
1Iz1

MTX SERIES

OPERATOR’S MANUAL

Copyright Memotech Limited 1983

Brian Pritchard (Principal Psychologist, TRC, OXFORD).

I.

I

CONTENTS

Page

PART 0 Introduction

Starting out 3

Beginning Basic 5

PART 1 MTX Series BASIC tutor 9

1 Programs and the tape recorder 9

2 Arithmetic expressions 19

3 Calculation order 21

4 Strings 25

5 The Printer 27

6 Storing information: Variables 29

7 Program writing 33

8 Using data 39

9 Entering data 43

10 Branching programs: Making decisions 45

11 Programs within programs 51

12 Structuring your programs 53

13 More branching programs 57

14 More about variables 59

15 Sorting 61

16 Multi—Dimensional arrays 65

17 Formatting with PRINT 69

18 Mathematical functions 71

19 String functions 73

20 Simple games and random numbers 75

21 Matrices 79

83PART 2 NODDY

PART 3 GRAPHICS 97

PART 4 SOUND 123

PART 5 MTX ASSEMBLER 129

REFERENCE SECTION 135

SOFTWARE APPENDICES 173

1 ASCII Code Table 174
2 Control and Escape sequences 175
3 Error Messages 176
4 Numeric Keypad 178
5 System Variables 179
6 Function Keys 183
7 Colour Table 184
8 Sound Tables 185

188
189

1 90

MTX TECHNICAL APPENDICES 201
1 Overall Description 202
2 Technical Specification 203
3 System Bus 208
4 System Block Diagram 209
5 Electronic Schematics 210
6 Video Display Processor 216
7 Sound Generator 239
8 Hardware Memory Maps 245
9 Input—Output Ports 248

10 Parallel Printer Interface 251
11 Para].lel 1—0 Port 252
12 Memotech DMX8O Printer Connector 253

9 Absolute Directions
10 Flowchart Conventions

GLOSSARY

I . —

-‘-S.

PART 0

STARTING OUT

1. Your MTX Series computer
2. An MTX power supply unit

(and a cassette

The first step is to make sure your system is properly connected;
see the diagram above. After connecting the computer to the
aerial socket on your television, tune the television until it
gives a clear picture. Most televisions have an easily accessible
set of buttons, one for each channel with a number of additional
unused channel buttons. Select one of these and with your
Computer switched on adjust your picture until a clear blue
background is found with ‘Ready’ in the bottom left hand corner.

As you will already have discovered,
much more than a computer. In the box you will find

the MTX package contains

3. Cassette recorder leads.
4. UHF/VHF Television lead.
5. MEMOTECH Demonstration, Head cleaner and Blank tapes.
6. Snap—in Cartridge port cover. (This may be attached).
7. CONTINENTAL SOFTWARE have provided two complimentary

games tapes and supporting literature.
8. Guarantee and User Registration card — Don’t forget to

fill this in and send it to us as soon as possible.

All you need to provide is your television,
recorder to LOAD the tapes provided).

3

Your MTX computer has been designed as an all purpose, hard

wearing computer. As such, in normal working conditions you can

expect perfect performances. It is also a precision electronic

instrument and needs your care. Avoid working in conditions where

liquids can be spilled into the computer or where the computer

can be affected by excess heat.

To keep your MTX clean, we recommend that you use a clean chamois

leather for best results.

The MTX computer manual has been written to enable a novice to

get started on the computer using MTX BASIC. At the same time we

have provided the expert programmer with detailed technical

information on the use of MTX BASIC, GRAPHICS, NODDY and the

ASSEMBLER.
If you are a beginner, start at the introduction and work your

way through the manual. We have included a glossary of terms and

a detailed reference section to help you understand computer

jargon and how the command words and functions work. For the more

experienced user a quick scan through the reference section will

indicate the differences between MTX BASIC and other versions.

