ABCDEFGHIJ
KL NOFERS
UVW YZabcd
efghijkl n
opgrs uUvw
YZz@B1234367
89! "HE % (
y={_~i-"
*¥7?<x+[a,
eesudc/ ;

VIEIVIOTECH

BASIC TUTOR, REFERENCE &
OPERATOR'S MANUAL

(MN2X

SERIES

MTX SERIES

OPERATOR'S MANUAL

Copyright Memotech Limited 1983

Brian Pritchard (Principal Psychologist, TRC,.OXFORD).

CONTENTS

PART O Introduction

Starting out

Beginning Basic

PART 1 MTX Series BASIC tutor

1

o o =1 o WU

10
11
12
13
14
15
16
17
18
19
20
21

Programs and the tape recorder
Arithmetic expressions
Calculation order

Strings

The Printer

Storing information: Variables
Program writing

Using data

Entering data

Branching programs: Making decisions
Programs within programs
Structuring your programs

More branching programs

More about variables

Sorting

Multi-Dimensional arrays
Formatting with PRINT
Mathematical functions

String functions

Simple games and random numbers

Matrices

Page

{Ue NN Ve R Ve B I 5N

21
25
27
29
33
39
43
45
51
53
57
59
61
65
69
71
73
75
79

PART 2 NODDY 83

PART 3 GRAPHICS a7
PART 4 SOUND 123
PART 5 MTX ASSEMBLER 129
REFERENCE SECTION 135
SOFTWARE APPENDICES 173
1 ASCII Code Table 174

2 Control and Escape sequences 175

3 Error Messages 176

4 Numeric Keypad 178

5 System Variables 179

6 Function Keys 183

7 Colour Table 184

8 Sound Tables 185

9 Absolute Directions 188

10 Flowchart Conventions 189
GLOSSARY 190
MTX TECHNICAL APPENDICES 201
1 Overall Description 202

2 Technical Specification 203

3 System Bus 208

4 System Block Diagram 209

5 Electronic Schematics 210

6 Video Display Processor 216

7 Scund Generator 239

8 Hardware Memory Maps 245

9 Input-Output Ports 248

10 Parallel Printer Interface 251

11 Parallel I-0 Port 252

12 Memotech DMX80 Printer Connector 253

PART 0
STARTING OUT

As you will alreadf have discovered, the MTX package contains
much more than a computer. In the box you will find:

Your MTX Series computer.

An MTX power supply unit,

Cassette recorder leads.

UHF/VHF Television lead.

MEMOTECH Demonstration, Head cleaner and Blank tapes.
Snap-in Cartridge port cover. (This may be attached).
CONTINENTAL SOFTWARE have provided two complimentary
games tapes and supporting literature.

Guarantee and User Registration card - Don't forget to
fill this in and send it to us as soon as possible.

L] - - - - L] L]

O =-1TOOUNIEWNa

All you need to provide is your television, (and a cassette
recorder to LOAD the tapes provided).

RSZR2 "2 e MDMTOR HF POWIR W et nearl™ e o) H - wewss - B
[—= I — le[]&) O— Yo

}

MAINS MAINS

The first step is to make sure your system is properly connected;
see the diagram above. After connecting the computer +to the
aerial socket on your television, tune the television until it
Bives a clear picture, Most televisions have an easily accessible
set of buttons, one for each channel with a number of additional
unused channel buttons. Select one of these and with your
computer switched on adjust your picture until a eclear blue
background is found with "Ready' in the bottom left hand corner.

Your MTX computer has been designed as an all purpose, hard
wearing computer. As such, in normal working conditions you can
expect perfect performances. It is also a precision electronic
instrument and needs your care. Avoid working in conditions where
liquids can be spilled into the computer or where the computer
can be affected by excess heat.

To keep your MTX clean, we recommend that you use a clean chamois
leather for best results.

The MTX computer manual has been written to enable a novice to
get started on the computer using MTX BASIC. At the same time we
have provided the expert programmer with detailed technical
information on the use of MTX BASIC, GRAPHICS, NODDY and the
ASSEMBLER.

If you are a beginner, start at the introduction and work your
way through the manual. We have included a glossary of terms and
a detailed reference section to help you understand computer
jargon and how the command words and functions work. For the more
experienced user a quick scan through the reference section will
indicate the differences between MTX BASIC and other versions.

o

|
|
o

BEGINNING BASIC

The course you are about to begin has been written with the
complete novice in mind. Even if you have learned BASIC before it
will be wuseful to familiarise yourself with the rules which
decide how MTX BASIC must be constructed. Throughout this course
you will find a series of exercise programs which gradually
increase in difficulty as you increase in confidence. By the time
you reach the last section you will be a very skilful BASIC
programmer.

COMPUTERS

A DIGITAL COMPUTER stores large amounts of information called
DATA and is capable of carrying out simple tasks on that data at
very high speeds. To produce the required results, the computer
user gives the computer a set of instructions called a PROGRAM.
Each of these instructions has to be set down in a precise way
for the computer to understand what it has to do. This is done by
using a computer language. Your MTX computer has incorporated
into its structure four languages: MTX BASIC, 280 ASSEMBLER,
NODDY and MTX GRAPHICS.

NODDY is a new language which you probably have not heard about
yet. The best way to describe what NODDY does is to compare it
with LOGO. Noddy is to text as LOGO is to graphics.

MTX GRAPHICS is a comprehensive GRAPHICS package which allows you
to set up LOGO and also design complex graphics programs from
BASIC.

You will find NODDY and MTX GRAPHICS are dealt with in PARTS 2
and 3. NODDY does not require you to have any knowledge of what
follows next, so if you wish, you can turn there at the end of
this section.

The programming language you will probably want to tackle first
is BASIC, or the Beginners All-purpose Symbolic Instruction Code.
This begins at CHAPTER 1. It is suggested that you understand
each section before starting the next. In this way it is unlikely
that you will get hopelessly lost, and if you attempt all the
exercises and try to think of some for yourself, you will quickly
master the language.

Each section in the course is organised in the same way. The
OBJECTIVE describes the problem you are about to attempt and
explains what you will learn from its successful completion. In
the sections where there are programs you may find partially
completed FLOWCHARTS for you to finish. You will also find a
Sample program to try, and an exercise to make sure you
understand the section.

The MTX keyboard is divided into three parts. The large block on
the 1left is a standard alpha numeric keyboard. If you are not
familiar with keyboards, type in some simple sentences to see
what the keys do. If you by chance use a command that the
computer understands, it may display an error message on the
bottom line of the screen, but don't worry! It is impossible for
you to do any harm to your MTX computer in this way. Discover
what the SHIFT and ALPHA LOCK keys do, and get the feel of typing
words on the keyboard. Each of the keys when held down will
repeat its function until you 1ift your finger. This is called
AUTO REPEAT.

The RET key on the right is used to tell the computer to accept
whatever you have typed.

You can type on four lines at the foot of the screen when working
in BASIC. To allow you to fill more of the screen we are going to
teach you how to use a NODDY page.

Type NODDY and press the <RET> key

Noddy> will appear at the bottom of the screen and the
computer will wait for you to give the page a title. In this case
we shall use AA,

Type AA and press the <RET> key.
AA will appear at the top of the screen.

Do not press the <RET> key until you have finished the page. Just
carry on typing in sentences and familiarising yourself with the
keys. When you run out of space on page AA press the <RET> key
and start a new page BB. If you press keys which do things you
cannot understand, don't worry, reset the machine by using the
RESET keys described in the next paragraph and start again.

The alpha numeric block has some additional keys which are not
found on a typewriter. For example, Yyou will see that there are
two unmarked keys on either side of the space bar called the
RESET keys. If you press both at the same time, the computer is
cleared and will behave as if it has just been switched on. This
can be very useful if you have made an error and wish to start
again. It 1is not so convenient, however if you are part of the
way through a large piece of work and carelessly lean on the
keyboard. The other two unusual keys are the ESC (ESCAPE) and
CTRL (CONTROL) keys. These are sometimes used during the running
of programs and will be dealt with later in the manual.

The second keypad is called the EDITOR and NUMERIC keypad which
consists of twelve keys. It has been designed to help you edit
information on the screen, to correct your mistakes, to add 1in
new information or to use in games as a keypad joystick. Type
some information on to a NODDY screen as you did earlier and then
use the keys as they are described below to change what you have
written. Use the keys with arrows to move the cursor around the
text. Use the INS key to insert text and the DEL and EOL keys to
erase text. Do not use BRK yet.

6

Keys to move the cursor:

e Moves the cursor one space to the left over the text.
Moves the cursor one line up over the text. ({(As in EOL
1 the cursor up key does not operate in the BASIC EDIT
screen because the computer only recognises one line,

and so you can only move left or right and not up or

down.
‘ The cursor down key moves the cursor one line down over
the text. (See the note in EOL and above.)
é . Moves the cursor one position to the right over the text.
TAB Moves the cursor across the screen from left to right

over your text in leaps of eight characters., It is a
useful key when moving forward quickly over a lot of
text.

HOME This key takes the cursor back to the beginning of the
screen you are working in.

Keys_to_erase:

DEL Deletes the character over which the cursor is
positioned.
' CLs This key clears the screen you are editing. It is a

useful key if you wish to start the page again.
However, as with the reset keys it can easily be
pressed through carelessness resulting in unintentional
loss of work.

Allows you to add text into a line without affecting
information you have already typed. Simply press the
INS key and type in the word or character you need. You
will see that the text to the right moves along to make
space for the new characters. INSERT will stay switched
on until it is switched off by pressing the insert key
again,

Deletes all the characters from the cursor position to
the end of the 1line you are working in. (NB
when you are working in BASIC the information which
appears as four lines on the EDIT screen is in fact
treated as a single line and therefore EOL deletes all
information after the cursor.)

Keys to control programs:

BRK Is used to stop a BASIC program operating and return
you to Ready. This is dealt with later and should not
concern you now.

PAGE Is used to interrupt listings of programs and to switch
between page and scroll modes. These terms will ©be
dealt with in the relevant sections of the manual and
you need not worry about them now.

__ MEMOTECH NMT X512

H|H|H HA H]R

][] [R] [u] 1] o | [(25
[s] o] [F] (9] [x] [1] [»=]
l@@@ N

J
. J

£]
[
(=]
=

=
ca
Gl=
=
o

jl2
5
B
=

;
[>]
@]
Ed

]
i
B
BB
LDEEE
o8 [
HEEE
FREIEE

i
=
=
=
=
i
i

2

The third keypad is called the FUNCTION keypad. These keys are in
addition to the normal keys and are available for the user to
tailor them to his own requirements. For example, they may be
used to control LOGO or if you design a game they can be used to
operate it. Though you can only see 8 keys each key will give a
different function when used with the shift key allowing 16 user
functions. The alpha lock key does not operate on this keypad.
The method of defining the function of the keys is dealt with in
the Software Appendix.

Some of the words in the course are going to be new to you. Most
of them will be explained as you go along, but occasionally you
may read a word you don't understand. If this does happen, have a
look at the glossary for an explanation.

You are now ready to begin CHAPTER 1 on Page 9.

g, e e

PART 1
BASIC TUTOR

CHAPTER 1,
PROGRAMS AND THE TAPE RECORDER

OBJECTIVE: The objective of this first section is to LOAD,
RUN, SAVE and VERIFY programs with your computer.

RUNNING A PROGRAM

Make sure that you have connected the computer properly as
described in PART 0. To put a program into the computer's memory
from a cassette you use the command LOAD. Connect the cassette
recorder to your MTX computer as shown in the diagram. Set the
cassette volume to about 3/4 and then type LOAD on your keyboard.
The word will appear on the screen. Now press the SPACEBAR and
type the name of the game you are about to play in inverted
commas. If we are loading a game called CHESS the screen would
appear like this:

LOAD "CHESS"

If you do not know the program name you can type LOAD "%,

If you do this, the computer will accept the next program on the
tape. Though this method works, it is good practice to use the
full version and successful loading is more likely if you have
specified the name,

Press the RETurn key on your keyboard followed by the play button
on your cassette., The computer will work out how many characters
are to be loaded and will count them as they are placed in the
working memory. When loading is complete, the screen will appear
as follows if loading has been successful.

LOAD "CHESS"
FOUND CHESS

LOADING
|

Ready

To RUN the PROGRAM you have just loaded, you must tell the
computer to carry out the instructions you have placed in 1its
working memory. To do this you give it the command RUN. Type RUN
on the keyboard and press the RETurn key.

Some programs run as soonh as they are loaded. In this case it is
not necessary to type RUN.

You may wish to RUN the PROGRAM again, in which case you do not
have to reload it since it is already in working memory. It 1is
useful, however, to be able to clear the screen of any
information from the last RUN. To do this you use the command CLS
(Clear Screen). Type CLS and press the RETurn key. The screen
will now be clear, and the CURSOR will be positioned in the HOME
position. Then as before, type RUN and press the RETurn key and
the PROGRAM will RUN again.

The CLS key is different from the command CLS. The CLS key can be
very useful and should be remembered because it can be thought of
as a sort of 'panic button'. If you think at any stage that the
computer is getting the upper hand, press the CLS key followed by
RETurn and the edit screen will be cleared putting you back in
charge.

The edit screen is the part of the screen which displays what you
type on the keyboard.

This is explained further a bit later.

10

e T

e

COPYING a PROGRAM

The LISTing that follows is an example of a small program for you
to copy. Don't worry if it doesn't make much sense at the moment,
the object of the exercise is to show you what an MTX BASIC
program looks like, and accustom you to the computer.

If the computer has already been used to play a game or run a
program, you will have to remove the contents of the computer's
memory before you try to copy the LISTing below. To do this you
use the command NEW which tells the computer to forget what it
currently has in its memory in order to accept a new program.
Type NEW and press the RETurn key.

10 REM COPY PROGRAM

20 PRINT "WHAT IS YOUR NAME"

30 INPUT N$

35 PRINT:PRINT

40 PRINT "WHAT IS YOUR AGE"

50 INPUT A

60 CLS

70 PRINT N$;" IS";A;" YEARS OLD*
80 PRINT:PRINT

90 PRINT "AGAIN"

100 INPUT M$

110 IF M$="Y" THEN GOTO 10 ELSE STOP

Type the LISTing above, remembering that it must be - copied
exactly as it appears and press the RETurn key at the end of each
line, Check that each line is identical to that in the LISTing.
If it is not, it is likely that the program will not work. If it

doesn't work and you can't see why, type NEW <RET> and start
again.

Since we shall use the RETurn key so often, we shall usually
refer to it as <RET>.

11

The BASIC screens

You will notice as you type the program LISTing into the computer
that the screen is divided into three sections. There are 24
lines on the screen, split up as follows:

Main screen (19 LINES)\\\\(ﬁ ™\

Edit screen (4 LINES)

Message screen (1 LINE) -L ------------------------ -/

Information when first typed is placed on the EDIT screen. When
you are satisfied that the line is correct you ask the computer
to accept the line by pressing <RET>. The line is then moved to
the MAIN screen as part of the program. If you have made a
mistake the line may not be accepted. by the computer and an ERRCR
MESSAGE may appear in the Message screen. The CURSOR will move to
the position on the line where the error was found. This type of
error occurs when you have typed in something which the computer
does not understand.

An example of an ERROR MESSAGE is given below:

Mismatch

This tells you that you have made an error and that it is a
SYNTAX error. This just means that what you have typed in is not
acceptable as part of the language BASIC, and the computer does
not know how to handle the line. The error message above would
occur if you typed, for example:

110 IF M$="Y" THEN GOTO "10" ELSE STOP

Try it and see for yourself. The error message appears after you
press <RET>. The reason is simply that "10" is not recognised as
a number.

There are a number of ways to correct mistakes 1like this; the
simplest is to type directly over the parts that are wrong. In
the above example the DELete key could be used to take out the
inverted commas. This is achieved by moving the CURSOR to the
first character to be deleted, using the arrow keys in the editor
keypad, and then pressing the DELete key. When you think the line
is correct, press <RET>. The edit keys on the centre keyboard
help you correct errors like this.

12

e A i ey

LISTING YOUR PROGRAMS

To see what you have written, LIST the program by typing the
command LIST <RET> and you will see your program listed in its
correct order. It is also possible to LIST sections of your
program, by using a variation of the command LIST. This is more
useful for editing longer programs, but can be demonstrated here,

Type LIST 20,40 <RET>

and you can see that lines 20, 30,35 and 40 appear on the main
screen, Similarly,

LIST 30
displays from line 30 to the end of the program.

As this 1is a short program, the whole listing is in view.
However, many programs including some that you will design later
in this manual have more lines than are available on the screen.
To 1look through such programs the PAGE key is used to interrupt
the listing. As the program scrolls up the screen the first press
of the PAGE key stops the scrolling and the second restarts it,
It 1is very wuseful to scan programs in this way to 1look for
obvious errors.

Now you have input the program correctly, you are ready to try it
out. There is no need to LOAD the program since it is already in
the computer's MEMORY.

Type RUN <RET>

RUN TIME ERRORS

If you have made no mistakes, the program will RUN successfully.
However, when you think you have completed the program there may
still be errors. These do not appear as SYNTAX ERRORS and are
called RUN TIME ERRORS. They occur, as their name suggests, while
the program is trying to RUN, and are caused when you have
entered the correct commands, but you may not, for example, have
given the correct information for the computer to carry out the

command., If for example the name and age program was altered so
line 110 read:

110 IF M$="Y" THEN GOTO 120 ELSE STOP
The command is correct and the number 120 is of the type that the
computer expects, but there is no line 120 in the program, and
80 the computer cannot continue. The line should read:

110 IF M$="Y" THEN GOTO 10 ELSE STOP

13

If you try to run the program with this incorrect line an error
situation will occur and the computer will not know what to do
with the incorrect instruction, so it will not carry on with the
RUN. The computer will tell you the reason for being unable to
continue and the line with the error will be displayed. In the
case of the incorrect line 110, the message

No line

would appear. Since we have a line 110, we know that the error
message must refer to the 120 in the GOTO statement. RUN TIME
ERRORS are edited in much the same way as the SYNTAX ERRORS
described earlier.

There are a number of alternative editing methods it may be
useful for you to understand. You may for example wish to type a
whole 1line again; the computer will accept your most recent
attempt at a line, wherever it occurs in a program, so if you

type
50 INPUT A

even at the end of the program, the computer will look for 1line
50 and replace the earlier version.

If you wish to delete a whole line, Yyou need type only the line
number; the computer will understand that you do not want this
line in the program, and will delete it accordingly.

A complete 1list of ERROR MESSAGES appears in the 3Software
Appendix. Although editing is a useful way of correcting your
mistakes, in practice it is not a good idea to continue to EDIT a
program where it is obvious there are a lot of errors. In this
case it is better to start again, as you will often find it is
difficult, if not impossible to get heavily edited programs
running at all.

When you are happy the program is correct and running perfectly,
you may wish to SAVE it.

14

SAVING A PROGRAM

To SAVE a program it is necessary to set up your system in the
same way as you did for LOADING a program.Firstly insert a Dblank
cassette into your recorder. We recommend that you use C15 or C30
cassettes and record only ONE program on each side, so that your
work is always kept arganised. You will be surprised how easy it
is to forget which programs are on which tapes, and whereabouts
on the tape they occur, etc. This can be overcome to a certain
extent if your cassette recorder has a tape counter but always
remember to keep a strict log of which programs you have SAVED
and where they are on your cassettes. Set the recorder to record
and use the pause button if you have one, to hold the tape until

the computer is ready.

To SAVE a program you use the command SAVE.
Type SAVE "filename" <RET>

Press <RET> after the tape has been started. In the example we
could use the filename "AGE" and as it is your first version, the
SAVE instruction could be:

SAVE "™AGE 1"
When you have used a filename in this way, the program can be
recognised and loaded wusing this name. It is advisable,
therefore, to use meaningful names for your programs, and write
them clearly on to the tape label.

When the computer has finished saving the program, the screen
will look like this:

SAVE "AGE 1"

Ready

5

When saving has finished, it is possible for an error to have
occurred and so MTX BASIC has the command VERIFY to allow you to
check that the program has been properly recorded. Rewind the
tape to the beginning of the recorded program and type:

VERIFY M"AGE 1" <RET>
Now play the tape, and the computer will check each character
recorded against those in its MEMORY. When verification has
finished, this is how the screen will appear:
VERIFY "AGE 1"
FOUND AGE 1
VERIYFYING

Ready

You have now successfully SAVED and VERIFIED your first program!
If an error has occurred, 'Mismatch' will appear in the message

screen. The program is still in MEMORY and so you can try saving
it again.

16

COLOUR

Whilst in the editing or command mode, the screen will always be
blue and white, but when a program is running, the colours may be
changed.

The background c¢olour is called the PAPER colour and the
foreground is called INK, Just think of the screen as a writing
pad and all becomes clear.

Type in the following program remembering to press <RET> at the
end of each line.

10 PRINT:PRINT

20 PRINT:PRINT

30 PRINT "&&&&Z&E&GEELEZLEEELELEEEEEEEELLELE
ELEREEREER LG LEELELELEEEEELEELEELEEEEEEES
ERELLELEEEALELEELLELEEEEEEEEEEELEQEELEER"
4O PAPER 7

50 INK 1

60 PAUSE 8000

Type RUN and for about eight seconds the colours will change.
Each of the 16 colours the computer can produce has a unique

number as in the colour table below. To see each of the colours
edit the program like this:

Type EDIT 40 <RET>

Line 40 will appear
40 PAPER 7
Move the cursor to a position over the 7 and type 6 followed by

<RET>. When you RUN the program now the background will change to
a dark red.

17

Edit the program using the table below changing PAPER and INK.
COLOUR TABLE

TRANSPARENT
BLACK

MEDIUM GREEN
LIGHT GREEN
DARK BLUE
LIGHT BLUE
DARK RED
CYAN

MEDIUM RED
LIGHT RED
DARK YELLOW
LIGHT YELLOW
DARK GREEN
MAGENTA

GREY

WHITE

S aVoO-JTonmEWN=0O

QT QY
VW= 0O

Make sure that your television or monitor are perfectly tuned
run these programs.

o =
o w

18

CHAPTER 2.
ARITHMETIC EXPRESSIONS

OBJECTIVE: To use the computer as a simple calculator to add,
subtract, multiply and divide.

We are now going to have a look at the PRINT command and use it
to place on the screen the results of simple calculations. The
PRINT command writes on the screen any information that
immediately follows it.

Type PRINT 21 <RET>
This will write 21 on the next line.

Now try some other numbers.

If you wish to place numbers across the page in columns then the
numbers are typed with a comma after each one.

Try this:
PRINT 3,4,5

Each number is placed at the next available TAB position. The TAB
positions are spaced eight characters apart across the screen.

Now try:
PRINT 2 + 2 <RET>

The answer 4 will appear on the screen, The PRINT command will
send the result of the calculation to the screen., Similarly the
gomputer will work out subtractions using the minus sign (-) as
in;

PRINT 7 - 4 <RET>

(NB The minus sign is on the same key as "=" on the top row and
is not the underline next to the right hand shift key.)

The signs for multiply. and divide, however, are slightly
different, but these will become second nature in no time. For
eXample:

PRINT 8 # 3 will multiply 8 by 3 and the answer 24 will appear
on the screen,

ERINT 6/2 will divide 6 by 2 and the answer 3 will appear on the
creen.

19

The addition 2 + 2 is an example of an ARITHMETIC EXPRESSION. 1In
each of the examples above the PRINT command is being used to
print the value of the arithmetic expression which follows. In
EXERCISE 1 you are asked to EVALUATE (find the value of) the
arithmetic expressions.

L10707707100770770207077707777720177077707707707077777070711707747777
EXERCISE 1 ARITHMETIC EXPRESSIONS

Use the PRINT command to evaluate the following arithmetic
expressions.

1) 2 + 2 2) 15 + 35 3) 288 + 397 4) 7945 + 3538
5 7T - 4 6) 28 - 14 7) 654 - 289 8) 7986 - 3572
9) 8 x 3 10) 16 x 4 11) 244 x 6 12) 387 x 28
13) 6 + 2 14) 60 + 5 15) 288 +.06 16) 1080 + T2

[I77700007700777000070077772077077077777700770077077707777177777777

Try some calculations of your own. Notice that if the solution is
not a whole number then your MTX automatically works out the
answer as a decimal.

20

SN

CHAPTER 3.
CALCULATION ORDER

OBJECTIVE: To introduce the order in which arithmetical
expressions are evaluated.

In CHAPTER 2 you used the computer as a simple calculator. 1In
this section you will learn how to work cut more complicated

problems.

When a mathematical expression is more complex or uses squares or
square roots, we have to write it in a form that the computer can

easily understand. Look at this example:

2
3 is written

3%2 in MTX BASIC

The power 2 is written "2, The answer to the above example is of
course 9.

177702 027007777070770707777720070717077077010777077777777777777777

EXERCISE 2 POWERS
Using PRINT, solve the following examples:

2 2 3 12
9 =272 20 =7 10 = 7 2 =7

111177707277 277777777777777777777777772777777777077707777777777
The calculations in CHAPTER 2 and those above require only one

operation., Now try this calculation:

2/3%6

The answer is 4. To evaluate this expression the computer worked

from left to right and followed a specific order. Operations are
always performed in the following order:

Sign Operation Example
% : Exponentiation(power) 272 = 4
and / Multiplication and 3%¥2 = 6
Division 6/3 = 2

+ and - Addition 3+2 = 5
Subtraction 3-2 = 1

21

Each time the computer is asked to evaluate an expression it
works from left to right and uses this order of calculation. Look
at this example:

2
3+ 7T x5+ 484 +2-=-61zx2

To PRINT the answer type the following:
PRINT 3 + 7 ¥ 5°2 + 4/2 - 6 ¥ 2
This gives an answer of 168. The computer evaluates the
expression using the following steps:
3 + T %5 "2 44/2<-6%2 STEP 1 Exponentiation
25
3 + T % 25 + 4/ 2 -6 %2 STEP 2 Multiplication
and Division
175 2 12

3 + 175 + 2 - 12 STEP 3 Addition
and Subtraction
= 168

1177010717777 770077777010777770777777700077777777700777077777777777

EXERCISE 3 CALCULATION ORDER

Break the following calculations into STEPS as above and then
PRINT them on the screen to check your answers. The first one has
been partly completed for you.

1) 2) 2
2 2 2 38 + 64 + 6 + 3 - 6 +~ 3
8§ X2+8+2 -9 =3
3) 2 2
8 72 272 + 8/272 =927 /3 16 + 18 + 3 -2 x 3
? ? ? 4) 2 2 6

64 -7 +6 x 2 -2
8§ * 2 4+ 8/% - 7/3

32 + 7?7 - 27
=T
L1II11770777700777077008007777777777077770700777707077770777777777777

22

If the order of a calculation is altered then a very different
answer is obtained. Look at the example we used earlier using

PRINT:
2/3%6 Has the value 4
2/(3%6) Now has the value 0.111111111
This is because we have altered the order by using brackets.

The computer calculates the contents of brackets first.

Look at these simple examples.

If John had 5 apples and Mark had 3 how would they share them
evenly?

Try these solutions:
5+3/2
(5+3)/2

The correct solution is of course the second one since you have
to add up the number of apples first and then divide the total
number of apples between John and Mark.

or

Mark has £2.60 and wishes to give John half. He owes Kate 30p and
has to pay her back first. This calculation would be carried out

as follows:
(2,60 - .30)/2 =

Mark's father offers to give him 6 times the amount he has
remaining. This could be worked out like this.

6%¥((2.60 - .30)/2) =

Finally his mother offers to square (!!) the amount his father
has given to him.

(6%((2.60 - .30)/2))"2 =
Brackets used in this way are called NESTED brackets.When you use
nested brackets the computer works from the middle bracket

outwards and then left to right keeping to the calculation order
described earlier.

Use brackets to solve the problems in EXERCISE 4

23

LI1777100077 070000707070 000 0000007000700 70077077007077007077077777777777777

EXERCISE 4 BRACKETS IN CALCULATIONS
Use PRINT to solve these problems:

1) At the races Harry starts with £10. He places £2 on the first
race and doubles his stake. On the second race he loses £4 and
then places all his remaining money on two horses, the first of
which trebles his money and the second of which doubles it again.
How much does he have after the final race?

((((10=2) + 2%¥2)-4)*3)¥*2

2) A farmer has two identical circular fields (radius 200 metres)
and two identical square fields (side length 75 metres). He then
buys another farm of exactly the same dimensions. Use nested
brackets to work out the totzl area of both farms in square
metres. (The area of a circle is taken to be (PI¥R"2), where PI =
22/7 approx.)

(((22/7%20072)%2)+((7572)%2)) %2
LI77117 0777777777700 00707777707707777777777777777777777777777777777

The calculation of square roots presents another problem for the
computer. One way of solving the problem is to use the fact that
a square root can be expressed as a fraction of a power. For
example, the square root of 4, written as 4 in everyday
language, is exactly the same as writing #°(1/2). Notice here how
brackets are used +to ensure the calculation is done 1in the
correct order,

The cube root of 16 (3/16) can be written 16°(1/3), and so on.

11777777777777777777070007070707077077777777777777777777777777777777777

EXERCISE 5 SQUARE ROOTS
Use the PRINT command to calculate the following:

NED V25 /81 J14h
\3/27 \3/216 \4/50625 \9/512

L1100 07770 0007077077777 77777777770707777077777777707077777777777777

2h

CHAPTER 4.
STRINGS

OBJECTIVE: To use the command PRINT to send text to the screen in
the form of simple STRINGS

The PRINT command is used not only for printing numbers but also
for writing any information on the screen. Textual material
(books, addresses, names etc.) consists of letters, numbers and
spaces which have to retain their order each time they are
printed. When the computer is given a set of numbers it places
them in an order which it finds convenient to evaluate, If this
happened to textual material then the output from the computer
would no longer be readable. Text is, therefore, input in such a
way that the computer does not alter the order of the

information.

There are a number of ways to do this but in this section we will
concentrate on the use of STRINGS, represented by letters, spaces

and numbers etc. placed in inverted commas.

STRINGS are stored by the computer exactly as they are written.
Use the PRINT command to place this example on the screen:

PRINT "JOHN WESTON"

Now PRINT your name.

STRINGs don't have a fixed length and may contain any of the
characters recognised by BASIC with the exception of inverted
gommas (") since these denote the beginning and end of the
TRING.

For example:

PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890!£$%&()_=-"

25

LILELIT7 070000000077 777777770777777777077777777202777777777777777

EXERCISE 6 SIMPLE STRINGS
Use the PRINT command to write the following on the screen

Your Name

Your Address

Your Date of Birth

Your Occupation (Job, School etc)

LIL1TT77777777770777777070077077077772777772707727727777777777777

Just as there are operations that we can perform on numbers such
as addition, multiplication and division, there are also ways of
manipulating STRINGS. The simplest operation is to join STRINGS
together to form a longer string. We do this by using the '+
sign because of the similarity with mathematical addition but
don't confuse joining with adding.

Type:
PRINT "TELE"+"VISION"
Obviously it is not possible to subtract, multiply, divide or

raise STRINGS to powers. As you will see later, STRINGS can be
manipulated in various ways using other special string functions.

26

CHAPTER 5.
THE PRINTER

OBJECTIVE: To print out information on a printer.

BASIC provides a number of ways to control your printer. By far
the most useful is the command LPRINT. This command operates in
much the same way as PRINT, but instead of sending information to
the screen LPRINT sends information to the printer. The command
LPRINT refers to the term LINE PRINTER, which describes the type
of printer used by larger computers.

LPRINT "JOHN WESTON"
If you have connected the printer properly

JOHN WESTON

will be printed out. If you have forgotten to switch on the
printer or connected it wrongly then the MTX computer will wait
until the printer is made ready, and so you do not necessarily
have to start again if you have made a mistake. The BRK (BREAK)
key can be used to return to 'Ready' and stop the printer at any

time,

You may wish to print out information as you work, in which case
the LPRINT command works in the same way for the printer as PRINT
works for the screen. Thus:

LPRINT "The answer to 2+2 is?"
LPRINT 2+2

will print:

The answer to 2+2 is?
i

To print out a program you have input you may use the command
LLIST. This command will send to the printer the program
currently in the memory. It cannot send to the printer a file
directly from your cassette. The procedure in that case would be
to LOAD the program and then LLIST.

27

It is possible to print out part of the program in memory, this
is done using the LLIST command and works in the same way as
LIST:

LLIST 100,200

will print lines 100 to 200 on the printer.

See Reference Section PRINT LPRINT VLLIST

28

CHAPTER 6.
STORING INFORMATION: VARIABLES

OBJECTIVE: To introduce variables and their manipulation
using the LET statement.

In CHAPTER 2 we used the PRINT statement to do simple
calculations. If vyou look at the set of commands below you will
see there is an alternative way to evaluate expressions:

LET A = 6
LET B = 2
LET X = A+B
PRINT X

A, B and X are called variable names. When a variable name is
used in a program the computer automatically reserves space in
memory for information, and gives the space that name. In these
statements the values of 6 and 2 are stored in locations named A
and B respectively. The sum of these is then stored in a third
location named X, and the contents of location X is then printed.

1120000007722222777777777777777773NNNNANNIIMARITAAR AR

EXERCISE 7 LET STATEMENTS
PRINT the values of X in each case as in the example above.

1) LET X = 6¥4°2 4) LET A=64"0.5
LET B=(A-4)"2
2) LET X = (4-2)"u*¥(6=-3)"2 LET C=B-A
LET X=(A¥*C)/B
3) LET A=6%8
LET B=16/2 5) LET X=4
LET C=R¥6 LET Y=X"2
LET X=A/C LET X=(Y-X)/6

NANAANNNNNNNNNNNNNNNNNNNNNNNGY /27777 77777777770707000000777777

As with the PRINT command the LET command can apply to text as
well as numbers. When text is allocated to a location then the
location name is followed immediately by a $ sign to tell the
computer to expect a STRING as below:

LET A$ = "JANE"

JANE is a STRING and is, therefore, in inverted commas. If you
type this and then ask the computer to PRINT A$, JANE will be
Printed on the screen.

29

Now type in LET B$ =
LET C$ = "SMITH"

PRINT A$+B$+C$

Remember this is not an addition. The '+' signs tell the computer
to Jjoin the STRINGS end to end. B$ in this case simply puts a
space between the two STRINGS which contain JANE SMITH's name.

Use the LET command in exercise 8 to place the information about
yourself into string locations and then use the PRINT command to
send the information to the screen.

L1777777777777777777701777770007077777077777070770707777777777777777777

EXERCISE 8

Use the LET command to locate the information below in
N$,A$,B$ AND J$.

Your Name

Your Address

Your Date of Birth

Your Occupation (Job, School etc)

L1777

This method of storing information in locations allows for only
26 separate locations since there are 26 letters in the alphabet.
A$,B$’C$QOUUQZ$O

The same letter (for example A) can be used to allocate a
variable name to a STRING and a number; the STRING in A$ will be
given a quite separate location from the number in A. You <can
also extend the number of locations by using additional letters
and numbers in the variable name. In the example below all the
variable names refer to different memory locations.

eg A$, AA$, A1$, A, AA, A1, NAME$, AGE, ADDRESS$, etc.

CLEAR

It is sometimes useful to CLEAR the variables in memory so that
calculations can start afresh. Perhaps now you may wish to CLEAR
locations to alter EXERCISE 8. To CLEAR the locations type the
command CLEAR and press <RET>.

A1l variables are automatically CLEARed every time a program is
RUN or edited without using the command CLEAR.

30

L1117 7770007777800 000770707007 77777777777777777774777777777777
EXERCISE 9 SETTING THE CLOCK

Your MTX computer contains a clock which can be set to REAL TIME.
It can be also be used as a stop watch by setting it to zero.
To set the clock for half past twelve for example, type:

CLOCK "123000"

This has set the hours to 12, the minutes to 30 and the seconds
to zero,

The STRING consists of six digits, the first two representing the
hours, the second two minutes and the last two seconds.

To display the time as you are working, type:
PRINT TIMES$
This displays the whole clock.

Try this program demonstrating the clock. Remember to input the
time as a six digit number.

10 INPUT "WHAT IS THE TIME? ";A$
20 CLOCK A%

30 CLS

40 CSR 0,0

50 PRINT TIMES$

60 GOTO 40

LILIIIIIE000077777770077700707077777777077070002707700771717117777

See Reference section LET, CLEAR, CLOCK, TIME$, CSR

31

CHAPTER 7.
PROGRAM WRITING

OBJECTIVE: To introduce the method of designing programs,
using flow diagrams, numbering and the use of AUTO
and REM.

You are now ready to begin writing programs in MTX BASIC. As you
will have realised when copying the program in CHAPTER 1 there
are sftrict rules to be adhered to if your programs are to work.
Also, as you may have realised they c¢an become fairly
complicated, and therefore, it is essential that you plan your
program before writing it, and that you keep your work organised
as you write,

In this CHAPTER we are going to show you how each of these can be
achieved by using FLOW CHARTS and REM statements.

FLOW CHARTS.

A FLOW CHART is a step by step description of the way in which a
particular problem is going to be solved. Consider a problem for
example, where JOHN had 5 apples, MARK had 3 and KATE had 7. How
could we design a program to share these apples evenly? The
information we need is placed into a table to show the VARIABLES
required.

