPRINT CHR$(27)."
SPACING
PITCH Y6 INCHFEED | ESC+2 LPRINT CHR$(27); "2";
DESIGNATION
9216 INCH FEED| ESC+3+(n) |LPRINT CHR$(27); “3"; CHR$(n):
2 INCH FEED | ESC+A+(n) |LPRINTCHRS(27); "A"; CHRS(n):
SINGLE NEW LINE DESIGNATION ESC+J+(n) |[LPRINT CHRS(27); "J"; CHRS(n);
PAPER END SETTING ESC+8 LPRINT CHR$(27); 8"
SIGNAL IGNORE
RELEASE ESC+9 LPRINT CHR$(27); 9",
SKIP PERFORATION | SETTING ESC+N+(n) [LPRINT CHR$(27); “N", CHR$(n);
RELEASE ESC+0 LPRINT CHR$(27); *0";
vT SETTING ESC+B+(n1)|LPRINT CHR$(27); *B"; CHRS$(n1);
+(n2)+ ..+ |CHR$(n2), ..CHRS(nx); CHR$(0);
(nx)+(0)
RELEASE ESC+B+(0) |LPRINT CHRS(27); “B"; CHRS(0);
PRINTING WIDTH DESIGNATION ESC+Q+(n) |LPRINT CHR$(27); "Q"; CHRS(n);
HT SETTING ESC+D+ LPRINT CHRS$(27); “D"; CHRS(n1);
(n1)+(n2)+ |CHRS(N2);...CHR$(nx); CHRS(0);
+{nx)+(0)
RELEASE ESC+D+(0) |LPRINT CHRS$(27); "'D"; CHR$(0):
SINGLE-DIRECTION | SETTING ESC+U+(1) |LPRINT CHRS$(27); “U"; CHRS$(1);
PRINTING
DESIGNATION RELEASE ESC+U+(0) |LPRINT CHRS$(27);"'U"; CHR$(0);
INTERNATIONAL CHARACTER ESC+R+(n) |LPRINT CHR$(27); "R"; CHRS(n);
SELECTION
STANDARD BIT IMAGE DESIGNATION | ESC+K+ |LPRINT CHR$(27); "K"; CHRS(n1);
(n1)+(n2) [CHRS$(n2);
DOUBLE DENSITY BIT IMAGE ESC+L+ |LPRINT CHR$(27);"L": CHRS(n1);
DESIGNATION (n1)+(n2) |CHAS$(n2):
FONT SETTING mwm“uﬁw o |LPRINT CHRS(27): ¥ hexa code;
REGISTRATION HAS(D1): CHRS(D2) +...CHA! 3
Gl i CHRS$(D1); CHRS(D2) +...CHRS(D9)
.. +(D9)
RELEASE ESC+Z+ || pRINT CHRS(27); “Z"; hexa code;
hexa code
MSB OPERATION SETTING ESC+> LPRINT CHR$(27); ">";
RESETTING ESC+= LPRINT CHR$(27); '=";
CANCELING ESC+# LPRINT CHRS(27); " #";
ONE LINE SINGLE-DIRECTIONAL ESC+< LPRINT CHR$(27); "<";
PRINTING
RESET PRINTER ESC+@ LPRINT CHR$(27);

248

APPENDIX 14 PAL LISTINGS

PAL14L4 PAL DESIGN SPECIFICATION
MTXS00 FPLA GEOFF BOYD OS5JUN8S3
MEMORY SEGMEMT DECODER FOR 16K+8KROM/32K+512KRAM
MEMOTECH LTD 3 COLLINS ST OXFORD
Al3 Al4 Al1S P2 R1 R2Z P1 MREGL RDL GND
IZH4L PO RELCPMH RAM MAL1S CE64 CEA P3 RO VCC
/CEA = /RELCPMH¥/A1S%/A14%/A13%/MREGL%/RDL
JRELCPMH¥/A15%/A14%A13¥/R2¥%/R1%/RO%/MREGL*/RDL
/RELCPMH¥/R2¥/R1¥RO*/A1S5¥/A14¥A13%¥/MREGL¥/RDL
+/RELCPMHXRZ¥R1X¥ROX/A1SX/A14XA13¥%/MREGLX/RDL
/MALS = /ALS + /P3¥/P2%/P1%¥PO¥/RELCPMH%/A14%A1S
/RAM = /P3%/P2%/P1¥/POX/IZH4L¥RELCPMH¥/A14%/MREGL