4

BEGINNING BASIC

The course you are about to begin has been written with the
complete novice in mind. Even if you have learned BASIC before it
will be useful to familiarise yourself with the rules which
decide how MTX BASIC must be constructed. Throughout this course
you will find a series of exercise programs which gradually
increase in difficulty as you increase in confidence. By the time
you reach the last section you will be a very skilful BASIC
programmer.

COMPUTERS

A DIGITAL COMPUTER stores large amounts of information called
DATA and is capable of carrying out simple tasks on that data at
very high speeds. To produce the required results, the computer
user gives the computer a set of instructions called a PROGRAM.
Each of these instructions has to be set down in a precise way
for the computer to understand what it has to do. This is done by
using a computer language. Your MTX computer has incorporated
into its structure four languages: MTX BASIC, Z80 ASSEMBLER,
MOODY and MTX GRAPHICS.

NODDY is a new language which you probably have not heard about
yet. The best way to describe what NODDY does is to compare it
with LOGO. Noddy is to text as LOGO is to graphics.

MTX GRAPHICS is a comprehensive GRAPHICS package which allows you
to set up LOGO and also design complex graphics programs from
BASIC.

You will find NODDY and MTX GRAPHICS are dealt with in PARTS 2
and 3. N000Y does not require you to have any knowledge of what
follows next, so if you wish, you can turn there at the end of
this section.

The programming language you will probably want to tackle first
is BASIC, or the Beginners All—purpose Symbolic Instruction Code.
This begins at CHAPTER 1 . It is suggested that you understand
each section before starting the next. In this way it is unlikely
that you will get hopelessly lost, and if you attempt all the
exercises and try to think of some for yourself, you will quickly
master the language.

Each section in the course is organised in the same way. The
OBJECTIVE describes the problem you are about to attempt and
explains what you will learn from its successful completion. In
the sections where there are programs you may find partially
completed FLOWCHARTS for you to finish. You will also find a
sample program to try, and an exercise to make sure you
understand the section.

L

F.
The MTX keyboard is divided into three parts. The large block on

the left is a standard alpha numeric keyboard. If you are not

familiar with keyboards, type in some simple sentences to see

what the keys do. If you by chance use a command that the

computer understands, it may display an error message on the

bottom line of the screen, but don’t worry! It is impossible for

you to do any harm to your HTX computer in this way. Discover

what the SHIFT and ALPHA LOCK keys do, and get the feel of typing

words on the keyboard. Each of the keys when held down will

repeat its function until you lift your finger. This is called

AUTO REPEAT.
The RET key on the right is used to tell the computer to accept

whatever you have typed.
You can type on four lines at the foot of the screen when working

in BASIC. To allow you to fill more of the screen we are going to

teach you how to use a NODDY page.

Type NODDY and press the <RET> key

Noddy> will appear at the bottom of the screen and the

computer will wait for you to give the page a title. In this case

we shall use AA.

Type AA and press the <RET> key.

AA will appear at the top of’ the screen.

Do not press the <RET> key until you have finished the page. Just

carry on typing in sentences and familiarising yourself with the

keys. When you run out of space on page AA press the <RET> key

and start a new page SB. If you press keys which do things you

cannot understand, don’t worry, reset the machine by using the

RESET keys described in the next paragraph and start again.

The alpha numeric block has some additional keys which are not

found on a typewriter. For example, you will see that there are

two unmarked keys on either side of the space bar called the

RESET keys. If you press both at the same time, the computer is

cleared and will behave as if it has just been switched on. This

can be very useful if you have made an error and wish to start

again. It is not so convenient, ¶iowever if you are part of the

way through a large piece of work and carelessly lean on the

keyboard. The other two unusual keys are the ESC (ESCAPE) and

CTRL (CONTROL) keys. These are sometimes used during the running

of programs and will be dealt with later in the manual.