VARIABLES

Marks Apples (5)
Johns Apples (3)
Kates Apples (7)
The number of apples
each

OO wr

The first step would be to tell the computer the number of apples
each person had. When drawing flow charts, information to be
input to or output from the computer, is placed in
Parallelograms. The first step then is:

QU
i nmn
~l LN

Ehe second step is the calculation itself. We want to find the

otal number of apples (5+3+7) and divide this by the number of
People (in this case there are three). Calculations of this type
dre placed in rectangular boxes. So this step looks like:

33

Calculate
D=(A+B+C)/3

We have already discussed the order in which the computer does
the calculations, in this example the division will be carried
out first unless we place A+B+C in brackets.

The computer now has to be told to display the answer and since
this is output, the instruction on the flow chart is placed in a
parallelogram. The completed diagram now looks like this:

QOm>
nun
=

!

Calculate

D = (A+B+C)/3

!
/r_bisplay D /

34

LIIPLLELI0 7000007707 777777077007007770707077777777777777777777777

EXERCISE 10 FLOW CHARTS
1) Complete the flow chart below.

This flow chart shows how to design a program to convert test
scores into percentages. The test has 25 questions and the number

of correct answers are:
a)24 out of 25
b)19 out of 25

c)20 out of 25
d)15 out of 25

READ ?

CALCULATE
PERCENTAGE = ?

DISPLAY ?

Draw flow charts to solve these problems.
2)Petrol costs £1.89 per gallon. How much would you pay to buy:
a)5 gallons, b)7.25 gallons, c)11.68 gallons.

3)A gallon of petrol costs 4.54 times more than a litre of
petrol, At £1.89 per gallon, how much would the following cost?

a)2l4 litres b)36 litres c)li2 litres
LILI170777777777077777077227777777777777707277770777277777777717777

1

WRITING A PROGRAM

A BASIC program is a series of instructions which are given to
the computer in a language which it understands. Each instruction
is generally placed on a new line, and must follow exactly the
format which is required by BASIC. The instructions are then
carried out in the order you have specified by numbering each
line. Line numbers can range from 1 to 65536. Each line in BASIC
must begin with a whole number. There can be any interval you
like between the numbers and it is usual to write programs with
an interval of at 1least 10 so that 1lines which have been
forgotten can be included. Look at this example of the program
written to share apples:

10 REM SHARING PROGRAM

20 LET & = 5

30 LET B = 3

40 LET D = (A+B+C)/3
50 PRINT D

35 LET C = 7T

Line 35 was deliberately left out at first to demonstrate that it
can be added at the end. This does not affect the working of the
program since the lines are run in line number order and if you
input this program you will see that it works perfectly well.
Tidying up the program by putting all the lines in their correct
order can be done by using the command LIST.

The REM statement in line 10 is the title of the program. The
computer ignores anything that immediately follows the word REM
They are used to REMind you of anything you think is relevant to
help you remember how you structured your program, and as you can
see in the rewritten program below, the REM statements refer to
each box in the flow chart.

10 REM SHARING PROGRAM

20 REM LOCATING QUANTITIES OF APPLES
30 LET A = 5

40 LET B 3

50 LET C = 7

60 REM CALCULATE SHARE
70 LET D = (A+B+C)/3
80 REM PRINT SHARE

90 PRINT D

Remember that flow charts when used in conjunction with REM
statements keep you organised, so use them as much as possible.

36

REVISION

Try to write programs for the flow charts you completed 1in
Exercise 10.

When you have completed a program do not forget that you have to
tell the computer to make it work with the command RUN. You can
only work on one program at a time, so remember to use NEW before
starting your next exercise. Experiment with CLEAR, SAVE, LOAD,
LIST and VERIFY. 1In other words, use the combined knowledge you
have so far gained to become familiar with your computer and MTX
BASIC.

You will find that at first you will make a lot of mistakes. If
you find that there are things happening which you cannot control
then do not be afraid to RESET the computer and start again.

The AUTO command automatically places a new line number in the
edit screen after you press <RET>. Try the example below to see
how it operates:

Type AUTO 100,25. This will start at line number 100 and go up in
units of 25.

When you have typed the last line of your program, or if you have
made a mistake and wish to exit from AUTO, then press the CL3
key, followed by <RET>, This will cancel the AUTO command. The
CLS key will abandon the line you are working on whether you are
working in AUTO or not. To return to AUTO, type AUTO followed by
the next line number you need with a comma and step size as in
the example above.

This can be a very useful and time saving command if you are
simply copying a program already written, but can be a bit
annoying if you are writing a program from scratch, as you will
find you are forever jumping in and out of AUTO, wasting more
time than you save!

The command AUTO has a second use, and that is for deleting
Ssections of your program. When we were looking at ways of
editing, it was mentioned that 2 line of program could be deleted
Dy simply typing the line number followed by RETurn. Using the
AUTO command it is possible to delete several lines quickly.
First set the line number you wish to start deleting from. Then
Set the step size taking care to avoid lines which you still
Need. Press the RETurn key as each line number you want to delete
ggpgars. Used with caution, this can be an invaluable time-saving
Vice,

See Reference Section AUTO, LIST, REM

37

CHAPTER 8.
USING DATA

OBJECTIVE: To design programs which can be used for
handling information using the READ and DATA statements.

The commands we have wused so far to do calculations, have
involved placing numbers in locations and then executing the
program. If we wWished to wuse the same program again for a
different set of figures there would have to be a fair amount of
rewriting to change the data. In the apple sharing program for
example all the LET statements would have to be changed if John
had 4 apples, Kate 5 and Mark 6.

One way to solve this problem is to use the DATA statement. In
this case the numbers are placed at the end of the program using
a DATA instruction:

eg. 60 DATA 4,5,6

Notice that each number is separated by a comma but there is no
comma included either after DATA or at the end of the line.

The command which tells the computer to place the DATA statement
information into working memory is READ., Look at the flow chart
and program below for the new sharing problem:

VARIABLES

Marks Apples (4)
Johns Apples (5)
Kates Apples (6)
The number of apples
each

Oomre

39

10 REM NEW SHARING
/ READ values / 20 READ A,B,C
30 LET D=(A+B+C)/3

40 PRINT D
50 STOP
60 DATA 4,5,6

CALCULATE
D=sum of values
divided by 3

!
[T]

In the program you can see that we have introduced a new command,
STOP. The DATA statement in line 60 is not a command 'but holds
data for the READ command in line 20. STOP in line 50 tells the
computer not to execute the rest of the program.

This program can now be used for any sharing problem where there
are three people. The only change which has to be made is to re-
type line 60 with the new data. Before trying EXERCISE 11 run the
program again using the following sets of data.

VARIABLES
A Marks Apples (8) (12) (4)
B Johns. Apples (8) (10) (11)
C Kates Apples (8) (11) (3)
D The number of apples

each

Rewrite the program to enable you to share apples between five
people and invent a number of apples for each person to place in
the DATA statement.

Though the DATA statements can appear anywhere in the program, it
is advisable to place them at the end, since it is then easier to
add new lines here without disturbing your program.

Now try the problem in EXERCISE 11. The flow diagram has been
partly completed for you,

4o

[177777777777777777777777777707077777770070070777200772007070707070707070777777

EXERCISE 11 PRODUCING A LIST OF EXAM RESULTS

In the ENGLISH RESULTS data table the results of three pupils are
listed. Complete the program using the FLOW CHART, together with
the READ, PRINT and DATA statements to print the list.

ENGLISH RESULTS VARIABLES TABLE
Mark 64 Mark = M$ A = 64
- John 68 John = J$ B = 68
] l](ate 45 Kate = K$ C = 45
|
FLOW CHART PROGRAM
/ READ M$,J$,K$, /' 100 REM ENGLISH RESULTS
110
+ 120 READ A,B,C
130 PRINT M$ A&
140 PRINT J$.B
READ ... eos oo 150
160 STOP
+ 170 DATA Mark,John,Kate
180 DATA 64,68,45

DISPLAY M$,A

Re-write the program to include more data:
Jill (72) Harry (48) George (56) Sandra (35)
LILELLETP7707 7077707707007 7007777777777 770777777777777777770777777

See reference section DATA, READ, STOP

41

CHAPTER 9.
ENTERING DATA

OBJECTIVE: To design programs which allow the user to enter
information whilst they are running.

The DATA statement is used to store data within a program before
it is RUN. It is also possible to give data to a program whilst
it is running. To do this you use the command INPUT. When the
computer encounters an INPUT statement it waits to receive
information typed in at the keyboard. The wuser inputs the
information required followed by <RET>. The computer stores the
information in the variables named in the statement. The ENGLISH
RESULTS example from Exercise 8 would look like this if rewritten
to use the INPUT statement.

FLOW CHART PROGRAM
100 REM ENGLISH RESULTS 2
READ H$’J$’K$,;7 110 READ M$,J$,K$
120 INPUT "A = LY
130 INPUT "B = ";B
* 140 INPUT "C = n.C
150 PRINT M$,A
160 PRINT J$,B
INE?E,EA“KS 170 PRINT K$,C
180 STOP
+ 190 DATA Mark,John,Kate

DISPLAY M$,A
DISPLAY J$,B
DISPLAY K$,C

If insufficient information is INPUT or non-numeric data is input
to a numeric variable, a question mark will be printed after the
entry and you must type the information again from the start.

h3

L171777777070077700077070770000770777777707777777777777777777

EXERCISE 12 INPUT
Redesign the rectangle program to find:

A)The area of a triangle.
B)The area of circle.
C)}The circumference of a circle.

The area of a rectangle.

FLOW CHART PROGRAM

100 REM AREA OF RECTANGLE
/&NPUT HEASUREHENS/ 110 INPUT "LENGTH = ;L

120 INPUT "BREADTH = ";B
* 130 LET A = L * B

140 PRINT "AREA = ", A

CALCULATION
100 REM AREA OF A TRIANGLE
110
120
DISPLAY L
ANSWER

100 REM AREA OF A CIRCLE
110
120
130

100 REM CIRCUMFERENCE OF A CIRCLE
110
120
130

[17777777777777770007771077770707700707777777777777777778070007077777

See Reference Section INPUT

By

CHAPTER 10
BRANCHING PROGRAMS (MAKING DECISIONS AND CONDITIONAL STATEMENTS)

OBJECTIVE: To design programs which instruct the computer to
make decisions,

The programs you have been writing so far involve straight
forward calculations where a result is obtained in a variable
(LET A =5+ 4, for example, where A is the variable) and then
printed on the screen. In this Chapter we are going to look at
the ways in which you can write programs that make decisions. To
do this the computer considers whether a statement is true or
false and depending on the logical conclusion it reaches may
enter different calculation pathways. CONDITIONAL STATEMENTS such
as IF and THEN are used: IF the answer is true a THEN statement
would be used to tell the computer what to do next; and if false
an ELSE statement could be used to tell the computer to take
another calculation path. Think about this example in English;

IF the milk is fresh
THEN I will drink white coffee
ELSE I will drink my coffee black.

The use of IF THEN ELSE in MTX BASIC can be thought of in exactly
the same way, the path taken by the program depends on whether
the condition in the IF statement is true or not.

10 INPUT "YOUR AGE ";A
20 IF A=0 THEN GOTO 10 ELSE GOTO 30
30 PRINT "YOUR AGE IS ";A

The relation between A and 0 is a relation between two values,.The
example above is an operation to test the relationship of the two
values, and is termed a BOOLEAN operation, There are six possible
BOOLEAN operators which are listed in the table below.

OPERATOR RELATION TESTED EXPRESSION

= is equal to A =B
o is not equal to A OB
< is less than A is greater than A > B
<= is less than or equal to A<= B
>= is greater than or equal to A >=B

45

Where an expression includes relational and arithmetical
operations the arithmetic is carried out first.

EXAMPLE

If we were to ask eight schools in the UK to send in the
temperature recorded in their weather station at noon on a given
day, it is likely that some schools would send their results in
CENTIGRADE and some in FAHRENHEIT. If we wish to compare these
temperatures we must convert them to either one scale or the
other. The program below is an attempt to do this by converting
the FAHRENHEIT results into CENTIGRADE.

DATA TABLE.

CENTIGRADE FAHRENHEIT
MANCHESTER 10 SHEFFIELD 56
LIVERPOOL 11 OXFORD 62
BRIGHTON 13 GLASGOW 52
CARDIFF 10 NEWCASTLE 54

u6

Look at the program below. Line 110 stores a temperature in
variable T and line 120 stores F or C in B$ to identify the
temperature as Fahrenheit or Centigrade. In line 130 the computer
decides by asking if B$ is an F or C which branch of the program
should be followed. IF the variable B$ holds an F then it has to
be converted to centigrade and so the instruction 'THEN GOTO' is
used to tell the computer to carry out the calculation in line
135. IF B$ holds a C 'ELSE GOTO' tells the computer to miss out
1 line 135 and continue with the PRINT instruction in 140.

100 REM TEMP CONVERSION
/ENPUT TEMPERATUR%/ 110 INPUT "TEMP = ";T
120 INPUT "C or F ";B$
130 IF B$="F" THEN GOTO 135
ELSE GOTO 140
135 LET T=(T-32)%5/9
INPUT CENTIGRADE 140 PRINT "Temp in CENTIGRADE=";T
OR FAHRENHEIT

TEMP = F
IS TEMP F p———YES CALCULATE C

NOy

/f DISPLAY C /

COUNTERS

There are a number of ways to make this program more "user
friendly", We may, for example, add a simple counter so that the
computer knows how many temperatures it is going to work out.
Counters are used where the same calculations are carried out on
a lot of numbers. When you use a counter, your first step is to
INITIALISE it (this is the number that you want the counter to
count from). Usually counters are initialised to 0, but they can
be set to any number you like. Then each time the calculation is
performed 1 is added to the counter and the computer checks to
5ee whether the desired number has been reached.

47

In the temperature conversion example the program could be
rewritten like this:

10
— 20

30
40
50
60
70

— 80

90

INPUT "NUMBER OF TEMPERATURES ";N
LET C=0

INPUT "ENTER TEMPERATURE ";T
INPUT "IS IT FAHRENHEIT ";B$

IF B$="N" THEN GOTO 7O

LET T=(T-32)%5/9

PRINT T

LET C=C+1

IF C=N THEN GOTO 100 ELSE GOTO 30

100 PRINT "END"

Another way in which the program could be made more effective and
easy to use is to redesign it to handle more than one entry at a
time. Since we wish to produce a table giving a picture of the

country as

a whole we need to be able to INPUT 2all the data

together and print the results in one table at the end.

One way to

do this is to use the READ and DATA statements.

48

1171777117 100070777777707770277777777777277777777077777777777720777777
EXERCISE 13

1) Redesign the temperature conversion program using the READ
DATA statements to produce a single table.

2) Design a program to classify winds into gale force or non
gale force.

VARIABLES TABLE,

WINDSPEED
I WINDSPEED 1 4 (1) Speeds are on the Beaufort
WINDSPEED 2 12 (B) scale. A gale is any wind equal
WINDSPEED 3 8 (C) to or over force 10.
WINDSPEED 4 11 (D)
WINDSPEED 5 10 (E)
WINDSPEED 6 9 (F)
READ
WINDSPEEDS

138
WINDSPEED
>=TO 10

/ DISPLAY NON
»NO / GALE WINDS

DISPLAY GALE
WINDS

LIL1L1707777077070077700200200070707077070270700770700777777777777
See Reference Section IF, THEN, ELSE, GOTO, BOOLEAN EXPRESSIONS

49

CHAPTER 11
PROGRAMS WITHIN PROGRAMS

OBJECTIVE: To introduce subroutines to carry out calculations
whilst the program is running.

The GOTO statement is wuseful when used in simple branching
programs, However when many calculations are used to solve a
problem GOTO statements become complicated and difficult to
follow. In order to keep your program organised and to make it
run more efficiently it is often best to use subroutines.

When the computer encounters a subroutine it leaves the main set
of instructions, having recorded where it is up to, and then
carries out a separate set of commands, returning on completion
to the point of departure.

The commands used to tell the computer to leave and re-enter the
main program are GOSUB (GO to the SUBroutine) and RETURN. You can
see them used in the simple example below.

In this example you are given the values for the mass and volume
of a set of liquids and the program is designed to work out the
density of each and then print them all in a table.

100 REM DENSITY PROGRAM

110 PRINT "MASS","VOLUME",, /DISPLAY HEADINGS/

WDENSITY"
120 READ M b
130 IF M=0 THEN STOP
140 READ V -———/r READ DATA M /
150 GOSUB 500

160 PRINT M,V,,D
170 GOTO 120
180 DATA 8,4,6,3,12,6,0

500 REM SUBROUTINE IS M = YES»
510 LET D=M/V y SToF
520 RETURN

A NO

f READ DATA vj—»—— chsﬂﬁv
—/ DISPLAY M,V D_/ .

51

Notice that line 130 of the above program is used to instruct the
computer to stop when a 0 value for M is encountered. At the end
of the DATA 1line 180 you will find the 0. This is a common
technique for terminating data.

Now try some more conversion programs.
LILT1077777777777077777277777777777777777272707227777777777727777

EXERCISE 14 Design a program with a subroutine to solve the
following:

1) To convert Pounds Sterling into Dollars at the rate $1.54 to
the pound.

2) To convert pounds (weight) into kilos.

3) Think of other conversions which require a subroutine, and
then design suitable programs.

Check your answers by converting known values

LIL1117777077777700707077070077777770777777277777777077777277777777177

See Reference Section GOSUB, RETURN

52

he
nd
on

SR e .

I/

CHAPTER 12
STRUCTURING YOUR PROGRAMS

OBJECTIVE: Using BASIC commands to structure programs with
loops.

Until now, we have used GOTO statements to repeat calculations,
Look at the following programs which both print out a 1list of

numbers from 1 to 10.

10 LET I=1 10 FOR I=1 TO 10 STEP 1
20 PRINT I 20 PRINT I

30 LET I=I+1 30 NEXT I

40 IF I>10 THEN STOP 40 STOP

50 GOTO 20

Loops are required so often in programs that a special command is
provided to make them faster, more flexible and easier to

understand.

The FOR statement tells the computer that it is at the start of a
loop. This 1loop is <called a FOR LOOP, Each FOR LOOP has a
variable associated with it called its control variable. In the
above example the control variable is I but could be any simple

numeric variable,

10 FOR I

When the FOR LOOP is met for the first time a value is given to
the control variable. In the example it is 1 but could be any

number or mathematical expression.

10 FOR I=1 L]

The FOR LOOP is now executed wuntil a NEXT statement is
encountered with the same control variable. (Line 30 above).

The program now returns to the start of the FOR LOOP to see if it
has finished. There are two more numbers in the FOR statement.
The second is called the limit and the third is called the
increment. The increment is now automatically added to the
control variable and the computer tests to see whether the 1limit
has been reached. In the example the limit is 10 and the

increment is 1.
10 FOR I = 1 TO 10 STEP 1

If the 1imit has been reached, the program will jump to the
Statement following the NEXT statement. If not, the loop will be
Performed again with the new value of the control variable. The
following program is a practical example.

53

100 PRINT "G-MARK","FAHRENHEIT","CENTIGRADE"
110 FOR I=1 TO 8 STEP 1

120 LET F=250+I%25

130 LET C=(F-32)/9%5

140 PRINT I,F,,C

150 NEXT I

160 STOP

This program converts GAS MARKS used on domestic cookers to
temperatures in both Centigrade and Fahrenheit and prints out a
table, I is used to represent the GAS MARK. Line 110 tells the
computer how the loop is to be operated., The computer understands
that it is to begin with Gas Mark 1 and repeat the loop 8 times
incrementing the GAS MARK by 1 step each time.

If the cooker for which the conversion is being made begins at .5
and increases in units of 0.5 to gas mark 8 then the 1line 110
would be rewritten to:

110 FOR I=.5 TO 8 STEP .5

Line 150 is the end of the loop. The computer is told to return
to the FOR statement and to carry out the instructions for the
next value of I, It does this by increasing I by the value of
STEP., If it has reached the limit the FOR NEXT loop is complete
and control is passed to the next line in the program (ie line
160). The 1lines between the FOR and NEXT statement (120 - 140)
are the instructions to be carried out for each step,

L1171 17777 0770770777777 077

EXERCISE 15
Re-design your programs in exercise 14 {(conversions) to use
FOR, NEXT loops and to print out tables.

[11170777777777777777707070777777777777707070707777777777770077777777

In the examples so far it has been simple to provide all the
information for the FOR...NEXT statement. You may wish to write a
program however, where the number of calculations constantly
change. An example of this would be a program to estimate batting
averages for a cricket team. In the example below, instead of
specifying exactly the number of times the loop has to be carried
out, a VARIABLE 'N' has been used, so that this information can
be read while the program is running, i.e.:

54

/DISPL“ HEADING/ 100 REM BATTING AVERAGES
105 PRINT "BATTING AVERAGE";

1 110 REM SET SUM TO 0
120 LET S=0
INITIALISE SUM 130 REM READ VALUE OF N
1 140 READ N
150 REM SET UP LOOP
/ READ N / 160 FOR I=1 TO N
(NUMBER OF NUMBERS) 170 REM READ SCORES
180 READ X
1 190 LET S=S+X
200 NEXT I
S 210 REM CALCULATE AVERAGE
220 LET A=S/N
230 PRINT A
240 DATA 7
vEs>——— 250 DATA 125,0,45,67,83,90,68

HO CALCULATE
AVERAGE=SUM/N

3 /[;EAD NEXT Nungfgj/ 1

1 DISPLAY
AVERAGE
ADD TO SUM

In the previous example the FOR statement was applied to a
situation where the number of times the loop is performed
changes. Consider the program below which uses more than one FOR
loop to automatically adjust tyre pressures on a car to 32.

10 INPUT "TYRE PRESSURE";P
20 IF P<>32 THEN GOTO 50
30 PRINT "TYRE PRESSURE CORRECT"
40 GOTO 10

50 IF P>32 THEN GOTO 100
60 FOR I=P TO 32 STEP 1

70 PRINT I

80 NEXT I

90 GOTO 30

100 FOR I=P TO 32 STEP -1
110 PRINT I

120 NEXT I

130 GOTO 30

See reference section FOR, NEXT, STEP

55

CHAPTER 13
MORE BRANCHING PROGRAMS (CONDITIONAL JUMPS)
OBJECTIVE: To design more complicated decision making programs

In the previous sections we have looked at how programs can be
made to branch and loop. These methods are not particularly
suited to the input of data which is continually changing. 1In a
game of billiards between four players for example, as each
player takes his turn his total is raised by his new score and
the other scores are unaffected. The program below is a possible
way to solve this problem.

10 REM ENTER PERSON AND SCORE

20 LET S1=0: LET S$2=0: LET S3=0: LET S4=0
30 INPUT "PERSON NUMBER AND SCORE";P,S
40 IF S=5000 THEN GOTO 140

50 ON P GOTO 30,60,80,100,120

60 LET S1=S1+S

70 GOTO 30

80 LET S2=S2+S

90 GOTO 30

100 LET S3=S3+8

110 GOTO 30

120 LET SE=S4+S

130 GOTO 30

140 PRINT:PRINT

150 PRINT "PLAYER,,SCORE"™

160 PRINT

170 PRINT " 1381
180 PRINT * 21382
190 PRINT ® 3";S83
200 PRINT " ym.sy

210 PRINT:PRINT
220 PRINT "“END OF GAME"

Notice that in line 40 the instruction to end the game is by the
use of an IF statement which would only be true if an impossible
situation arose, that is, a score of 5000 is input.

L1117 777777770777777777777770777777777777777777777777777777777
EXERCISE 16 ON..GOTO ON. .GOSUB.

1) Design a game program for four players where the object of the
Bame is for each player to guess a number between 1 and 100 which
has been input by a fifth person. The structure of the program
above will be a useful starting point.
L110077072077707777007077777077077777077777777777777777777717777777

See Reference Section ON GOTO

57

CHAPTER 14
MORE ABOUT VARIABLES

OBJECTIVE: To introduce the handling and manipulation of variables.

So far you have used data to calculate answers and then asked the
computer to display the results on the screen., There may be times
when you want to display the data as well. For example,if you
were producing accounts you might need to list all the entries as
well as totals and other calculations.

ARRAYS and DIM

You may remember from CHAPTER 2 that variables are locations
! where information is stored and that they are allocated letters
to identify them. You may also remember that it is possible to
extend the number of variables available by allocating a letter
with a number. So, for example, the A variable may become
A1,A2,....A9. If we place the numbers in brackets (A(1),A(2) and
so on) the computer understands that the variables are linked
together. In this case we have a set of numbers (A) which are
sub~divided into members of the set by the use of the subscript
(1,2,.+.9). This type of set is called an ARRAY.

In order that the computer can organise the storage of an ARRAY
in appropriate locations it is necessary to tell the computer how
many members of the set there will be. To do this you use the
DIMension statement.

10 DIM S(40)
This example indicates that there is to be an ARRAY, which
consists of 40 numbers., It is not essential for all forty
variables to be used, you have told the computer that the number
will not exceed 40. In other words the DIM statement places an

upper 1limit on the size of the array to be set up. The example
above therefore would tell the computer to set up the array as:

3(1),S(2),S(3),S(u).----.-..S(uO)

DIM statements can also be used to dimension strings. They are
used to define the length of the string in much the same way as
with numbers. For example, the DIM statement to make space for a
string of length at most 14 characters would be:

10 DIM R$(14)

This would allow

20 LET R$="STEVEN JAMESON"

but not

20 LET R$="STEPHEN JAMESON"

59

If a DIM statement is not used before the first use of a string
array, the string array is assumed to be of one dimension. In
other words, space is made to hold a single string of characters.
(see the reference manual for more details).

To make space for an array which can hold a number of strings we
need to use a dimension statement to tell the computer how many
strings and how long the longest one is going to be.

e.g.
10 DIM R$(20,10)

tells the computer that space is required for 20 strings of
maximum length of 10 characters.

10 DIM R$(4,5)

20 DIM sS(4)

30 FOR I=1 TO 4 STEP 1

40 READ R$(I),S(I)

50 PRINT R$(I),S(I)

60 NEXT I

70 STOP

80 DATA FRED,47,HARRY,62,J0E,26,5ID,54

JI7I000002027770727077077707770777077707770777707707077777777770777777777
EXERCISE 17 DIM STATEMENTS

Re-design the above program to print the names of the T
additional members of the cricket team, and at the same time to
calculate the average age of the players

JIII02E00000 7070000077770 7007220700777770077777777777777771777777

Try and work out what the following program is doing.

10 LET A$="123456789"

20 FOR I=1 TO 7

30 PRINT A$(I,3)

40 NEXT I

See the reference section DIM, 'MANIPULATING STRINGS'

60

CHAPTER 15
SORTING

OBJECTIVE: Using nested loops and arrays in programs designed to
sort numbers,

One of the more useful tasks a computer can do for you is to sort
large amounts of data into the order you require very quickly and
efficiently. Sorting may be alphabetic, numeric (ascending or
descending) or in fact almost any way you can think of.There are
many different ways of sorting, but there is only space here to
mention a few, and we Wwill concentrate on one method in
particular.

The main problem that all sorting techniques have to overcome is
the 1large number of tests required. That is to say the computer
is forced to ask many questions about the data in order to sort
it effectively. Say, for example, we have three numbers which wve
will call A,B,and C.The first test would be to ask if A is
greater than B If it is then A and B are in order. If A is less
than B then the order has to be changed. To do this the number in
B has to be switched to the variable & and A to B. A third
location T is used to do this as below:

10 IF A<B
20 LET T=B
30 LET B=A
40 LET A=T

Having placed A and B in order we then have to place C in
position. To do this there are two questions required, though we
may get away with one.

They are:

1) is C greater than B,
2) is C greater than A.

By wusing this method as each new number is included in the sort,
the number of questions to be asked increases. As you can imagine
the number of questions needed to place the 50th number in order
is daunting and would take a long time to compute.

61

The RIPPLE SORT technique places the numbers into a row and is
designed so that the computer asks only one question as it moves
along the row: Is the number I am holding (which is the largest
so far) larger than the next number? If the answer is yes then
the computer moves on, if no then an exchange is made. By this
method the largest number moves to the last position.

The process is then repeated by using a loop until all the
numbers are placed in order. We have to tell the computer when to
stop and this is achieved by setting a flag to zero. A flag is
just a simple counter which can be looked at at any time to check
the status of the program. The way flags are used in programs can
be seen in the examples below. Each time an exchange is made then
the flag 'F' in line 120 is set to 1. The main loop includes the
line which sets the flag to 1 and so if at the end of the run it
is still 0, no exchanges have been made and the sort is complete.

10 DIM A(20),B(20)

20 PRINT:PRINT

30 PRINT "NUMBERS","SORTED LIST"
40 READ N

50 FOR I=1 TO N STEP 1

60 READ A(I)

70 LET B(I)=A(I)

80 NEXT I

90 LET F=0

100 FOR I=1 TO N-1

110 IF B(I)<=B(I+1) THEN GOTO 160 ELSE GOTO 120
120 LET F=1

130 LET T=B(I)

140 LET B(I)=B(I+1)

150 LET B(I+1)=T

160 NEXT I

170 IF F=1 THEN GOTO 90

180 FOR I=1 TO N STEP 1

190 PRINT A(I),B(I)

200 NEXT I

210 DATA 10

220 DATA 6,4,8,1,3,2,5,7,9,10

In order to improve the efficiency of sorting tasks a number of
different methods are used. One way is to put decision making FOR
loops inside one another. This is called NESTING, Below are some
combinations of permitted and illegal FOR...NEXT loops.

62

LEGAL

Wor

An
Top

10
20
30
40
50
60
70
80
90
100
110
150
200
210
220
230
240
250
260

270
280
290
300

e — — —

LOOPS ILLEGAL LOOPS

k through these loops and see why they aren't allowed
fact would not work.

example 1is given in the program below to place in order

Ten records based on sales.

DIM R$(LO,40)
DIM S(40)

LET I=1

PRINT "RECORD NAME";
INPUT N$

IF N$="v" THEN GOTO 150
LET R$(I)=N$

PRINT "“SALES ",
INPUT S(I)

LET I=I+1

GOTO 40

CLS3

LET N=I-1

FOR I=1 TO N STEP 1
LET K=1

LET W$
LET MA

FOR J=1 T STEP 1

IF S(J)>MAX THEN LET MAX=S(J):

LET K=J:LET W$=R$(J)
NEXT J

LET S(K)=0

PRINT W$,MAX

NEXT I

63

and, in

the

///

EXERCISE 18 DIM
1) Design a program to input football teams and their points and
then sort them into a final order.

2) Design a program to sort the teams on the basis of points and
goal difference

//

A useful way of sorting in larger programs is to separate the
sort from the main program by placing it in a sub routine. Below
is a listing of a useful sub routine doing exactly that. The
instruction to call up the routine would be GOSUB 1000.

1000 REM SORTING SUB ROUTINE
1010 LET F=0

1020 FOR I=1 TO N-1

1030 IF A(I)<= A(I+1) THEN GOTO 1080
1040 LET F=1

1050 LET T=A(I)

1060 LET A(I)=A(I+1)

1070 LET A(I+1)=T

1080 NEXT I

1090 IF F=1 THEN GOTO 1010
1100 RETURN

REMEMBER THAT THIS IS A SUBROUTINE

64

CHAPTER 16.
MULTI DIMENSIONAL ARRAYS

OBJECTIVE: To analyse data in tabular form.
In CHAPTER 14 the DIM statement was used to define arrays. We
are now going to look at how an array can be used to store two
dimensional data. As before, the DIM statement is used. Consider
the following section of a program.
TWO DIMENSIONAL ARRAYS

10 DIM X{(5,4)

This statement sets wup an array which has five rows and four
columns. This looks like;

X{(1.1) X(1,2) X(1,3) X(1,4)
X{(2,1) X(2,2) X(2,3) x(2,4)
X{(3.1) X(3,2) X(3,3) X(3,4)
X(4,1) X(4,2) X{4,3) X(u,n)
X(5,1) X(5,2) X(5,3) X(5,4)

And could store the information:

X 2X X~ X"3

X=1 1 2 1 1

X=2 2 4 L 8

X=3 3 6 9 27

X=4 . s ..+ ete 500 o

i=5 500 50C 500 e

65

///
EXERCISE 19 Two dimensional arrays
1) Design a program to complete and print the table above.

2) In the example below part of the third year exam results are
given., All the figures are percentages and each class took the
same exam in each subject. In order to look at the progress of
children in the three subjects a program has to be devised to
work out:

a) The average results for each class in each subject.
b) The average result for the year in each subject.

¢) To print a table of results as below

d) To print a list in order of score for each subject.

YEAR 3

CLASS PUPIL NUMBER GEOGRAPHY HISTORY MATHEMATICS

34 1 58 62 23
2 45 58 29
3 67 76 53
4 53 45 12
5 68 T2 43

3B 25 46 43 51
26 48 41 u5
27 53 b1 55
28 49 36 62
29 51 68 65

3C 55 43 38 42
56 54 37 51
5T b7 56 49
58 43 43 28
59 54 45 43

The input part of the program and a section of program which
peints to a possible way to complete the design has been
completed for Yyou. Notice that the array is initialised by the
use of input statements making the program adaptable to many
different situvations,

10 REM INPUT PROGRAM

50 INPUT "MAX NUMBER OF PUPILS PER CLASS";PUPIL
30 INPUT "NUMBER OF CLASSES";CLASS

40 INPUT "NUMBER OF SUBJECTS";SUBJECT

50 DIM R(PUPIL,CLASS,SUBJECT)

60 REM START ENTERING DATA

70 INPUT "PUPIL,CLASS,SUBJECT,MARK";P,C,S,M

80 IF P=0 THEN GOTO 110

90 LET R(P,C,S)=M

100 GOTO 70

110 REM CONTINUE
//

66

1000 REM AVERAGE PROGRAM
1010 REM ASSUME RESULTS ARE IN R
1020 FOR C=1 TO CLASS STEP 1

1030 LET T=0

1040 LET N=0

1050 FOR P=1 TO PUPIL STEP 1

1060 FOR S=1 TO SUBJECT STEP 1

1070 LET M=R(P,C,8S)

1080 IF R(P,C,S)<>0 THEN LET T=T+M:LET N=N+1
1090 NEXT S

1100 NEXT P

1110 LET A=T/N
1120 PRINT "AVERAGE OF CLASS ®;C;" IS ";A
1130 NEXT C

In this example the same data is wused for a number of
calculations. MTX BASIC provides a command for placing data back
into the working memory for further analysis. The command RESTORE
is used with the READ and DATA statements to do this as follows;

10 READ N

20 LET T=0

30 FOR S=1 TO N STEP 1
40 READ X

60 LET T=T+X

70 NEXT S

80 LET A=T/N

100 PRINT:PRINT

110 PRINT "AVERAGE SCORE IS ™";A
120 RESTORE 0

125 PRINT

126 PRINT "PUPIL MARKS DEVIATION"
127 PRINT

130 READ N

140 FOR I= 1 TO N STEP 1
150 READ Y

160 PRINT I,Y,Y-A

170 NEXT I

180 STOP

190 DATA 5

200 DATA 45,67,89,34,51

See the reference section RESTORE

67

CHAPTER 17
FORMATTING WITH PRINT

OBJECTIVE: To introduce methods of formatting when using the
PRINT command,

We have used the PRINT command to print tables by using commas to
take you to the next TAB position. You may however wish to set up
a table or enter text which does not start at the first TAB
position and then use each subsequent position. MTX BASIC has a
command CSR (CURSOR) which is used with the PRINT command to help
you format your work in this way.

The first step is to set the starting position by giving the
CURSOR two co-ordinates. The first is the number of columns
across the top of the screen and the second the number of rows
down,

CSR 3,4

will place the cursor three character spaces from the left hand
edge of the screen and four lines down from the top. (A fuller
explanation is found in GRAPHICS.)

Try this simple example to print your name in the middle of the
screen.

10 REM YOURNAME
20 CSR 12,15:PRINT "YOURNAME"

Notice we have placed the PRINT command on the same line as the
CSR command. This is all right if you separate the commands with

a colon. You can use multiple statement lines in this way
provided you do not exceed the length of the EDIT screen.

See Reference section CSR

69

s

CHAPTER 18
MATHEMATICAL FUNCTIONS

OBJECTIVE: To introduce arithmetical functions and their use in
programs,

Remember in chapter 3 we looked at roots and wrote the square
root of four as 47°(1/2), At the time it was hinted that there
were more efficient ways of doing these calculations, and if you
haven't discovered these for yourself already, then now is the
time. An example of the method you have used to calculate square
roots is below on the left with the alternative on the right:

10 LET X=16 10 LET X=16
20 LET Y=(X)"0.5 20 LET Y=SQR(X)
30 PRINT Y 30 PRINT Y

A complete 1list of mathematical funetions is included in the
reference manual. It is worth having a look at all of these now,
because even if you have discovered some of them, it is 1likely
that there are some you have not, and it may save you time in the
future if you know what is available.

///
EXERCISE 21 FUNCTIONS

1) The following program prints out the values of SIN and CO0S
for values between .1 and .9. Alter it to print values of other
functions.

10 FOR X=.1 TO .9 STEP .1

20 PRINT ® X", ,"SIN(X)",,"COS(X)"

30 PRINT

40 PRINT X,SIN(X),COS(X)
50 NEXT X

LILELEZZIIIIIIIIII0077 0077777001077 7777777770777777777772727777777

See Reference Section SIN, COS, PI and find the other functions

T3

CHAPTER 19
STRING FUNCTIONS
OBJECTIVE: The use of String functions as controls.

There are two types of string functions. The first type is used
to instruct the computer to perform operations rather 1like
program statements. The second is used to manipulate strings.