+ /PIX/P2%/P1¥/PO¥/AL14%AL15¥/MREAL

+ Al4¥A1S*/MREGL

t+ /F3¥/PZX/P1¥PO¥/RELCPMHX/A14%A15%/MREGL ¥/ I2H4L
DESCIPTIONM: MTX DECODING FOR 1¥16K+1%8KROMS.
END.

+

/CE&4

PAL14L4 PAL DESIGM SPECIFICATION
MTXS12 FPLA GEOFF BOYD OSJUNS83
MEMORY SEGMENT DECODER 16+8K ROM 64K RAM
MEMOTECH LTD 3 COLLINS ST OXFORD
Al3 Al4 ALT P2 Rl RZ Pl MREGL RDL GND
I2H4L PO RELCPMH RAM NAL1S CE&4 CEA P3 RO VCC
/CEA =/RELCPMH%X/AL1S5¥/A14%/A13%/MREGL%/RDL
+/RELCPMH*/R2%/R1%/ROX/A15¥/A14%A13%/MREQLX/RDL
/CE64 = /RELCPMHX/R2¥/R1¥RO¥/A1S5¥X/A14%XA13%/MREGL¥/RDL
+/RELCPMH¥R2¥R1¥RO¥/A15%/A14%A13%/MREGL*/RDL
/NALS = /AL1S + /P3%/P2X/P1¥POX/RELCPMHX/A14%ALS
/RAM = /P3X/P2%/P1¥/PO¥/I2H4LXRELCPMHX*/MREQL
+ /P3X/P2¥/PL1¥/PO¥A14%/AL1S*/MREGAL¥*/I2H4L¥/RELCPMH
+ AL14¥A1S*/MREQL
+ /PI¥/P2X/P1¥¥/A14%A15%X/MREGQL¥/I2H4L¥/RELCPMH
DESCRIPTION :
END.

PAL14L4 PAL DESIGN SPEC
MTXS00-RS232 GEOFF BOYD 01JULY83
RS232 AND I/F DECODER
MEMOTECH LTD 3 COLLINS ST OXFORD
MREGL RDL MIL IOREL DTIEO BUSAKL A7 A& AS GND
A432 RELCPMH R1 24SDIR DARTEN 03 ND R2 EXT245 VCC
/243DIR = /EXT245
+ /MIL¥/I0ORQL¥DTIEQ
+ /BUSAKL*RDL
/ND = AZ¥%/I0REL¥/RDL¥MIL
+ A6¥/IOREL*/RDL¥MIL
+ AS¥/IORAQL¥/RDL¥MIL
/03 = /MREQLX/RDL¥/RELCPMH¥/R1%R2
/DARTEN = /AZ7X*/A6X/AS¥/A432%/I0RGEL¥MIL
DESCRIPTION :

249

PAL14L4 PAL DESIGN SPECIFICATION
MTXS12 FPLA GEOFF BOYD OSJUN83
MEMORY SEGMENT DECODER 3%8K ROM &4K RAM
MEMOTECH LTD 3 COLLINS ST OXFORD
Al3 Al4 ALS P2 R1 RZ P1 MRE®L RDL GND
I1ZH4L PO RELCPMH RAM NAL1S CEé&4 CEA P3 RO VCC
/CEA =/RELCPMH¥/AL1S¥/A14%/A13%/MREQL*/RDL
/CE64 = /RELCPMH¥/RZ¥/R1¥/A15%/A14%A13¥%/MREQL*/RDL
+/RELCPMH¥RZ¥R1¥RO¥/A15%/A14%A13%/MREGL*¥/RDL
/MALS = /A1S + /P3%/P2¥/P1¥PO%/RELCPMHX/AL14%A1S
/RAM = /P3%/P2%/PL%/PO¥/IZ2H4L¥RELCPMH¥/MREGL
+ /P3%/P2¥%/P1¥/PO¥A14%/A15X/MREGLX/ I2HAL¥/RELCPMH
+ A14¥AL1S*/MREGL
+ /P3%/P2¥/P1¥¥/A14%A1S%X/MREGL*/I2H4L%/RELCPMH

DESCRIPTION:

END.