The second keypad is called the EDITOR and NUMERIC keypad which

consists of twelve keys. It has been designed to help you edit

information on the screen, to correct your mistakes, to add in

new information or to use in games as a keypad joystick. Type

some information on to a NODDY screen as you did earlier and then

use the keys as they are described below to change what you have

written. Use the keys with arrows to move the cursor around the

text. Use the INS key to insert text and the DEL and EOL keys to

erase text. Do not use BilK yet.
6

Keys to move the cursor:

4— Moves the cursor one space to the left over the text.

t
Moves the cursor one line up over the text. (As in EOL
the cursor up key does not operate in the BASIC EDIT
screen because the computer only recognises one line,
and so you can only move left or right and not up or
down.

The
cursor down key moves the cursor one line down over

the text. (See the note in SQL and above.)

Moves the cursor one position to the right over the text.

TAB Moves the cursor across the screen from left to right
over your text in leaps of eight characters. It is a
useful key when moving forward quickly over a lot of
text.

HOME This key takes the cursor back to the beginning of the
screen you are working in.

Keys to erase:

DEL Deletes the character over which the cursor is
positioned.

This key clears the screen you are editing. It is a
useful key if you wish to start the page again.
However, as with the reset keys it can easily be
pressed through carelessness resulting in unintentional
loss of work.

Allows you to add text into a line without affecting
information you have already typed. Simply press the
INS key and type in the word or character you need. You
will see that the text to the right moves along to make
space for the new characters. INSERT will stay switched
on until it i3 switched off by pressing the insert key
again.

Deletes all the characters from the cursor position to
the end of the line you are working in. (NB
when you are working in BASIC the information which
appears as four lines on the EDIT screen is in fact
treated as a single line and therefore SQL deletes all
information after the cursor.)

CLS

INS

SQL

7

Keys to control programs:

ERK Is used to stop a BASIC program operating and return

you to Ready. This is dealt with later and should not

concern you now.

PAGE Is used to interrupt listings of programs and to switch

between page and scroll modes. These terms will be

dealt with in the relevant sections of the manual and

you need not worry about them now.

MTX5I2___

[oL]]
[nj[]

[L1cH
tHL I]H

LJ L] I1 [1 {i1 [al {N1 {M1 RJ [i {i F_1 {sHI1 f] [• 4J {i FF4] [Fe]

L

The third keypad is called the FUNCTION keypad. These keys are in

addition to the normal keys and are available for the user to

tailor them to his own requirements. For example, they may be

used to control LOGO or if you design a game they can be used to

operate it. Though you can only see 8 keys each key will give a

different function when used with the shift key allowing 16 user

functions. The alpha lock key does not operate on this keypad.

The method of defining the function of the keys is dealt with in

the Software Appendix.

Some of the words in the course are going to be new to you. Most

of them will be explained as you go along, but occasionally you

may read a word you don’t understand. If this does happen, have a

look at the glossary for an explanation.

You are now ready to begin CHAPTER 1 on Page 9.

8

PART 1

BASIC TUTOR

CHAPTER 1.

PROGRAMS AND THE TAPE RECORDER

OBJECTIVE: The objective of this first section is to LOAD,
RUN, SAVE and VERIFY programs with your computer.

RUNNING A PROGRAM

Make sure that you have connected the computer properly as
described in PART 0. To put a program into the computer’s memory
from a cassette you use the command LOAD. Connect the cassette
recorder to your MTX computer as shown in the diagram. Set the
cassette volume to about 3/14 and then type LOAD on your keyboard.
The word will appear on the screen. Now press the SPACEBAR and
type the name of the game you are about to play in inverted
commas. If we are loading a game called CHESS the screen would
appear like this:

LOAD “CHESS”

If you do not know the program name you can type LOAD TTTT•

If you do this, the computer will accept the next program on the
tape. Though this method works, it is good practice to use the
full version and successful loading is more likely if you have
specified the name.

9

Press the RETurn key on your keyboard followed by the play button

on your cassette. The computer will work out how many characters

are to be loaded and will count them as they are placed in the

working memory. When loading is complete, the screen will appear

as follows if loading has been successful.