We will first deal with string functions as operators. The
keyboard can be read by the use of the function INKEY$. This is
in practice a very useful function since it enables you to write
programs where the computer interacts with the person operating
the keyboard, The short Program below is an example of this where
the computer expects the operator to answer "yn and any other
response will result in a loop,

10 PRINT "PRESS Y TO CONTINUE"
20 LET A$=INKEY$

30 IF A$<O"Y" THEN GOTO 20

40 PRINT "YOU PRESSED Y

If you cannot understand this program insert
25 PRINT A$;

Another useful string funetion is CHR$. This function is used to
send character codes to the Screen, wusually because the codes
don't have a corresponding printable character.

€.g.PRINT CHR$(65)

This will print a capital A at the next position because 65 is
the ASCII code of r'ar, The Appendix includes a full 1ist of the
character codes.

In the same way, printing can be controlled by using the special
ctontrol characters .,

e.g.
PRINT CHR$(12) CLEARS THE SCREEN.

PRINT CHR$(26) MOVES CURSOR TO HOME
PRINT CHR$(10) MOVE CURSOR DOWN

73

R

The second type of string function 1is concerned with the
manipulation of strings.

If you want to display only part of a string for example,MID$ can
be used. Look at the following program:

10 LET A$="ABCDEFG"
50 PRINT MID$(A$,3,2)

When this is run CD will appear on the screen., In the instruction
you have told the computer to g0 to the third letter which is *C!
and print two letters.

LEFT$ and RIGHT$ are used to instruct the computer to count from
the beginning of the string (LEFT$), and the end of the string
(RIGHT$). The number of characters specified will be printed.
Replace line 20 with the following lines.

20 PRINT LEFT$(AS$,3) ABC will appear.
20 PRINT RIGHT$(AS,3) EFG will appear.

gsee Reference gection LEFT$, RIGHTS$, MIDS, CHR$ and other string
functions

TH

CHAPTER 20
SIMPLE GAMES AND RANDOM NUMBERS

OBJECTIVE: To introduce the methods used in the design of games
programs.

Most of the games constructed for the computer involve
complicated graphics which are controlled by a series of loops,
conditional jumps and sub-routines. In this CHAPTER we are going
to concentrate on the programs rather than the graphics., Later on
when you feel more confident you could attempt to make the games
you create here more interesting by adding appropriate graphics
but don't worry about that at the moment.

An important feature of any game is that the events in it occur
by chance and are in no way predictable. To produce this 'random!
effect BASIC has a function RND and a command RAND. Random
numbers are created by the random number generator. To activate
this you need to set a starting point in the RAND statement and
set a limit of numbers to be generated in the RND statement. We
have included a program designed to fill out a pools coupon with
numbers derived by the computer at random. 1In this case the

coupon allows you to enter 20 possible draws and therefore, you
need to generate 20 numbers.

10 RAND 5

20 FOR I=1 TO 20 STEP 1
30 PRINT INT(RND*64+1),
40 NEXT I

50 PAUSE 5000

When you have tried this program a few times you will see that it
has a problem. It always starts from the same point and
therefore, it continues to produce sets of identical numbers.
This is called a pseudo-random number sequence where RAND 5 will
always produce the same set of numbers. RAND 6 would produce a
new set of numbers but then repeat them each time it is used,

This is true for all positive whole numbers used in the RAND
statement,

To obtain truly random numbers you would use a negative value in
the RAND statement. Now try RAND -5 in line 10. As with positive
values you can use any whole number.

RND returns random numbers in the range 0 to .9999999,

To obtain a different range, the result can be multiplied by a
Scaling factor.

Line 30 tells the computer that you wish to display a whole
Dumber (INT) between 1 and 64, The computer would start from 0
and go to 63 if no further instruction is given. The easiest way
to solve this is to simply add 1 to each number generated and so:

INT(RND*644+1)

75

///
EXERCISE 22 RANDOM NUMBERS

1) Design a program to generate 2 random number table in 10
columns from 1 to 99.

2) Complete the dice throwing program below.

10 RAND 5000

20 LET D1=INT(RND¥6+1)

30 LET D2=INT(RND¥6+1)

40 PRINT:PRINT

50 PRINT "DICE 1= n:D1

60 PRINT "DICE 2= n.D2

70 IF D1=D2 THEN GOTO 80 ELSE GOTO 100

80 PRINT "PRESS SPACE FOR EXTRA THROW"

85 LET AS=INKEY$

86 IF A$<>™ " THEN GOTO 85

90 GOTO 20

100 INPUT "NEXT TURN ? Y FOR YES N FOR NO";A$
110 IF A$="Y" THEN GOTO 20 ELSE GOTO 120
120 PRINT "GAME OVER"

3) Redesign the above program to allow four dice to be used by
three or four players and include a counter to print scores for
each player in a pest out of three game.

///

There are two programs below to set up a game of bingo. BY making
these into subroutines and by properly formating the cards in an
array Yyou could enable the game to be run on the sereen. Iry
first of all with two players.

BINGO

10 REM BINGO NUMBERS

20 DIM A(99)

30 CLS

Lo PRINT "PRESS A KEY FOR NEXT NUMBER"
50 INPUT A%

60 LET X=INT(99¥RND+1)

70 IF A(X)=1 THEN GOTO 60
80 LET A(X)=1

g0 PRINT X

100 GOTO 40

76

BINGO CARD

10 REM BINGO CARD

20 DIM B(30)

30 DIM R(100)

40 cLS

50 FOR I=1 TO 15

60 LET X=INT(RND#*994+1)

70 IF R(X)=1 THEN GOTO 60
80 LET R(X)=1

90 LET N=INT(RND¥*30+1)
100 IF B(N)<>0 THEN GOTO 80
110 LET B(N)=X

120 NEXT I

130 FOR I=1 TO 10

140 FOR J=1 TO 3

150 PRINT B((J-1)%10+I),
160 NEXT J

170 PRINT

180 NEXT I

See Reference section RAND, RND, INT

7

CHAPTER 21
MATRICES

OBJECTIVE: To introduce matrix operations in basic.

The two dimensional arrays introduced in CHAPTER 14 were forms of
MATRICES. The principal difference between arrays and matrices is
the way in which arrays are dealt with. In the case of two
dimensional arrays we are concerned with the manipulation of
separate parts of the arrays. The Geography results for 3B for
example. In a matrix operation we are concerned with the whole
matrix, so any operations affect the matrix as a whole.

There are a number of useful operations which can be carried out
in this way on tables of information. Matrices can be added to
each other, multiplied, divided, and constants can be applied to
update them. Monthly sales figures, for example, can be combined
to produce quarterly or yearly totals.

The sub-routines below can be used to set up, input data and
print out matrices, They would be used as normal GOSUB/RETURN
routines within a program. We have used a 3x3 matrix here but
clearly by changing the I,J values you can design matrices of any
dimension.

SUBROUTINE TO PRINT OUT A MATRIX
1000 FOR I=1 TO 3

1010 FOR J=1 TO 3

1020 PRINT A(I,J)

1030 NEXT J

1040 NEXT I

1050 RETURN

SUBROUTINE TO SET A TO 0
2000 FOR I=1 TO 3

2010 FOR J=1 TO 3

2020 LET A(I,J)=0

2030 NEXT J

2040 NEXT I

2050 RETURN

SUBROUTINE TO INPUT DATA
3000 INPUT "I,J,DATA ";I,J,D
3010 IF D=99999 THEN RETURN
3020 LET A(I,J)=D

3030 GOTO 3000

This method can be used to add,copy, multiply and apply constants
to the matrix. For example in the first sub routine above the
replacement of line 1020 with:

) 1020 LET A(I,J)= B(IL,d)
Will lead to matrix B being copied into matrix A.

79

1020 LET C(I,J)= A(I,J)+B(I,J)
Now matrix A is added to B and the sum is copied into C.

1020 LET A(I,J)= 5%A(I,J)
All the elements of matrix A are multiplied by the constant 5.

To multiply two matrices a slightly more complex routine 1is
required to fit the rules of matrix algebra. Consider the example
below where matrix A has R rows and C columns and matrix B has C
rows and S columns.

4000 REM SUBROUTINE TO MULTIPLY MATRICES
4010 FOR I=1 TO R STEP 1

4020 FOR J=1 TO C STEP 1

4030 LET D(I,Jd)=0

4040 FOR K=1 TO C STEP 1

4050 LET D(I,J)=D(I,J)+A(I,K)*B(K,J)
4060 NEXT K

4070 NEXT J

4080 NEXT I

4090 RETURN

80

L11777777777777777777777777777200000000000707777777777077777107777777

EXERCISE 23
Mr Jones has three fish and chip shops and the table below shows
the numbers of fish sold in the four quarters of the year.

Cod Haddock Plaice
Shop 1 JAN - MAR 3,456 460 212
APR - JUN 2,458 238 146
JUL - SEP 1,845 67 35
OCT - DEC 4,153 354 286
Shop 2 JAN - MAR 2,998 342 189
APR - JUN 2,135 154 89
JUL - SEP 1,225 52 38
0CT - DEC 2,509 189 139
Shop 3 JAN - MAR 4,806 589 354
APR - JUN 2,678 453 302
JUL - SEP 2,688 220 148
0CT - DEC 4,766 554 386

Use the sub routines to set up matrices to print out the data in
the form above. It is possible to add matrices together and
therefore, it is possible to work out the following totals:

1) The 6 monthly returns for each shop.

2) The yearly returns for each shop.

3) The combined figures for all shops.

4) Create a table to express each shops monthly figure as a
percentage of the total sales for all shops.

L111177777777777777777777777207707777777777770707077777777777777777

81

PART 2
NODDY

In the early chapters you experienced how difficult it is to
format your work when writing programs in BASIC. The new language
NODDY has been designed to simplify text handling. The second
important advantage of NODDY is that it allows you, wWith very
little programming knowledge to write your own interactive
programs. As you would expect the method of writing programs
involves planning in advance and understanding the commands.
However, since there are only ELEVEN commands this is not a
difficult language to master.

NODDY COMMANDS

B BRANCH E ENTER P PAUSE
I IF A ADVANCE L LIST
G GOTO R RETURN 0 OFF
S STACK D DISPLAY

The wuse and meaning of the commands will become obvious as we
work through some examples of NODDY programs.

NODDY is accessed through BASIC by typing NODDY. You will see
later that this is not accidental but to enable you to write more
complicated programs where NODDY and BASIC work together.

Type NODDY <RET>

Noddy will appear at the bottom of the screen.

Now type NAME

Noddy>NAME (make sure that you type this in capitals.)

Press the <RET> key.
NAME will appear at the top of the screen.

This is the title of the page.

83

Move the cursor using the EDIT keys and type some information
about yourself. Remember that each NODDY page is treated by the
computer as a separate entry and so you do not press ¢RET> until
you have typed all the information you wish to store. If you make
a mistake and <RET> before you have finished simply type NAME
C¢RET> again and the page will be placed back on the screen.

DO NOT PRESS THE CLS KEY SINCE THIS DELETES THE PAGE.
Continue as before and when the page is complete press <RET>.
You have just created a NODDY page called NAME.

If you now type DIR <RET>, the screen will be cleared and NAME
will appear in the top left corner. This is the NODDY directory
and tells you what pages are present. In this case the page title
NAME will appear. When you type DIR make sure that you are using
capitals since if you use dir you will create a page called
tdirt.

Now type NAME again, the information you entered before will be
printed on the screen just as you typed it. If you want to change
or add information edit the screen using the cursor keys and when
you have finished <RET>.

Remember that the CLS key is used to remove a Ppage from the
system. When you press the key the page currently on the screen
is lost, Though this key is very useful for editing out redundant
pages it can be frustrating to watch an hours work disappear in a
moment of carelessness.

NODDY provides you with a means of storing and displaying textual
information.

Wwhen you typed NAME <RET> the first time, you Wwere telling the
computer that you wanted a page of text which you could refer to
by the title "NAME™.

Try creating other pages with different titles. Each time you
create a page and press <RET>, Noddy should appear at the bottom
of the screen.

84

When Noddy appears you can:
1) enter another page by typing a new title
2) type DIR to see what you have done.

3) look at a page already in the DIRectory by typing
the title.

4) return to BASIC by pressing the CLS key followed by
<RET>. This is one of the occasions where it is safe
Lo use <CLS>.

To make sure that you are in the correct mode to CLS it is useful
to get into the habit of typing DIR before returning to BASIC.
This gives you an opportunity to check that all the files you
require are present and avoids the situation where work is lost.

To return to BASIC from a NODDY page:

Type DIR <RET>

Press the <CLS> key followed by <RET>.

Ready will appear at the bottom of the screen.

If you return to BASIC you will not lose your work provided you
do not switch the computer off. When you return to NODDY the
pages will be just as you left them. You may wish to make a more
permanent record.,

To save NODDY files use the system described in chapter 1 on
saving and loading programs. The NODDY file is given a name as
with a BASIC program. If both NODDY and BASIC programs are
present at the same time they will both be saved together.
Similarly if you erase a BASIC program by typing NEW then the
NODDY pages will go as well., You should think of NODDY and BASIC
as languages linked closely together.

To write programs in NODDY special program pages are set up using
the commands described above. To show you how each of these
commands work we have set up four programs to store telephone
numbers each one capable of better storage and recall than the
last.

The first program consists of a telephone page and a program
page. We shall call the telephone page FRED and the program page
PROG1.

Type NODDY <RET>

Type FRED <RET>
Fred's telephone number is 555686

(Enter this page by pressing the return key.)

85

The program Ppage uses three commands DISPLAY,PAUSE and RETURN.
Each command 1S preceded by *# to tell the computer to regard the
next entry as 2a command. Now type the following page called
PROG1.

PROG1

#DISPLAY FRED.
¥PAUSE #PAUSE
*RETURN

<RET>

The first line *DISPLAY FRED. tells the computer to place the
page called FRED on the screen. Where a page title is referred to
in this way the page name is completed by a full stop. If Yyou
forget to do this the computer will not be able to carry out the
search.

The second line tells the computer to keep the information on the
secreen for the length of two PAUSES (approximately 1 second per
pause)

The third line uses the command RETURN to return you to BASIC
after the PAUSES are complete.

Type DIR to see the page names.

To run this program you first of all have to go into BASIC. To do
this press the CLS key followed by ¢RET> and Ready will replace
Noddy at the foot of the screen. The word used to run a NODDY
program 1is pLOD. This should be followed by the name of the
program page in inverted commas.

Type PLOD "PROG1" <RET>

If you wish to run a NODDY program a number of times then it 1is
best to place the PLOD instruction in a program line.

10 PLOD "PROG1"

Each time Yyou wish to run the program simply type RUN <RET> and
the NODDY program will be activated.

86

The second program page (PROG2) will allow you to RETURN to BASIC
by pressing one of the keys. The command used to achieve this is
¥ENTER which is not dissimilar to the BASIC input command. Where
¥ENTER is used the computer waits for a key or keys to be pressed
before continuing with the program. Type in and run the program
as before calling the page PROG2. When the page FRED appears
press any key followed by <RET> or just <RET>, the program will
continue and Ready will appear at the bottom of the screen as you
return to BASIC.

PROG2

¥*DISPLAY FRED.
¥*ENTER
¥RETURN

Program 3 uses the commands ¥IF, *GOTO and uses labels to place
you more in control of the program. #*IF is used to instruet the
computer to ask if your ¥ENTER is the correct one. If it is then
the computer will move onto a different part of the program as
required, This is carried out by using a label. For example in
line 3 the instruction *IF R,r tells the computer to compare the
*ENTER with R and if R is the key pressed to find a letter ‘r!
and continue from there. So that the computer does not confuse
the 'rt' at the beginning of the new pProgram line with any other
it looks for an 'r' preceded by ~.

(Labels can be any character on the keyboard and you should
attempt to work out the best system for you to use. The important
thing is to be consistent and keep to a plan.,)

If a key other than 'R!' is pressed then the program continues
with *GOTO PROG3. The #*GOTO command is used in this page to
return the control back to the beginning of the program page we
are in. Normally *GOTO would be used to activate other program
Pages, Notice the fullstop after PROG3 and the position of “r,

PROG3
¥DISPLAY FRED.
®ENTER
¥IF R,r
#GOTO PROG3.
“r ¥RETURN
BRANCH

A better way to take control to the beginning of the present
Program page is to use the command *BRANCH. PROGY4 illustrates the
Use of *BRANCH and extends the use of labels to allow You to use

87

a *ENTER to print FRED on the screen.

PROGY
“t ¥*ENTER
*IF F,a
#IF R.r
#BRANCH t

“a *DISPLAY FRED. ¥BRANCH t
“r ¥RETURN

The final program in this series PROG5 allows us to use the pages
as a telephone directory. The first step is to create more pages.

Type SID <RET>

gid's telephone number is 555987
BERT

Bert's telephone number is 555321
Now type in the program page
PROGS

¢ ¥*ENTER
*IF F,a
#IF B,b
®¥IF 3,c
*IF RET,r
¥BRANCH t

“a #DISPLAY FRED. #BRANCH €

“b *DISPLAY BERT. ¥BRANCH t

e *¥DISPLAY SID. ¥BRANCH t
“r *RETURN

The first six lines of the program are a loop where the computer
is waiting for 2 $ENTER of F,B,RET or S. If any other input is
received then Yyou will *BRANCH to t. 1f RET is entered then you
will branch to r and RETURN to BASIC.

iIf F,B or 5 are pressed with a ¢RET> then control is passed to
l1abels a,b and ¢ respectively. As each is displayed the program
branches to "t at the beginning of the program and you are ready
to begin the process again.

88

LILILLLLELLII7007700077707777777070007077777777777777727777717777

EXERCISE 24 NODDY

Improve the final address book program by getting the computer to
display a MENU page at the beginning of the program and arranging
the program so that it returns you to the MENU after each
display. The MENU page is designed for you., Your task is to amend
the page PROGS.

MENU

There are three telephone numbers in the directory:

SID ,FRED, BERT.

To display their numbers type the first letter of their names and
press the <RET> key.
To return to BASIC type RET

As a further exercise try to design a program to hold your own
address book.

LIVITTLIIE00070077777007707777077707077007770277777770772777772777

To further illustrate NODDY programs, the next example shows you
step by step how to create a program to simulate a book.

When reading a book there are a number of mechanical tasks
required. You need to be able to turn a page, look through
chapters to find your place, look back to check on some detail or

if you wish to cheat look at the last page to find out "who dun
icn,

To write such a program in basic would involve a fairly
complicated program with many loops perhaps using subroutines and
So on to enable you to call up the required pages. Then there
would be the difficult task of formatting each page. NODDY
requires only one program page, a contents page and a contents
page for each chapter. The plan for the program is shown below.

STAGE 1
WHICH CHAPTER

CHAPTER 1 CHAPTER 2 CHAPTER 3
PETS FARMS 200

STAGE 2

WHICH PAGE
P1 DOGS P1 SHEEP P1 LIONS
P2 CATS P2 PIGS P2 ZEBRA
P3 MICE P3 CATTLE P3 SNAKES

89

IIIIIIIIlI.!.!l!ll.l...........IIII----——___m

There are no nard and fast rules as to how Yyou approach the task
of setting Uup the book. It is often easier to start with contents
and workK through the book, rather than begin Wwith the program
since you may wish to change the contents.

The book you are about to write is called MAMMALS,.It consists of
four chapters as in the plan and page one is entitled DOGS.

Type poGS <RET>

Type on the remainder of the page, in any form Yyou wish, some
information about dogs. When you have completed the page DPress
the <RET> key and the page will be saved exactly as you typed it.
Repeat this for each page in the plan.

The next stage is to write a contents page for each chapter.

As before You first type a title to the page followed Dby the
information required as below.

CHAP1 PETS

CONTENTS
Cchoose which page and type pi,P2, or P3
P1 DOGS
p2 CATS
P3 MICE

Complete a contents page for each chapter. To check whether all
the information you need has been input type DIR and a directory
of your pages will appear on the screen as below.

CHAP1 CHAPZ2 CHAP3

DOGS SHEEP LIONS (NB The order of the directory
CATS PIGS ZEBRA varies according to the inputting
MICE CATTLE SNAKES

in order to start in the book at the appropriate chapter @
Chapter contents page is needed, S0 as not to confuse this page
with those contents pages already input we will call this page
TITLES.

Type TITLES <RET>

90

Choose which chapter and type 1,2,3 or RETURN to BASIC.

1 CHAPTER 1 PETS
2 CHAPTER 2 FARM
3 CHAPTER 3 Z0O
R RETURN

This completes the contents of the book and all that remains 1is
to write the program page. As before we give this page a title
(MAMMALS) and then type in a series of command statements. You
will notice that the full form of the commands has been replaced
by the use of a single letter. Also notice that *E can appear on
the same line as ¥D and that the *IFs are all grouped together.
The labels indicated by " preceding a letter have been structured
in such a way that it is clear which letters refer to title pages
and which to pages of text. Your NODDY programs will work without
all this careful formatting. However, when you arrange your
programs in this way you reduce the number of mistakes you are
likely to make.

Examine the program carefully line by line as you input, thinking
about what is the function of the line and how does it carry out
the desired instructions:

Line 1 displays the main contents page called TITLES and tells
the computer to wait for an input to be ¥ENTERED from the
keyboard.

Line 2 compares your input with the expected 1,2,3 or R for
RETURN and instructs the computer to find labels a,b,c or r
respectively and continue from the label. If any other letter or
number is input then control is returned by the *BRANCH t command
to the beginning of the program.

91

Continue analysing the program in this way.

MAMMALS
“t %D TITLES. *E
*] 1,a *I 2,b #1 3,c *1L R,r *¥B €
“~a *¥D CHAP1. *E
£ P1,g *I P2,h *I P3,1 *B ©
~g *D DOGS. *B d
“h #p CATS. ¥B d
“i *pD MICE. *B d
“b %D CHAP2. *E
%I p1,j *I P2,k *I P3,1 *B t
3 *#D SHEEP. ¥R d
“k ¥D PIGS. *B d
~1 *#D CATTLE. *B d
~c #D CHAP3. L
*T P1,m ¥I P2,n #1 pP3,0 *B t
“m #D LIONS. *B d
“n *D ZEBRA. ¥B d
s #D SNAKES. ¥B d
~d *E *B L
“r *R

Press the enter key to save the program Dage nMAMMALS" and
provided Yyou have made no errors inputting the program it 1is
ready to run. If you have made a mistake the computer will give
you one of three error messages: INO DATA ERROR? ,'OVERFLOW‘ or
1MISSING SYMBOL' and return you to BASIC.

No data means that the computer is looking for 2 page title that
it cannot find. 1t is more likely that you have not entered the
page, however it could be that your entry for the page is
misspelt or that you have forgotten a space ete.

Overflow occurs where the computer has reached the end of the
program page whilst looking for a label or command.

Missing Symbols could occur if ¥ or ., are missing from the
program Dage.

These error messages are only hints about the error. To find the
error, the message should be considered together with the page on
which the error occured.

To correct the page press the CLS key and type NODDY. When Noddy
appears on the screen, type the page title MAMMALS and the page
is ready for editing. Check that all punctuation is correct and
when you are satisfied that it is correct press the enter keY
again.

Go back to BASIC.

92

Use the command PLOD to run the program.

Clearly this program can only operate a book with three chapters
each with three pages., It would be a very 1limited book and
without radical alteration cannot be increased in size. The
program barely fits on the page. To get around this problem the
¥GOTO statement allows you to switch to another program page. A
better design would be to make each <chapter contents a new
program page and instead of using the ¥B t you would use #*GOTO
MAMMALS. for example.

LILILTITLL T2 0000700707707 7727077077070777770770777707727777777

Exercise 25 NODDY Book Program
Redesign the program to contain four chapters each with four
pages.

LHTELLLTTTI1 0070007770070 70777777770777777227707777777777707777777777
The *GOTO statement is one of four program handling commands.

Program pages are stored in a stack rather like a stack of
plates. When they are used they are taken from the stack from the
top. Imagine you have three program pages to run one after the
other. Using the STACK statement it would be written like this:

¥STACK PROG3,PROG2,PROGT.

They would be taken from the stack in the order PROG1,PROG2 and
finally PROG3.

The command *STACK is used to tell the computer the order of
programs to be run. They are taken from the top of the stack each
time and therefore in the example above, PROG1 would be run
first,PROG2 second and PROG3 third.

The command #*ADVANCE tells the computer to advance or move
through the program stack. ie remove and execute the program on
top of the stack.

The *QFFSTACK command tells the computer to take the next program
off the stack without executing it.

We have designed a set of programs to show you how these commands
operate,

93

Set up the following three pages called AA,BB and CC.

AA

AAAAAAAAAAARAAAAAAAAAAAAAAAAAAAAAAAAAA

BB

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

cC

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

The main program page is called PROG and jooks like this:

PROG

#s PROG,PA,PB,PC.
*A

There are three other program pages called PA,PB, and PC.

PA

*D AA, ¥P ¥P ¥A
PB

*D BB. *P ¥P ¥A
PC

%D CC. ¥P *P ¥A

When you PLOD WPROG" the computer pushes four program pages
the stack:

PC

PB

PA

PROG

94

onto

¥A at the end of PROG takes the first program of the stack which
is PC and executes it. CC is displayed for the length of the
pauses *P, Meanwhile PC has been discarded and now the stack
looks like this:

PB

PA

PROG
¥A at the end of PC instructs the computer to take PB from the
stack into working memory execute and discard it. This process is
continued until PROG is reached and the stack is reassembled.In
this way a loop has been formed.

To stop the program press the BRK key. If you insert an OFFSTACK
COMMAND in program PC as below then PB is taken offstack each
time and missed out.

PC
¥D CC, *p *p #0 %

//

Exercise 26 Noddy Program Handling Commands

Use the principals in this section to design a program to enable
you to scan the four chapter contents Pages in Exercise 1.

A further advantage would be to use the *OFFSTACK command to
create an option where you only scan the chapters beyond the
point in the book you have reached.

//

The final command which we have not used as yet is ¥LIST. You
cannot use LLIST or LPRINT in NODDY since the text is stored 1in
full pages. You will also have to set your printer to accept a
line length of 39 characters. You will find instructions in the
manual supplied with your printer on how to change line length.
If you have an EPSON type printer, for example, the command you
would use is:

LPRINT CHR$(27);"Q";CHR$(39)
To print out a page of NODDY you simply type ¥LIST followed by
the page title with a full stop. For example:

*[TITLES,
The computer will print out the page called TITLES.

Noddy is a new and evolving language where there are few rules to
Eovern the way in which programs are written. We have attempted
to give you some guidelines as to the way to procede. However
they are only guidelines; it is for you to develop your own
bProgramming technique. The applications of NODDY are only limited
by your imagination.

(The NODDY commands on the MTX are a subset of the complete
language as described in the NODDY report (1982),)

95

i S~

7——

PART 3
GRAPHICS

The MTX 500 is capable of very sophisticated graphic effects. You
will be able to control the graphies screen in a variety of ways,
changing its size shape and colour, as well as designing complex
animation programs.

Until now you have been using text screens with characters like
a,b,c etc. However, the MTX is capable of high resolution
graphics using its graphics screens. There are two distinct tvpes
of screen; The text screen which is 40 columns wide and 24 lines
deep and the graphics screen which is 32 columns by 24 1lines.
Text can be written to a graphics screen but graphics cannot be
written to a text screen.

It 1is important, even .if you are familiar with graphics
production on other machines, to follow this part of the course
very carefully. MTX graphics are designed to use a few
interactive commands rather than a large number of commands which
operate alone. Though this can make your graphics programs simple
to set wup, it does mean that you have to have a thorough
understanding of the commands.

The graphies manual is split into five sections: Controlling
Text, Controlling Graphics, BASIC Graphics, Further Graphics and
Animation.The first concerns the control of the text screen.

CONTROLLING THE TEXT SCREEN

Though we are introducing these controls as text screen control
as you will see they are used interactively with the other
graphics commands. We will first of all give you the simple uses
of the words and then in the final section draw them together in
sample programs where their interactive use is explained,

CLS The CLS key is used as in many other applications in MTX
BASIC to clear the screen to begin a new task. The
command CLS, however, can also be used as a command
within your program to carry out a similar function.

CSR x,y The command CSR (cursor) places the cursor on the screen
at the coordinates x,y.

To illustrate the use of these commands type in the following
Program line and run it.

10 CL8:CSR 10,10:PRINT "HELLO™

91

B s

When you run this line the screen is cleared, the cursor moved to
position 10,10 (near the middle of the screen) and HELLO printed
from this position.

Use the cLSs and CSR commands to print text on the screen in
different positions. By observing the effect of the coordinates
you can develop a mental map of how the screen ijs divided. This
will be a useful skill to develop for the more advanced stages of
graphics production. There are further notes in the reference
section.

ys (virtual Screen)
A1l print commands are relative to the screen you are using. If
you have 2 small TV screen the coordinates 10,10 would be 1in the
same relative position as 10,10 on 2 large TV screen. The MTX has
an inbuilt method to allow you to create smaller screens within
your screen. These are called virtual screens. The coordinates
10,10 would also be in the same relative position within your
virtual screen. This is demonstrated in the three screens below.

\EEL}iJ : \Hmo J

HELLO

|

MTX BASIC uses four virtual screens. The editor is vys 0 and
consists of four lines which behave as 2 single line. The 1list
screen is VS 1 and consists of 19 lines, the message SCreen is VS
7 and consists of one 1ine at the bottom of the screen. 1he whole
screen 1s called V3 5.

ys 1 LIST SCREEN 19 LINES
VS 5 |
(whole screen)

yS 0 EDITOR 4y LINES
vs 7 EDITOR 1 LINE

CRVS n,t,x,y,w,h,s
This is the command used to create your own virtual screens. The
information is placed into the computer in the form of 18
parameter statement rather 1ike sound:

CRVS n is the ys identification number in the range 0-T¥
screen type (O for text and 1 for graphics)

is a coordinate of the top left nand corner of the VS
is a coordinate of the top jeft hand corner of the V35
width of screen in characters

depth of screen in lines

the number of characters which exist in one line of the L
type of screen in Sgr (40 for text screen and 32 for graph®s

PR A

98

¥ NB do not use VS 0,1,5 or 7 since these are used by BASIC
itself as identifiers.

VS 4 is used by BASIC for its full graphics screen.

If you should create one of these then it will be redefined
whenever you return to the BASIC Ready.

A simple example of a VS would be to define a block 10 characters
by 10 characters in the centre of the screen:

10 CRVS 2,0,20,10,10,10,40
20 VS 2
30 DSI

Line 10 defines the screen, 1line 20 selects the VS number you
wish to use, this should agree with the first parameter in line
10 and line 30 introduces a new command DSI. DSI (Direct Screen
Input) tells the computer to direct input from the keyboard to
the new VS. If you now type information to the screen you will be
able to see where the screen is located and its size,

Now press the <CTRL> key at the same time as the hat key <> the
cursor will appear in the VS. You can now use the cursor keypad
to edit the information in your VS. If you switeh from one VS to
another the cursor will be exactly where you left it so that you
can easily carry on inputting from where you left off.

Take this opportunity to try some of the other keyboard controls.

The <PAGE> key is used to decide whether you are in page or
scroll mode. In page mode when you reach the bottom of the page
the cursor moves to the top of the page for the next page of
input. In scroll mode when you reach the bottom of the screen the
information you have typed scrolls up. Switch from one to the
other to see how the different modes work.

Experiment with <ESC>I and <ESC>J. (Unlike the <CTRL> key in this
case type <ESC> followed by I or J). In the reference section
there is a list of control characters and escape sequences which
you will find useful.

29

B

//
EXERCISE 27 VIRTUAL SCREENS

Set up three ¥S to take your name address and date of birth. You
will have to estimate the ammount of space you will need in each
case to make sure that they do not overlap.

NAME
ADDRESS

DATE OF BIRTH
///

The two remaining text control commands PAPER and INK were dealt
with in the BASIC tutor. You should read through this section if
you have not already done SO.

Before moving on to the graphic section you should be aware that
the default screen in operation when you switch on is @ text
screen. Before you can begin any graphics you first of all have
to define a graphics screen. JYou will see in the sample programs
at the end of this chapter that either a special screen is set up
using a CRVS command oOr VS 4 is selected. This 1is usually
combined with a cLS command. (eg 10 VS u4:CLS)

BASIC GRAPHICS

The commands used in this section are those to be found in
standard BASIC graphics. They are used to plot points,lines,
arcs, circles and S0 oOn.

PLOT x,y 18 used to plot a pixel(point) at the coordinates X,Y¥-
LINE x,Yy,p,q draws a 1ine from the coordinates x,y to p,q.

CIRCLE x,y,r draws a circle of radius r with centre X,Y.
We have included a small program to show you how these work.

10 VS &

20 CLS3

30 FOR I =1 TO 191 STEP 1

uyo pLoOT I,1

50 NEXT I

60 CIRCLE 100,100,50

0 INPUT A%

: 80 IF A$ = "3" THEN STOP ELSE GOTO 10

100

Lines 70 and 80 are important since the computer completes the
program in a fraction of a second. The two lines can be replaced
by the single line 70 PAUSE 10000. This line will show the
effect for ten seconds before returning to BASIC.

Try experimenting with this program. For example you could insert
lines:

65 LINE 10,20,150,170
68 LINE 35,150,170,55

Design your own programs which draw circles and lines on the
screen. Try to become sufficiently familiar with the commands
that you are able to plot on the screen exactly what you intend,
without trial and error type guesses,

FURTHER GRAPHICS

In BASIC graphies you have learnt how to plot 1lines on the
screen, In recent years the development of TURTLE graphics has
led to an interest in interactive graphiecs (LOGO for example).
Your MTX has the ability to handle this type of program but
before we show you the type of program that enables you to set up
LOGO-1ike graphics we will look at the commands which achieve
this.

There are four commands which we will be using; ANGLE, PHI, DRAW
and ARC. The first three of these we will deal with together.
They are used to determine the direction of the lines or patterns
to be drawn. The computer remembers a direction which is set by
the ANGLE and PHI commands.

ANGLE (radians)

The ANGLE command sets the initial orientation of the computer
from a =zero value in the horizontal plain through 360 degrees.
The values of ANGLE are given to the computer in radians which
are converted by the formulae:

To obtain radians: To obtain degrees:
R=2x PI #D D = 360 R
360 2xPI

There are several steps which are required to design your
Programs with accuracy. The first involves working out the
initial value of ANGLE. Remember this sets the initial direction
Eiven to the computer. The value of 0 would set the initial
direction as horizontally across the screen to the right. As you
add radians to this the angle with the horizontal is made larger
and the intial direction is moved in an anti clockwise direction.
You can use ANGLE therefore, to rotate your pattern or shape.

101

————E——

You may not be accustomed to thinking in RADIANS and SO W€ have
designed a short program to convert degrees to radians:

10 INPUT "TYPE IN THE ANGLE niA

20 LET A-A%(2%#(PI/360))

30 PRINT "PHI VALUE= wiA

40 PRINT:PRINT:PRINT:PRINT

50 PRINT "DO YOU WANT ANOTHER NUMBER?"

60 INPUT "Y FOR YES N FOR NO n:B$
70 IF B$="1I" THEN GOTO 10 ELSE GOTO 80
80 CLS:STOP

Amend the program to carry out the reverse calculation from
RADIANS to degrees.

The second step is to use the PHI command. Each time PHI is
encountered, its angle is added to the direction already held Dby
the computer. We have given you an example of this in the program
belowW.

10 VS 4:CLS
20 ANGLE O
30 FOR I=1 TO 10
40 PHI .1
50 PLOT 120,100
; 60 DRAW 50
r 70 PRINT ,,,1
80 NEXT I
90 GOTO 90

In this program you will see that as each FOR loop is executed an
additional PHI is added, changing the direction of line drawn
from the original plot position. This shows Yyou the simplest form
of relationship between ANGLE and PHI. The other programs later
in this section show you 2 more dynamic relationship where the
two commands combine to draw arecs and spirals.

: DRAW x
Draws a line of length x from current plot position in direction
set by the other two commands. (ANGLE and PHL).

We have included three programs to help you to Se€e€ how these
commands operate.

10 VS 4:CLS

20 ANGLE 0

30 PLOT 100,20
40 FOR I=1 TO 8
50 DRAW 70

60 PHI PI/A

70 PAUSE 1000
80 NEXT I

102

By <changing 1lines 40 and 60 Yyou can make any symmetrical
geometric shape wusing this program. The number of sides is
decided in the FOR statement and the size of the angle in 60.
PI/4 for example is equivalent to an angle of 45', Using this
method to produce a square the line 40 would be amended to draw 4
sides and PHI would be PI/2.

10 VS 4:CLS Clear the graphiecs screen.
20 PLOT 100,100 Set starting position.

30 ANGLE 0 Set initial direction.

40 FOR I = 0 TO 1 STEP .01

50 DRAW 7 Draw a line of length 7.
60 PHI I Add angle I to direction.
70 NEXT I

As the value of I changes PHI is altered in 1line 60 thus
producing a spiral effect. Try changing this program by altering
the values for ANGLE and DRAW and see what happens. If we change
the size of the step in line 40 to .001 then this smaller step
produces a bigger spiral. You will find that to fit the new
spiral on the screen you will have to reduce the line length to
less than 2.2 in line 50. The alternative to this would be to
pPlot a lower position in line 20.

//
EXERCISE 28 ANGLE PHI AND DRAW.

By changing line 40 in the above program make the spiral reverse
by beginning in the centre and spiralling slowly outwards.