PAL12LS PALDESIGM SPECIFICATION

MTX500 SERIES ROM EXT PAK GEOFF BOYD 1SFEEBE84
MEMOTECH

MEMOTECH STATION LANE WITNEY

BTRST RELCPMH RZ R1 RO 80 @1 WRL MRE@L GND
Al13 Al4 CEO CE3 NC 0S5 CEl1 CEZ2 Al3 VCC

/0SS = /ALS*¥/A14%/A13%/MREGL¥/WRL*/RELCPMH

/CEO = /A15%/Al4¥A13%/MREGL¥/RELCPMH¥/R2¥R1¥/RO¥/Q1%/Q0
JCELl = /A1S¥/A14¥A13%/MREQL¥%/RELCPMH¥/R2¥R1%/RO¥%/@1%Q0
/CEZ = /AL1S¥/AL4%A13%/MREQL¥/RELCPMH¥/R2¥R1%/RO¥Q1X%/Q0

JCE3 = /A1S5%/A14%A13%/MREGL¥/RELCPMH¥*/R2¥R1¥/R0O¥Q1%¥Q0
DESCRIPTION:

THE ABOVE DECODES 4 8K ROMS 2764 TO PAGE 2Z SUBPAGES O TO 3

A MEMORY WRITE TO O TO 8K IN ROMBASE SELECTS SUB PAGE

0,1,2,3 SET BY DO,D1.CLEARS ON RESET TO SUBPAGE O

A TOTAL OF 4MEGABYTES OF ROM SPACE IS AVAILABLE ON PAGES 2Z AND 3

PAL14L4 PAL DESIGM SPECIFICATION
MTX500 FPLA GEOFF BOYD 0OSJUN83
MEMORY SEGMEMT DECODER FOR 3%#8K ROM 32K RAM
MEMOTECH LTD 3 COLLINS ST OXFORD
Al13 Al4 AL1S P2 R1 RZ P1 MREGL RDL GND
I2H4L PO RELCPMH RAM NAL1S CEé64 CEA P3 RO VCC
/CEA =/RELCPMH¥/A1S*/A14%/A13%/MREQL%¥/RDL
/CE64 = /RELCPMH¥/RZ¥/R1¥/A15¥/A14¥A13%/MREGL¥/RDL
+/RELCPMHXR2¥R1¥RO¥/ALS¥/A14%A13¥MREQL%/RDL
/NALS = /ALS + /P3¥/P2%/P1¥PO¥/RELCPMH%/A14%A1S
/RAM = /P3%/P2%/P1%/PO%/I2H4L¥RELCPMH*/A14%/MRERL
+ /P3X/P2X/P1l¥%/POX/A14%A15¥%/MREQL
+ Al4¥xAlS¥/MREQL
+ /P3*¥/P2¥/P1¥PO¥/RELCPMH¥/A14%A15%/MREGL

DESCRIPTION:

250

ABSHURCHON v cmmoss st s s i SRS o wmomearcn B o 37,57
AAARION®SE s o s e memmmiosmmmisiare. sssmenannes. s bl a8 5 9
ABDBESS . ..o vinmamsuammmmss s s s S e . & 57
AN BE om0 St meme s i o s e 50,58
ADJSPR ... e e s 58,166
AR OCK e e S TR 45 s e anncs i wcerin i 5
EAVEIIE ™, il sl s S st AL e L W S 60,149
ARG - i o v s s s S AT BB e s S LT 60,151
Arthmetic eXpressionsouuuuen il
PUTRYSE s st s s BT e, D SR s, oy 76
ATOWIKEYE: it S5 e e sommeemaincaisis i swa s el 8L 67
ArcTaNgent function 37,60,62
ASE FURCHON! «vwumsn oot e s 55 0 st esoeassianmronn M ST 60
ASCIH Character codescoccouuenenonoi .. 32
AN v aions s S O STV S b b ermmmsn e B e gt B 61
ASSEIMBIGE 5am Lo oo siesmesisommisimgmsesirsmisas-ssscvosarmmms SiUars o ke 5 181
o e, T
AT o s i e bt 62,152
AUGINUMDBEE ..« v 555 s mcasmsasmes s srgpse s 14,22,63
BASIC abbreviationscoiiiiiiei 57-125
BASICIOOMMBNAS: s v s hssin 8t msee sirsmmmie I8 e simniloc) 4
BASIC Memory 4
BACKISPAOE ovmrermsinicion s s i S S0 Eoke oecosnens e e 5
BAWED s iiiis « mmmnommmsn sssseriiissine sonsssionssing scpatisbe flibo b 63
B 0im-v msossmss vt wivoes, SO s R S g 31
Booleanarithmetic 49
Brackets: Vo, . oo o e st e e s e s e 9
BRI & o i i 0, S e et emstinssor el 6,17
2 Gt N SRS PN . v S 0 s <0
O L O 2,53
CHRSFunction i, 33,64,137,145
O inivnis) oo s o T8/ 5550 o ey e imreonty st aiara s acacs- ekt 7.8,22,67,144
CLS/HOME e

o o
Color Screen/Background/Border

G 111
Conditional statements . .

Concatenation

O o e o e T S e e e mmom et st o S OEEES Sa
CONTROL oo e e S b BRI TN e
COSING TENCHON ws u v o

LGUITSOT s vu e v sinin i msmmtasions,mtmrmim e i i

Centronics

Circlecovvviiiiiiiana...

CloBY v it

CIOCK i it sainre mie smsimmrmms

BOAE i e o b %

EPRM uunsmuninrsin st aites,

GBS e s e]

GER wrvsmimimsnns v R

CTLSPR ;0. vcacaimiois o mie msiossiorsimim wratmio 71,117

INDEX

DATA SIAtEMEMISE St astontaimae dutinstes it 24,4571,73,76
BELSE S b sovenviraine s snsnis s st se RS, 714
DiMension statementccooeiiiiieeiian., 47,72,74,76
BIVISION ..« vsrininn e s Sommes srampas o 9
B o U O N SRR .+ 2,
B T A e 77
S| i e S ST sl WY RS 78,157
Edittmodehcna ve v i s et 14,22,45,78,79,185
Equal, not:equaliSIgNS wusi s st st bt ohnlses Ji 9,48
EFfET MeSSages: -« ovvwrimesie s e v S v i s o My 12
EXPonent functionsoiiiiiiiiiial, 9,30,37,38,81
- T 49,80,89
ENTIGES st commmmmmeiilh econssbdil sosison o mpssasssnriatonendia 78,22
EOL. . e somsmnesssms movmssis o om0 s s srsai i e s 6
o T T T o 5,158
FlIES;CASSENO!: sy somans e T S 53
Floating pointvariablesc.ciiiiiiininnaa... 57
FOR SElement ..« ooviv omesvsmsavsemss s ssamias 42,44,4582
EURCtion definifions’ ¢ .. «eosiemin se disinmmins snsinis dR sk b 3 7
GET StateMent = roumaniss oo e e i i Sad e wra Y 6
GENPAT ..o o moilinsinks visbeba e st 84,138,140,141,160
GHOSSANY s e s S T S e 195-198
GOSUB statementccvvvinriiiieeeininean, 19,20,22,85
GOTOSABMBN . covssiommesmstoan oo o oo 17,23,87
GraPNICS : o v SEuSH0 S50 & fammisanns sishihaaminayeieasshe 134,140
(€= 1] gh {3 5 EOTCTTARR ST St MR, S S - 8 48
GRS ey s R R SR i e 89
HIRESGraphits:wapess eugumran sy svsmenesn e 144
HOME . e 7
IF.. THEN statement ...t 48,89
INPUT SEatSment . . s e avaammni, iviesmmmimsme 15,16,23,45,93
NS KOV st o B R S R e mamsmimrm s cepnses 7.186
INTeQer fURCHON. . .uiv-suowmm e sosmmmmamwssssesgsns s 37,43,57,95
16 BORS s sovsnnyin s R i I B e ke o 2
INK e e 90,139
INKEY: S v vosssnen svsmavs svvve v s 17,18,23,33,45,19
PSENB OBBE o covanaivinnsm s s s o8 o e e S 05 4
LB - oo cvmicn smmmmsmimain s et EyaHERTIED R R 95
EERTS s rmisi oo i s B8 8oy hep s e s cngn s 55,96,145
LineFeed 6
LINE:MNUMBETS ey ovvimsess s mos e Saiess P saees 57
LLIST e e imsnss simsmnarsiosmpmisiss siosssmssimsmss aisgeissons: s mivss (s5aein siiavese 98
VN comms s R R 37,99
LOgO .. e e 149
LOWRITCEISE - orcrmsiyan s sms it s i8S s ey SO i 54
LENGHh RUNGHON: ... :covmunmimn s st Somssins 96