LOAD “CHESS”

FOUND CHESS
LOADING

Ready

To RUN the PROGRAM you have just loaded, you must tell the

computer to carry out the instructions you have placed in its

working memory. To do this you give it the command RUN. Type RUN

on the keyboard and press the RETurn key.

Some programs run as soon as they are loaded. In this case it is

not necessary to type RUN.

You may wish to RUN the PROGRAM again, in which case you do not

have to reload it since it is already in working memory. It is

useful, however, to be able to clear the screen of any

information from the last RUN. To do this you use the command CLS

(Clear Screen). Type CLS and press the RETurn key. The screen

will now be clear, and the CURSOR will be positioned in the HOME

position. Then as before, type RUN and press the RETurn key and

the PROGRAM will RUN again.

The CLS key is different from the command CLS. The CLS key can be

very useful and should be remembered because it can be thought of

as a sort of ‘panic button’. If you think at any stage that the

computer is getting the upper hand, press the CLS key followed by

RETurn and the edit screen will be cleared putting you back in

charge.

The edit screen is the part of the screen which displays what you

type on the keyboard.

This is explained further a bit later.

10

COPYING a PROGRAM

The LISTing that follows is an example of a small program for you
to copy. Don’t worry if it doesn’t make much sense at the moment,
the object of the exercise is to show you what an MTX BASIC
program looks like, and accustom you to the computer.

If the computer has already been used to play a game or run a
program, you will have to remove the contents of the computer’s
memory before you try to copy the LISTing below. To do this you
use the command NEW which tells the computer to forget what it
currently has in its memory in order to accept a new program.
Type NEW and press the RETurn key.

10 REM COPY PROGRAM
20 PRINT “WHAT IS YOUR NAME”
30 INPUT N$
35 PRINT:PRINT
40 PRINT “WHAT IS YOUR AGE”
50 INPUT A
60 CLS
70 PRINT N$;” IS”;A;” YEARS OLD”
80 PRINT:PRINT
90 PRINT “AGAIN”
100 INPUT M$
110 IF M$z”Y” THEN GOTO 10 ELSE STOP

Type the LISTing above, remembering that it must be copied
exactly as it appears and press the RETurn key at the end of each
line. Check that each line is identical to that in the LISTing.
If it is not, it is likely that the program will not work. If it
doesn’t work and you can’t see why, type NEW <RET> and start
again.

Since we shall use the RETurn key 30 often, we shall usually
refer to it as <RET).

11

The BASIC screens

You will notice as you type the program LISTing into the computer

that the screen is divided into three sections. There are 24

lines on the screen, split up as follows:

Main screen (19 LINES)

Edit screen (4 LINES)

Message screen Cl LINE) I

Information when first typed is placed on the EDIT screen. When

you are satisfied that the line is correct you ask the computer

to accept the line by pressing <RET>. The line is then moved to

the MAIN screen as part of the program. If you have made a

mistake the line may not be acceptedby the computer and an ERROR

MESSAGE may appear in the Message screen. The CURSOR will move to

the position on the line where the error was found. This type of

error occurs when you have typed in something which the computer

does not understand.

An example of an ERROR MESSAGE is given below:

Mismatch

This tells you that you have made an error and that it is a

SYNTAX error. This just means that what you have typed in is not

acceptable as part of the language BASIC, and the computer does

not know how to handle the line. The error message above would

occur if you typed, for example:

110 IF M$=”Y” THEN GOTO TT1OII ELSE STOP

Try it and see for yourself. The error message appears after you

press <RET>. The reason is simply that “10” is not recognised as

a number.

There are a number of ways to correct mistakes like this; the

simplest is to type directly over the parts that are wrong. In

the above example the DELete key could be used to take out the

inverted commas. This is achieved by moving the CURSOR to the

first character to be deleted, using the arrow keys in the editor

keypad, and then pressing the DELete key. When you think the line

is correct, press <RET>. The edit keys on the centre keyboard

help you correct errors like this.