//

Make the following alterations to the above program one at a time
and at each stage run the pProgram to see the effect.

Eove the plot command at line 20 to within the FOR loop at 1line
5.

Now insert a test at 1line 65 to prevent the program from
stopping.

65 IF I=1 THEN GOTO 45

The second program uses the same principle to set up a continuous
Pattern, Again try amending the program to make the effect bigger
and smaller and move the starting point around the screen.

103

o VS u:CLS
20 PLOT 200,55
30 LET 1=0
no ANGLE O
50 DRAW 1
60 LET I=1I-.1
o PHI 1
80 GOTO 50

The commands you have used so far will give you jncreased control
over the displays you can produce. The curves in the two programs
above are useful to produce spirals; (the curve gets steeper and
steeper).

ARC x,theta
Draws an arc length X while turning through an angle theta. In
the program below we have used ARC to draw @ gseries of 1ines from
the plotted position in a spiral manner. By adding another 100P
and reversing the effect try to make the shape into an 11 leaved

flower.

DIAGRAM

New direction

Initial direction set

by ANGLE and PHI
50 ARC 100,2: PHI 2

60 PAUSE 1000
70 NEXT I

CONTROLLING THE GRAPHICS SCREEN
Refore moving on to the creation of more complex shapes and
sprites it is well to remember how your graphics and text sereens
work. They consist in both cases of a series of points called
pixels which can be switched on and off. When working in :
default setting of the text screen, the packground (paper)
blue and text (ink) is white. When you press a text key TAY

example the pixels which make up 1pY are switched from backgrou
PAPER to foreground INK and the 1etter A appears. The letter A 180
a pattern made up of pixels within an eight rows by eight columns
matrix.

* e @ o o o4 s @
® -9 « v .
* s o @ s
oo ..,
o ¢ o) & s

Notice that there are spaces below and to the right of the letter
to stop adjacent characters merging together.

You may have noticed already that the size of characters on the
graphics screen appears larger than on the text screen. This is
because in order to place 40 characters on the text screen the
computer ignores the two rightmost columns of dots. If you look
at a letter 'A? displayed on the screen You may be able to see
the dots which make up the pattern. The text screen can therefore
be considered as a matrix of dots large enough to display 24 rows
of 40 characters, The number of dots can be calculated as:

40 X 24 characters
= (40x6) X (24x8) dots
= 240 X 192 dots

The ASCII characters are simply an internationally accepted set
of patterns including letters numbers and symbols each of which
is associated with a unique number called its ASCII code.(see
reference section)

Type in and run the program below.

10 VS 4

20 CLS

30 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
40 psI

This allows you to type characters on the graphics screen and you
should be able to see the dot pattern of each character and the
gap between them caused by displaying the complete 8X8 pattern.

The above calculation for the graphies screen is:
32 X 24 characters

(32x8) X (24x8) dots
256 X 192 dots

When wusing graphics therefore you can think of the screen as
being made up of a 256 X 192 matrix, where the dots are selected
in commands such as PLOT by considering the screen as a graph
With the axes along the bottom and left hand side and the
Fequired dot being specified as coordinates.

105

——.

In the text mode we set the foreground and background colours on
the screen using the commands PAPER and INK and the only patterns
which we displayed there were the pre—defined ASCII characters.
The GRAPHICS screen is much more flexible 1in terms of colour and
patterns and accordingly We need a number of extra commands.

When wWe used PLOT, DRAW and ARC, we were actually changing the
colour of individual pixels. When you clear the screen with the
CLS command Yyou are setting all of the pixels to the colour
chosen bY the PAPER command. Typing or pLOTEing on the screen
changes sSome of the pixels to the colour chosen DY the INK
command thereby creating a pattern. Changing colour in this way
gives the j1iusion of switching pixels on and off.

Aspects of control such as defining screens and their
manipulation are the sameé for text and graphics. However, the use
of colour in graphics is much more complex and sophisticated. The
commands COLOUR and ATTR are used to set up parameters. They
enable you to have greater control over the colours you produce.

COLOUR p,n (Graphics only)
Colour is the command which determines which colour is used.

p is the parameter
n is the colour

The parameter concerns which areas of the screen are to be of the
colour defined DY tnt, The values of n are as in the commands
PAPER and INK. The values of p are explained below. TO understand
graphics colour you have to be aware of the composition of the
graphics screen which we have just explained to you. You may for
example be writing text to the screen in which case You would use
the normal paper apnd ink values.

print paper
print ink

P
P

nn
-
nn

The pixels which are changed from the PAPER to INK colour when
characters are sent to the screen are determined by the ASCII
codes.

Wwhen using graphics commands to plot or manipulate the graphics
screen, HhOWEVET, each pixel is potentially treated individually-
There are 256 by 192 pixels on your graphics screen. Each o©f
these therefore, can have the same colour properties as the text
screen. 10O control these you would use the non print paper and.
ink commands. In this case pixels which you have plotted would
take on the colour defined by the parameters 2 and 3.

2
3

non—print(plot) paper
non-print(plot) ink

P
1%

un

nn

106

The final parameter is concerned with the remainder of the
screen. The wuse of this value will make the border around the
graphics screen the colour 'n'.

p = 4 = border colour

Try this program and vary the colours in the lines 20,30 and 40
using the chart in CHAPTER 1.

10 VS 4:CLS
20 COLOUR 2,5
30 COLOUR 3,3
40 COLOUR 4,6
50 ANGLE 0

70 PLOT 120,100
80 DRAW 50

90 PHI .2

100 GOTO 70

ATTR p,state (graphic only)

The second graphics command involves the further manipulation of
the pixels as set by the COLOUR command. The command ATTR can
help you achieve very sophisticated graphic effects by changing
the properties of the pixels you have activated by typing or
plotting information on the screen. We have written a short
program to show you how the command works:

10 V3 4:CLS

20 INPUT "ATTR P N ? ";P,N
30 ATTR P,N

40 DSI

50 GOTO 20

If you run this program it will ask you for values of p and n.
'n' simply switches the ATTR on and off where 1 is on and 0 1is
off. Try typing over characters to see what happens for different
attributes. Continue the program loop by <RET> to exit from the
DSI command and select another ATTRibute.

P =0 ; inverse print ATTR

If you set the n value to 1 you will see that the characters you
print are reversed so that the characters are printed in the
paper colour and the paper in the ink colour. If you return to
the home position then type another character the point of
overlap in the characters is reversed. This can give you
interesting pattern effects.

If an attribute is switched on, it can be switched off by tybing
in p,0., (p=1,2,3 or 4),

The ATTR settings are switched on and off rather like using the
PAGE key to switch from mode to mode.

Switch off attribute O.

107

Enter 0,0 as the p,n values.

p=13: overprint ATTR

If you now switeh this ATTR on by typing in 1,1 and type in 10
1D's and ten spaces followed by 10 'D's and so on. Return to the
home position and hold down the D key. 'D's will be replaced with
spaces, and spaces with 'D's. With this attribute switched on,
points plotted on top of other points will always have the effect
of unplotting the point. This is why a D typed on top of another
D erases it.

The ATTR commands are not used exclusively and can be merged to
combine effects. If you now return to the program and input 0,1
this will have the effect of leaving 1,1 switched on but adding
the inverting paper and ink effect in 0,1.

Now ¢try switching on and of f the following ATTR effects and
experiment merging the different commands.

p =23 unplot ATTR

When this is set points will be unplotted rather than plotted. In
other words, the points will be plotted in the paper colour
rather than the ink colour.

p =3 ; over plot ATTR
If this is set:

A) During plotting, plots a point if it wasn't already there and
leaves points already plotted unchanged. This allows characters
to be written over each other.

B) During cLS and other functions, the text is unchanged but
colours can change. This is useful for changing paper and 1ink
while leaving text intact.

If both inverse plot and over plot attritubes are set then the
effect during plotting is to do nothing on the screen. This cab
be used to move plot position but leave the screen the same. You
can use this to guide the PLOT SPRITE (see pelow) around the
screen.

108

ANIMATION
Animation can be achieved on the MTX by the use of SPRITES.

A sprite can be thought of as a small drawing board on which
objects can be drawn. By moving the drawing board, the object
drawn on it will appear to move around in front of the graphies
screen,

Type in and run the following program which should produce an
arrow moving from left to right across the screen. Don't worry
about how the program works at this stage.

10 VS 4:CLS
20 CTLSPR 0,1

30 CTLSPR 2,1

40 CTLSPR 3,1

50 CTLSPR 5,1

60 CTLSPR 6,1

70 GENPAT 3,1,24,4,2,255,255,2,4,24
80 SPRITE 1,1,1,100,10,0,1

90 GOTO 90

The sprites are similar to characters and are either 8x8 pixels
or 16x16 pixels but unlike characters a sprite can have only one
colour,

There are 32 sprites which are numbered from 0 to 31 and are
arranged as in the diagram below: —

Each of the pictures in the diagram represents a single display
plane within which a sprite can move. The sprites are arranged in
this way so that you can build up animations which have depth
with sprites able to pass in front of and behind each other.

Since each sprite can be a different colour, multi-coloured
objects can be created by overlaying several sprites. Beware
however that a maximum of 4 sprites are allowed in any horizontal
row before the results become unpredictable,

If you study the diagram above you will see that the PAPER and
INK plane is behind the sprites. As the sprites move, the
background remains static, In order that your graphic displays
can appear real ie. where the sprites enter and leave the screen,
the sprite planes are bigger than the screen. This means that the
Sprites you are to use need not suddenly appear but can be
waiting in the wings offsecreen until the program calls them into
action, Circling sprites can also be defined which apparently
orbit your television so that when they disappear off one side
they will reappear on the other some time later.

109

Change line 80 in the above program to
80 SPRITE 1,1,1,100,120,0,1

When Yyou run this program, wait a few seconds and you will see
the sprite orbiting.

The commands used to set up these complex pictures are
interactive. That is to say each affects the other to control the
activity on the sereen, You have already seen how the pixels on
the text and graphics screens are manipulated to give interesting
patterns and effects. These are used to form the background to
your animation. The sprite commands are used in much the same way
to define each sprite plane ip turn to build up the total
picture.

Before giving you the details of the commands, Wwe &are going to
puild up a diagram to show you how they relate together:

The whole basis of animation is that your shapes (sprites) can
move. The first command we will look at therefore, 1is MVSPR
(movesprite). In each command we have to tell the computer which
sprite we are referring to {(numbers 0-31) and in the MVSPR
command we can tell the computer how to move the sprite and 1in
which direction.

[MVSPR] — _» MOVEMENT , SPRITE No , DIRECTION
Though this command has told us which sprite plane is to be used
the sprite has no shape or colour and so at this stage Yyou could

not see it. We therefore use the SPRITE command to define the
sprite.

[SPRITE] : PATTERN,POSITION,SPEED,COLOUR

[MVSPR] : MOVEMENT , SPRITE No , DIRECTION
In the SPRITE command the sprite is given a position, a speed, 2

colour and a pattern number. The pattern number selects a shape
for the sprite which has been defined using the GENPAT command.

110

(GENPAT] : PATTERN NO,PATTERN

[SPRITE] : PATTERN, POSITION, SPEED, COLOUR
NO

[MVSPR] : MOVEMENT , SPRITE No y DIRECTION

Having set up the sprite you now have to control it. Each time
the MVSPR command is used, it tells the sprite to move one step
in the given direction. The step size however is specified in the
CTLSPR command, as are other parameters such as the size of the
sprites, the unit of speed and how many sprites we actually want
to use,

[(GENPAT] : PATTERN NO, PATTERN

speed unit

distance unit

number of sprites

size

[CTLSPR] ——0 [SPRITE] : PATTERN, POSITION, SPEED, COLOUR
NO

[MVSPR] : MOVEMENT , SPRITE No y DIRECTION

Notice that the CTLSPR command affects all of the sprites,and
that the SPRITE command only affects an individual sprite. If we
wish to change the speed colour or position of an individual
Sprite we don't repeat the SPRITE command but instead make
adjustments to it using the ADJSPR command., This has the affect
of altering a single parameter by specifying which sprite, which
Parameter and its new value.

11

[GENPAT] : PATTERN NO,PATTERN

speed unit

distance unit ——— [ADJSPR] ¢ ——
number of sprites ‘
size

{CTLSPR] —_— [SPRITE] : PATTERN,POSITION,SPEED,COLOUR

[MVSPR] : MOVEMENT , SPRITE No , DIRECTION

Remember there are two sizes of sprite. The first is 8 columns by
8 rows of pixels whilst the larger version is 16 by 16. The first
of these requires only one GENPAT statement whilst the 1larger
requires 4, one to define each 8 by 8 quadrant of the whole
shape. All sprites in use at any time must be the same size which
is selected using the CTLSPR command. Having defined the size in
this way you can make it grow to twice its size by using the
MAGNIFY parameter again in the CTLSPR command.

In CTLSPR we defined the distance unit. This is the number of
pixels to be moved during a MVSPR command. CLTSPR can also allow
a number of sprites to move by themselves. These sprites are set
up by GENPAT and SPRITE as before but they now need to be given a
speed. The speed of a sprite moving in this way 1is determined by
the speed unit set up in CTLSPR. The CTLSPR speed unit sets the
step size (ie pixels per second). The actual speed 1is then
determined by the SPRITE command which sets the number of steps.
Therefore, if the step is set at 20 pixels per second in [CTLSPR]
and 5 units in [SPRITE] the final speed would be:

20 pixels x 5 units = 100 pixels per sec

We are now going to build up a program step by step to create a
sprite and make it move. You will find it useful to refer to the
introduction and diagrams above to make sure that you understand
each step. As we use each command we will give you all of the
parameters which can be selected.

GRAPHICS SAMPLE PROGRAM
Remember the first step when writing graphics programs is to set
up a graphics screen:

10 VS 4:CLS

20 CTLSPR 2,1

30 GENPAT 3,0,255,129,129,129,129,129,129,255
40 SPRITE 1,0,128,96,0,0,1

50 CTLSPR 1,1

60 LET Y=ASC(INKEY$)-48

70 IF Y>8 OR Y<1 THEN GOTO 60

80 MVSPR 9,1,Y

90 GOTO 60

112

Line 20 CTLSPR is used to tell the computer that there is going
to be only one sprite in the program. If you look at COMMAND 1
below you will see that the CTLSPR command works 1ike this:

The value for x varies as you can see for each parameter. In the
case of line 20 parameter 2 tells the computer how many sprites
to expect and the x value of 1 indicates that only one is to be
used. This parameter is used like the DIM statement in that it is
informing the computer of the amount of Space required,

Line 30 defines the pattern for the sprite. Read through the
details in COMMAND 2. You will see that GENPAT 3 defines the
pattern for an 8 by 8 sprite.

30 GENPAT 3,0 The 0 is the pattern number. Any sprite which is
assigned the pattern number zero will be given
this pattern.

30 GENPAT 3,0,255,129,129,129,129,129,129,255
ri r2 r3 r4% r5 ré6 r7 r8

The rest of the numbers ,ri to r8 above, define the pattern.
Each row of the sprite is defined by one of the numbers i.e. ri
defines the top row,r2 the second and so on.

To design a sprite, first draw the pattern in an 8x8 matrix on
graph paper.

128 64 32 16 8 4 2

0 0 0 1t 1 0 0 0 ri=24
0O 0 0 01 0 O r2=4

0 0 0 0 0 0 1 © r3i=2

T 1 1 1 1 1 1 1 r4=255

LU N R FE R N B r5=255

0 0 0 0 0 0 1 0O ré6=2

0O 0 0 0 0 1 0 0 r7=4

0 0 01 1 0 0 0 r8=24

This pattern is the orbiting arrow in the example above. To find
the numbers in the GENPAT statement, just add up the numbers at
the top of any column which has a 1 in it.

To give you experience setting up GENPAT statements input the
Program below, You will be able to input this program with the
other still in working memory since it starts at line 100. When
you run it the cursor will go to the top of a virtual screen and
the number 4 will appear with a question mark, The 4 indicates
that you are inputting the GENPAT statement U and the question
mark is asking you to input 8 numbers between 0 and 255. Each
number has to be separated by a comma.

113

[

Try the following line first:
255,129,129,129,129,129,129,255

When Yyou (RET> the sprite will appear at the foot of the
and the top jeft hand corner will take on a square shape.

virtual screen HAPPY 7 will appear. This is to give you a chance
to change the l1ine if Yyou wish. If you are happy press nyn and g0
on to GENPAT 5 if not presS uN" and do B again. Now experiment

with different numbers for the other 1lines. When You
completed 1ines 4,5,6 and 7 you have completed a sprite.

100 CRVS 4,1,1,3,30,10,0
110 VS 4

120 CLS

130 CTLSPR 2,32

130 CTLSPR 5,0

150 CTLSPR 6,3

160 FOR I=4 TO 7 STEP 1

170 PRINT I

180 INPUT A,B,C,D,E,F,G,H
190 GENPAT t,0,A,B,C,D,E,F,
200 SPRITE 1,0,100,30,0,0,1
510 INPUT "HAPPY 2";A%

520 IF A$="Y" THEN GOTO 230 ELSE GOTO 170
230 NEXT I

240 GOTO 160

G,H

To return to the explanation of the program, 1line 40 1is
command which sets the parameters to control the sprite.

4o SPRITE 1,0,128,96,0,0,1

The first digit is the sprite pumber which tells the computer
which sprite plane this sprite will operate in. The second is the
pattern number which was set in the GENPAT statement. The number

128 is the position of the centre of the sprite on the x axis and
96 sets the coordinate on the Y axis.(The coordinates are set as

in PLOT with 0,0 Deing the bottom 1eft hand corner of
screen.)

The fifth and sixth digits set the speed of the sprite, the first

being the speed along the x axis the second the speed along
axis. In this case we do not want the sprite to
independently and so no speed instruction is given. The
number in the statement sets the colour at 1.

Line 50 of our program is used to give the sprite

jnstructions apout the way it is going to move. I1f you 1o0k
COMMAND 1 the jpstruction 1,1 means that the sprite will move
pixel at a time when requested by a key depression. (NB the Auto
Repeat function affects the plotting in that the sprite will move

at the speed of auto repeat if it held down.)

50 CTLSPR 1,1

114

Lines 60 and 70 are used to allocate keys to move the sprite in
different directions. Each direction is allocated a separate key
in 60 (the -48 is to reduce the ASCIT code to a range of 1-8) and
if any other key is pressed a loop places control back in 1line
60.

60 LET Y=ASC(INKEY$)-u48
70 IF ¥>8 OR Y<1 THEN GOTO 60

Line 80 wuses COMMAND 4 to instruet the computer to move in
response to the eight key depressions. The CTLSPR command was
used to set movement on request. The MVSPR command now instructs
the computer to move the sprite in one of eight directions. The
MVSPR uses a bit pattern rather like the GENPAT statement to
instruect the computer about the nature of the movement. This
enables you to give a series of instruction in one digit by
adding the options together.(See COMMAND 4)

80 MVSPR 9,1,Y

The final line 90 takes control back to line 60 to wait for the
next input.

90 GOTO 60

There are two other commands which we haven't used. These are
ADJSPR and VIEW.

ADJSPR is wused to alter any one of the values which have
previously been set up by the SPRITE command. For example if we
wish to change the colour of sprite number 3 from 1 to 5, we
should use the command

ADJSPR 1,3,5

This command has advantages over re-using the SPRITE command
because it is faster in that only one parameter is changed at a
time, and also we don't have to worry about altering any of the
other parameters,

The VIEW command has the effect of looking through a window in
front of the sprite planes (8192X8192 pixels) where the window is
your television screen (256X192 pixels).

Initially the window is located near the centre of the sprite

Planes with location 0,0 in the graphics screen equal to location
0,0 in the sprite plane.

115

+4095 +409S
4098 VIEW *4095 -4095 +4095
op/, 0.0
4095 -4095

Whereas the MVSPR command moves an individual sprite relative to
the graphics screen, the VIEW command moves the graphics screen
relative to all of the sprites. This means that complicated
sprite patterns made up of many different sprites can easily be
moved. Also sprites can be hidden in the sprite planes in fixed
jocations such that they will only come into view if the window
is moved over them.

We have tried to give you an overview of the way in which MTX
series graphics works. You will need to experiment yourself to
become an expert. The COMMAND words below will give you all that
you need to know, but the descriptions cannot tell you how they
interact. This you will have to find out for yourself. We have
listed two more programs for you to input. Try to understand how
they work and then try to change and add to them to produce
different effects.

EXAMPLE PROGRAM

10 CTLSPR 0,6

20 CTLSPR 2,10

30 CTLSPR 6,3

B0 GENPAT 4.0,1,0,1,2,3,15,1,3:GENPAT 5,0,2,
GENPAT 6,0,64,128,192,160,224,248,192,224:GE
32,48,48,0,0,0

50 SPRITE 1,0,0,0,0,0,6

60 CTLSPR 4,1

70 CRVS 6,1,0,0,32,24,0:PAPER 15:COLOUR 4,6:INK 1:CLS
80 ATTR 3,0:ATTR 2,0

90 PLOT 80,80:ANGLE 0

100 FOR I=1 TO 11

110 ARC 100,2:PHI 2

120 NEXT I

Line 10 controls the speed of the sprite.If you alter this

refering to COMMAND 1 you will be able to speed up and slow down
the sprite.

116

You can make the sprite grow by changing line 30 to:

30 CTLSPR 6,3

You can also extend the program by amending line 80 to:
165 ATTR 3,1:ATTR 2,1

and then add:

200 ATTR 2,0
210 CTLSPR 5,3

220 CTLSPR 0,1

230 LET $=25

240 SPRITE 3,0,100,130,5,0,2
250 FOR W=1 TO 20

260 LET Y=0

270 FOR Z=1 TO 8

280 LET Y=Y+1

290 FOR X=1 TO 25

300 NEXT

310 LET D=Y-8

320 MVSPR 12,3,D

330 ADJSPR 1,3,D+2

340 NEXT

350 LET S=S+5

360 ADJSPR 4,3,S

370 NEXT

EXAMPLE PROGRAM

10 VS 4:CLS
20 PAPER 1:INK 7:CLS:ATTR 3,1
30 FOR X=0 TO 255

40 LINE X,191,255-X,0

50 NEXT

60 FOR Y=1 TO 190

70 LINE 0,Y,255,191-Y

80 NEXT

90 FOR K=2 TO 94 STEP 4

100 CIRCLE 128,96 ,K

110 NEXT

120 GOTO 30

(NB This Program will continue running until you press the BRK key)

117

COMMAND 1: CTLSPR p,X

p = parameter and can be any of the six below:

0 Speed
1 to 255 to O (1 is fastest)

1 pistance
Tells the computer to move the sprite by “x' pixels when
requested.

2 Number of sprites
0 to 32 (The number of sprites must be at least 1)

3 Number of cireling sprites
Sprites that will orbit when they go off the edge of the sScreen
(must not exceed total number of sprites}

Y Plot sprite
A PLOT SPRITE can be chosen which will subsequently appear
whenever a point is plotted. This sprite will move around the
screen following any points or lines drawn by the BASIC
GRAPHICS commands. This sprite can be any of the 32 defined
in the normal way.

5 Number of moving sprites 0 to 32
This is the number of sprites that will move by themselves
according to the x-speed and y-speed set in the SPRITE and
ADJSPR commands.

6 Magnitude and size
=0 size B8X8 mag 1
x=1 size BX8 mag 2
x=2 size 16X16 mag 1
x=3 size 16X16 mag 2

COMMAND 2: GENPAT p,n,d1,d2,d3,du,d5,d6,d7,d8

The GENPAT command is the command used to generate all types of

patterns required by BASIC for characters and SPRITES., There are
5 modes.

1 To redefine an ASCII character. {(CODES 32 TO 127)

2 To define a non ASCII character.(CODES 129 TO 154)

3 To define colour for each line of a character.
This only applies to user definable characters with codes
147 to 154.

4 To define an 8 by 8 sprite pattern.

5 To define each quadrant of a 16 by 16 sprite.

118

User definable characters have codes from 129 to 154,

Mode 1 allows the user to redefine one of the standard ASCII
character patterns. Note that the ASCII characters are the ones
which are most often used by the computer

Mode 2 allows the user to define his own character patterns
without destroying any of the standard ASCII characters.

Mode 3 allows some of these user defineable characters to be

further defined by Specifying an ink and paper colour for each of
the eight rows of the character.

The values for ink and paper are as specified in the table in
CHAPTER 1 but in this instance we are specifying two colours (ink
and paper) at the same time. Each of d1 to d8 specify a paper and
ink colour as a single number:

bit 0 12 3: 4567
ink ! paper

value = 16 * paper + ink
€.2. Red ink on blue paper
= RED : BLUE
=BLUE * 16 + RED

= 4 ¥ 16 4+ g
= 73
MODE P N
1 0 ASCII code (32 to 127)
2 1 user definable (code 129 to 154)
3 2
y 3 pattern number 8 by 8 sprite pattern
5 y pattern number 16 by 16 NW quarter
5 pattern number 16 by 16 SW quarter
6 pattern number 16 by 16 NE quarter
7 pattern number 16 by 16 SE quarter

119

COMMAND 3: SPRITE
SPRITE (= create sprite)
SPRITE n,pat,xp,yp,xs,ys,col

n is sprite number 1 to 32

pat is pattern number 0 to 127 (size 0)
0 to 31 (size 1)

xp is position X of f centre

yp is position y of f centre (in range -4095 to 4095)
0,0 is defined as bottom left hand corner of screen i.e same as
for plot.

NB Sprite coordinates are apsolute and do not look at virtual
screen origins (i.e assume a 32 by 24 graphic screen)

xs is the speed in the x direction range 128 to 127 where 1 unit
of speed moves the sprite 1/8 pixel every master speed cycle as
set by CTLSPR O

ys is the speed in the ¥y direction (plus = upwards) range -128 to
127

col = colour O to 15

COMMAND 4: MVSPR p,n,d

MVSPR 1is a general purpose command which combines U distinct
functions:

P meaning

1 MOVEMENT

2 PATTERN SELECTION
4 REDIRECT

8 PLOT AT CENTRE

The functions are combined to allow complicated movements Lo
occur whilst using only a single ijnstruction. The type of
activity is selected by p as in the table above. If combinations
of activities arée required, just add the p values together. Someé
examples are given below.

120

eg 1 eg 2 eg 3
MOVE 1 YES YES YES
PATTERN 2 NO YES NO
REDIRECT 4 NO YES YES
PLOT AT 8 YES NO YES
CENTRE
TOTAL 9 7 13
p value

As before n selects the sprite number.

d 1is slightly more complicated as it must be able to reflect a
value for several activities. If d is not in the range of any one
of the chosen activities an error will occur.

MOVE (p=1) moves the sprite i step in the direction specified by
d. The step size is set in CTLSPR 1 and the direction must be in
the range 0 to 8 where directions 0 and 8 are the same.

PATTERN changes the sprite pattern to pattern number d. This
pattern should have been defined in a GENPAT statement.

REDIRECT picks up the current velocity vector and Switches it to
the new direction.

PLOT AT CENTRE causes a point to be plotted at the centre of the
Sprite specified by n.This is-not directly affected by the value
of d at all.

COMMAND 5: ADJSPR p,n,v

p meaning range of v

0 pattern 0 to 31 (size 1) 0 to 127 size O
1 colour 0 to 15

2 X pos 0 to 255

3 Y pos 0 to 255

4 X speed 0 to 255 (128 to 255 = neg)

5 Yy speed 0 to 255 (n L

COMMAND 6: VIEW direction, distance

directon = 0 to 7
distance = 1 to 255 to 0O

121

GRAPHICS FUNCTIONS

SPK$ (screen peek)
Gives the character at the cursor location on the current text

screen.
e.g LET A$ = SPK$
Uses; storing screens

GR$ (x,¥,b)
x and y are locations on the virtual screen

b is number of bits read.(If b =1 equivalent to "POINT" function)

bits are vertical bits ie GR$ (20,190,4) gives a character made
up as follows:

bit 7 0

bit 6 0

bit 5 0

bit 4 0

Bit 3 pixel at 20,190
bit 2 pixel at 20,189
bit 1 pixel at 20,188
bit O pixel at 20,187
DSI

direct screen input

Allows you to roam about freely within screen only ending when
carriage return is pressed

CTL W = Tab back

CTL] = PMODE

CTL \ = SMODE

CTL ~ = CURSOR ON

CTL _ = CURSQOR OFF

CTL D , letter A to O = paper A to 0 (1 to 15)
CTL F " s ink A to 0 1 to 15

ESC I = insert line

ESC J = delete line

ESC K = duplicate line

122

PART 4
SOUND

Your MTX can produce a wide variety of sounds which can make your
programs more interesting and is sufficiently complex that you
can use the computer as synthesiser.

Sound is obtained by inputting a sound statement which can be in
two forms:

1. DIRECT
This mode plays a single note until stopped.

2. CONTINUOUS
Sequences of notes can be played by loading them
into a sound buffer.

In each case a sound statement is used to tell the computer what
sound you want.

Direct Sound is produced by the statement:
SOUND CHANNEL , FREQUENCY, VOLUME

CHANNEL -~ There are four channels available, 0,1 and 2 are
all pure tone and channel 3 which is a pink noise
channel. The use of noise is covered later in this
section.,

FREQUENCY - Frequency is determined by values in the range 0 to
1023. The sound tables in the appendix gives you
the relationship between this value and the
frequency produced. The notes produced are also

included.

VOLUME - The volume is determined by entering a value
between 0 and 15 where 15 is the loudest and 0 is
off.

Now try the following sounds:

SOUND 0,200,10 <RET>

Press the two reset buttons and try:
SOUND 1,600,10

and

SOUND 2,900,10

123

Try the sounds together by entering them one at a time without
resetting the computer. You will produce a chord in this way.

Experiment with your own sounds varying the channels, frequenciles
and volumes. It is useful to refer to the sound tables to monitor
the effects of the changes Yyou make and to enable you to
understand how the sound chips work.

CONTINUOUS SOUND is produced by a longer statement with seven
parameters to enable you to make the sound change in pitch,
volume and duration. To produce the continuous sounds the
computer loads the statement into a sound puffer.

The sound buffer is a block of memory allocated for use by the
continuous sound command. The size of the buffer is chosen by the
SBUF command. SBUF 3 for example allocates three blocks for each
channel. The default value is two blocks per channel and
therefore, if you do not specify a value high enough to
accommodate your sound then part or all of your statement will
not operate. 1In this way the SBUF command is similar to the DIM
statement. Each block takes 12 bytes per channel so the larger

the number of blocks, the less room there is for programming.

Each time a continuous sound command is used, an entry is made in
the sound buffer. Each entry is completed before continuing with
the next such that a complex sound lasting several minutes can be
constructed and left playing whilst other parts of the program
are running.

In the example we are going to try we are using only oneé
statement which does not require more than the default setting of
two sound buffer blocks. However, to remind you to use the
command SBUF we shall first set the buffer to accept 10. 7You can
use any value up to 255.

Type SBUF 10 <RET>
The sound statement looks like this:
SOUND CHAN,FREQ,VOL,FREQ GRADIENT, VOL GRADIENT,TIME,ACTION

We will first go through the statement step by step setting up an
example and then give you a series of sample sounds to try. You
should then be sufficiently confident to experiment and try your

own sounds.

To obtain continuous sound we use an extended version of the
sound command. There 1is an important difference between the
values for the different types of input. If you look at the sound_
tables you will see that there is a column for DIRECT SOUND and &
column for SOUND BUFFER. The values for the sound buffer have @
greater range to allow you a greater degree of discrimination.

124

The first information the computer needs is the CHANnel which is
in the range 0-2. Pink Noise is generated in channel 3 and since
in this case we wish to use a pure sound channel the statement
begins:

SOUND (0-2), ie SOUND 1,

We then set the FREQuency which is in the range 0-1023 when g
sound channel is in use. Frequency determines the pitch of the
note and if you examine the sound table you will see that the
lower the value you place here the higher the note. We are going
to start with a very high note and therefore, we enter a 0 here,

SOUND 1,0,

The volume of sound when the sound buffer is in use is 0 to 240
and we are going to select a medium volume of 100,

SOUND 1,0,100 (if we stop here and press <RET) a tone will
be heard)

If we wish to change the note we give the computer a FREQuency
GRADient instruction. This is in the range (-32767 to +32767) The
minus values make the hote rise the plus values make the note
fall. If we placed a 0 here the note will stay the same. However
we are going to make the high note fall in pitch and so we enter
a value of 10.

SOUND 1,0,100,10

(Remember that increasing the frequency parameter decreases the
piteh.)

We can make the volume level change in a similar way by using the
VOLume GRADient., The range is (-32767 to +32767) and as before a
Zero value would give us a continuous level. If we Wished to make
the volume fade away we would use a minus value, A positive value
increases the volume. We are going to use a 0 value so that
volume will remain unchanged.

SOUND 1,0,100,10,0
The computer has to be told how long to sustain the note with the
TIME parameter. This is in the range 0-65535 where each unit is
1/64th of a second. We will use a value of 160 which gives us
about 2.5 seconds of sound,

SOUND 1,0,100,10,0,160,

125

50 far we have instructed the computer about the nature of the
sound. Where the sounds are to be chained the computer has to be
informed about the way the sounds link together. This is achieved
using the ACTION parameter. 1f the sound is not to be linked to
the one which follow, a value of 1 is entered. This tells the
computer to enter the values in the statement each time the sound
is used, However, you may wish to join two sounds together SO
that they run continuously. In this case a value of 0 is used.
This tells the computer to make the starting values of the new
sound command equal to the ending values of the previous one. We
will first try the sound with a 1 value to stand alone.

SOUND 1,0,100,10,0,160,1

To edit sound commands more easily it is best to place them in a
BASIC program.

10 SBUF 10
50 SOUND 1,0,100,10,0,160,1
30 EDIT 20

Type run and the sound should be heard. Make sure that you have
the volume turned up on your television.

To hear the ef fect of the action command edit line 20 to replace
the action command 1 with C.

>0 SOUND 1,0,100,10,0,160,0

Run this program 2& number of times and you will see that the
sound continues to descend in pitch each time from the final note
in the previous run. Now try again Wwith 1 as the action value
and note the difference.

Try the following sounds:
1 SOUND 1,5,15,—6,-1,1000,1
2 SOUND 1,5,15,6,—1,1000,1
3 SOUND 1,5,15,0,-12,&000,1
CHAINING SOUNDS

Sounds can be 1inked together in BASIC programs to produce either
combinations of sound or sequencesS. Try the program below and
then try to combine some sounds of your oOwWn.

10 SBUF 10
20 SOUND P]
30 SOUND 2,1,0,10
40 SOUND 3,7,15

Type RUN <RET?>

126

Lines 30 and 40 in the program above are a special case since 30
will not run without 40. The VOLume parameter in the statement is
set at zero which means sound off. The effect produced is a
sudden burst of sound as the VOLume of 15 in line 40 activates
the registers in line 30. Sound production is very subtle and
therefore, you should experiment as widely as possible using the
tables in the appendix. Noise when used in combination with the
sound channels can give you very interesting effects 1like the
example above,

There are many ways of incorporating sound production in your
programs., In a game for example the graphic effects can be
enhanced by adding sounds to them, The best way to do this is to
structure your bPrograms so that a series of subroutines are set
up to take the program to the appropriate sound when needed., We
have listed a useful subroutine here which can be run with your
own program;

4000 REM SOUND SUBROUTINE
4010 SBUF 2

4020 SOUND 0,100%8,15%64,1,-1,8%64 1
4030 SOUND 1,101%8,15%64,1,-1,8%64 1
4040 LET CHAN=1

4050 GOSUB 5000

4060 SOUND 0,0,0

4070 SOUND 1,0,0

4080 LET DELAY = 400

4090 FOR N=15 TO 0 STEP -1

4100 SOUND 3,4,N

4110 FOR J=0 TO DELAY

4120 NEXT J

4130 LET DELAY =DELAY -30

4140 NEXT N

4150 STOP

5000 REM TEST SUBROUTINE

5010 IF PEEK(CHAN®*104+64082) <> PEEK(CHAN¥*10+64082+4) THEN GOTO 5010

5020 RETURN

The first part of the subroutine is concerned with sound
Production. The second subroutine at line 5000 is a useful way of
controlling vyour sound production. Line 5010 tests whether the
sound in lines 4010, 4020 and 4030 have been completed, When the
test 1is complete control is returned to the main pProgram and in
lines 4060 and 4070 the first sound is switched off. The program
continues in 1line 410C where the noise channel is set up and
Operated,

As you have seen the production of sound is both subtle and
complex. You will need to pPlay with the sounds that we have given
to you as well as following the rules outlined in the reference
Section and this chapter. If you discover a new sound why not
Share it with the rest of us.

127

PART 5
ASSEMBLER

This section does not attempt to teach Yyou how to use ASSEMBLY
LANGUAGE (machine code) but rather how to interface assembly
language to MTX BASIC using the MTX assembler.

The assembler is invoked by telling the computer that you want to
write some machine code and where you want to put it.

Look at the program below. Lines 10,20 ,40, and 50 are normal
BASIC lines, Line 30, however has been created by the assembler.
If you type in 1lines 10,20,40 and 50 and then follow the
instructions you will see how this is done.

10 PRINT "START OF PROG"
20 POKE 40000,5

30 CODE

8029 LD A,{40000)
goac INC A

802D LD (40000),A
8030 RET

Symbols:

40 PRINT PEEK(40000)
50 PRINT W“END®

Type ASSEM 30 <RET>
Assemble will appear at the bottom of the screen.
Type <RET> again.