251

LASEIRATT s e wvrvns v s S vois Sue s i e TR R A 48
LET StatomBnt:., ... v e o tiroaiie oot sl s st ST s oo 15,23,97
NS T COMPIBTIC vl s it mrssastovis sl adivsnsaca aisiar dsaionin min 13,23,98,185
EOAD: oooeriess wmnem i RO S D A (s 53,54,99
LIPS cvunisesns: sossm e v s sy R ST e ST G 42,44
Manipulation of stingsoovv i err it 33
Mathematical symbolsoiiiiiii i 9
MENMOBY. ..o sonumvimastrsbememnrin it nsi s fols- sota: droiosobesie il S0k 57
MIDSTOACHEN 5. i amnmase oo B S e 55,100
MOIE o e s msmpnasinse o pmepammnsten Vo Rt R e (RS TR R AR TS 37,100
NAOERIET s samsomnsammomn sz mic s b meamis i Soeemmsaahiss GRIMAIT Y SOt 2
MYSPH . ons iais e ooivesnass Soamsies cuunssss virsys 102,170
MUItIPHCALION 9
MIUSIC o5 svsvvns v Suars i ERT T i W 133
NEW GOMMANG o cx s ovpmsssn s s s s siinmiagvg 15,103
NEXT COMMANG .. .vveeniiiiiiiiiaen ey 42,44,45,82,103
IO rizeedt ssmvsssmsrns D R s v i SRty e AT T g 51,103
NOegUALEEY 0 0w ne vr s sise e Giosies FESTOER D0 ViBETEE by 48
BTN i sssmvmagernns: iaesmsmmess sasisioiosss sk isinte st ninmse 4,171-180
NUMERICVARIABLES e s s o adeaiaarin o 16
Numerical functionst s 37
Numee Keypad . couevevv i svaamni s res S0 R R EE S e 6
BN(ON: . COTO/GOSUIB) s s wspioges ssapmamgesiss 105
Operation: DB vt 187
OPEIAIONT DWW s s warssswracs sowetsimnm s sewee e b el v 187
Operaton: DS . oo it VR onl da Simesea eenies e 187
(o7 RO NNIURNS -% rer M IS JOU2 % 4 SOOI Bl 49,51,106
i R T e 106
PEAB ;v oam 5reiissaiss s ss e s ioiarelsye shss s w4sfe s 6,13
PANEBL. coiinean vnmennss nns s e s seiemis s Sisesae 106,190-193
BRBEE oo mvenimis s s s by ot S o s ity 107,139,156
PAUSEERA L dose v mmenesriiin sRE RN, S Sty R, s 107
REEK HCHEN . ovmnsvins speamaams ki v e Sy minmis iisems 108
PEE oo oo oo st (eyisesmps s Sevinavl grpeaess s 108
PIXEIS Lottt e 144
PEEEL ovpas s dones v iy sis Smmtn aos e iassom vk 109
(O S L SIS g - A5 N S O 109,146,147,169
POWBRPAGHK: « vy vom o Bariinitnieanioss mi siateve o sim ra oo ia gl gt ol s 1
PEKESIHOMENE .. i oiviy vl Sevian s s veaamas s gy 110
POHEIR o e e e e e s Sk 2
PRINT statementonoimss v ivoass s aatses v e 8,24,75,110,186
Chotation MArKS . ~:or s dmmsmws sr bl sawRosss fme et o 8
Qwerty Keyboardcovusunerranrcctironniiiesaanases 5