12

LISTING YOUR PROGRAMS

To see what you have written, LIST the program by typing the
command LIST <RET> and you will see your program listed in its
correct order. It is also possible to LIST sections of your
program, by using a variation of the command LIST. This is more
useful for editing longer programs, but can be demonstrated here.

Type LIST 20,40 <RET>

and you can see that lines 20, 30,35 and 40 appear on the main
screen. Similarly,

LIST 30

displays from line 30 to the end of the program.

As this is a short program, the whole listing is in view.
However, many programs including some that you will design later
in this manual have more lines than are available on the screen.
To look through such programs the PAGE key is used to interrupt
the listing. As the program scrolls up the screen the first press
of the PAGE key stops the scrolling and the second restarts it.
It is very useful to scan programs in this way to look for
obvious errors.

Now you have input the program correctly, you are ready to try it
out. There is no need to LOAD the program since it is already in
the computerTs MEMORY.

Type RUN <RET>

RUN TIME ERRORS

If you have made no mistakes, the program will RUN successfully.
However, when you think you have completed the program there may
still be errors. These do not appear as SYNTAX ERRORS and are
called RUN TIME ERRORS. They occur, as their name suggests, while
the program is trying to RUN, and are caused when you have
entered the correct commands, but you may not, for example, have
given the correct information for the computer to carry cut the
command. If for example the name and age program was altered so
line 110 read:

110 IF M$r”Y” THEN GOTO 120 ELSE STOP

The command is correct and the number 120 is of the type that the
computer expects, but there is no line 120 in the program, and
so the computer cannot continue. The line should read:

110 IF M$=”Y” THEN GOTO 10 ELSE STOP

13

If you try to run the program with this incorrect line an error

situation will occur and the computer will not know what to do

with the incorrect instruction, so it will not carry on with the

RUN. The computer will tell you the reason for being unable to

continue and the line with the error will be displayed. In the

case of the incorrect line 110, the message

No line

would appear. Since we have a line 110, we know that the error

message must refer to the 120 in the GOTO statement. RUN TIME

ERRORS are edited in much the same way as the SYNTAX ERRORS

described earlier.

There are a number of alternative editing methods it may be

useful for you to understand. You may for example wish to type a

whole line again; the computer will accept your most recent

attempt at a line, wherever it occurs in a program, so if you

type

50 INPUT A

even at the end of the program, the computer will look for line

50 and replace the earlier version.

If you wish to delete a whole line, you need type only the line

number; the computer will understand that you do not want this

line in the program, and will delete it accordingly.

A complete list of ERROR MESSAGES appears in the Software

Appendix. Although editing is a useful way of correcting your

mistakes, in practice it is not a good idea to continue to EDIT a

program where it is obvious there are a lot of errors. In this

case it is better to start again, as you will often find it is

difficult, if not impossible to get heavily edited programs

running at all.

When you are happy the program is correct and running perfectly,

you may wish to SAVE it.

I

SAVING A PROGRAM

To SAVE a program it is necessary to set up your system in the
same way as you did for LOADING a program.Firstly insert a blank
cassette into your recorder. We recommend that you use C15 or C30
cassettes and record only ONE program on each side, so that your
work is always kept Qrganised. You will be surprised how easy it
is to forget which programs are on which tapes, and whereabouts
on the tape they occur, etc. This can be overcome to a certain
extent if your cassette recorder has a tape counter but always
remember to keep a strict log of which programs you have SAVED
and where they are on your cassettes. Set the recorder to record
and use the pause button if you have one, to hold the tape until
the computer is ready. -

Press <RET> after the tape has been started. In the example we
could use the filename “AGE” and as it is your first version, the
SAVE instruction could be:

SAVE “AGE 1”

When you have used a filename in this way, the program can be
recognised and loaded using this name. It is advisable,
therefore, to use meaningful names for your programs, and write
them clearly on to the tape label.