The secreen should look like this:
8029 RET

Insert

INSERT tells you that you are in the insert mode. ie If you type
in assembly language,it will be inserted without destroying
anything already there,

8029 is the address at which the code will be inserted. The
Number is a hexadecimal number,

RET is the instruction which currently occupies the address.

129

Now type LD A,(40000) <RET>
g802cC RET

Insert

will appear.

This tells you that the next line will be inserted at the address
g8o2C and that the Jlocation is currently occupied by a RET
instruction.

Type INC A

The screen will now appear:
802C INC A RET
Press the <RET> key and the message Bad Code will appear,
Obviously you need to remove the RET from the end of the line. To
do this use the DEL key on the cursor keypad.
Now press <RET> again and type in

LD(40000),A <RET>

Press <CLS> followed by <RET> and Assemble <RET> will reappear 2as
you are returned to the assembler. You can clear the screen and

<RET> to the assembler in either Insert or Edit mode.

To 1list your program you first have to move the program pointer
to the Top of your program.

This is done by typing T <RET>.
Now type L <RET>.

The program pointer remembers the last position and you program
is listed to that point.

8029 LD A,(40000)
8o2cC INC A

802D LD(40000) ,A
8030 RET

Symbols:

To return to BASIC you clear the screen and press return:
<CLS> <RET>

Ready will reappear.

130

You are now ready to list your entire program and it should
appear as the program listed earlier with code line 30 inserted.

If you run the Program the screen should appear like this
START OF PROG

6

END

SUMMARY
The assembler is invoked by typing ASSEM <Line Number>
To return to basic type <CLS> followed by <RET>

To 1insert code enter the assembler and press <RET> and to stop
inserting <CLS> followed by <RET>.

To 1list your code whilst in the assembler type T <RET> followed
by L <RET>.

Program Pointer — Assembly code

The program pointer remembers the line you are editing or the
point where you are inserting text into the program.

T moves the pointer to the top of the program. You would probably
want to do this before listing so that you need not remember the
address at which the program starts.

Insert Mode

In the insert mode, any lines typed into the computer will be
inserted at the address on the left of the screen. The correct
ammount of space in memory will be made for each line as it 1is
entered,

There are four ways of entering the insert mode:
1T <RET> enters at the Program pointer position.
2 &n enters at the HEX address “nt
3n enters at the decimal address “n!
4 Label enters at the label if it exists.
To exit from insert mode <CLS> <RET>
Edit Mode
In the edit mode each line entered replaces the line originally

displayed. In this way it differs from the insert mode where
lines are inserted without altering what is already there.

131

e =

As with the insert mode there are four ways of entering.

1 E<RET> enters the editor at the program pointer

2 E &n enters the editor at the Hex address *n!

3 En enters the editor at the decimal address *n!

4 E 1abel enters the editor at the label specified if

it exists.

NB If a label E exists then if E <RET> 1is typed the insert mode
is entered at label E rather than the editor at the program
pointer.

List

1 L<RET> lists the program from the program pointer
2 L £n lists the program from the HEX address *n!
3 n lists the program from the decimal address ~n'
34 L label lists the program from the 1abel if it exists.
5 ¢ ks Ut PG b the pactes
NB as with the edit mode & 1abel L will lead to L<RET> entering
the insert mode at L instead of 1isting from the pointer.

Delete

Lines can be deleted either in the edit or insert modes. When a
line 1is displayed the cursor appears between the address and the
code., If Yyou type EOL,or type spaces OVer the code and press
¢RET>, the line will be deleted.

If the address is altered, then the program pointer will move to
the new address provided that it is within the range of the
program that already exists.

Labels: Address 1abels may be used followed by a colon:

eg.LABEL:NOP
JP LABEL

Comments: comments may be written after any jnstruction by
preceding the comment with a semi-colon:

eg. RET;End of Prog

DS: DS may be used to define a block of space up to 25t
bytes:
eg. DS 200.
DB: Bytes can pe defined as a 1ist of numbers or DY

enclosing characters within "":
eg. DB 1,2,"ABC"

P WMW\"LW' wn ML MWW-LL”'"’M LJRA—)‘

132

WARNING When vyou exit from the assembler, all the code is
assembled and all addresses are calculated. It is now possible to
edit your BASIC program but if the assembly code is moved by
inserting new lines beneath it, you must ensure that the address
are still calculated correctly. To do this simply enter the
assembler with each code line in turn and exit again, thereby
reassembling each program.

It would be sensible to write your assembly code as the first few
lines of the Program if it is to be merged with BASIC as BASIC
lines edited above do not affect those with lower line numbers,

Having written your program, you execute it by typing RUN <RET>
as with BASIC,

FRONT PANEL
The FRONT PANEL is provided for you to test and debug your
programs. Its effectiveness is dependent on the skill which you
will aquire by discovering what it can do for you,

Type PANEL <RET>

You will see that the Z80 registers ere displayed on the right
and a block of memory at the bottom.

Type L2000
and a block of code will be listed. The panel will list programs,
display memory and registers and allow you to test your programs
by stepping through them one instruction at a time,
If an assembly program is written and run using the MTX

assembler, the break key can be used to stop the program and the
PANEL will display its current status.

See the reference section for the instructions for the PANEL.

133

REFERENCE SECTION

——— — e S e S e e B,

Gives the absolute value of the specified number. The result has
the same magnitude but the sign will always be positive,

e.g.

ABS (59) = 5¢9
ABS (-59)= 59

—— e e s . S S e

either by the SPRITE command Oor subsequently by ADJSPR or MVSPR.
The advantage of ADJSPR is that unlike SPRITE, only one parameter
is altered at a time thereby increasing the Speed of updating
single values.

n is the sprite number.
v is the new value to be assigned to the parameter chosen by p,.

P meaning range of v

0 pattern 0 to 31 (size 1) 0 to 127 size 0
1 colour 0 to 15

2 X pos 0 to 255

3 Yy pos 0 to 255

b X speed 0 to 255 (128 to 255 = neg)

5 y speed 0 to 255 (n nono)

AND

See BOOLEAN EXPRESSIONS

135

ANGLE_<angle>
The computer holds a tdirection’ which is used in commands such
as ARC, DRAW and MV3PR.

The direction is made up of two components...PHI and ANGLE

ANGLE Initialises the direction to the specified angle. The angle
is in radians measured in an anticlockwise direction from the
horizontal.--)

e e o . e e . S

Each time a PHI command is executed, the 1direction' is adjusted
by the specified angle.

e.go

10 VS 4

20 CLS

30 ANGLE O

40 FOR I=1 TO 20
50 PLOT 100,100
60 PHI .1

70 DRAW 50

80 NEXT

90 GOTO 90

For conversion to degreesS... degrees:radians*2*PI/360

For conversion to radians... radians:degrees*360/2/PI

ARC_<length>,<angle?

This command draws an arc of a circle. The starting position is
the current plot position and the initial direction 18 the
direction currently held by the computer. Both the plot position
and the direction are updated. The angle parameter determines the
curvature of the arc by specifying what angle is subtended. In
other words the larger the angle, the tighter the curve. If the
angle is greater than 360' or 2%pi radians, the arc will retrace
its path.

136

Asc (<s§ring>)

Gives the code of the first character of the string
e.g.

10 LET A=zASC("Bw)
20 PRINT A

Will print 66 which is the ASCII code of upn

ASSEM <Line No>

Switches on the assembler to assemble at the specified BASIC
line. (See CODE)

If the Line already exists, the assembler will only be entered if
the specified line is a CODE 1line,

Refer to the Assembler section of the manual.

T o e e . e s

——— e

ATTR determines the effect on the graphics screen of using one of
the plotting commands Such as PLOT, DRAW or ARC,

The attributes are not exclusive bput may be used 1in any
combination,

The state of the attribute is either on or off where

1=0N
0=0FF

P takes the value 0,1,2 or 3.

P=0 Inverse print. Characters are printed in the Paper colour on I
the ink colour.

P=1 Over print. Characters are merged with those alreag present.

137

———

p=2 Unplot. Plots the paper colour.

p=3 over-plot. Plots the ink colour if paper was there before
and the paper colour if ink was there pefore. puring CLS,
and other functions, text is not over written put colours
may change.

The effect during plotting is to do nothing. This can be used to
move the PLOT:SPRITE around the screen whilst jeaving the screen
unchanged.

AUTO {Line no>L<increment>

._._.-——.-——.-——.-— ..-—-—..—-—..-_-_—.-

This command switches on the automatic line numbering.
The numbering will start at the specified line no and will be
incremented by the specified jnerement.

e.g.
AUTO 10,10
This will result in 1ines being numbered 10,20,30,“0...

To switch of the numbering press the CLS key followed bY {ret>

.-—.-.-——.-.-—..-—-

The auto scroll facility is provided to allow the computer to
automatically halt printing to the screen when the screen 15
full.

It can be switched oD and off DbY the user or by the programmer.

The PAGE key is used as 2 switeh to switeh the AUTO SCROLL of f
and on.

1f the AUTO SCROLL is switched on however, any key can be used to
tell the computer to continue.
e.g. Type the following

10 FOR I= 1 TO 1000

20 PRINT I

30 NEXT

RUN

Press the PAGE keYy and the printing will stop.

138

Press any key once and the printing will continue for one more
Screen. This may be repeated any number of times,
Pressing the PAGE key again will turn off the AUTO SCROLL.

The PAGE key alone may be used as a switeh to stop and start
printing at will.

The programmer may control the scrolling wusing the escape
sequence ESC P as a switeh in the Same way as the PAGE key.

For example:

10 PRINT CHR$(27) ;npn;
20 FOR I= 1 TO 1000

30 PRINT I

40 NEXT

In this case it will be Seen that when the program is run the
AUTO SCROLL will be switched on.

See LIST,ASSEM,PRINT.

BAUD <Channel),< Baud rate >

Sets the RS232 channel 1 or 0 to the selected baud rate.
The following rates are allowed.

75 1200
110 2400
150 4800
300 9600
600 19200

e.g. BAUD 0,1200

139

BOOLEAN_EXPRESSIONS

..-—-——.-——.-——..-——.—-_-—..—

The computer needs a way to combine expressions l1ogically to give
one value which 18 either true or false s0O that a decision can be
made according to @ single value.

10 INPUT "ENTER X, nax, Y

50 PRINT "X=1 noX,(X=1)

30 PRINT "Y=2 " Y, (Y=2)

10 PRINT "X=1 AND y=2v,(X=1 AND Y=2)

Notice that when truth values such as y=1 are printed or used 1n
expressions, they are enclosed by prackets.

when the above program is RUN enter values for X and Y and lo0kK
at the results. You will See€ that if an expression is true the
result is O, otherwise it is -1. There are no other TRUTH values.
Expressions which yield a TRUTH value are called BOOLEAN

expressions. When @ Boolean expression is wused 1n an
statement, it need not be enclosed 1n brackets.

For example:
4o IF X=1 AND Y¥=2 THEN STOP
RULES FOR BOOLEAN EXPRESSIONS.

There are three BOOLEAN OPERATORS, AND OoR and NOT.
There are 6 relational operators <,>,=,<>,<=,>=

A relational expression is a relation petween WO values of the
same type.

For example:

X2
A$="AAA"+"BBB"
(X=2)=(Y=3)

Relational expressions yield truth values.

A Boolean expression is an expression which yields a truth valu€
and 59O relational expressions are also Boolean expressions.
However using the Boolean operators AND OR and NOT to combiné
relational expressions, more complex relationships between yaluesd
can be evaluated.

For example:

10 PRINT (NOT 2=2)
20 PRINT (NOT 2=2 OR 3=2)

140

An example of the use of Boolean expressions is given below.

10 INPUT X,Y
20 IF X=2 AND Y=2 OR Y=7 THEN STOP
30 GOTO 10

This example will stop if either Y=7 or both X=2 and Y=2.
In an expression like
10 PRINT (2%2=5 OR 3+3=4 OR 2=2 AND 1=2)

we need to know in what order the expression is going to be
evaluated.

Just as there are rules for evaluation of arithmetic expressions,
there are also rules for evaluation of any type of expression.
We know that * has a higher priority than + so that

3%445 = (3%4)+17 and not 3% (h45)=27

To know how a complicated expression is going to be evaluated we
follow a few simple rules.

Arithmetic operators have highest priority.

Relational operators all have the same priority which is 1less
than all arithmetic and greater than AND OR and NOT.

AND, OR and NOT have the lowest priority with AND having the
highest and NOT the lowest.

ORDER OF PRIORITY

* /

+ -

= <> < > <= o=
AND

OR

NOT

The priority defines the order of evaluation, which as with
arithmetic can be altered by the use of brackets.

For example:
10 PRINT (2%¥2=5 OR 3+3=U OR 2=2 AND 122)

is the same as

10 PRINT (((2%2)=5) OR ((3+3)=4) OR ((2=2) AND (1=2)))

141

CHR$ (<number>)

Gives the character whose code is the specified number.
For example:
PRINT CHR$(65)

Will print the character ‘A,

o e S S e S s S e S

Draws a circle of radius r with centre X,Y
For example:

10 VS &4

20 CLS

30 CIRCLE 100,100,50
40 PAUSE 1000

e.g. CLOCK "120000"

The clock is initialised to the value of the string.

The clock is a 100 hour clock which counts accurately in seconds
minutes and hours up to 100 hours when it resets to 0.

To print the time see TIMES.

For example: To print the time in the top left corner:

10 CLOCK "120000"

20 CLS
30 PRINT TIME$; CHR$(26) ;
40 GOTO 30

50 REM CHR$(26) Homes the cursor.
See TIME$

142

CLS

Clear screen
In TEXT mode CLS Will clear the screen (or Virtual screen),

In GRAPHICS mode CLS will clear the Screen unless one of the
Screen attributes has been set using the ATTR funetion, in which
case it may be necessary to switch off the attribute before cCLS
will operate,

CODE
Code is not a command but rather g word to indicate that the
following lines are assembly language. The word can not be typed
and is inserted by the assembler into the BASIC line.

For example:

10 REM START OF PROGRAM
20 CODE

8030 LABEL: LD A, (HL)
8031 RET

Symbols : 8030 LABEL
30 REM END OF PROGRAM

All labels are listed at the end of each block of code,
Labels are loeal to each block,

e s e e e

The COLOUR command sets the colours for the graphics screen.
n selects the colour (see colour table in the appendix),

The value of P selects which areas of the screen the coelour
refers to.

Two sets or colours are defined. The print colours refer to
¢olours that will be used when colours are printed, The non-print
or PLOT colours refer to colours that will be used when colours
are plotted or when Screen functions are used,

P=0 Print paper,

P=1 print ink.

P=2 non-print (plot) paper.
P=3 non-print ink.

P=4 border colour.

143

CONT

CONT can be used directly after a STOP command or after pressing
the break key to restart the program. Any editing or alteration
of the program will prevent CONT from operating.

C0S (<angle>)

e o S e e S S S

Gives the cosine of the angle specified in radians.,

CRVS n,t,x,y,w,h,s

To create your own virtual screen, use the CRVS command to define
the required area and then select the screen using the VS
command.

Virtual screen reference number. (0 to T7)
Type of screen, O=text,l=graphics.
Coordinates of top left corner.

Width of virtual screen in characters.
Height of screen in lines.
Width of screen. (40 for text, 32 for graphics)

0T Ed X S

If s is a different value, to the actual width of the screen, the
virtual screen will become distorted. This can however be used to
advantage. If for example s is set to 80 in a text screen, the
virtual screen will only allow printing on alterate lines.

—— o

Moves the cursor to position X,Y
e.g.

10 CSR 12,10

Moves the cursor to position 12,10,

Any subsequent Printing or Input will occur at the new cursor
position,

144

—— ey e e e e s

= parameter and can be any of the six below:

Speed
1 to 255 to 0 (1 is fastest)

1 Distance
Tells the computer to move the sprite by “x° pixels when
requested.

2 Number of sprites
0 to 32 (The number of sprites must be at least 1)

3 Number of circling sprites
Sprites that will orbit when they go off the edge of the
screen (must not exceed number of sprites)

y Plot sprite
A PLOT SPRITE can be chosen which will subsequently appear
whenever a point is plotted. This sprite will move around the
screen following any points or lines drawn by the BASIC
GRAPHICS commands. This Sprite can be any of the 32 defined
in the normal way.

5 number of moving sprites 0 to 32
This is the number of sprites that will move by themselves
according to the x-speed and y-speed set in the SPRITE and
ADJSPR commands.

6 magnitude and size

size B8X8 mag 1
size 8X8 mag 2
size 16X16 mag 1
size 16X16 mag 2

I
nmmiain
wWwn-—=0O

T e e e e e . e e e e e e

If the computer encounters a READ command the program is searched
for the first DATA statement. Once a DATA statement has been
found a pointer to the values 1in the DATA statement is
maintained. Each time a READ statement requires a value, the
value at the DATA POINTER is assigned and the pointer is moved to
the next value.

145

For example:

10 REM PROGRAM TO PRINT FROM A DATA STATEMENT
50 FOR I=1 TO 10

30 READ X

40 PRINT X

50 NEXT I

60 DATA 1,1,2,2,3,3

70 DATA 4,4,5,5

DATA statements aren't themselves executed and will be ignored
other than when required by 2 READ statement.

If all of the data on a line has been read by a READ statement,
the computer will search for the next DATA statement and update
the DATA POINTER accordingly.

If no more DATA is available, a No Data error will occur.
You may find that the space after the word DATA is accepted as

part of the string when READing strings. To guarantee that this
does not happen, the abbreviated form DAT. can be used.

e.g.
Type 10 DAT.AAA,BBB

instead of

10 DATA AAA,BBB

see READ and RESTORE

DIM_(array list?>

Before an array cal be used, sSpace must be made 1in the computer
memory using a DIM statement.

For example:
10 DIM A(10,10),A$(1000)

Each element of a numeric array takes 5 bytes and each element of
a character array takes 1 byte.

An array cannot be redimensioned unless all of the variables aré
cleared.

146

For example:

10 DIM A(C10)
20 DIM A(20)

This will result in an error as the array already exists by the
time the program reaches line 20.

e.g.

10 LET A$="ABC"
20 DIM A$(100)

This will result in an error since line 10 automatically defines
@ character array large enough to hold the data "ABC", In fact,
the computer will make space enough for A$ to hold 64 characters.
All strings are treated as character arrays rather than variable
length strings. The amount of space allocated to the character
array will depend on whether or not a DIM statement is used.

If a DIM statement is used, the exact number of characters
specified will be allocated.

For example:

10 DIM A$(1)

This will result in a string of length 1 character

If a string is used without a DIM statement, the space allocated
will depend on the first assignment where the amount of space

will be the amount required increased to the next multiple of 64,

For example:

10 LET A$="ABC" Space = 64 bytes
20 LET B$(100)=n)xn Space = 128 bytes
DRAW X

Draws a 1line of length X from the current plot position in the
current direction. The plot position is updated to the end of the
line,

147

e

DSI

— —

Direct Screen Input

This command allows you to roam about freely within a screen only
ending when carriage return is pressed. Within this instruction,
the break key is not operational put will generate CTL C.

CTL W = tab back

CTL] = PMODE

CTL \ = SMODE

CTL ~ = CURSOR ON

CTL _ = CURSOR OFF

CTL D letter A to O = paper A to O (1 to 15)
CTL F " L ink A to O (1 to 15)
ESC I = insert line

ESC J = delete line

ESC K = duplicate line

e o e e e S

This command causes the specified l1ine to be copied into the EDIT
secreen for editing.

For example:
10 REM ABCDEDFG
EDIT 10

If the line number is changed a copYy of the line will pe created
at the new line number.

To edit a CODE line, the assembler should be entered and the
assembler editor invoked. (see the assembler section of the
manual)

148

EDITOR <variable 1ist>
The editor gives the Programmer the facility to accept input from
a defined area of the screen. The area is defined by virtual
Screen 0 which may be set using the CRVS command,

For example:

10 CRVS 0,0,20,10,10,1,40
20 EDITOR A$
30 VS 5

40 PRINT A$

50 GOTO 20

The EDITOR 1leaves the current screen as screen 0 and must
therefore be reset irf printing is required on the full BASIC
screen or any other screen, Line 30 resets the current screen to
the full basic screen,

ELSE

S . ey e

See IF.

T e e . e s . . e . e e B

EXP is the eéxponential function whose valye is e raised to the
power of the specified number.

For example:

EXP (1) = 2.71828183

FOR <control variable> = <startd> TO <limit> {STEP <increment>}

——— e . o o —

NEXT <control variable>

{control variable> is a8 simple numeric variable but in this
instance is called the control variable,

$start>, <limit> and {increment> are numeric expressions,

If STEP {increment> is not present then the computer will behave
85 if STEP 1 were present.

149

FOR and NEXT delimit a block of program.

For example:

10 FOR I= 0 TO 10 STEP 1
20 PRINT I,I*I
30 NEXT I

When the computer meets the FOR statement in a Pprogram, it
assigns ¢start> to the ¢variable> just as if it were a LET
statement.

Execution of the program now continues at the following 1line
until a NEXT statement is encountered with the same control
variable. At this point {increment> 1is added to the control
variable and the neéew value of the control variable is compared
with the <Limit>. If the limit has been reached, the program
continues after the NEXT statement otherwise control is returned
to the statement following the FOR statement.

The increment may be negative.
If the control variable is not present in the NEXT statement, an
appropriate variable will be assumed.

See NEXT

FlZE({rwmluf))

OM EXP?-F\MJM“ o cdindes G rehun the amrnike o oo apace
GENPAT P'"vd1nglgilgﬂlﬂilﬁélgllgg

The GENPAT command is the command used to generate all types of
patterns required by BASIC for characters and SPRITES. There are
5 modes.

1. To redefine an ASCII character. (CODES 32 TO 127)

2. To define a non ASCII character. (CODES 129 TO 154)

3, To define colour for each 1ine of a character.
This ﬁnly applies to user definable characters with codes 147
to 154.

4. To define an 8 by 8 sprite pattern.

5. To define each quadrant of a 16 by 16 sprite.

User definable characters have codes from 129 to 154,

Mode 1 allows the user to redefine one of the standard ASCII
character patterns. Note that the ASCII characters are the ones
which are most often used by the computer

Mode 2 allows the user to define his own character patterns
without destroying any of the standard ascii characters.

Mode 3 allows some of these user defineable <characters to be

further defined by specifying an ink and paper colour for each of
the eight rows of the character.

150

ik

The values for ink and paper are as Specified in the colour table
in the appendix but in this instance we are specifying two
colours (ink and paper) at the same time. Each of d1 to g8
Specify a paper and ink colour as a single number:

bit 012 3: 45 6 7
ink ! paper

value = 16 * paber +Liﬁk
e.8. Red ink on blue paper
= RED : BLUE
= 16 ¥ BLUE + INK
= 16 * 4 + 9

= 73

MODE P N
1 0 ascii code (32 to 127)
2 1 user definable (code 129 to 154)
3 2
y 3 pattern number 8 by 8 sprite pattern
5 4 pattern number 16 by 16 NW quarter

5 pattern number 16 by 16 SW quarter

6 pattern number 16 by 16 NE quarter

7 pattern number 16 by 16 SE quarter

e e . e e e e e S g

Continue execution from the specified 1ine until a RETURN
statement is encountered at which point return control to the
statement following the GOSUB

For example:

10 FOR I= 1 TO 10

20 GOSUB 100

30 NEXT

40 sTOP

100 PRINT I,SIN(I),CcOS(I)
110 RETURN

Gosubs may be nested up to 34 deep at which point an error will
ocecur,

See RETURN.

151

GOTO <Line no>

Control is passed to the BASIC line specified.

For example:

10 GOTO 40
20 PRINT "LINE 20"
30 STOP

40 PRINT "LINE 40"

If the line doesn't exist an error will occur.

GR$_X,¥,D

GR$ reads a bit pattern from a graphics screen, returning the
value as a character. This function should be used if you wish to
print the graphics screen to a high resolution printer.

x and y are locations on the virtual screen.

b is the number of bits to be read (if b = .1 equivalent to
wpPOINT" function).

The bits are read in a vertical direction. ie. GR$(20,190,4)
gives a character made up as follows:

bit 7 0
bit 6 0
bit 5 0
bit 4 0
bit 3 pixel at 20,190
bit 2 pixel at 20,189
bit 1 pixel at 20,188
bit O pixel at 20,187

IF_<boolean expression> THEN ¢statement> {ELSE <statement>}

——_-———.——_—-.———.————.—-—_-—.———.—.—-—_-.——.—.————.—-—-————.——_-———_.————.——

The IF statement allows the program to branch depending on
whether a condition is true or false.

¢boolean expression> is any expression which yields a truth
value,

e.g. Y=2 AND X=3

152

{Statement) is any legal BASIC statement (which may include an IF
statement).

If the boolean expression is true, the statement after the THEN
is executed,

If the boolean expression is false and ELSE is not present, the
program continues at the next line,

If the boolean eéxpression is false and ELSE is present, the
program continues after the ELSE.

For example:

10 INPUT "ENTER Y OR N "iA$

20 IF A$="Y" THEN GOTO 40 ELSE GOTO 100
30 GOTO 10

40 PRINT ®wYES™

50 STOP

100 PRINT nNO®

See BOOLEAN EXPRESSIONS

INK <colour>

Selects the INK colour. <colour> is a number in the range 0 to 15
and selects a colour from those in the colour table in the
appendix.

[P (‘<Pﬂ""t>)
Reads a bk fom the apeadicd peet

INPUT_{"string";}<variable 1ist>

The INPUT command is used to input information into the computer.
The variable 1list is a list of array or numeric variables
Separated by commas.

e.g,
INPUT A,B,ABC$

If the {string} is not present, a question mark will appear as a
Prompt whenever the INPUT statement is used.

If non-numeric information is entered into a numeric variable, or
the too few items are input, a question mark will appear after
information which means that it should all be typed in again.

If the {string} is present, it replaces the question mark as a
Prompt., The string must be followed by a semicolon.

153

Sl

INPUT "ENTER YOUR NAME";N$

INT {(<number>)

Gives the integer part of the number.
For example:

INT (2.5;

=2
INT (-2.5) =-2

LEFT$(<3§§}ng>l<number>l

The string is truncated after the specified number of characters.

For example:

LEFT$("abcdef",3) = "abe”

et S i S

Gives the length of a string.

Notice that a space must be left between LEN and (<string>)
otherwise LEN will be considered as a numeric array.

For example:
PRINT LEN ("ABC"+"DEF“)

Will print 6.

154

LET___<variable>=<value)

The LET statement assigns a value to a variable,
For example:

10 LET X=2
20 LET A$=z"aben

This assigns the value 2 to the variable X and the value "ape" to
the variable AS.

The value and variable must be of the same type.
i.e. numbers cannot be assigned to string variables and strings
cannot be assigned to numeric variables,

Live x, wi g e

I

P qtaaﬁwa(yU‘ﬁ) & (km,fx)

LIST {<start line no>}, {<finish line no>}

e ——— e 2

LIST lists a program to the screen.

There are three different formats depending on how many line
numbers are specified,

LIST
Lists the entire program from start to finish.

LIST 100
Lists the Program from line 100 to finish.

LIST 100,200
Lists the program from line 100 to line 200.

LIST 100,100
Lists 1line 100 only.,

See LLIST, AUTO SCROLL

e —

LLIST 1ists a program to the printer.
The formats are as for LIST

See LIST,.AUTO SCROLL

155

LN (<gumber>)

Gives the natural log of the specified number.

LPRINT _{List of expressions}

i —— L

LPRINT has exactly the same format as PRINT but sends output to
the printer instead of the screen.

See PRINT.

EQNIPULATING STRINGS

An MTX string is treated as a character array as if a DIM
statement had been used to make space for it.

e.g.
10 LET A$="AAA"
is equivalent to

10 DIM A$(64)
20 LET A$="AAA"

The MTX allows selection of parts of a string by use of one fewer
or one more subscript than are normally required.

Since a string is considered as a one dimensional character
array, specifying 2 single subscript would refer to 2 single
character at the subscript position.

e.g.

10 LET A$="ABCDEFG"
20 PRINT A$(3)

30 PRINT A$

40 PRINT A$(3,3)

Line 20 will print the letter 'C!

If one subscript too few is specified as in line 30, the entire
string will be printed.

If one subscript too many is present the part of the string will

be printed starting at the first subscript for as many characters
as are specified in the second subscript.

156

Line 40 therefore will print 'CDE!

These rules can be extended for character arrays with any number
of dimensions.

MID$(<string>,X,Y)

Gives Y characters starting at position X in the string.
For example:

MID$("ABCD"+"EFGH",3,4) = "CDEF

Gives the remainder on dividing X by Y.
e.g. MOD (10,7)=3
MOD (X,Y) is equivalent to X-INT(X/Y)*Y

MVSPR p,n,d
MVSPR is a general purpose command which combines Y4 distinct
functions

p meaning

MOVEMENT

PATTERN SELECTION
REDIRECT

PLOT AT CENTRE

(oo g % R

The functions are combined to allow complicated movements to f
occur whilst wusing only a single instruction. The type of
~8ctivity is selected by P as in the table above. If combinations

of activities are required, Jjust add the p values together. Some ’
€Xxamples are given below.

T

eg 1 eg 2 eg 3

MOVE 1 YES YES YES
PATTERN 2 NO YES NO

REDIRECT &4 NO YES YES
PLOT AT 8 YES NO YES
CENTRE

TOTAL 9 7 13

p value

n selects the sprite number.

d is slightly more complicated than with other graphics commands
as it must be able to reflect a value for several activities. If
d is not in the range of any one of the chosen activities an

error will occur.

MOVE (p=1) moves the sprite 1 step in the direction specified by
d. The step size is set in CTLSPR 1 and the direction must be in
the range 0 to 8 where directions 0 and 8 bare the same.

PATTERN changes the sprite pattern to pattern number d. This
pattern should have been defined in a GENPAT statement.

REDIRECT picks up current velocity vector and switches it to the
new direction.

PLOT AT CENTRE causes a point to be plotted at the centre of the
sprite specified by n.This is not directly affected by the value

of d at all.

NEW

This command resets the computers system variables therebYy
preparing it to accept a new program.

NEXT <C9§trol variablgz

Next specifies the end of a FOR statement block.

If the control variable is specified, the NEXT is matched with 2
FOR and all nested FOR blocks which are either complete OF

incomplete are terminated.
If the variable is not specified it is assumed that this NEX

belongs to the last active FOR statement.

See FOR.

158

Pass control to the Noddy editor.
Noddy should appear at the base of the screen,

Noddy commands:

Remove a program page from the stack
Pause before continuing with the program
Return to BASIC

page, page,.. Stack up program pages

A Advance to next program page on the stack.
B 1label Branch to a label.

D page Display a Noddy page (on virtual screen 5)
E Enter input (into virtual screen 7)

G page,{label} Goto page at label if specified

I match,label If input = mateh then goto label

L page List a Noddy Page to the printer

0

P

R

S

The Noddy interpreter accepts its input from virtual screen 7 and
displays on virtual screen SIC

These virtual screens will normally be the complete screen for
display and the bottom line for input but they may be redefined
using the CRVS command.

elg.
10 CRVS 5,0,10,10,20,5,40
20 CRVS 7,0,10,16,20,1,40

30 NODDY
RUN

Two smaller screens should be defined for use by Noddy leaving
everything else unchanged. '

See Noddy Section of the manual.

NOT

———

See BOOLEAN EXPRESSIONS

T e e e e s e . e e e e

The ON command is used when you want to GOTO or GOSUB to a part
of the Program depending on the value of a variable,

e.g,
10 LET =2
20 ON X GOTO 100,200,300,400,500

159

This part of a program would goto line 100,200 etc depending on
the value of X.

If X=0 it would branch to 100, X=1 would branch to 200 ..e.-
Similarly, 1in the example below, the program would go to the
subroutine at 100,200,300,&00 or 500 depending on the value of X
and return to line 30 when a RETURN is encountered.

10 INPUT X

20 IN X GOSUB 100,200,300,400,500
30 REM Program continues here.

OR
See BOOLEAN EXPRESSIONS

QuT <gort>,<value>

Qutputs the specified value to the specified port.
Refer to Technical Manual - System Block Diagram

160

—— . e

Switeh on the front panel.

Basice Exit? Answer Y to return to BASIC
Clear Clears the List screen
Display Hex Display a block of memory around
Hex.
Go Hex1 to Hex? Run a program starting at Hexi
upto Hex2,
I Display ASCII/HEX
List Hex List from Hex , L cemd b Lk neok neen o tode,

L. lists from the Program counter
Move Hex1 End Hex2 To Hex3 Moves 3 block of memory Hex1-Hex2

to Hex3.
Register Hex Change register at register cursor
To Hex
Single step Execute the command at the Program
counter
Trace As 35 but calls are treated as 3
single instruction.
X Display the alternate register set,
. Move the register cursor.
- Move the display cursor back.
{ret> Move the display cursor forwards,
A (cursor up) Move display cursor up.
Y (cursor down) Move display cursor down
Example of PANEL Screen
0100 JP Z,E8
0103 LD A,0C3 AF >0000 C3
0105 LD (0050),4 BC 0000 c3
0108 LD (0053),a DE 0000 ¢3
010B LD HL,2B09 HL 0000 c3
010E LD (0051),HL IX 0000 c3
0111 LD HL, 3BOY IY 0000 c3
0114 LD (0054),HL SP 0100 c3
0117 LD A,0E1 PC 0100 c3
0119 LD (0028),a
011¢C LD A,7E
011E LD (0029),a
0121 LD A,QFE
0123 LD (0020),4
JP 02E8

00F0: 21 24 87 28 Ag A9 AT 2F
O0F8: DO 02 5C 4p A7 2F 9D 12
0100: C3>E8 02 3E C3 32 50 o0
0108: 32 53 oo 21 09 2B 22 51
07110: 21 24 87 28 a9 A9 AT 2F
0118: DO 02 5C 4D AT 2F 9D 12

161

—.-—.-—.—_——.—————_-

gelects the paper colour. <colour> 1is a number in the range 0 to
15 and selects a colour from those in the colour table in the
appendix.

PAUSE <number?>

———

The program will pause for 2 length of time dependent on number.
The time cannot be specified accurately but will vary according
to how many incidental functions the computer 1is performing at
the same time such as flashing the cursor or updating the clock.,

PEEK {address>

Gives the contents of the specified address in the current page.

Notice that the MTX pages jts memory in 32K blocks and so care
must be taken to ensure that when PEEK 15 used you are peeking
the correct Ppage. The top 16K of memory 1is available to all
pages.

PHI (angle>

e S

See ANGLE.

Pl

The MTX stores an accurate value of PI so that it doesn't have to
be calculated each time that it is needed. PI can be considered
as a number and used whenever a number would be used.

.8,

PRINT PI
PRINT COS(PI/2)

162

PLOD_ "string"

PLOD is used to run a Noddy program where string is the nape of
the Noddy page at which execution starts,

€.g
10 PLOD "PROG1™

This will run a Noddy program starting with the page called
PROG1,

PLOD may be used within a BASIC pProgram and control may be

Switched backwards and forwards. When a Noddy program returns,
execution continues at the next basic line.

—— e e e e e

Plots a point in the graphics Screen at the point X,Y.

See COLOUR and ATTR

POKE (location),ﬁgalue)

The POKE command loads a the Specified memory location with the
Specified value,

If more than 32K of memory is Present, the basie Pprogram may
Spread over several bages (see the ROM BASED MEMORY MAP).The

e.g.
POKE 50000,100
Loads 100 into location 50000

163

gRINT <expression list>

.———-——.——.———-——.—_.——.—-——.—_

The print command 1is used to print jnformation onto the
television screen or monitor.

e.g.
PRINT "SIN OF g = ";SIN(3)

PRINT is followed by 2 list of expressions separated by commas or
semicolons. The expressions can be string expressions or
mathematical expressions and any number of commas can be used to
tabulate the information.

A comma moves the cursor %o the next TAB position.

A Semicolon leaves the cursor immediately after the printed
information.

RAND_¢number>

This command sets the seed for the random number generator. If no
number 1is specified the seed will be set to a random number.

e-g

10 RAND 1000

20 FOR I=1 TO 100

30 PRINT INT (RND¥50) ,
4o NEXT I

See RND

EEAD ¢yariable l1ist>

elgl

10 READ A,B,A$,B$(8)
50 PRINT A,B,A$,B$
30 DATA 1,2,A8,BB

Values are read from the DATA statements (See DATA) sequentiallY
into the variables specified in the READ statement.

if an invalid assignment is made to a numeric variable an erro
will occur.

164

T

—

Data statements may occur anywhere within a Program and
program or from the value Specified in a RESTORE statement.

See DATA,RESTORE

REM <anythingz

documentation.

RESTORE <line no>

Restore tells the computer from which line the next
statement should start reading the next DATA item

two or more parts of a program,
e.E.

10 DIM A(20)

20 FOR I= 1 TO 10

30 READ A

40 PRINT A

50 NEXT I

60 RESTORE 100

70 FOR I= 1 TO 10

80 READ A(I)

90 NEXT I

100 DATA 1,2,3,4,5,6,7,8,9,0

See DATA,READ

RETURN

—— — ——

Returns control to the line following the last GOSUB executed
f no GOSUB has been executed, an error will occur,

See GOSUB

165

accessed sequentially in order either from the start of the

The REM command allows comments to be inserted into a program.
The REM statement is ignored by the computer and is used only for

This is particularly useful if the same DATA has to be read

EEGHT$(<string>,<numb§521

The specified string 1s truncated on the left leaving the
specified number of characters on the right.