RaNDom functions/numbers.................. 37,38,111,114,146
READ statemento oweass v pangases adeen i 4546,112
REMark statement.ooveneeerernreecsssrsrsssannsnss 14,24
Renumber WY - ove s vy someneas e s smai@aaae o 14
RESTOBE i smmsmpisase s oaamnnss s i 60 8608 sreras 46,73,113
RETUIRN e v s vt s e i i api e S 568-6s o 56,17,113
RBEBE. oo sammsmns s s bis e SIS0 SUTRRGN SR 5
R G TINCHON s o vssvniin sumnmms ssmrmissaisssas s 55,114,145
RUN COMMEANG « v tieneevnennanesassonsinineiiaivea 13,116
RO s e Ao p e T e e RS ingeiais 10,190
BE 237 . o o i s s S SR R R 2
SANVE . . i i s e L e e S A 0 S R [Bl e e 53,116
BBUE conss s it taa o sammamme vomes il 685 SEEET 117
SeMILCOION ; 1o msnn cvveswiaipe ottt vawaiv e voe s 10,11
SGN FUNCHOM . o ov vt vveneeeeeannersssisnsensesinnnnns 37117
SHIFT KBY «vviinve vo v an ¢ 5w gansisin g s £sn sans sioe wois s 5
SINETUNCHOM .« ve v voir vwmpinin nin oioesiiie s &5 maiai 85 544 37,39,40,41,118
SO WAVESE: 2sx tiassinsssn w3k Sbarsisis aoe Sy s s mse sisieo s sy 118,126
Software APpendiXciiiiiiiiiiiii it 197
SPITES . srsmmtuisne stvess wiste wiiisrsiaminimiaase S u vty s5e: o o0 53 119,159
CPIS oo mi T vy om0 119,137
SQuare ROOt fUNCHON ... uvvuiiiiie i 37,39,120
STEPKEYWORD .o« vuiavin o v vriow siwa s s wiinsiuis sissisieie sin s sl sieon 82,120
STOR e wiscesmaerspzens e SRS SO SR e 120
Strings arrays, constants, variables 12,26,27,33,34,35,43,57,76,137
STRESFUNCHON ..« oovme s i S5 ST o Sl SRim e St 121
SUDFOULINES &« vveite e e ieiiat e e aneaeeses 19
SUBIACTON. i Suvi e s Sovsoaim aoseaiiis st s 9
TR TUPBHION 0 e Pl wvsss s s s oo s e VRS SO T30 6
TANgent functionoooveeiininiiieeninns 37,39.40,41,122
TEXESETEBI nomsnrmsumrs i s ey soasuess sty 134
THEN KEYWOID ... covvieiiiiiiainennaenvcocaaanes 89122
TIMESTURGHEN & sivcvins viidiassimiosi s staarmias s e s viane s 122
T O kWOt . st v v s e 82,123
TOP OfMBMONY «ccvvvnunveneirtiannnnsnntssncoresnesansns 186
TEIGONMOMIBIIY 1o vvvsivnannnvani sissneassivhssne asaes 39,40,41
Turtle GraphiCs .. .ovivinitiniarie et aaaaanrssss 149
LISRUNCHON .ovimosenine vl i S0l S as yRanesa 123,138
VALTUNGHOR: coinn s pneasiaedns vosms s vss el Bnniviom e e 123
VaraDIES . . oottt e 26,27,34,43,57
MDD, s e omiorss, sy oo s s s §rare el J0reisisstitn Svos ady 1
VERUFT COMMANGo vttt itniinnnnnaannanns 5455124
VIEW s o anny wame s i muemssim . Sawmsismes: sae R s .y 125,168
TS O sts = e oo ot PR 125,152-155

252

VIEMIOTECH

Memotech Limited, Witney, Oxon OX8 6BX U.K.
Memotech Corporation, 99 Cabot Street, Needham, MA 02194 U.S.A.