When the computer has finished saving the program, the screen
will look like this:

SAVE “AGE 1”

15

To SAVE a program you use the command SAVE

Type SAVE “filename” <RET>

Ready

When saving has finished, it is possible for an error to have

occurred and so MTX BASIC has the command VERIFY to allow you to

check that the program has been properly recorded. Rewind the

tape to the beginning of the recorded program and• type:

VERIFY “AGE 1” <RET>

Now play the tape, and the computer will check each character

recorded against those in its MEMORY. When verification has

finished, this is how the screen will appear:

VERIFY “AGE 1”
FOUND AGE 1
VERIYFYING

Ready

You have now successfully SAVED and VERIFIED your first program!

If an error has occurred, ‘Mismatch’ will appear in the message

screen. The program is still in MEMORY and so you can try saving

it again.

16

The background colour is called the PAPER colour and the
foreground is called INK. Just think of the screen as a writing
pad and all becomes clear.

Type in the following program remembering to press <RET> at the
end of each line.

10 PRINT:PRINT
20 PRINT:PRINT
30 PRINT “&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

& & & &&&&&&&&&&

40 PAPER 7
50 INK 1
60 PAUSE 8000

Type RUN and for about eight seconds the colours will change.

Each of the 16 colours the computer can produce has a unique
number as in the colour table below. To see each of the colours
edit the program like this:

EDIT 40 <RET>

Line 40 will appear

40 PAPER 7

Move the cursor to a position over the 7 and type 6 followed by
<RET>. When you RUN the program now the background will change to
a dark red.

COLOUR

Whilst in the editing or command mode, the screen will always be
blue and white, but when a program is running, the colours may be
changed.

Type

17

Edit the program using the table below changing PAPER and INK.

COLOUR TABLE

0 TRANSPARENT
1 BLACK
2 MEDIUM GREEN
3 LIGHT GREEN
1 DARK BLUE
5 LIGHT BLUE
6 DARK RED
7 CYAN
8 MEDIUM RED
9 LIGHT RED
10 DARK YELLOW
11 LIGHT YELLOW
12 DARK GREEN
13 MAGENTA
ig GREY
15 WHITE

NB Make sure that your television or monitor are perfectly tuned
to run these programs.

18

CHAPTER 2.

ARITHMETIC EXPRESSIONS

OBJECTIVE: To use the computer as a simple calculator to add,
subtract, multiply and divide.

We are now going to have a look at the PRINT command and use it
to place on the screen the results of simple calculations. The
PRINT command writes on the screen any information that
immediately follows it.

Type PRINT 21 <RET>

This will write 21 on the next line.

Now try some other numbers.

If you wish to place numbers across the page in columns then the
numbers are typed with a comma after each one.

Try this:

PRINT 3,4,5

Each number is placed at the next available TAB position. The TAB
positions are spaced eight characters apart across the screen.

Now try:

PRINT 2 + 2 <RET>

The answer B will appear on the screen. The PRINT command will
send the result of the calculation to the screen. Similarly the
computer will work out subtractions using the minus sign C—) as
in:

PRINT 7 — B <RET>

CNB The minus sign is on the same key as on the top row and
is not the underline next to the right hand shift key.)

The signs for multiply. and divide, however, are slightly
different, but these will become second nature in no time. For
example:

PRINT 8 * 3 will multiply 8 by 3 and the answer 24 will appear
On the screen.

PRINT 6/2 will divide 6 by 2 and the answer 3 will appear on the
Screen.

19

The addition 2 + 2 is an example of an ARITHMETIC EXPRESSION.

each of the examples above the PRINT command is being used

print the value of the arithmetic expression which follows.
EXERCISE 1 you are asked to EVALUATE (find the value of)
arithmetic expressions.

EXERCISE 1 ARITHMETIC EXPRESSIONS

Use the PRINT command to evaluate the following arithmetic

expressions.