€.8-

RIGHT$(“ABCDEFG“,3) = WEFG"

RND

RND returns a pseudo random number.

gee Rand

ROM <rom number>

Passes control to an additional ROM pack for example PASCAL or
FORTH. Details will be supplied with the ROM

It is dangerous to use this command unless the appropriate ROM is
actually present.

RUN

RUN tells the computer to start running the program from the
beginning.

A1l variables will be cleared.

A program can also be run by using a GOTO statement as a direct
command. In this case the yariables will pe unaltered.

e.E-

10 REM START
20 PRINT 1,2,3
30 REM END

GOTO 20

166

e et e ey e o e e

This command makes space in g Sound buffer for use by the SOUND
command,

e.g.

10 SBUF 8

channels and the noise channel. 12 by de_, 7

Each block takes 10 bytes. The above statement therefore takes a
total of 320 bytes, i.e. 8 % 4 % 10.(8%channels¥*block length),

The Buffer is made at the top of memory below the System variables

SGN_(<number>)

——— e —

Gives a result depending on the sign if the Specified number,

If the number is positive the result is +1
If the number is negative the result is -1
If the number is zero the result is 0.

e.g.
SGN(2,5) = 1 i
SGNC 0) = o I

Gives the sine of the angle specified in radians,

167

A

o —

SOUND ¢expression list>

The effect of the sound command depends on the number of

expressions in the eXx ression list.
. 2 O = chenndd €2
SOUND <channe1>,<frequency>,<volume> 05 fegpency €49
\.-\—) -
O < v-vktw«{ <

(3 parameters)

Channel = 0,1,2 or 3
0,1 and 2 are pure sound channels.

3 is the noise channel.

SOUND <channe1>,<freq>,<vol>,<freq ine>,<vol inc>,<duration>,<mode)

(7 parameters)

Channel, freq and volume are as described above.
Every 1/64th of a second the computer adds the frequency

increment to the frequency and the volume increment to the
volume. This continues for a length of time equal to the duration
which is also measured in 1/64ths of a second.

The mode can be either 0 or 1

1f mode=0 the freq and vol parameters will be ignored which means

that the increments will increment whatever values of frequency
and volume were current when the command was encountered.

the freq and vol will be loaded into the sound puffer

If mode=1
to initialise the frequency and volume of the relevant channel.
Jremneh £ T ol t Ladd defesd sotonill
o= F’{‘["m‘} \“ll Foratiton ("-Lnn--'-u-j t-Q W A
o< yftmt < V0T Mh tedin, @
ot "3

e e e o o e S e S — i e

Peeks the character at the cursor location and auto increments
the cursor location. The character is returned as ASCII.
e.g. 1T0O read characters from the screen into an array, and

reprint them.

10 CLS

o0 FOR I=32 TO 64
30 PRINT CHR$(ID;
40 NEXT

50 CSR 0,0

60 FOR I=32 TO 64
70 LET A$(I)=SPK$
80 NEXT

90 PRINT

100 PRINT A$

168

SPRITE n,pat,xp,yp,xs,ys,col

n is
pat is
xp 1is
yp 1is

as

sprite number 1 to 32

pattern number 0 to 127 (size 0)
0 to 31 (size 1)

position x off centre
position y off centre (in range -4095 to 4095)

is defined as bottom left hand corner of sScreen i,e same
for plot.

N B Sprite coordinates are absolute and do not look at virtual

Screen origins (i.e assume a 32 by 24 graphic screen)

X8 1is the speed in the x direction range -128 to 127 where 1 unit
of speed moves the sprite 1/8 pixel évery master speed cycle
as set by CTLSPR 0

Ys 1s the speed in the y direction (plus = upwards) range -128
to 127

col is the sprite colour, 0 to 15

STEP

See FOR.

STOP

Stops execution of the program,
CONT may be used to continue execution provided that the Preogram
has not been altered in any way,

e.gl

10 REM LONG PAUSE PROGRAM

20 CLOCK "00000Q"

30 PRINT "START"

40 IF TIME$="000130" THEN STOP
50 GOTO 40

169

STR$(<number>)
Gives the string which represents the specified number.
e.E.

STR$(2+2) = "uv

Note that STR$ has a string value and can therefore not be used
in numeric expressions.

TAN (<angle>)

Gives the tangent of the angle specified in radians.

THEN

See IF.

Gives the time on the real time clock in the format

HHMMSS

Where H H is the number of hours elapsed since the clock was
started with the CLOCK command. The hours will count up to 99
before resetting.

M M is the number of minutes.

g 8 is the number of seconds.

For example:

10 CLOCK "m000000"

20 CSR 10,10

30 PRINT TIME$

40 GOTO 20

See CLOCK

170

See FOR,

USR (<address>)

USR causes control of the program to be transferred to the
Specified memory address. This is the usual way of interfacing
machine code to BASIC pPrograms although the MTX assembler makes
this function redundant in most cases,

On return to BASIC, USR has the value in the register pair BC,

€.g. if you assemble the following program and run it, '100' wili
be printed on the screen.

10 CODE

8007 LD BC,100
8004 RET
Symbols:

20 PRINT USR(32775)
32775 is the decimal of the HEX value 8007.

VAL (<string>)

Gives the numeric value of the specified string,

If the string is not a valid number, VAL will try to evaluate the
string from the left hand side as a number until it can EO no
further,

For example:

VAL ("100")=100
VAL ("100000000000")=1E+12
VAL ("1000ABCDEF00")=1000
VAL ("12m4mq2mn)-1212

=3
r

VAL returns a number which may be used in arithmetic.
For example:

VAL("23")410 = 33

171

e e S

VERIFY <string>

Verifies a program in tape against the program currently in the
computer.

S e B T S S T s S . e S S e S S S et S S e S

The Graphics screen can be considered as being a window into the
sprite planes. The graphics screen is initially located as in the
diagram below.

The view command moves the window relative to the sprite planes
whilst leaving the position of the sprites unchanged.

direction = 0 to T
distance = 0 to 255

VS n

This command selects a virtual screen from those already defined
or created using the CRVS command, The computer will
automatically switch to the type of screen selected whether
graphics or text.

See CRVS
+4095 +4095
—4095 VIEW +4095 —4095 +4095
o.o/' 0.0
—2095 —2095

Ire

SOFTWARE APPENDICES

1 ASCII Code Table
2 Control and Escape Sequences
3 Error Messages
4 Numeric Keypad
5 System Variables
6 Function Keys
7 Colour Table
8 Sound Tables
9 Absolute Directions
10 Flowchart conventions
B0 3 REm Pd 14 sfRITE £d gL &IMeLg ca e 5::;;
Ty trd core T eTLSin 2y 143 LS S
T2 138 AscE A gga Noepe cr M4 cape htd 1h¢—.
iy Y
[e £y 1a¢ guge €1 v arw
[1% A AL »-
J hip . rapEn fe 14 K EG T L
24 11 BAnp A& . , ¢t aY oFF EE 1w PEEK
P
sy Vg AS g 4 te 1AF STEP £5 234 S
Ab 1b6 om TnEW
14 15 ComT I 114 EY 20 g
) 138 usée /o3 S cy ¢ T EY 137 Cen
fLev
57 i ctv Ay 16T .
¥ Y4 £ - o 2b . Eq 21T TR~
1 11y crenmn AR Ma o fareL .
= EN T e e
AP cwen AR I5d CerPaT o 2% *
4 vi 229 A BB LIS usn
Z8 13 AT AR 19y fauigr
4 pL e /" Ed s v
fo e €otoy Ac M PRT
@ e P T A £V L1y A
¥ 16y jNK AD r Ze 21 = EE LYY LEW
T (FAY —}; AL g Aeed PE w1 S GF a4 VAo
2 17 Dama AF T e oy S F& g Lo
B s Rero »= Moo
a4 o o PAgreT y] us Y 24y
Bi1 12y viEw er s K% [T TAVN # 3
U e pim B2 ¥ ACtToes PT v < F} w43 Ao
T 164 P\DJ’SP’L BY 194 Lo ba LT Ay Fa lrle Pr‘r
%y Epr+ 36 o fue PE 114 ap Fe zexr crtd
e pgsT g€ It cave e Fi 16 SPRE
PP a3, ndc I KEY
eq Fan B 1¥Y Coump e aae A G k) ¢$
LEFT
IS Co B) 1 ¥ EPTYDON, AU s
p i PE WY r4e 1 16A v d
T 1 T
'S Gosug g :4' ;q" A Cd RIGHTE
) Lo
8L aAMpuT o1 d ' re 2e(cnd
&y IF BA w6 She Fe v ¢ad
0 pavep 8B %) Arig Fo €1 TInc g
1SS, 1 Be 1PF Sgur RE ase —
l o 80 Y1 vegFy
G per FE NS Bnd ol Ll
; BE 19 praw
> LL:gT o 1?3
oy Long BF M1 Alg
15.‘

L PR

APPENDIX 1
ASCII CODES

ASCII HEX DEC ASCII HEX DEC ASCII HEX
NUL 00 O / 2F 47 A 5E
SOH o1 1 0 30 48 —. 5F
STX 02 2 1 31 49 v 60
ETX 03 3 2 32 50 a 61
EOT ou 4 3 33 51 b 62
ENQ 05 5 y 34 52 c 63
ACK 06 6 5 35 53 d oL
BEL o7 T 6 36 54 e 65
BS o8 8 7 37 55 £ 66
HT 09 9 8 38 56 g 67
LF oA 10 9 39 57 . h 68
VT 0B 11 : 34 58 i 69
FF oc 12 : 3B 59 J 64
CR op 13 < 3C 60 Kk 6B
S0 0E 14 = 3D 61 1 6C
SI OF 15 > 3E 62 m 6D
DLE 10 16 ? 3F 63 n 6E
pC1 11 17 @ u0 64 0 6F
DC2 12 18 A 41 (65 p 70
DC3 13 19 B 42 66 q 71
DCY 14 20 c 43 67 r 72
NAK 15 21 D uy 68 s 73
SYN 16 22 E 45 69 t T4
ETB 17 23 F 46 70 u 75
CAN 18 24 G 47 71 v 76
EM 19 25 H ug 72 W 7
SUB 1A 26 I 49 73 X 78
ESC 1B 27 J 4p T4 y 79
FS 1¢c 28 K 4B 75 z TA
GS 1D 29 L ue 76 { 7B
RS 1E 30 M 4 77 \ 7C
us 1F 31 N YWE 78 1 7D
space 20 32 0 LF 79 ~ TE
1 21 33 P 50 80 DEL TF
" 22 34 Q 51 81
£ 23 35 R 52 82
$ 24 36 S 53 83
! 25 37 T 54 84
& 26 38 U 55 85
: 27 39 v 56 86
(28 40 W 57 87
) 29 1 X 58 88
* 2A 42 Y 59 89
+ 2B 43 z 54 90
, 2C 414 5B 91
= 2D 45 5C 92

; 2E U6 5D 93

174

APPENDIX 2
SOME USEFUL CONTROL AND ESCAPE SEQUENCES

CONTROL SEQUENCES

CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL

Dn

)/I——INWEZL"‘NQHIC);'IN

t

Sets background colour to n

Erase to end of line

Sets foreground colour to n

Sounds the bell

Backspace, cursor left

Tabulate the next block of eight columns
Line feed, cursor down

Cursor up

Clear screen and home cursor

Carriage return, cursor to left edge of screen
Tab back

Cursor forwards -
Homes cursor

Page mode

Scroll mode

Cursor on

Cursor off

ESCAPE SEQUENCES

ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC
ESC

Standard character font
American character font

English character font

French character font

German character font

Swedish character font

Spanish character font

Inserts a blank line at cursor line
Deletes the current cursor line
Duplicates a line

Simulates CONTROL character c

=

b
|
T
2
£
| A
|
|
yd 8
1/
!
|
l "
il
i -
14
l L
i .|
|_ |
i 2

APPENDIX 3
ERROR MESSAGES
Farams
jncorrect or wrong number of parameters for a function or
command.
Mistake
A mistake has been made which should be obvious from the context.

pot outside virtual screen.

sE.A

screen type not in type table.
sE.B

jnvalid ESC sequence.

SE.C

¢ommand not valid for this device.
SE.D

dwitch to absent Virtual Screen.
SE.E

Invalid UDG/UDG type.

Symbol?

A symbol is missing, such as "=, wTO", “THEN", ","

Not numeric
A number is expected,

Not a string
A string is expected.

Boolean?
A truth value is expected.

Mismatch
An illegal relationship between different types of values.

BK
Break in tape LOAD or SAVE.

No data
No data for READ or No page for NODDY.

Overflow
Number too big.

Div /0
Division by zero

176

= Out of range
Number is not in a valid range.

No space

To define an array

To expand a program

To assign a string to a character array
To perform a large operation,

Subscript
A Subscript is out of range or there are too many.

Gosub
Too many GOSUBS (more than 34),

Undefined
A variable is being used before it exists,

Array exists
An array has already been defined.

No FOR
A next has been encountered without a matching FOQOR.
No call
A RETURN has been encountered without a matching GOSUB.,
No line
A reference is made to 8 non-existent line,
W
Rer dar Peac lz
ter & F Lo P&, (ML)

Rer v Video Ouwkpuls +Cakal

fee g I%d.ﬁmmqmmw.;m,mmzu .
Ed ot e l2ee) oo Eicr we [#e2) . Copia ML & Efapes (& Fora)

BT Sk ey s ke |

RsT 28 Ty Tedly + Erren M tossns , | aw- P e, bo = IF Py) Teen ?i;ﬂfzw)

ReT 3 Ewmmww,hmwgﬂec,%wiﬁm-rfm_

Rev 2§ P A, breckpol,),

o

APPENDIX &
THE NUMERIC KEYPAD

The Numeric Keypad has been designed for use with application
programs. Notice that the Break key is in the top right hand
corner of the numeric pad and you must decide if you want to
allow this key to Break in or not. To use the pumeric pad, Ppress
the shift key and one of the numbers. In this mode the Break/9
key will give 2 g and not Break.

There is however & numeric padlock which is set by a Bit in the
keyboard flags. If this bit is set, the number pad will be locked
to Numbers but for safety the Break key will over-ride the 9. To
use the 9 you must turn off the Break key, bY switching the Break
key bit in the Interrupt flags INTFFF.

e.gl

10 POKE 64145,132

20 POKE 64862,13

30 PRINT INKEY$:GOTO 30

Conng Lokl Eufter Lro ke, tadh - \ fie Cach choamed - Shet Jo cradase (fn

Bk

o‘ Lin pownler 1)

V-2 ﬂMdeLWQMM?MMA,M

1 ™ ke, ol ngunad todfen

[~ Currtk «uq dfe, bt [k s 2

ot Freypanay Vokme

7-8 Vol \ eAang e

q Do Py -
Cound Grmthma Bullen (17 P Corh - Fuber gz cheeed Jakemined by SBuF)
Buke

0-1 Teib Frogeies, Vase

A5 ‘:r'-rVM-M-, Va'u:‘-e: C"rﬁl‘:“‘k

" Free 7
EMJ.T., badfen o= e ked JWN-"L rvu—-.-.. {TnLgavn [FI\S\.) ot [QT\I_L;‘-\)W ath
I S ﬂmsiﬂbWTwaamu«nwﬁtkbwm.M
TE AVA

178

|

FAS52
FATA
FATA
FATB
FATD
FATF
FA81

FA83
FA85
FA89
FA8C
FASF
FA90
FA91

FA92
FA94
FA96
FA98
FA9B
FAQE
FAA1

FAAY
FAA6
FAAT
FAA9Q
FAAA
FAAC
FACC
FACF
FAD1

FAD2
FAD3
FADY
FAD5
FAD6
FADS
FB41

FB43
FB45
FB46
FB48
FBA49

CTRBADR
STKTOP
LSTPG
VARNAM
VALBOT
CALCBOT
CALCST
KBDBUF

USER

IOPL
REALBY
KBFLAG
STKLIM
SYSTOP
SSTACK
USERINT
NODLOC
FEXPAND
USERNOD
NBTOP
NBTPG
BASTOP
BASTPG
BASBOT
BASTPO
ARRTOP
BASELIN
BASLNP
PAGE
CRNTPG
PGN1
PGN2
PGTOP
GOSTACK
GOPTR
GOSNUM
CTYSLT
DATAAD
DATAPG
DESAVE

__——-—----III-I.l.l.............lllllllllll

APPENDIX 5
SYSTEM VARIABLES

Control buffers for sound (- s, / ehemad)
Top of stack

Number of 32K pages

Bottom of variable names Cdo
Bottom of variable values PPN

Bottom of calculator stack 4o,

Top of calculator stack cdd,
Address of keyboard buffer FBto
Syntax for user routine

Basic user Jump NBP RET pCT
o bb Py

List device b1

Panel breakpoint N

See below £

Top of free space FAsa

Top of variables to be saved
Address of machine stack
See below

Panel expansion

Noddy expansion

Top of Noddy

Top of Noddy

Top of current Basic page

Bottom of Basic
Top of each Basic page
Top of arrays

Current page configuration

Sirlrg;t Ba}sii paseﬁw e pegp Gy b Inwsin (FESEF)

DI WIS g fogr lopms B¢ Wpdo, from "OE.')-P YT AT FR{LRS
GOSUB stack
Number of nested GOSUBS

Keyboard configuration
Data pointer

** System variables Saved to here on tape #**

179

FBUB START Keyboard buffer

FDu8 STACK Machine stack

FD48 SETCALL

FD4B RICHJL T

FDU4E USRRST Restart 38 B3P

FD51 USERIO See below 9 1

FD54 USERROR Error trap TP \EAF

FD5T CLOCK Real Time Clock

FD5E INTFFF See below BE = Trkesupk (lege
FD5F CASBAUD Cassette Baud rate

FD60 MIDVAL 4

FD61 RETSAVE Start address for Auto Load
FD65 VAZERO Lady [P

FD6T VERIF # = Lond |, V= Verh

FD68 TYPE b2 Sowt , 15 Lewa [Vasd,

FD69 CONTFLG 1

FD6A CONTAD 1} pddress of line to

FD6C CONTPG 1} confine after S3TOP or Break
FD6D ASTACK

FD6F TMPHL | Teepm, alimas e Mb o AT

FDT1 TMPA) Ly page A .

FDT73 STACCT

FD75 PRORPL See below [0onhe Ouknd fLok Oukipk |

FDT76 I0PR See below Donky Ten

FDTT AUTOIN Increment for Auto Line

FDT79 AUTOST Corrak Arde Line

FD7B AUTOCT Keyboort Aids Regeck lownkin

FDT7C LASTKY Last key pressed

FDTD LASTASC ASCII of last key read

FDTE LASTDR Keyhoord Trac bine bk

FDTF RNSEED

FD81 BREAK Dk b 3 Greeh cemendly W.ﬁ.}.\= Bk P bun """"‘“\-e""'l"ﬁ?""‘“"k‘ Erreask
FD82 COMMAND Address of First Command executed o~ broek
FD8Y ERRPOS Position of syntax error

FD86 FLAGS1

FD87T ITYPE Used by Assembler and Panel

FD89 MAFD)

FD8B MBCD '

FD8D MDED }

FDSF MHLD)

FD91 MAF }

FD93 MBC }

FD95 MDE } Temporary locations for

FD97 MHL } storing registers

FD99 MIX }

FD9B MIY }

FD9D MSP }

FDOF MPC }

FDA1 MEMPOINT

EDA3 WCHJUMP = 250E/200a Adbem o Tutw Toke fer Vinemertts, | P ek
FDAS POINTERR '
FDAG DADD

FDA% ASBYTE L e aken 0T Suadhed Lo

FDA INDEX 3

POAR DBYTE o i

180

FDAC LINKER _
FDAD EDIT E b oeglk pend, |, <pueed ol ek,
FDAE LENGTH

FDAF DETYPE

FDBO DTYPE

FDB1 DISAD

FDB3 DPROG

FDB5 LABTABL Clols ot Paudly Lobed,

FDB7 APROG Corrirk Aoty Addam |

FDB9 ENDTAB End ot N Aty Ladedy |
FDBB COMMENT Non e U sasnmln, W mdhendtr G,

FDBC COMAD)
FDBE ADLABEL Adden, pr bbat o e L

FDC1 INDEXLAB _

FDC3 DATALAB fibe, of doo ehg e
FDC6 DBLABEL ¥, W, e 6 "‘J“""t‘j VB bW, V¢ .. <rucey al ,

FDCT BASEM ta e addoy, £ cods

FDC9 CURLAB Nddriar oL tuerend Lihel |, bl oo cormmank 2bnl,

FDCC ACCH Used by Maths

FDF2 INTTAB Node Interrupt Table

FEO2 GASH Used by Sound

FEO4 TEMP T lrpory, St o Slaik s Cmmied) an,

FE12 CHAN Dandds, B avead chy

FE1 FREQ e ki,

FE18 VoL

FE1A WKAREA VS work area

FE3F BSSTR

FE4B SPEED Sprite speed

FE4C SPBASE

FE4D MVDIST Move.distance

FEME NOSPR Number of Sprites

FE4F DLSPNO Number of circling Sprites

FES0 PLSPNO Plot sprite number

FE51 MVNO

FE52 DELSPR

FE53 VCOUNT Counter for cursor flash

FE54 VDPSTS Copy of VDP Status register

FE55 SPRTBL Control Buffers for Sprites

FF55 SMBYTE Size/Magnification

FF56 LENLO

FF57 LENHI

FF58 VINTFG Sprite interrupt flag: If 0 implies safe to
write to screen

FF59 CHPTR Character pointer

Virtual screen controls - see below

FFSD SCRNO FFBT SCRN6

FF6C SCRN1 FFC6 SCRNT

FF7B SCRN2 FFD5 US TYPE TABLE ~ Screen subfunctions
FF8A SCRN3 FFED VIRTUAL SCREEN

FF99 SCRNY FFEE OVERLAY

FFA8 SCRN5

PITP - Nann Jakemg 181
$053 - o
VeV L B Sunghe Sl

L)
X
-

an,b-““dd'-“'"14~.u4r¢“ﬁ

m

Virtual Screens - Byte format for each screen

Byte No Contents (Bt &)

1

2 Current print position in virtual screen (c lu...)
3 2nd Byte of above

4 Absolute top left-hand corner

5 2nd Byte of above

6 Size of screen in characters

7 2nd Byte of above

8 Line width of Physical screen

9 Holds Cursor character

10 Border colour, Paper, Ink

11 Print colours: Ink, Paper; Print Attributes

12 2nd Byte of above

13 Non-print colours: Ink, pPaper; Non-print Attributes
14 2nd Byte of above

15 Scroll count

INTFFF (FA98 Hex 64862 Decimal)

The computer generates interrupts every 1/6ith of a second. To
allow the user to use these interrupts there is an interrupt flag
(INTFFF) and a USERINT location. The interrupt flag determines
which of the available routines are called at each interrupt.

0 = OFF, 1 = ON.
Bit © Sound

Break key /

Keyboard auto repeat

Sprite movement and cursor flash

USER

USER

USER

Connds adhamih, wntiwdS .

if any of the user bits are set a call is made to the USERINT
location.

LU T T O I 2 O |

S~ o EWD =

PRORPL If PRORPL 1, output is sent to the device specified by

I0PL
If PRORPL = 0, output is sent to the device specified by
JOPR
JOPR 0 = Screen
IOPL 1 = Centronics
2 = RS232 A

KBDFLG (FA91 Hex 64145 Decimal)

Bit 7 - Alpha lock
5 - Page/Scroll
2 - Numeric keypad lock

CTYSLT (FBU45 Hex 64325 Decimal)

This location selects a keyboard configuration and is initialised
by the switches at the rear of the PCB.

182

Screen Type,”huto Scroll, Cursor Flaéh, Page Mode , lnat fid,

GREY |

______------IIIlllllIlllllllllllllllllllllll

APPENDIX 6
FUNCTION KEYS

The Function Keypad can be used to customise the computer for g
particular application. There are eight keys marked F1 to F§,

Try this program:

10 PRINT ASC(INKEY$)
20 GOTO 10

If you press any key, you will see its ASCII code displayed and
the shifted value if the shirft key is pressed simultaneously.

F1 128 SHIFT and F1 136
F2 129 " " F2 137
F3 130 " " F3 138
Fu 131 U " F4 139
F5 132 " " F5 140
Fé 133 " " F6 141
F7 134 " " F7 142
F8 135 " " F8 143

If required, character patterns can be assigned to the function
keys using the GENPAT statement.

For example,
10 GENPAT 1,129,32,80,136,136,248,136,136,0

will make F2 produce a character *ar,

Prdi Cokd Buller - Buke Fomol for oncds € Je,

Byke Munde Conte L,
ol Verbeed Pridan . High E,L-.} Prkm a, .. ;mudbol
z Verliead Posibipn = Lovw Bode | vz i piecdl .
b Hm\,u..,l:..o gf‘“-tl

s prn%-nwasm}rmﬁamt%
b Hocgmkd foka. - Lo, Fode § o0 10 pced

v, Bk 7 ak W alaboneds spoke o Bk b0 = Pllem Mol W
3 Bt b ak b aprke hes ek by gl - Bde 30 = pdh

183

— e b b b 3
LH-E'UJN-‘O\DCD'-IO\\HJ‘:LAJI\)—‘O

APPENDIX T
COLOUR TABLE

Transparent
Black

Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta

Grey

White

184

._______-----IlIIlllllllllllllllllllllll

APPENDIX 8
SOUND TABLE 1
FREQUENCY = 4000000/ 32%n (Where n is the value)

DIRECT COMMAND SBUF RESULT (Hz)
10 80 12500
20 160 6250
30 240 4166
40 320 3125
50 400 2500
60 480 2083
70 560 1785
80 640 1562
90 720 1388

100 800 1250
110 880 1136
120 960 1041
130 1040 961
140 1120 892
150 1200 833
160 1280 781
170 1360 735
180 1440 694
190 1520 657
200 1600 625
210 1680 595
220 1760 568
230 1840 543
240 1920 520
250 2000 500
260 2080 480
270 2160 462
280 2240 hug
290 2320 431
300 2400 416
310 2480 403
320 2560 390
330 2640 378
340 2720 367
350 2800 357
360 2880- 347
370 2960 337
380 3040 328
390 3120 320

185

DIRECT COMMAND

400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980
1000
1020

SBUF

3200
3360
3520
3680
3840
4000
4160
4320
4480
4640
4800
4960
5120
5280
5440
5600
5760
5920
6080
6240
6400
6560
6720
6880
7040
7200
7360
7520
7680
T840
8000
8160

186

RESULT (Hz)

312
297
284
271
260
250
240
231
223
215
208
201
195
189
183
178
173
168
164
160
156
152
148
145
142
138
135
132
130
127
125
122

______-.-----IIIllIllllllllllllllllllllllll

SOUND TABLE 2

NOISE
DC (periodic noise) SB R
0 0 Shift rate = 7812.5 Hz
1 8 Shift rate = 3906.25 Hz
2 16 Shift rate = 2604,17 Hz
3 24 Shift rate = CHANNEL 2
Pink Noise
y 32 Shift rate = 7812.5 Hz
5 40 Shift rate = 3906.25 Hz
6 48 Shift rate = 2604,17 Hz
7 56 Shift rate = CHANNEL 2
SOUND TABLE 3
VOLUME
Direct Com. SBUF Result (DbB)
] 0 OFF
1 16 -28
2 32 =26
3 48 =24
y 64 =22
5 80 ~20
6 96 -18 .
T 112 =16 |
8 128 -14 |
9 144 ~-12 ’
10 160 -10
11 176 - 8
12 192 - 6
13 208 -4
14 224 -2
15 240 -0

187

APPENDIX 9
ABSOLUTE DIRECTIONS

including MVSPR, and VIEW, use a

Some graphics commands,
These are

direction parameter to specify one of seven directions.
illustrated in the diagram below.

188

APPENDIX 10
FLOWCHART CONVENTIONS

\ /L

Manual Operation Input/Output Process
(D () <>

Terminal/Interrupt Preparation Decision
_

Merge Document Display

A
O]
Connector Manual Input Off(iage

%

Communications
Link

189

Absolute Address

AC

Access Time

Accumulator

ADC

Address

Algorithm

Alphanumeric

Array

ASCII

Assembler

Backup

GLOSSARY OF TERMS

Information or data held in a computer is
found by the address of its location.

In machine code programs, the number
defining an address is called an absolute
address.

Alternating Current.

How long it takes to reference an item in
memory.

A type of register.

Analogue to digital converter. Converts
analogue signals into digital signals,
would you believe! There are also
digital to analogue converters, which
work in the opposite direction.

Each memory location has an address, used
to find data or a program instruction.

A set of steps for performing a task.

Numbers, letters and sometimes other
things.

An arranged set of values linked by some
kind of logical relationship. Each
element in an array has a unique
reference,

American Standard Code for Information
Interchange. Pronounced ‘'Askey', it's
just a way of representing al phanumeric
characters in binary. Difficult to get
away from this one, it crops up all over
the place.

A programming language one step away from
the Zeros and ones the computer
understands and uses. Assembly code 1is
the coding for a program written 1in
assembler.

When things go wrong, if you haven't got
one, you're in trouble.

190

BASIC

Baud Rate

BCD

Benchmark

Binary

BIT

Boolean Algebra

Bootstrap

Branch

Buffer

Bug

Bus

Byte

The Beginner's All-Purpose Symbolije
Instruction Code.

Number of bits per second transmitted
along a line,

Binary Coded Decimal. a way of expressing
decimal numbers using bits. Uses four
binary bits for each decimal number,

A standard set of tests for seeing how
fast a computer can perform. Used mainly
in comparing one computer with its
rivals,

Number system using only two digits, 1
and 0,

Binary digit. Either a Zero or a one, it
is the basic unit of information storage.

Set of logical instructions written using
algebra, with ap answer either TRUE or
FALSE,

A set of instructions held pPermanently in
the computer which have to be loaded
before the computer can load programs,

In Programming terms, a branch is a part
of a Program where a decision is made
and the program flow is transferred
depending on the result, This is g
conditional branch. An unconditional
branch is something 1like the GOTO
Statement, where the Program control
Jjumps Somewhere else without a decision
being made.

Somewhere data is stored temporarily,
until the CPU is ready to process it.
Also wused ¢to allow one part of the
computer to work at 2 different speed
from another part.

We all get these, so don't worry. A
Software error.

A set of connections which allow a route
around the computer for signals.

A set of bits, the smallest unit that
means anything, One byte is normally

represented by 8 bits, and represents a
character or number.

191

L

rT'"F__—

Centronics

Character -Set

Chip

Command

Compiler

Constant

cP/M

CPU

Crash

Cursor

pata

DC

Debug

A manufacturer of printers. Very popular.
Lucky you've got a centronics type
interface.

The set of characters (sorry)!

This is what most people call an
integrated circuit. It's a tiny piece of
silicon, and the bread and butter of
computers. (No jokes please.)

An instruction to the computer to tell it
to do something.

Translates source code into object code.

Something (either a number, or a string)
which doesn't change.

Stands for Control Program/Monitor. A

widely used and well recognised operating
system which makes available to Yyou &
wealth of software packages. If you take
computing seriously it's well worth the
investment, there are books around which
describe it fully, if you're interested.

The Central Processing Unit is a complex
chip where all the logical and arithmetic
operations arée carried out. It's Yyour
computers ‘brain'.

Something that happens to programs. When
a program crashes 1it's Dbecause the
computer has encountered an instruction
which has totally confused it, so instead
of getting an error message you usually
get nothing, or jots of rubbish displayed
on the screen.

The cursor tells you where the character
you are about to type will appear. It's.
the blob on the screen that's about the
size of an ordinary character.

Data is information which can be
processed, stored or produced by a
computer.

Stands for Direct Current. A constant
voltage.

The identification and removal of errors
from a program.

192

Disc

Dump

Edit

Emulator

EOF

EPROM

Error Message
Execute
Execution Time

File

Flag

Floppy Disec
Flowchart

Gate

Gigo

______.....-----IIIIIIIIIIIIIIIIIIIIIIII

An L.P, shaped plate covered in magnetjq
material which can Store information or
data on its concentric tracks, Discs have
a fast access time, because the
read/write head can position itselr
quickly over the required data Wwithout
having to reag all the Preceding Storage
area.

To make a backup of a section of memory
by Printing it, or sending it to g4
backing store, to give a security copy
usually,

To change data from what it was to what
you want it to be,

Software which enables one computer ¢to
duplicate the instruction set of another,

Stands for End Of File,
Erasable, Programmable Read-Only Memory.
We all see lots of these, a code or
message to tell You that you have made g
mistake,

The carrying-out of 3 pProgram or single
instruction,

How long it takes,

A file is g block of data organised so

that it ecan be stored and retrieved as
required. Files always have names,

An indiecator used to indicate something

about data. For instance the 780 CPU has
a flag which tells you whether the 1last
operation performed resulted in zero or
non zero,

Cheap, flexible store for data.

A graphice way of representing the order
of a set of events.

A single logic funetion.

Garbage in, garbage out! Antiquated
expression, but I like it,

193

il

Glitch

Hard Copy

Hardware

Hertz (Hz.)

Hex

Input

1/0

Integer

Interface

Joystick

Kilo (K)

Line Number

LOAD

Location

Machine Code

A spike of electrical noise. You don't
want any of these. can destroy Yyour
memory contents.

A paper printout of your program or data
ijs called hard coOPpYe.

Hardware is the physical bits and pleces
(chips etc.) that make Uup your computer.

Measure of frequency meaning cycles per
second.

In everyday mathematics we use€ decimal,

or base 10. Hexadecimal is a number i
system in pase 16 and uses the numbers O 1
to 9 and letters A to F (representing 10
through 15).

Information placed into the computer's
memory 1is jnput data, and may originate
from, for example, the keyboard.

Abbreviation of Input/Output.
A whole number.

Software or hardware, ©Or both, used to
enable the computer and a peripheral to
talk to each other.

Used mainly to enable games to be played
on a computer. We all Kknow what a
joystick is anyway, don't we?

Generally means one€ thousand, except when
referring to memory size when it means
1024.

The number required at the beginning of a
jine 1in BASIC is its line humber. The
program is always executed in l1ine number
order, unless you use something 1like a
GOTO or GOSUB statement.

The placing of data in memory from 8
backing store or program.

Same a8 absolute address.

Literally the language the computer
understands. Machine code is the languag®
211 other languages have to be translated
into before the computer can execute
program.

194

.___.__..------IIIIIIIIIIIIIIIIIIIIII|

Memory Storage inside the computer for data ang
Programs, measured ip bytes.

Menu List of choices open to the user, usually
€ncountered as the first Page, or screep
of a program.

Microcomputer A small computer using gz microprocessor
chip. In the MTX series computers, the
microprocessor is the Zilog Z80.

Microprocessor The chip used in your computer as its
CPU. Microprocessors Crop up everywhere
these days, 1in ovens, Hi Fi eéquipment,
they are even responsible for telling you
to put your Seatbelt on in g Maestro,

Microsecond (us) One millionth of a Second.
Millisecond (ms) One thousandth of a second,
Monitor Think of it as @ high definition

television that can be used only as g
display screen,

Nanosecond (ns) One billionth of 2 second, (One billion
is 1,000,000,000 or 1079.)
| Nibble Half a byte, i.e. usually four bits,
Non-Volatile Most of the contents of memory are lost

when the power is turned off, Non-
volatile memory doesn't disappear. For
example, the information in ROM is non-
volatile,

Null String An empty string. The string must exist,
and it must haye nothing in it for it to
be a null string,

Humber-Crunching Performing complex calculations quickly.

Object Code A form of code the computer understands.
If you.,write your program in a high level
language, (source code) it has to be
translated into object or machine code
before the computer can act on it. This
is a binary version of the source code
and is produced by the compiler.

Un-Line Peripherals connected to and

195

Operand & Operator

Operating System (0S)

Output

Qverflow

Pack

Page

Paging

Peek

Peripherals

Pixel

Poke

Port

Machine code jnstructions can be divided
into these two parts. The operator is the
process which is carried out, e.g. add,
subtract, etc. and the operand is the
data the process 18 carried out on,
usually a number.

Software which supervises the running of

other programs. CP/M, developed by
Digital Research Inc. in 1976 1is an
excellent operating system for usée with
780 microprocessor computers like the MTX

series.

The results that the computer makes
available to the user (either on the
screen or as a printout, maybe).

When the space allowed for the answer of
an arithmetic expression is too small, an
overflow condition will occur. The Z80
CPU has an overflow flag.

A way of compacting information to
economise on storage space inside a

computer.

A block of data, as displayed Dby the
television set or monitor. Sometimes a
page is made up with several frames, Or

screens, of data.

Switching Dbetween blocks of computer
memory.

A BASIC command which allows you to read
the contents of a specified memory

address.

Devices linked to the computer to enable
it to gather and display informationj
e.g. a printer, or a TV screen aré€

peripherals.

Picture element. It's the smallest aread
of display that the computer can controls
The more pixels you've got, the higher
the resolution of your computer.

BASIC command which places integer yalue
into a specified memory location.

A socket on the computer into which ab
1/0 device can be plugged.

196

Program

PROM

RAM

Record

Register

Reset

Reserved Word

ROM
R3232

Run

Scroll

Software

Source Code

String

A set of instruetions which the computep
carries out,

Programmable Read Only Memory.
Random Access Memory.

A grouped set of related data or
information. A file is generally made up
of lots of records.

A special Storage location in the CPU
which holds data on which calculations
are performed.

On the MTX series computers the two keys
on either side of the Space bar are the
Reset Keys. Reset means the same as
Initialise, and once pressed, the
computer returns to the state it was in
when you first Switched on.

A word that has a Specific meaning to the
compiler, so it cannot be used as a
variable name in a Program.

Permanent Read Only Memory.
A type of interface.

A command used to tell the computer to
execute a program.

The continuous movement of the display on
the screen. Usually Scrolling means that
the latest 1lipe entered is added at the
bottom and all the other lines move up
one, causing the top line to dissappear
from view.

The program itself, i.,e, as opposed to
Hardware,

What 1is actually written by the
Programmer before it is converted to
object or machine code.

A sequence of records; words, letters or
humbers,

197

e e ——

Subroutine

Syntax

Variable

Volatile

Zilog

Often a part of a program will need to be
repeated several times during the ‘'run'.
Instead of writing the section each time
you need it, a subroutine means you can
write it just once, and 'call!' or use it
as needed.

Computer languages are very precise.
Statements need to Dbe in the correct
order in the program, or it will crash.
The rules which decide the grammar of the
language are its Syntax.

An element of a program that can have
various values. It is a label used to
refer to an area of memory.

Opposite of non-volatile.

"The last word in integrated logic". The

manufacturer of the 780 micro chip used
in the MTX series computers.

198

*

MTX SERIES TECHNICAL APPENDICES

1 Introduction
Overall Description

2 Technieal Specification
System Bus
System Block Diagram
Electronic Circuit Schematic

Video Display Processor

3
4

5

6

7 Sound Generator
8 Memory Maps

9 Input/Output Port Summary
0

10 Paralilel Printer Interface
11 Parallel Input/Output Port

12 Memotech DMX80 Printer Connector

201

1 INTRODUCTION
Qverall Description

The MTX500 Series personal computer systems are high performance
8-pit computers uniquely designed to operate in memory intensive
ROM-based oOr pisSC-based environments. The choice of the ZIBOA
Microprocessor and £the TMS 9918A series yideo processor as the
key components of the hardware architecture is consistent with a
low cost ROM-based system with colour TV output plus the
capability to expand to accomodate @ fully RAM-based Disc
operating system such as CP/M, utilising a high quality 80 column
colour monitor output.

The memory size c¢an be either 32K or 64K Bytes as standard,
expandable to 512K Bytes. There is a separate 16K Byte dedicated
video memory. A 24K Byte ROM contains MTX - BASIC, the system
monitor, supplementary languages and utilities. The standard
interfaces included are tape cassette (Read/Write to 2400 baud),
Keyboard, cartridge Port, Twin Joysticks, Parallel Centronics
type printer port, uncommitted parallel Input/Output port, Colour
TV output with sound, composite video output - monochrome Or
colour, and audio output. Optional interfaces include a
completely independent twin RS232C with puffered bus extension,
Colour 80 Column Board, FloPPY Disc System, gilicon disc fast
access RAM poards, and a Winchester Disc System.
The Keyboard consists of 79 full travel typewriter style keys
mounted on & steel base plate which 1is fitted to the Aluminium
enclosure. Aluminium was chosen for good heat dissipation,
durability and RFI shielding.

202

2 TECHNICAL SPECIFICATION
Hardware

Chassis

Two front-hinged black anodised brushed aluminium extrusions are
Separated at the rear by a black plastic moulding, The extrusionsg
act as heatsinks for the voltage regulation circuitry. Two matt
black powder coated stamped aluminium endplates, are Secured by 3
screws each,

Dimensions in millimetres: Width 488 Depth 202 Height 56
Weight: 2.6 kilograms

Keyboard

A 1mm mild steel sheet is bolted to the upper chassis and
supports 79 keys which are interconnected by an independent
P.c.b. The keys are arranged as:

Standard U,K,. QWERTY layout with 57 professional typewriter keys,
standard pitch and spacing, Keys F and J are recessed for easy
fingertip loecation wherever possible. Foreign language keyboards
are available,

Twelve dual function keys are arranged as a separate numeric
keypad with cursor control and editing keys,

Eight function keys (programmable in conjunction with shift to
provide 16 user definable functions).

Two unmarked keys, which must be depressed simultaneously to
reset the computer.

Auto repeat is standard on the alpha-numeric keys,

_ __MEMOTECH MTXS12__ |

&
oS
o]

)

o)

B

]

B

]
I

£

=

3]
£ £
L E 6
T[E[E]E
FEEE
FEEE

203

X

CPU Board

Mounted in the lower chassis, the CPU pboard accommodates:

7ilog 280A CPU operating at u4MHzZ.

24K of ROM which contains:

MTX BASIC - incorporating sophisticated MTX LOGO-type graphics
commands.

MTX NODDY - interactive screen manipulation routines.

FRONT PANEL DISPLAY - incorporating Z80 Assembler/Disassembler
plus Z80 Register, Memory and Program display and manipulation
routines.

VIDEO DISPLAY PROCESSOR - with 16K dedicated video-RAM.

USER-RAM - 32K on the MTX500 and 64K on the MTX512. User RAM size
is constant under all display formats.

VIDEC BOARD - for television and sound signal encoding.

REAL TIME CLOCK

CHARACTER SETS - Numeric, upper case, lower case, user-definable
characters and user-definable sprites. Resident international
character sets and appropriate keyboard layouts for UK, USA,
France, Germany, Spain and Sweden. Character sets for Denmark and
Italy are also available.

Expansions

Up to two expansion boards may be added internally. These may be
Memory (RAM) Boards or the Communications Board.

MEMORY BOARDS

RAM may be increased by the addition of boards which provide 32K,
64K, 128K or 256K of memory, up to a maximum of 512K.
COMMUNICATIONS BOARD

Available as an internal expansion, this board carries two
completely independent RS232 interfaces (running at up to 19 200
baud) with full handshaking and modem communication 1lines, and
also the disc drive bus. The Communications Board is required to
run the FDX and HDX disc based systems and the MTX Node/Ring
System.

NODE/RING SYSTEM ~ Communications software and interfacing
enabling construction of MTX Ring Systems. The system is
interrupt driven and runs in conjunction with the twin RS232
Communications Board.

Compatibility of the memory boards and Communications Board 18
given below.

Compatibility table of internal expansion boards

RAM boards
32K 6K 128K 256K Comms. board

32K * % * *
64K % % * % #
128K * ¥ *] *
256K * % * % ¥
Comms. ¥ * * *
Board

#-compatible

204

ﬁ

ROM Expansions

Via the cartridge port or disc drive bus these provide:
MTX PASCAL

MTX FORTH

NODE SYSTEM software

Business, Education and Games software

Display
Colour TV and/or Video Monitor

40 column x 24 1ine display as standard, with optional Colouyr 80
column board. (FDX or HDX disc based System required).

Display Facilities:

FULL SCREEN HANDLING

EIGHT USER DEFINABLE VIRTUAL SCREENS

SCREEN FORMATS

Text: 40 x 24 characters

Text with graphics: 32 x 24 text with 256 x 192 Pixels in 16
colours

Graphics Facilities

Up to 32 independently controllable user definable Sprites, plus
pattern plane and backdrop Plane. High level Sprite-orientated
graphies commands.

Input/OQutput
Provided as standard:

CASSETTE PORT (variable rate, up to 2 400 baud)
UNCOMMITTED PARALLEL INPUT/OQUTPUT PORT

voices plus Pink noise output through TV Speaker, or through

MONITOR OUTPUT - composite video signal (1V peak to peak)
CARTRIAGE PORT

PARALLEL PRINTER PORT (compatible with Centronics-type printers)
Available as an expansion;

COMMUNICATIONS BOARD WITH Two RS232 INTERFACES and disc drive bus
Suitable Printers

Centronics-type Parallel printers

R8232 serial Printers (requires Communications Board)

Power Supply Unit

Input: 220/240 VAC 50/60 Hz. or 110/115 VAC 50/60 Hz.

Output: 22.5 VAC, 1A tapped at 18V and 9y,

Dimensions in millimetres: Width 92 Depth 1710 Height 70

Weight: 1.0 kilogram

The PSU is double insulated and has a side mounted rocker switch

transformer is located between two groups of four anti—vibration,
noise absorbing rubber mounts. Extensive Strain relier mouldings
are incorporated in the PSU casing to support the input ang
output cables. The output ecable terminates in a 240 degree, six
Pin DIN connector. The PSU is Supplied as a sealed unit.

205

MTX Series Disc Based Systems
These are the: |

FDX Floppy Disc System
and the
HDX Winchester Disc System

Both of these systems require the Communications Board expansion
within the MTX computer, and a minimum of 64K RAM. Both systems
have the following features:

A 19 inch wide chassis comprising four black anodised brushed
aluminium extrusions. Black powder coated end plates are€ each
secured by six screws. The chassis contains a card cage which can
accommodate:

One computer expansion board

One Colour 80 column board

Four silicon disc memory boards

One floppy disc controller board

An integral power supply which also powers the MTX computer.
Inputs can be 2u0/220 VAC 50/ 60 Hz or 110/115 VAC 50/60 Hz.
Parallel port for bus expansion

Two slots are provided on the front face for horizontally mounted
five and a quarter inch disc drives.

External battery backup facilities are optionally available

A license to use the Digital Research Inc. cP/M 2.2 operating
system 18 provided Wwith the FDX and HDX systems, a3 is CP/M
itself.

Colour 80 column board

Mounted in the FDX or HDX systems the poard permits the use of
colour programs requiring an 80 column Screen running under cP/M
2.2, such as Colour Wordstar. Also available is the wide range of

existing CP/M based software.

80 Column board-Input and Qutput

RGB monitor output with selectable positive/negative sync,
Monochrome composite video output, 1V peak to peak, negative
sync.

Light pen input

Single channel sound

Screen display formats:

80 columns x 2H lines text (max)

160 x 96 graphics mode

Two alternate 96 element character sets with true Jlower case
descenders.

4K ROM based graphics characters

Teletext compatibility

High speed glitch free screen update (average 25 000 baud)
The Colour 80 column board provides a complete emulation of
cpP/M terminal via ROM software, and features:

Full cursor control

Vector plot, point plot

Powerful editing facilities with screen dump

Complete attribute control for colour and monochrome displays

206

Silicon Discs

These are a quarter or one megabyte fast access RAM boards which
are full emulators of CP/M drives O to 13. Four Silicon discs may
be mounted within the HDX or FDX chassis, providing from one to
four megabytes per card frame. However, +the silicon disc
controllers can supervise four logical drives, of up to eight
megabytes each giving a maximum silicon storage of 32 megabytes.
This is in addition to the four five and a quarter and/or eight
inch <conventional floppy disc drives handled by the floppy disc
controller board. Numerous advantages include:

Speed - up to five times faster than a Winchester disec, and fifty
times faster than a floppy disc.

A dramatic increase in efficiency of proven eight bit CP/M
software to 16/32 bit software levels, obviating the need for
complex and costly memory management techniques

Permits single floppy dise CP/M system which 1is ideal for
database manipulation, word processing and compilation,

Greatly reduces disc wear and prolongs life of mechanical disc
drives, enhancing reliability especially in dise intensive
transactions.

Floppy Disc Controller Board

This board uses the full Western Digital 1791 chip set and
supports most CP/M floppy drives, types 0 to 13, which range from
single sided single density five and a quarter inch floppies to
double sided double density eight inch floppies, using SASI
(Shugart) standard interfaces. Any combination of four SASI
compatible drives can be controlled, The WD 1791 controller set
together with a bipolar DMA controller provides a high speed
processor interface minimising latency and facilitating rapid
data transfer especially on high capacity discs. Variable and
fixed write precompensation is software selectable. Bus extenders
permit the connection of external floppy drives.

207

3 MTX SERIES SYSTEM BUS

COMPONENT SIDE

e 30 T T 30 =——
J10 Jo
1 < ?] —

{
il The system Bus comprises the full Z80A bus, power supply rails,
I ROMpak enable (GROM), ROM page ports RO to R2, RAM page ports PO
1 to P3 and serial clock lines 01 and 02.

All lines are externally available on J10, which is a 60 way (30
+ 30) 0.1" card edge plug, or internally on JO which is also a

0.1" 60 way card edge plug.

{EQ

NOTE - HO ALSO HAS KEYWAY BETWEEN 26 AND 27

1z i n‘_.‘;_
=] =]
=] = oo = mg _lsl:::ii|- ---l!
f Bzge¥zy9338ad8aigkplit B znzRY
Ll E-
A A
! 112 4 |5 16 7 18 10 [[z 113 L s L6 L7 118 119 0 j21 122 123 124 125 126 127 29 130
| e W
| B) 8
<
i E
[t w0 _ T = o B >
. T3 3333233588885 wngﬁlzm iEEesceET3
= ¢g§ u

' Note: (1) J10 is a mirror image of JO
f (2) Component side = A
! Solder side = B

208

4 SYSTEM BLOCK DIAGRAM

h
ROM/RAM
: cLOCK
- DECODE
Z80A CPU
RAM 5§
3
1/0
DECDDE
B l
cTC PRINTER PAGE PORT
™ 1N B8,9,A,B
«— OUT 8,9,A,8
r_ IN 0,4 OUT 4 ouUT ©
i
X
g
=5
RS232¢ KEYBOARD vopP n 9
JOYSTICKS A
IN C,0,E,F IN 3,6 our 5 + }
ouT c,o,E,F IN 1,2
I ouT 1.2 bl
I ENCODER
P10 SOUND CASSETTE 1/F *
T™v
IN 7 out 7 IN 3 0UT & oUT S
1,

209

5 ELECTRONIC CIRCUIT SCHEMATICS

N Qr—

MOTE .- JIO MSO MaS REYwAY BETWEEN 24 aND J7

Z%

A%

At e——0—ea)
S
u'm—%—-ﬂ'ﬂ'

y 1

0.0

L »
A0 e——O=—e TR
A} S——O———a A}
Ay .—-o-—oll
ad o—-OQ—oal
Al SOt 40
Ml+¢lﬂ
Al
m ‘—O——Om
n -—o-—-m
nso—o—.m
oy 0—0——00¢
F1) O—O-—OSI
-¥ o—o—.m
L1}
ov o—%-—oul (1]
- »

oy

i

L-

mn-—q,—om
£
"o .—or—é'i‘?-o—.uo

210

N

30 50 v fa x]
" " U L I q = A _m
0ol o000 o]ua 0] »5]ao o] v
91y Ny iy T kg h N 7914
a pl4 as » 0y ar az
o o e m] @ H o o] § = @

s

oy
[Ag
v
v
[4)
&Y
v
oy

(11834

I
A0
Sl L
815 135
Ap——ayv
7V —— N T -
8 Jw]l.'mq
SVdHe—— vie—e 2y
SV e——— L: ¥ ny
i Yoy
L5151
1]
L¥drte—

SIVN

211

oony =
~
03w
o
or
_
_
_
Ay —
ua.._.ho. I
\
Vi i
030w
J
— ¥
Ane+—

(AT} moy
”X

o0 xninoy
(15

Qyvos 030IA Tvd

LA T | 2 1 EA r I L3 2 s 1 2

u [[: /] Q [}
jn

]

. A WF W% w F w G (1]

2],

L1

7] " wng L6 o g [ik L6 Whe

3.

213

o5V e—
LKS 1 28
a 2
20— LK1
s1e—] 3o —o-*
&
ae—0-3-0—4 :: 5 3‘.'—-0“ 0-4-0—e4d
= — L2 LK2
an +—o- L -0— PRS- By ::; e 40-5-0—-"12
Ae——H 22 __ oTEA | | o L O——sAlt
A2 3 PA NN -
nﬁ Ao & (10— —otLio—ean
AD 1 18 p—0- 7 -0—FD
00 +——] =} CPU Prier
o1 e—2i 17 05 WAIT o——
v 02 e LY, 73 Y —
77 FEEY —
L1 ov -
LK O—
H o5V 5V
27 e cemeammmemmes
1 28]
ov 2| : 400003
s 3 26 . ROMARC HAIRD-WIIRED
3 25 - ..
st 12 —oss | AS POSITIONG OFLK1,2.6.5
AS |2 Ad .
v o A | 1
Ade—m1 g—-m ! 1ROM € —_—
re—8 PN 10T S pinz2
e—23 rOMB 2 1 | 2 oH
07 (E6LB -E.@'* e omB
1L I, N EPIN 22 |
13 ,f_s'L/ | |

PAL

ﬁb.__”———-""’ READ mu,___’.—+——'“‘z ‘1 {713

ov WL TLLS WLSI

214

o

IHd J1Je

Hd NdJle

woig|] woc
9y L]

AS*

215

6 VIDEO DISPLAY PROCESSOR TMS9918 SERIES

The Video Display Processor (VDP) used in the MTX Series is the
TMS9918 Series. The TMS9929A is wused in computers for the
European market, and the TMS9928A is used for North America. The
VDP is I/0 mapped at ports 1 and 2. (MODE = 0 for port 1, and
MODE = 1 for port 2.) The colour difference signals are encoded,
mixed with sound and fed to the appropriate RF modulator,
dependent upon the country for which the machine is intended,.

216

FIGURE 1 - TMS 9918 VDP BLOCK DIAGRAM

217

—
B . 002 u1151934 1 §1NJ NMOD
> ¥e JLHeS ._. L4IHS "L1vd _ = 311ueS
]
o .Jl>.m S
ad [P « o 4002 O3u LAHE “HIND NMOQ .
a 8 {7y DU X T ALuaS ._4 o 3LIN4S _ te 3LM4S g @
o e P S e e S S e s e e jr} o« 2
s [
2° L= ol I i £
F o3mA a8 ¥O109 - “B3Y L4IHS HAND NMOQ o e
< =0 L s Lwas H_ ,_. £= ALINGS _ = 3L144S 3 ¥
= .- s
@ (Sl <
a ¥300930 £33 ¥o10) DM LHHS ¥AND NMOO =
= HOWD 2o NE 19 31148 ‘_. e 310845 _ 1= 311Hes
= te
< ar 1
2 v Y0102 D34 LIIHS
sig booo] 3 ONNOYOAIVE ._. 1s 3LINdS 15F i
L] V viva ¥3L5193d
0109 o
TvIsAuD " T & T
- | J
IHW L1 _ ._/V A
]]
| -
: IUVIN0d zuﬂ_ﬁh 5
0ULNOT 10ULHOD onY a
o LE = v v HOLIVHLANS H
LIS ae ki LW 8 - =
_ HLdI4 m M B H iz <» N =
—={7] 30vu0IS ko o i8 P ¥ asw K £
LELL] vy inDZIHOM] ﬁ“v g
= —{5] FTTRTS Y =
=] <
(-]
m m —={37] ¢ ﬁav A.av AW.V ¥ILNNOD ssIgoav m
ouw 2 S04 YAVO/S53W00Y e R TTUETY L1+ 1
ox i
! o . e b P IR
IOWLNOD vIvO W0¥INGS C]
|'llm_.E ssaNgOv aNVYRAIOD 4 —
—() i > 4y ¢ 4 {1 1 {3 S
%F
Wy
o ss | o3 gl |gs | |43 1 8 Sos g
o w D o W Wb Q
=1 o HIXITLINM iE 15 E3 1 ag zh £ EGs 2E
z T vivQ/ss3uWaay 28 I8 9m ¥s S8 wo 58 528 vz 00N
nnd = 3 e o= < 12 BE LE s gvg <
"19uvHD m m c -
m -_m [=]
it 0)SLAILNG Rmcanc_ H
m 185N0 WALSIDIL 404 1 s
10u1802
JaNuHIINI ik

CPU Interface Control Signals

The type and direction of data transfers are controlled by the
CSW, CSR and MODE inputs. CSW is the CPU-to~-VDP write select.
Wwhen it is active (low), the 8 bits on D7-D0O are strobed into the
VDP. CSR is the CPU-from-VDP read select. When it is active
(low),the VDP outputs 8 bits on D7-DO to the CPU., CSW and CS3R
should never be simultaneously low. If both are low, the VDP
outputs data on D7-D0 and latches in invalid data.

MODE determines the source or destination of a read or write data
transfer. MODE is normally tied to a CPU low order address line,

CPU WRITE TO VDP REGISTER

The VDP has eight write-only registers and one read-only status
register. The write-only registers control the VDP operation and
determine the way in which VRAM is allocated. The status
register contains interrupt, sprite coincidence and fifth sprite
status flags.

Each of the eight VDP write-only regisiers can be loaded using
two B8-bit data transfers from the CPU. Table 1 describes the
required format for the two bytes. The first byte transferred is
the data byte, and the second byte transferred controls the
destination. The most-significant bit of the second byte must be
a "1°%, The next four bits are '0's, and the lowest three bits
make up the destination register number. The MODE input is high
for both byte transfers.

To rewrite the data for an internal register after a byte of data
has been loaded, the status register must be read so that
internal 1logic will accept the next byte as data and not as a
register destination. This situation may be encountered 1in
interrupt-driven program environments, Whenever the status of
VDP write parameters is in question, this procedure should be
used, Note that the CPU address is destroyed by writing to the
VDP register.

CPU WRITE TO VRAM

The CPU transfers data to the VRAM through the VDP using a 14-bit
autoincrementing address register. Two-byte transfers are
required to set up the address register. A one-byte transfer is
then required to write the data to the addressed VRAM byte. The
address register is then autoincremented. Sequential VRAM writes
require only one byte transfer since the address register is
already set up. During setup of the address register, the two
most significant bits of the second address byte must be 'O! and
1t respectively. MODE is high for both address transfers and
low for the data transfer. CSW is used in all transfers to
strobe the 8 bits into the VDP, See Table 1.

218

TABLE 1 - CPU/VDP DATA TRANSFERS

OPERATION MSB BIT LSB CSW CSR MODE
7 6 5 4 3 2 1 0

WRITE TO VDP REGISTER
Byte 1 Data Write D7 D6 D5 D4 D3 D2 D1 DO 0 1 1
| Byte 2 Register Select 1 0 0 0 o R32 RS1 RSO O 1 1

WRITE TO VRAM

. Byte 1 Address set up A7 A6 A5 A4 A3 A2 A1 A0 0 1 1
| Byte 2 Address set up © 1 A13 A12 A11 A10 A9 A8 0 1 1
i Byte 3 Data Write D7 D6 D5 D4 D3I D2 D1 DO 0 1 0

| READ FROM VDP REGISTER
Byte 1 Data Read D7 D6 D5 D4 D3 D2 D1 DO 1 0 1

READ FROM VRAM

Byte 1 Address set up A7 A6 A5 A4 A3 A2 A1 A0 0

Byte 2 Address set up 0 4] A13 A12 A11 A10 A9 A8 0 1 1
Byte 3 Data Read D7 D6 D5 D4 D3 D2 D1 DO 1

CPU READ FROM VDP STATUS REGISTER

The CPU can read the contents of the status register with a
single-byte ¢transfer. MODE is high for the transfer. C3R is
used to signal the VDP that a read operation is required.

CPU READ FROM VRAM

The CPU reads data from VRAM through the VDP wusing the
autoincrementing address register. A one-byte transfer is then
required to read the data from the addressed VRAM byte. The
address register is then autoincremented. Sequential VRAM data
reads require only a one-byte transfer since the address register
is already set up. During setup of the address register, the two
most significant bits of the second address byte must be O's., By
setting up the address this way, a read cycle to VRAM is
initiated and read data will be available for the first data
transfer to the CPU, (See Table 1.) MODE is high for the
address Dbyte transfers and low for the data transfers. The VDP
requires approximately 8 microseconds to fetch the VRAM byte
following a data transfer and 3 microseconds following address
setup.

VDP INTERRUPT

The VDP INT output pin is used to generate an interrupt at the
end of each active display scan, which is about every 1/50 second
(1/60 North America). The INT output is active when the interrupt
Enable bit (IE) in VDP register 1 is a '1!' and the F bit of the
status register is a '1'. Interrupts are cleared when the status
register is read.

219

VDP INITIALISATION
The VDP 1is externally initialised whenever the RESET input is

active (low) and must be held 1low for a minimum of 3
microseconds. The external reset synchronises all clocks with
jts falling edge, sets the horizontal and vertical counters to
known states, and clears VDP registers 0 and 1. The video
display 1is automatically blanked since the BLANK bit in VDP
register 1 becomes a tgt, The VDP, however, continues to refresh
the VRAM even though the display is blanked. While the RESET
line is active. the VDP does not refresh VRAM.

VDP/VRAM INTERFACE

The VDP can accesS up to 16,384 bytes of VRAM using a 14-bit VRAM
address. The VDP fetches data from the VRAM in order to process
the video image as described later. The VDP also stores data in
or reads in data from the VRAM during a CPU-VRAM data transfer.
The VDP automatically refreshes the VRAM.

VRAM INTERFACE CONTROL SIGNALS

The VDP-VRAM interface consists of two unidirectional 8-bit data
buses and three control lines. The VRAM outputs data to the VDPF
on the VRAM read data bus (RDO-RDT) . The VDP outputs both the
address and data to the VRAM over the VRAM address/data bus (ADO-
AD7). The VRAM row address is output when RAS is active (low).
The column address 1s output when CAS is active (low). Data 1is
output to the VRAM when R/W is active (low).

WRITE-ONLY REGISTERS

The eight VDFP write-only registers are shown in Table 2.
Registers 0 and 1 contain flags to enable or disable various VDP
features and modes., Registers 2 through 6 contain values that
specify starting locations of various sub-blocks of VRAM,
Register 7 is used to define backdrop and text colours.

220

MSB< Bit >LSB
REGISTER | 0 1 2 3 y 5 6 7
0 0 0 0 0 0 0 M3 EV
1 4/16K BLANK IE M1 M2 0 SIZE MAg
2 0 0 0 0 NAME TABLE BASE ADDRESS
3 < COLOUR TABLE BASE ADDRESS >
e adz)
4 0 0 0 0 0 PATTERN GENERATOR ...
BASE ADDRESS s G
5 0 <——SPRITE ATTRIBUTE TABLE BASE ADDRESS—>
6 0 0 0 0 0 SPRITE PATTERN
GENERATOR BASE
ADDRESS
7 {<——TEXT COLOUR 1—> TEXT COLOUR 0/BACKDROP
COLOUR
STATUS F 58 C < FIFTH SPRITE NUMBER~—>
READ ONLY

TABLE 2. VDP REGISTERS

221

The following is a description of each register:

REGISTER 0 contains two VDP option control bits. All other bits
are reserved for future use and must be '0's,

BIT 6
BIT 7

M3 (mode bit 3).

External Video enable/disable

11t enables external video input
10' disables external video input

REGISTER 1 contains 8 VDP option control bits.

BIT O

BIT 1

BIT 2

BIT 3,4

BIT 5
BIT 6

BIT 7

REGISTER 2 defines the base address of the Name Table sub~-block.
The range on its contents is from 0 to 15. The contents of the

register
addresses;
(register

4/16k selection
10! selects 4K RAM operation
111 selects 16K RAM operation (MTX operation)

BLANK enable/disable

t0! causes the active display area to blank

'1' enables the active display

Blanking causes the display to show border colour only

IE (Interrupt Enable)
10! disable VDP interrupt
11t enable VDP interrupt

M1, M2 (mode bits 1 and 2)
M1, M2 and M3 determine the operating mode of the VDP:

M1 M2 M3

0 0 0] Graphics I mode
0 0 1 Graphics II mode
0 1 0 Multicolour mode
1 0 0 Text mode
Reserved

Size (sprite size select)
10" selects Size 0 sprites (8 x 8 bits)
t11 selects Size 1 sprites (16 x 16 bits)

MAG (Magnification option for sprites)
10! selects MAGO sprites (1x)
t1' selects MAG1 sprites (2x)

form the upper 4 bits of the 14-bit Name Table
thus the Name Table base address 1is equal to
2) ¥ 400h.

222

REGISTER 3 defines the base address of the Colour Table sub-
block. The range on its contents is from 0 to 255. The contents
of the register form the upper 8 bits of the 14-bit Colour Table
addresses; thus the Colour Table base address is equal ¢to
(register 3) * ion.

REGISTER Y4 defines the base address of the Pattern, Text or
Multicolour Generator sub-block. The range of its contents is 0
through 7. The contents of the register form the upper 3 bits of
the 14-bit Generator addresses; thus the Generator base address
is equal to (register 4) ¥ 800h.

REGISTER 5 defines the base address of the Sprite Attribute Table
sub~block. The range of its contents is from 0 through 127. The
contents of the register form the upper 7 bits of the 14-bit
Sprite Attribute Table addresses; thus the base address is equal
to (register 5) * 80h.

REGISTER 6 defines the base address of the Sprite Pattern
Generator sub-block. The range of its contents is 0 through 7.
The contents of the register form the upper 3 bits of the 14-bit
Sprite Pattern Generator addressesy thus the Sprite Pattern
Generator base address is equal to (register 6) * 800h.

REGISTER 7 The upper 4 bits contain the colour code of colour 1
in the Text mode. The lower 4 bits contain the colour code for
colour O in the Text mode and the backdrop colour in all modes.
See Table 3 for colour codes. ;

STATUS REGISTER

The VDP has a single 8-bit status register that can be accessed
by the CPU. The status register contains the interrupt pending
flag, the sprite coincidence flag, the fifth sprite flag, and the
fifth sprite number, if one exists. The format of the status
register is shown in Table 2, A discussion of the contents
follows.

The status register may be read at any time to test the F, C, and
58 =status bits. Reading the status register will clear the
interrupt flag, F, Asynchronous reads will, however, cause the
frame flag (F) bit to be reset and therefore missed.
Consequently, the status register should be read only when the
VDP interrupt is pending.

INTERRUPT FLAG (F)

The F status flag in the status register is set to '1' at the end
of the raster scan of the last line of the active display. It is
reset to a '0' after the status register is read or when the VDP
is externally reset, If the Interrupt Enable bit in VDP register
1 is active ('1'), the VDP interrupt output (INT) will be active
(low) whenever the F status flag is a "1,

223

A, Tb—— R ——

COINCIDENCE FLAG (C)

The C status flag in the status register is set to a 1t if two
or more sprites necoincide", Coincidence occurs if any two
sprites on the screen have one or more overlapping pixels.
Transparent coloured sprites, as well as those that are partially
or completely off the screen, are also considered. Sprites
beyond the Sprite Attribute Table terminator (DD16) are not
considered. The 'C' flag is cleared to a 10! after the status
register is read or the VDP is externally reset.

FIFTH SPRITE FLAG (5S) AND NUMBER

The 58 status Flag in the status register is set to a Lh
whenever there are five or more sprites on a horizontal 1line
(lines O to 192) and the frame flag is equal to a '0°'. The 685
status flag is cleared to a '0!’ after the status register is read
or the VDP is externally reset. The number of the fifth sprite
is placed into the lower 5 bits of the status register when the
55 flag is set and is valid whenever the 5S flag is r1t, The
setting of the fifth sprite flag will not cause an interrupt.

The VDP operates at 262 lines per frame and approximately 60
frames per second in a non-interlaced mode of operation.

TABLE 3 - SCREEN DISPLAY PARAMETERS

PARAMETER PIXEL CLOCK CYCLES
HORIZONTAL PATTERN/MULTICOLOUR TEXT
Horizontal Active Display 256 240
Right Border 15 25
Right Blanking 8 8
Horizontal Sync 26 26
Left Blanking 2 2
Colour Burst 14 14
Left Blanking 8 8
Left Border 13 19
342 342
VERTICAL . LINE
Vertical Active Display 192
Bottom Border 24
Bottom Blanking 3
Vertical Sync 3
Top Blanking 13
Top Border 27
262

224

Video Display Modes

The VDP displays an image on the screen that can best be
envisaged as a set of display planes sandwiched together. Figure
2 shows the definition of each of the planes. Objects on planes
closest to the viewer have higher priority. In cases where two
entities on two different planes are occupying the same spot on
the screen, the entity on the higher priority plane will show at
that point. For an entity on a specific plane to show through,
all planes in front of that plane must be transparent at that
point. The first 32 planes each may contain a single sprite.
(Sprites are pattern objects whose positions on the screen are
defined by horizontal and vertical co-ordinates in VRAM.) The
areas of the Sprite Planes, outside the sprite itself, are
transparent. Since the co-ordinates of the sprite are in terms
of pixels, the sprite can be positioned and moved about very
accurately. Sprites are available in three sizes: 8 X 8 pixels,
16 X 16 pixels, and 32 X 32 pixels, Behind the Sprite Plane is
the Pattern Plane. The Pattern Plane is used for textual and
graphics images generated by the Text, Graphics I, Graphics II,
or Multicolour modes. Behind the Pattern Plane is the backdrop,
which is larger in area than the other planes so that it forms a
border around them. The last and lowest priority plane is the
External Video Plane., 1Its image is defined by the external video
input pin. The backdrop consists of a single colour used for the
display borders and as the default colour for the active display
area. The default colour is stored in the VDP register 7. When
the backdrop colour register contains the transparent code, the
backdrop automatically defaults to black if the external video
mode is not selected.

The 32 Sprite Planes are used for the 32 sprites in the
Multicolour and Graphics modes. They are not used in the Text
mode and are automatically transparent. Each of the sprites can
cover an 8 X 8, 16 X 16, or 32 X 32 pixel area on its plane. Any
part of the plane not covered by the sprite is transparent. All
or part of each sprite may also be transparent. Sprite 0 is on
the outside or highest plane, and sprite 31 is on the plane
immediately adjacent to the Pattern Plane. Whenever a pixel in a
Sprite Plane is transparent, the colour of the next plane can be
seen through that plane. If, however, the sprite pixel is non-
transparent, the colours of the lower planes are automatically
replaced by the sprite colour. There is also a restriction on
the number of sprites on a line. Only four sprites can be active
on any horizontal line, Additional sprites on a line will be
automatically made transparent for that line. Only those sprites
that are active on the display will cause the coincidence flag to
set, The VDP status register provides a flag bit and the number
of the fifth sprite whenever this occurs. The Pattern Plane is
used in the Text, Multicolour, and Graphics modes for display of
the graphic patterns of characters. Whenever a pixel on the
Pattern Plane 1is non-transparent, the Dbackdrop colour is
automatically replaced by the Pattern Plane colour. When a pixel
in the Pattern Plane is transparent, the backdrop colour can be
Seen through the Pattern Plane.

225

LE 311HdS

9 311445

S 311445

¥ 3114dS

E 3L14dS

T 31iyds

i 3114dS

0311445

L 3LiHdS

8 311445

I

=~ yor0oiL 1N}
HO m,mm._.._.(n

INVId dJOUONIVE

FIGURE 2. VDP DISPLAY PLANES

030IA TYNHILXI

226

The VDP has four video colour display modes that appear on the
Pattern Plane: Graphics I mode, Graphics II mode, Text mode, and
Multicolour mode. Graphics I and Graphics II modes cause the
Pattern Plane to be broken up into groups of 8 X 8 pixels, called
pattern positions. Since the full image is 256 X 192 pixels,
there are 32 X 24 pattern positions on the screen in the graphics
modes. In Graphics I mode, 256 possible patterns may be defined
for the 768 pattern positions with two unique colours allowed for
each pattern definition. Graphics II mode provides, through a
unique mapping scheme, 768 pattern definitions for the 768
pattern positions. Graphics II mode also allows the selection of
two unique colours for each line of a pattern definition. Thus,
all 15 colours plus transparent may be used in a single pattern
position. In Text mode, the Pattern Plane is broken into groups
of 6 X 8 pixels, called text positions, There are 40 X 24 text
positions on the screen in this mode. In Text mode, sprites do
not appear on the screen and two colours are defined for the
entire screen, In Multicolour mode, the screen is broken into a
grid of 64 X 48 positions, each of which is al X 8 pixel.
Within each position, one unique colour is allowed.

The VDP registers define the base addresses for several sub-
blocks within VRAM. These sub-blocks form tables which are used
to produce the desired image on the TV screen. The Pattern Name
Table, the Pattern Generator Table and the Sprite Generator Table
are used to form the sprites., The contents of these tables must
all be provided by the microprocessor. Animation is achieved by
altering the contents of VRAM in real time.

The VDP can display the 15 colours, plus transparent shown in
Table 3. The VDP colours also provide eight different grey
levels for displays on monochrome televisions; the luminance
values in the table indicate these levels, 0.00 being black and
1.00 being white. Whenever all planes are of the transparent
colour at a given point, the colour shown at that point will be
black.