1) 2 + 2
5) 7 — 4
9) 8 x 3

13) 6 ÷ 2

of your own. Notice that if the solution is
then your MTX automatically works out the

20

In
to
In

the

2) 15 + 35 3) 288 + 397 4) 7945 + 3538
6) 28 — 14 7) 654 — 289 8) 7986 — 3572

10) 16 x 4 11) 244 x 6 12) 387 x 28
14) 60 + 5 15) 288 +.06 16) 1080 ÷ 72

Try some calculations
not a whole number
answer as a decimal.

-J

CHAPTER 3.

CALCULATION ORDER

OBJECTIVE: To introduce
expressions are

the order in which
evaluated.

arithmetical

In CHAPTER 2
this section
problems.

you used the computer as a simple calculator. In
you will learn how to work out more complicated

mathematical expression is more
roots, we have to write it in a
understand. Look at this example:

32 in MTX BASIC

complex or uses squares or
form that the computer can

POWERS
solve the following examples:

The calculations in CHAPTER 2 and those above require only one
operation. Now try this calculation

2/3* 6

The answer is l. To evaluate this expression the computer worked

from left to right and followed a specific order. Operations are
always performed in the following order:

When a
square
easily

2
3 is written

The power 2 is written A2.

course 9.
The answer to the above example is of

EXERCISE 2
Using PRINT,

2
9 rn7

2
20 =

3
10 =

12
2 =

Sign

* and /

+ and

Operation

Exponentiation(power)
Multiplication and
Division
Addition
Subtraction

Example

2”2 = ‘4
3*2 = 6
6/3 = 2
3+2 5
3—2 = 1

21

Each time the
works from left
at this example:

computer is
to right and

2

asked to evaluate an expression it
uses this order of calculation. Look

3 + Tx 5 + 12 —6 x 2

To PRINT the answer type the following:

PRINT 3 + 7 * 5A
+ 4/2 — 6 * 2

This gives an answer of 168. The computer evaluates the
using the following

3 + 7 25 +4/

175 2

2_6*2

12

STEP 2 Multiplication
and Division

3 + 175

= 168

+ 2 — 12 STEP 3 Addition
and Subtraction

EXERCISE 3 CALCULATION ORDER
Break the following calculations into STEPS as above and
PRINT them on the screen to
been partly completed for you.

2 2 2
8 X 2 + 8÷2 —9 ÷3

2) 2
38 + 64 + 6 ÷ 3 — 6 ÷- 3

3) 2
16 + 18 ÷ 3 — 2 x 3

2 2
64 — 7 + 6 x 2 — 2

expression

3 + 7*5A2÷4/

25

2 _6*2

steps:

STEP 1 Exponentiation

1)

check your answers. The first one has
then

8 ? 2”2 + 8/2”2 —9? /3

9

8 * ? + 8/? —

32 + 7 — 27

z7

4)

2

6

22

If John had 5 apples and Mark had 3 how would they share them

The correct solution is of course the second one since you have
to add up the number of apples first and then divide the total
number of apples between John and Mark,

Mark has £2.60 and wishes to give John half. He owes Kate 3Op and
has to pay her back first. This calculation would be carried out
as follows:

(2.60 — .30)/2 =

Mark’s father offers to give him 6 times the amount he has
remaining. This could be worked out like this.

6*((2.60 — .30)12) =

Finally his mother offers to square (H) the amount his father
has given to him.

Brackets used in this way are called NESTED brackets.When you use
nested brackets the computer works from the middle bracket
Outwards and then left to right keeping to the calculation order
described earlier.

If the order of a calculation is altered then a very different
answer is obtained. Look at the example we used earlier using
PRINT:

2/3*6 Has the value 4

21(3*6) Now has the value 0.111111111

This is because we have altered the order by using brackets.

The computer calculates the contents of brackets first.

Look at these simple examples.