227

e T i o T P

"_:—J.-'_"—-.—

TABLE 4. Colour Assignments

COLOUR COLOUR

(HEX)
Transparent

Black
Medium Green

Light Green
Dark Blue
Light Blue

Dark Red
Cyan
Medium Red

Light Red
Dark Yellow
Light Yellow

Dark Green
Magenta
Grey

T} ol] m 0 o1 UvirE=W N -0

White

Graphics 1 Mode

The VDP is in Graphics 1 mode when M1, M2,

registers 1 and 0 are zero.
ijs divided into
positions. Each

The table in VRAM is used to generate the Pattern Plane.
of 2848 VRAM bytes are required for the Pattern Name, _
Less memory is required if all 256 possible

Generator tables.
pattern
overlapped to

generation.

reduce the

The Pattern Generator Table contains a library of patterns
displayed in the pattern positions.

can Dbe
long,
bytes long,

and is arranged into
yielding 8 x 8

byte pattern can designate one colour (colour 1),
10's can designate another colour (colour 0).

a grid of 32 columns by 24
of the pattern positions contains 8 x 8 pixels.

definitions are not

LUMINANCE CHROMINANCE
(DC VALUE) (AC VALUE)
0.00 -
0.00 -

.60 .60

.80 53

A7 y73

67 .60

+53 53

.80 .13

67 .73

.80 .73

.87 .53
1.00 .40

47 .60

.60 AT

1.00 -

and M3 bits in VDP
In Graphics 1 mode the Pattern Plane
rows of pattern

A total
Colour and

The tables can be

required.
needed for pattern

amount of VRAM

that
It is 2048 bytes
256 patterns, each of which is eigh?
bits., All of the '1's in the eight=
while all the

228

The full B8-bit pattern name is used to select one of the 256
pattern definitions in the Pattern Generator Table. The table is
a 2048-byte block in VRAM beginning on a 2 kilobyte boundary.
The starting address of the table is determined by the generator
base address in VDP register 4. The base address forms the three
most significant bits of the 14-bit VRAM address for each Pattern
Generator Table entry. The next 8 bits indicate the 8-bit name
of the selected pattern definition. The lowest 3 bits of the
VRAM address indicate the row number within the pattern
definition.

Eight bytes are required for each of the 256 possible unique 8 x
8 pattern definitions. The first byte defines the first row of
the pattern, and the second byte defines the second row. The
first bit of each of the eight bytes define the first column of
the pattern. The remaining rows and columns are similarly
defined. Each bit entry in the pattern definition selects one of
the two colours for that pattern. A '1' bit selects the colour
code (colour 1) contained in the most significant four bits of
the corresponding colour table byte. A '0' bit selects the other
colour code (colour 0), An example of pattern definition mapping
is provided below,

Row/byte Column Bit

0 1 2 3 4 5 0 1 2 3 4 5 6 71
0 LA L I A o 1T 1 1 1 1 0 0
1 * 0 0 00 0 1 0 0
2 LA S I 0o 1 1 1 1 0 0
3 . ¢ o 00 0 1 0 O
4 * 0 0 0 0 0 1 0 0O
5 * 0 0 00 0 1 0 0
6 LA S A 01 1T 1 1 1 0 0
7 c 0 00 0 0 0 0

| PATTERN——1 | —<PATTERN DEFINITION——1 |

The colour of the '1's and '0's is defined by the Pattern Colour
Table that contains 32 entries each of which is one byte 1long.
Each entry defines two colours: the most significant U4 bits of
each entry define the colour of the '1's, and the least
significant Y4 bits define the colour of the '0's, The first
entry 1in the colour table defines the colours for patterns 0 to
T; the next entry for patterns 8 to 15, and so on. {(See Table 4
for assignments.) Thus, 32 different pairs of colbdurs may be
displayed simultaneously.

229

= ————— e —r

- ST

The Pattern Name Table is located in a contiguous 768-byte block
in VRAM beginning on a 1 kilobyte boundary. The starting address
of the Name Table is determined by the Uu4-bit Name Tablebase
address field in VDP register 2. The base address forms the
upper four bits of the 14-bit VRAM address. The lower 10 bits of
the VRAM address are formed from the row and column counters.

Each byte entry in the Name Table is the name of or the pointer
to a pattern definition in the Pattern Generator Table. The
upper five bits of the eight-bit name identify the colour group
of the pattern. There are 32 groups of eight patterns. The same
two colours are used for all eight patterns in a group; the
colour codes are stored in the VDP Colour Table. The Colour
Table is located in a 32-byte block in VRAM beginning on a 6~
byte boundary. The table starting address is determined by the
8-bit Colour Tablebase address in VDP register 550 The base
address forms the upper eight bits of the 14-bit Colour Table
entry VRAM address. The next bit is a '0' and the lowest 5 bits
are equal to the upper 5 bits of the corresponding Name Table
entries.

Since the tables in VRAM have their base addresses defined by the
VDP registers, a complete switch of the values in the tables can
be made by simply changing the values in the VDP registers. This
is especially useful when one wishes to time slice between two or
more screens of graphics.

When the Pattern Generator Table is loaded with a pattern set,
manipulation of the Pattern Name Table contents can change the
appearance of the screen. Alternatively, a dynamically changing
set of patterns throughout the course of a graphics session 1is
easily accomplished since all tables are in VRAM.

For textual applications, the desired character set is typically
loaded into the Pattern Generator first. The official US ASCII
character set might be loaded into the Pattern Generator in such
a way that the pattern numbers correspond to the 8-bit ASCII
codes for that pattern; e.g., the pattern for the letter "A"
would be 1loaded into pattern number 4116 in the Pattern
Generator. Next the Pattern Colour Table would be loaded up with
the proper colour set. To print a textual message on the screen,
write the proper ASCII codes out to the Pattern Name Table.

Images can be formed using the Pattern Plane. To display 2an
object of size 8 x 8 pixels or smaller, only one pattern would
need to be defined. To display a larger figure, the figure
should be broken up into smaller 8 x 8 squares. Then multiple
patterns can be defined, and the Pattern Generator and Patterd
Name Table set up appropriately. Note that rough motion of
objects requires merely updating entries in the Pattern Namé
Table. '

230

TABLE 5 Pattern colour table

BYTE No. PATTERN No.
0 0..7

1 8..15

2 16..23

3 24, .31

y 32..39

5 40..47

6 48,.55

7 56..63

8 64..71

9 72..79
10 80..87
11 88..95
12 96..103
13 104,.111
14 112..119
15 120..127
16 128..135
17 136..143
18 144,,151
19 152..159
20 160..167
21 168..175
22 176..183
23 184..191
24 192..199
25 200..207
26 208..215
27 216..223
28 224..231
29 232..239
30 240,.247
31 248, .255

A total of 2848 VRAM bytes are required for the Pattern, Name,
Colour and Generator tables. Less memory is needed if all 256
possible pattern definitions are not required; the tables can be
overlapped to reduce the amount of VRAM needed for pattern
generation,

Graphics II Mode

The VDP is in the Graphics II mode when mode bits M1 = 0, M2 = 0,
and M3 = 1. The Graphics II mode is similar to Graphics I mode
except it allows a larger library of patterns so that a unique
pattern generator entry may be made for each of the 768 (32 x 24)
pattern positions on the video screen. Additionally, more colour
information is included in each 8 x 8 graphics pattern. Thus two
unique colours may be specified for each byte of the 8 x 8
pattern. A larger amount of VRAM (12 kilobytes) is required to
implement the full usage of the Graphics II mode.

231

Like Graphics I mode, the Graphics II mode Pattern Name Table
contains 768 entries which correspond to the 768 pattern
positions on the display screen. Because the Graphics 1 mode
pattern names are only 8 bits in length, a maximum of 256 pattern
definitions may be addressed using the addressing scheme
discussed in the previous section, Graphics II mode, however,
segments the display screen into three equal parts of 256 pattern
positions each, and also segments the Pattern Generator Table
into three equal blocks of 2048 bytes each. Pattern definitions
in the first third correspond to pattern positions in the upper
third of the display screen. Likewise pattern definitions in the
second and third blocks of the Pattern Generator Table correspond
to the second and third areas of the Pattern Plane. The Pattern
Name Table is also segmented into three blocks of 256 names each
so that names found in +the upper third, reference pattern
definitions found in the upper 2048 bytes in the Pattern
Generator Table. Likewise the second and third blocks reference
pattern definitions in the second 2048 byte block and third 2048
byte block respectively. Thus, if 768 patterns are uniquely
specified an 8-bit pattern name will be used three times, once in
each segment of the Pattern Name Table. The Pattern Generator
Table falls on eight kilobyte boundaries and may be located in
the upper or lower half of 16K memory based on the MSB of the
pattern generator base in VDP register 4. The LSB's must be set
to all '1's,

The Colour Table is also 6144 bytes long and is segmented into
three equal blocks of 2048 bytes. Each entry in the Pattern
Colour Table is eight bytes which provides the capability to
uniquely specify colour 1 and colour 0 for each of the eight
bytes of the corresponding pattern definition. The addressing
scheme is exactly like that of the Pattern Generator Table except
for the location of the table in VRAM. This is controlled by the
loading of the MSB of the colour base in VDP register 3. The
LSB's must be set to all '1's. ’

Multicolour Mode

The VDP is in Multicolour mode when mode bits M1 = O, M2 = 1, and
M3 = 0. Multicolour mode provides an unrestricted 64 x 48 colour
square display. Each colour square contains a 4 x 4 ©Dblock of
pixels. The colour of each of the colour squares can be any one
of the 15 video display colours ‘plus transparent. Consequently,
all 15 colours can be used simultaneously in the Multicolour

mode. The Backdrop and Sprite Planes are still active in the
Multicolour mode.

The Multicolour Name Table is the same as that for the graphics
modes, consisting of 768 name entries. The name no longer points
to a colour list; rather colour is now derived from the Pattern
Generator Table. The name points to an eight-byte segment of
VRAM in the Pattern Generator Table.

232

Only two bytes of the eight-byte segment are used to specify the
screen image., These two bytes specify four colours, each colour
occupying a 4 x 4 pixel area. The four MSB's of the first byte
define the colour of the upper left quarter of the multicolour
pattern; the LSB's define the colour of the upper right quarter.
The second byte similarly defines the lower left and right
quarters of the multicolour pattern. The two bytes thus map into
a8 x 8 pixel multicolour pattern.

The 1location of the two bytes within the eight-byte segment
pointed to by the name is dependent upon the screen position
where the name is mapped. For names in the top row (names 0-31),
the two bytes are the first two within the groups of eight-byte
segments pointed to by the names. The next row of names (32-63)
uses the third and fourth bytes within the eight-byte segments.
The next row of names uses the fifth and sixth bytes while the
last row of names uses the seventh and eighth., This series
repeats for the remainder of the screen.

The mapping of VRAM contents to screen image is simplified by
using duplicate names in the Name Table. Since the series of
bytes used within the eight-byte segment repeats every four rows,
the four rows in the same column can use the same name. Then the
eight-byte segment specifies a 2 x 8 colour square pattern on the
Screen as a straightforward translation from the eight-byte
segment in VRAM pointed to by the common name.

When wused in this manner, 768 bytes are still used for the Name
Table and 1536 bytes are used for the colour information in the
Pattern Generator Table (24 rows x 32 columns x 8 bytes/pattern
position). Thus a total of 1728 bytes in VRAM are required. It
should be noted that the tables begin on even 1K and 2K
boundaries and are therefore not contiguous,

Text Mode

The VDP is in Text mode when mode bits M1 = 1, M2 = 0, and M3 =
0. In the Text mode, the screen is divided into a grid of 40
text positions across and 24 down. Each of the text positions
contains six pixels across and eight pixels down, The tables
used to generate the Pattern Plane are the Pattern Name Table and
the Pattern Generator Table. There can be up to 256 unique
patterns defined at any time. The pattern definitions are stored
in the Pattern Generator Table in VRAM and can be dynamically
changed. The VRAM contains a Pattern Name Table which maps the
pattern definitions into each of the 960 pattern cells on the
Pattern Plane. Sprites are not available in Text mode.

233

T T r—

i
|

TEXT MODE NAME TABLE PATTERN POSITIONS

/,._________.._____.__\\
o [1 38 | 39
40 | 41 78 | 79

ACTIVE DISPLAY AREA

880|881 918|919
920[921 958|959

As in the case of the Graphics modes, the Pattern Generator Table
contains a library of text patterns that can be displayed in the
text positions. It is 2048 bytes long, and is arranged in 256
text patterns, each of which is eight bytes long. Since each
text position on the screen is only six pixels across, the least
significant 2 bits of each text pattern are ignored, yielding 6 x
8 bits in each text pattern. Each block of eight bytes defines a
text pattern in which all the 11's in the text pattern take on
one colour when displayed on the screen, while all the '0's take
on another colour. These colours are chosen by loading VDP
register 7 with the colour 1 and colour 0 in the left and right
nibbles respectively.

In the Text mode, the Pattern Name Table determines the position
of the text pattern on the screen. There are 960 entries in the
Pattern Name Table, each one byte long. There is a one-to-one
correspondence between text pattern positions on the screen and
entries in the Pattern Name Table (40%24 = 960). The first 40
entries correspond to the top row of text pattern positions on
the screen, the next forty to the second row, and so on. The
value of an entry in the Pattern Name Table indicates which of
the 256 text patterns is to be placed at that spot on the Pattern
Plane. The Pattern Name Table is located in a contiguous 960~
byte block in VRAM beginning on a 1 kilobyte boundary. The
starting address of the name table is determined by the #4-bit
Name Table base address field in VDP register 2. The Dbase
address forms the upper U4 bits of the 14-bit VRAM address. The
lower 10 bits of the VRAM address point to one of 960 pattern
cells. The name table is organised by rows. Each byte entry in
the name table is the pointer to a pattern definition in the
Pattern Generator Table. The same two colours are used for all
256 patterns; the colour codes are stored in VDP register 7.

As its name implies, the Text mode is intended mainly for textual
applications, especially those in which the 32 patterns per line
in Graphics modes is insufficient. The advantage is that eight
more patterns can be fitted onto one line; the disadvantages aré
that sprites cannot be used, and only two colours are available
for the entire screen. With care, the same text pattern set that

234

is used in Text mode can be also used in Graphiecs I mode. This is
done by ensuring that the least significant 2 bits of all the
character patterns are '0'. A switch from Text mode to Pattern
mode, then, results in a stretching of the space between
characters, and a reduction of the number of characters per line
from 40 to 32. As with the Graphics Modes, once a character set
has been defined and placed into the Pattern Generator, wupdating
the Pattern Name Table will produce and manipulate textual
material on the screen.

The full 8-bit pattern name is used to select one of the 256
pattern definitions in the pattern generator table. The table is
a 204B-byte block in VRAM beginning on a 2 kilobyte boundary. The
starting address of the table is determined by the generator base
address in VDP register 4, The base address forms the 3 most
significant bits of the 14-bit VRAM address for each Pattern
Generator Table entry. THhe next 8 bits are equal to the 8-bit
name of the selected pattern definition. The lowest 3 bits of the
VRAM address are equal to the row number within the pattern
definition.

Eight bytes are required for each of the 256 possible unique 6 «x
8 pattern definitions. The first byte defines the first row of
the pattern, and the second byte defines the second row. The two
least significant bits in each byte are not used., It is, however,
strongly recommended that these bits be '0's. Each bit entry in
the pattern definition selects one of the two colours for that
pattern. A '1' bit selects the colour code {(colour 1) contained
in the most significant 4 bits of VDP register 7. A '0' bit
selects the other colour code (colour 0) which is in the least
significant 4 bits of the same VDP Register.

A total of 3005 VRAM bytes are required for the Pattern Name and
Generator Tables. Less memory 1is required if all 256 possible
pattern definitions are not required; the tables can be
overlapped to reduce the amount of VRAM needed for pattern
generation.

Sprites

The video display can have up to 32 sprites on the highest
priority video planes, The sprites are special animation patterns
which provide smooth motion and multilevel pattern overlaying.
The location of a sprite is defined by the top left hand corner
of the sprite pattern. The sprite can be easily moved pixel by
pixel by redefining the sprite origin. This provides a simple but
powerful method of quickly and smoothly moving special patterns,
The sprites are not active in the Text mode. The 32 Sprite Planes
are fully transparent outside of the sprite itself.

The sub-blocks in VRAM that define sprites are the Sprite
Attribute Table and the Sprite Generator Table. These tables are
Similar to their equivalents in the pattern realm in that the
Sprite Attribute Table specifies where the sprite appears on the
screen, while the Sprite Generator Table describes what the
sprite looks like, Sprite Pattern formats are given in Table 5,

235

Since there are 32 sprites available for display, there are 32
entries in the Sprite Attribute Table. Each entry consists of
four bytes. The entries are ordered so that the first entry
corresponds to the sprite on the sprite 0 plane, the next to the
sprite on the sprite 1 plane, and so on. The Sprite Attribute
Table is 4%32 = 128 bytes long. The Sprite Attribute Table is
located in a contiguous 128-byte block in VRAM beginning on a
128-byte boundary. The starting address of the Attribute Table is
determined by the Sprite Attribute Table base address in VDP
register 5. The base address forms the upper seven bits of the 14
bit VRAM address., The next 5 bits of the VRAM address are equal
to the sprite number. The lowest 2 bits select one of the four
bytes in the Attribute Table entry for each sprite. Each Sprite
Attribute Table entry contains four bytes which specify the
sprite position, sprite pattern name, and colour.

TABLE 6 Sprite pattern formats

SIZE MAG AREA RESOLUTION BYTES/PATTERN
0 0 8x8 single pixel 8

1 0 16%16 single pixel 32

0 1 16x16 2x2 pixels 8

1 1 32x32 2x2 pixels 32

The first two bytes of each entry of the Sprite Attribute Table
determine the position of the sprite on the display. The first
byte indicates the vertical distance of the sprite from the top
of the screen, in pixels. It is defined such that a value of -1
puts the sprite butted up at the top of the screen, touching the
backdrop area, The second bytes describes the horizontal
displacement of the sprite from the left edge of the display. A
value of O butts the sprite up against the left edge of the :
backdrop. Note that it is from the upper left pixel of the sprite
that all measurements are taken.

When the first two bytes of an entry position of a sprite are
overlapping the backdrop, the part of the sprite that is within
the backdrop is displayed normally. The part of the sprite that
overlaps the backdrop is hidden from view by the backdrop. This
allows the animator to move a sprite into the display from behind
the backdrop. The displacement in the first byte is partially
signed, in that values for vertical displacement between -31 and
0 (E116 to 0) allow a sprite to "bleed in" from the top edge of
the backdrop. Likewise, values in the range of 207 to 191 allow
the sprite to bleed in from the bottom edge of the backdrop.
Similarly, horizontal displacement values in the vicinity of 255
allow a sprite to bleed in from the right side of the screen. To
allow sprites to bleed in from the left edge of the backdrop, &
special bit in the third byte of the Sprite Attribute Table entry
is used, as described in a later paragraph.

236

Byte 3 of the Sprite Attribute Table entry contains the pointer
to the Sprite Generator Table that specifies what the sprite
should look like. This is an 8-bit pointer to the sprite patterns
definition, the Sprite Generator Table. The sprite name is
similar to that in the Patterns Graphic mode.

Byte 4 of the Sprite Attribute Table entry contains the colour of
the sprite in its lower 4 bits (see Table 2 for colour codes).
The most significant bit is the Early Clock bit (EC). This bit,
when set to a '0', does nothing, When set to '1', the horizontal
position of the sprite is shifted to the left by 32 pixels. This
allows a sprite to bleed in from the left edge of the backdrop.
Values for horizontal displacement (byte 2 in the entry) in the
range 0 to 32 cause the sprite to overlap with the left hand
border of the backdrop.

The Sprite Generator Table is a maximum of 2048 bytes long
beginning on the 2 kilobyte boundaries. It is arranged into 256
blocks of 8 bytes each. The third byte of the Sprite Attribute
Table entry, then, specifies which eight byte block to use to
specify a sprite's shape. The '1's in the Sprite Generator cause
the sprite to be defined at that point;'0's cause the transparent
colour to be used. The starting address of the table is
determined by the sprite generator base address in the VDP
register 6. The base address forms the 3 most significant bits
of the 14-bit VRAM address. The next 8 bits of the address are
equal to sprite name, and the last 3 bits are equal to the row
number within the sprite pattern. The address formation is
slightly modified for SIZE 1 sprites.

There is a maximum limit of four sprites that can be displayed on
one horizontal line. If this rule is violated, the four highest-
priority sprites on the line are displayed normally. The fifth
and subsequent sprites are not displayed on that line,
Furthermore, the fifth sprite bit in the VDP status register is
set to a '1', and the number of the violating fifth sprite is
loaded into the status register.

Larger sprites than 8x8 pixels can be used if desired, The MAG
and JSIZE bits in VDP register 1 are used to select the various
options. The options are described here:

MAG=0,SIZE=0: No options chosen

MAG=1,SIZE=0: Eight bytes are still used in the Sprite Generator
Table to describe the sprite; however, each bit in the
Sprite Generator maps into 2 x 2 pixels on the TV
sgreen, effectively doubling the size of the sprite to
16 x 16.

MAG=0,3IZE=1: 31 bytes are used in the Sprite Generator Table to
define the sprite shape; the result is a 16 x 16 pixel
sprite, Mapping is still one-bit-to-one pixel.

MAG=1,3IZE=1: Same as MAG=0,3IZE=1 except each bit now maps into a
2 x 2 pixel area, yielding a 32 x 32 sprite.

237

The VDP provides sprite coincidence checking. The coincidence
status flag in the VDP status register is set to a '1* whenever
two active sprites have '1' bits at the same Screen location.

Sprite processing is terminated if the VDP finds a value of 208
(DO16) in the vertical position field of any entry in the Sprite
Attribute Table, This permits the Sprite Attribute Table to be
shortened to the minimum size required; it also permits the user
to blank out part or all of the sprites by simply changing one
byte in VRAM.

A total of 2176 VRAM bytes are required for the Sprite Name and
Pattern Generator Tables. Significantly less memory is required
if all 256 possible sprite pattern definitions are not required.
The Sprite Attribute Table can also be shortened as described
above. The tables can be overlapped to reduce the amount of VRAM
required for sprite generation.

238

7 SOUND GENERATOR

The sound processor used in the MTX500 Series computers is the
Texas Instruments SN76489A sound generator IC. This device is I/0
mapped as follows:

Data is mapped to output port 6

Strobe line is mapped to input port 3
To write data to the device send valid data to output port 6 and
then strobe the data into the device by performing a dummy read
from input port 3. The time interval between Successive reads
must be at least 32 clock cycles (32 T-states),

SN76489A Pin-Out (Top view)

D5 141 ~ k16 vee

D6 2 — — 15 D4

D7 3 — 14 CLOCK

READY 3 - — 13 D3

WE 5 — — 12 D2 |

OE 6 — — 11 D1 |

AUDIO OUT 7 O — 10 DO |

GND 8 —9 N.C. ,-
DESCRIPTION

The SN76489A digital complex sound generator is an I~? L/Bipolar
IC designed to provide low cost tone/noise generation
capability in microprocessor Systems. The SN76489A is a data bus
based I/0 peripheral.

RECOMMENDED OPERATING CONDITIONS

PARAMETER MIN TYP MAX UNITS

Supply Voltage, VCC 4,5 5.0 Sh5 v

High Level Output Voltage, VOH (pin 4) 5.5 v

Low Level Output Current, IOL (pin 4) 2 mA .
Operating Free-Air Temperature, TA 0 70 oC i

239

T T e —ARIS—

e i < s

OPERATION

1 Tone Generators

Each tone generator consists of a frequency synthesis and an
attenuation section. The frequency synthesis section requires 10
bits of information (F9-F0) to define half the period of the
desired frequency (n). F9 is the most significant bit and FO is
the least significant bit,. This information is loaded into a 10
stage tone counter, which is decremented at a N/16 rate where N
is the input clock frequency. When the tone counter decrements
to zero, a borrow signal is produced. This borrow signal toggles
the frequency flip-flop and also reloads the tone counter. Thus,
the period of the desired frequency 1is twice the value

of the period register.

The frequency can be calculated by the following:

N
f =
32n
where N = ref clock in Hz
n = 10 bit binary number

The output of the frequency flip-flop feeds into a four stage
attenuator. The attenuator values, along with their bit position
in the data word, are shown in Table 1. Multiple attentuation
control bits may be true simultaneously. Thus, the maximum
attenuation is 28 db.

TABLE 1 Attenuation Control

BIT POSITION
A3 A2 Al AO WEIGHT
0 0 0 1 2 db
0 0 1 0 4 db
0 1 0 0 8 db
1 0 0 0 16 db
1 1 1 1 OFF

2 Noise Generator

The Noise Generator consists of a noise source and an attenuator.
The noise source is a shift register with an exclusive OR
feedback network. The feedback network has provisions to protect
the shift register from being locked in the zero state.

240

TABLE 2 Noise Feedback Control

FB CONFIGURATION
0 "Periodic" Noise
1 "White" Noise

Whenever the noise control register is changed, the shift
register is cleared. The shift register will shift at one of
four rates as determined by the two NF bits, The fixed shift
rates are derived from the input clock.

TABLE 3 |Noise Generator Frequency Control

BITS
NF1 NFO SHIFT RATE
0 0 N/512
0 1 N/1024
1 0 N/2048
1 1 Tone Generator "3 Output

The output of the noise Source is connected to a programmable
attenator as shown in figure 4,

3 Output Buffer/Amplifier

The output buffer is a conventional operational amplifier summing
circuit., It sums the three tone generator outputs, and the noise
generator output. The output buffer will generate up to 10mA.

4 CPU to SN76489A Interface

The microprocessor interfaces with the SN764894 by means of the 8
data lines and 3 control lines (WE, CE and READY), Each tone
generator requires 10 bits of information to select the frequency
and 4 bits ot information to select the attenuation. A frequency
update requires a double byte transfer, while an attenuator
update requires a single byte transfer.

If no other control registers on the chip are accessed, a tone
generator may be rapidly updated by initially sending both bytes
of frequency and register data, followed by just the second byte
of data for succeeding values. The register address is latched on
the chip, so the data will continue going into the same register,
This allows the 6 most significant bits to be quickly modified
for frequency sweeps.

S5 Control Registers
The SN76489A has 8 internal registers which are used to control
the 3 tone generators and the noise source. During all data
transfers to the SN76489A, the first byte contains a three bit
field which determines the destination control register. The
register address codes are shown in Table 4,

241

e

TABLE 4 Register Address Field

Re2 R1 RO DESTINATION CONTROL REGISTER
0 0 0 TONE 1 FREQUENCY

0 0 1 TONE 1 ATTENUATION

0 1 0 TONE 2 FREQUENCY

0 1 1 TONE 2 ATTENUATION

1 0 0 TONE 3 FREQUENCY

1 0 1 TONE 3 ATTENUATION

1 1 0 NOISE CONTROL

1 1 1 NOISE ATTENUATION

6 Data Formats

The formats required to transfer data are shown below.

Update Frequency (Two Byte Transfer)
0_7

0

T.
<REG ADDR> <
1 R2 R1 RO F3 F2 F1 FO

DATA— > I <

0 X F9 F8 F7 F6 F5 F4

DATA———>]

" {mme——e——FIRST BYTE————> <

SECOND BYTE >

Update Noise Source (Single Byte Transfer)

1 0
[<REG ADDR> <SHIFT->]
:

R2 R1 RO X FB NF1 NFO

Update Attenuator (Single Byte Transfer)

7 0
[<REG ADDR> < DATA > 'I
1

R2 R1 RO A3 A2 A1 A0

T Data Formats

The microprocessor selects the SN76489A by placing CE into the

true state (low voltage). Unless CE is
When CE is true, the WE signal strobes
bus to the appropriate control register.
must be valid at this time.

true, no data can occur.
the contents of the data
The data bus contents

The SN76489A requires approximately 32 clock cycles to load the
data into the control register. The open collector READY output
is used to synchronize the microprocessor to this transfer and iSs
pulled to the false state (low voltage) immediately following the

leading edge of CE. It is released to go to the true statement

(external pullup) when the data transfer
The data transfer timing is shown below.

242

is completed.

FIGURE 1. DATA TRANSFER TIMING

)
J
w

tPLL|

|

READY

|

|

?

-
1]
s _

J

Do-p>»

3
%

FIRST BYTE SECOND BYTE

TABLE 5 Function Table

INPUTS OUTFUT *¥This table is valid when the
device is:
CE | WE READY (1) not being clocked,
L L L (2) is initialized by pulling
L H L WE and CE high,
H L H
H H H

243

SN76489A BLOCK DIAGRAM

Attsnuastion

s o — =] -

Tane Genarator #1

Ansiog Suwnmmaer

#

T —
12 D5 O one Generator 2
13 Da O :
15 03 O :,IO. Attanuation =0 ;:.::lu:t

ar. .
ane o

L Generator "' 3
3 ooO
5 We O I—-—

s =@ —vy v v
READY o 2/am || e, |9 —

Attenuanon

|
IS&&a

Vee Gna

BLOCK DIAGRAM DESCRIPTION

This device consists of three programmable tone generators, a
programmable noise generator, a clock scaler, individual
generator attentuators and an audio summer output buffer. The
SN76489A has a parallel 8 bit interface through which the
microprocessor transfers the data which controls the audio

output.

244

8 MTX 500 SERIES MEMORY MAP

The paged memory map structure of the MTX Series computers has
been designed to operate in two modes,

1 ROM BASED (RELCPMH = 0)

ROMs are mapped from O to 3FFFh. The 8K (2000h bytes) monitor ROM
is always available in area 0 to 1FFFh and the paged ROMs of 8K
(2000h bytes) each are mapped from 2000h to 3FFFh as eight pages
0 to 7 set by R2,R1,R0 in the page port write only register. Up
to 512K of RAM is mapped on 16 pages (0 to F) set up by P3,P2,P1
and PO in the page port write only register. The area C000h to
FFFFh is a 16K (4000h bytes) block common to all RAM pages. The
32K (8000h bytes) block from 4000h to BFFFh is mapped as 16
pages. The 32K bytes of RAM for an MTX500 is mapped from 8000h to
FFFFh (page 0)}. The 64K bytes of RAM for an MTX512 is mapped from
40o0Oh to FFFFh (page 0). The additional 16K is mapped from 8000h
to CO00h on page 1.

2 RAM BASED (RELCPMH = 1)

All ROMs are switched out in this mode, and up to 16 pages of 48K
(C000h bytes) are mapped from 0 to BFFFh. These pages are set by
P3,P2,P1 and PO in the write only page port register. In the area
C000h to FFFFh is a 16K block (4000h bytes) of RAM common to all
pages.,.

D7 D6 D5 DYy D3 D2 D1 DO
RELCPMH R2 R1 RO P3 p2 P1 PO

Write only page port register, output port 0.

245

0 2000 4000 8000 C000 FFFF
0 SYS-B 512 500/512 | 5007512 | ©
1 SYS—C (128a) 512 1
2 (128¢) | (128b) | mooon 2

3

e (128e) (128d) | BYTES
y A DISC (128g) (128f) COMMON 4
5 Disc (128h) | BLock >
. 6
7 CART 7
t_ 8
R2,R1,R0 :

(128K Add-on to A
64K MTX512 shown 5
in brackets (a-h))

c
D
E
F

ROM BASED MEMORY MAP,

RELCPMH

=0

246

T_P3,P2,P1 , PO

0 4000 8000 cooo FFFF

512 512 512 512 0
(128a) (128b) | (128¢) 1
(1284d) (128e) | (128f) 4000n | 2
(128g) (128h) BYTES 3
coMmon | ®
BLOCK | °
6
7
8
9
A
B
C
D
i
E |
5 |
45,P2,P1,P0 '
RAM BASED MEMORY MAP. RELCPMH = 1
(128K Add-on to 64K MTX512 shown in brackets (a-h)

247

9 INPUT/OUTPUT PORT SUMMARY
This section describes the MTX Series Port Map

00h

INPUT

IN(O) is used to set the printer STROBE (active low) to LOW. The
STROBE line is reset HIGH either on CPU RESET or by IN(4). In the
event of interrupt while STROBE is low it would be good practice
to reset STROBE within an interrupt routine extending over a
period of more than a few microseconds.

OQUTPUT
OUT(0),d defines memory page. address., The bit map is as follows:
DO = PO
D1 = P1
D2 = P2
D3 = P3
D4 = RO
D5 = R1
D6 = R2
DT = RELCPMH

Where the nibble P(i) defines the RAM page address, the 3 bit
R(i) defines the ROM page address and bit 7 defines a ROM ©based
system (D7 = 0) or a RAM based system (D7 = 1). The 1latech Iis
reset to 0 on CPU reset.

01h

INPUT

IN(1),d VDP read (mode = 0) together with port 02 provide two
contiguous read/write ports for the VDP. See documentation on the
TMS9918 Series. Note ZBO CPU address line A1 is connected to mode
input.

QUTPUT
OUT(1),d VDP write (mode = 0).

02h
INPUT
IN(2),d VDP read (mode = 1)

OUTPUT
0UT(2),d VDP write (mode = 1)

03h

INPUT

IN(3) This 1line is used as an output strobe into the sound
generator. After data has been latched into the output port (6)
data may be immediately strobed in using this line. A total of at
least 32 clock cycles must have elapsed before additional data
may be strobed in using IN(3).

248

OUTPUT

OUT(3),d This is the cassette output serial line. Valid data is
placed on DO. This data bit is latched and appears on the
cassette output (MIC) after attenuation (-20dB*VCC) and low pass
filtering.

O4h
INPUT
IN(4),d This is a nibble port for monitoring the status of the
Centronics type parallel printer port.
0 = BUSY active high handshake line

D1 = ERROR active low
D2 = PE paper empty active high
D3 = SLCT printer in selected state active high

OUTPUT

OUT(4),d Parallel 8 bit printer data. Valid data should be
latched into this port. When status on IN(Y4) reads not BUSY and
selected, then data should be strobed after a delay of
approximately 1 microsecond wusing IN(O) to force STROBE low.
After a further delay of approximately 1 microsecond STROBE
should be forced high using IN(4).

05h

INPUT

IN(5),d This port is used to read the least significant 8 ©bits
from the ten bit sense line of the 8x10 keyboard matrix.

OUTPUT
OUT(5),d This latched port provides the 8 drive lines of the 8x10
keyboard matrix.

06h

INPUT

IN(6),d This port is used to read in the two most significant
sense lines (DO and D1) of the 8x10 keyboard matrix. The two bit
country code switch is read on D2 and D3.

QUTPUT
OUT(6),d This port is used to provide latched data for the sound
generator which is subsequently strobed using IN(3).

07h

INPUT

IN(7),d This is the input port for the uncommitted parallel input
output port (PI0O). Data may be latched in for reading with an
active low pulse on the enable line, designated INSTB.

OQUTPUT

OUT(7),d This 1is the output port of the PIO. It is a latched
output with tri-state output control using OTSTB.

249

08,09,04,0Bh

These
of the

08
09
0A
0B

are four contiguous read/write ports for the four channels
Z80A CTC.

ch0 input-VDPINT out-no connect

ch1 input-4MHz/13 out-DART ser clock O
ch?2 input-4MHz/13 out-DART ser clock 1
ch3 input-CSTTE edge out-none

0¢,0p,0E,OFh
These are four contiguous read/write ports for the DART.

ocC
0D
0OE
OF

Ports

chA data
chB data
chA control
chB control

10h to 1Eh are currently unused with 1Fh reserved for

cassette remote control.

Port

addresses 20h upwards will be available as off-board I-0

ports in the disc expansion units.

250

a—

Pline inta Cantennire Intarfara

Plugs into Centronics Interface

| I

10 PARALLEL PRINTER INTERFACE

STROBE 1 19 OV
DATA 1 2 20 oV
DATA 2 3 21 oV
DATA 3 4 22 0OV
DATA 8 5 23 0V
DATA 5 6 24 oV
DATA 6 7| 56 |25 oV
DATA 7 8 26 0V
DATA 8 9 27 OV
NC 10 28 oV
BUSY 11 29 0V
PE 12 30 OV
SLCT 13 31 NC - 70
" NC 14 32 ERROR
NC 15 33 oV
oV 16 34 NC
ov 17 35 NC
(NC 18 36 NC)

MTX500 Series Centronics Type Parallel Printer I/F Connector
34-Way (17+17) Right Angle Header Plug

gy Py
™ y < o r—t 0
=2
o1& 5 5 =
o g
o 2
P, =}
zO o
> £
< o
— —e Y ™ l = i 'o—-)
_I_L CENTRONICS CABLE CONNECTOR L_’_L

251

Plugs into Printer

11 PARALLEL INPUT/OUTPUT PORT

This is an uncommitted TTL compatible PIO and uses port 7, and is
available on an internal 20 pin DIL socket. The port is normally
transparent but input data may be latched by taking INSTB to a
logic low. The output port is normally tri-state but may be made
active by taking OTSB to a logic low. Only TTL compatible signals
may be used. The 5V current drain must not exceed 20mA.

POT 0 {===-1 20~=-=> POT 1
POT 2 {====2 19----> POT 3
POT 4 <~===3 18-=--> POT 5
POT 6 <====U4| J7 |17----> POT 7
OTSTB {====5 16----> 0OV

PIN 0 {-==-6| 8C |15====> PIN 1
PIN 2 {====T7 1Ye===> PIN 3
PIN 4 <----8 13====> PIN 5
PIN 6 <-=-=-=9 12=-==> PIN 7
INSTB <--=10 11====> +5V

252

12 MEMOTECH DMX80 PARALLEL PRINTER CONNECTOR

SIGNAL RETURN SIGNAL DIRECTION
PIN No. PIN No.

1 19 STROBE IN
2 20 DATA 1 IN
3 21 DATA 2 IN
y 22 DATA 3 IN
5 23 DATA 4 IN
6 21 DATA 5 IN
7 25 DATA 6 IN
8 26 DATA 7 IN
9 27 DATA 8 IN
10 28 ACKNLG OUT
11 29 BUSY OUT
12 30 PE OUT
13 - SLCT oUT
14 - AUTO FEED XT 1IN
15 - NC -
16 - CHASSIS-GND -
18 - NC -
19-30 S GND -
31 = INIT IN
32 - ERROR oUT
33 - GND -
3l - NC =
35 - - -
36 - SLCT-IN IN

Printed in Great Britain by Butler and Tanner Ltd, Frome and London.

253

VIEMIOTECH

Memotech Limited, Witney, Oxon OX8 6BX