Try these solutions:

5+3/2
or

(5+3)12

evenly?

(6*((2.60
— .30)/2)Y2 =

Use brackets to solve the problems in EXERCISE 4

23

/ .1 / / / / / / / / / / / / / /

EXERCISE 4 BRACKETS IN CALCULATIONS
Use PRINT to solve these problems:

1) At the races Harry starts with £10. He
race and doubles his stake. On the second
then places all his remaining money on two
which trebles his money and the second of
How much does he have after the final race?

places £2 on
race he los

horses, the
which doubles

the first
es £4 and
first of
it again.

((((10—2) + 2*2)_4)*3)*2

2) A farmer has two identical circular fields
and two identical square fields (side length 75
buys another farm of exactly the same dimensi
brackets to work out the total area of both
metres. (The area of a circle is taken to be (P1
22/7 approx.)

(((22/7*200”2)*2)÷((75”2)*2))*2

radius 200 metres)
metres). He then
ons. Use nested
farms in square
*Ra2) where P1 r

The calculation of square roots presents another problem for the
computer. One way of solving the problem is to use the fact that
a square root can be expressed as a fraction of a power. For
example, the square root of 4, written as ‘JT in everyday
language, is exactly the same as writing 4’i1/2). Notice here how
brackets are used to ensure the calculation is done in the
correct order.

The cube root of 16 (\3/Th) can be written 16(1/3),

EXERCISE 5 SQUARE ROOTS
Use the PRINT command to calculate the following:

4/5O625 9/S1 2

and so on.

\3n7

24

CHAPTER 4.

STRINGS

OBJECTIVE: To use the command PRINT to send text to the screen in
the form of simple STRINGS

The PRINT command is used not only for printing numbers but also
for writing any information on the screen. Textual material
(books, addresses, names etc.) consists of letters, numbers and
spaces which have to retain their order each time they are
printed. When the computer is given a set of numbers it places
them in an order which it finds convenient to evaluate. If this
happened to textual material then the output from the computer
would no longer be readable. Text is, therefore, input in such a
way that the computer does not alter the order of the
information.

There are a number of ways to do this but in this section we will
concentrate on the use of STRINGS, represented by letters, spaces
and numbers etc. placed in inverted commas.

STRINGS are stored by the computer exactly as they are written.
Use the PRINT command to place this example on the screen:

PRINT “JOHN WESTON”

STRINGs don’t have a fixed length and may contain any of the
characters recognised by BASIC with the exception of inverted
commas (1) since these denote the beginning and end of the
STRING.

PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789OI&$%&’Q=—”

Now PRINT your name.

I
For example:

25

Name
Address
Date of Birth

I/I//I / II / / / / / / I//I / / / / / I//I//Il / / I//I//I//I / / / / / I//I / 7/ / / I//Il

Just as there are operations
as addition, multiplication
manipulating STRINGS. The
together to form a longer
sign because of the simil
don’t confuse joining with

that we can perform
and division, there

simplest operation is
string. We do this by
arity with mathematical
adding.

on numbers such
are also ways of
to join STRINGS
using the ‘+‘

addition but

PRINT “TELE”+”VISION”

Obviously it is not possible to subtract, multiply, divide or
raise STRINGS to powers. As you will see later, STRINGS can be
manipulated in various ways using other special string functions.

I/I / 7/ / / / / II / / / / / Il//I / / / / / / Il//I//I I/I//I/I/I7//I//I//Il / / / / / / / /

EXERCISE 6 SIMPLE STRINGS
Use the PRINT command to write the following on the screen

Your
Your
Your
Your Occupation (Job, School etc)

Type:

26

CHAPTER 5..

THE PRINTER

OBJECTIVE: To print out information on a printer.

BASIC provides a number of ways to control your printer. By far
the most useful is the command LPRINT. This command operates in
much the same way as PRINT, but instead of sending information to
the screen LPRINT sends information to the printer. The command
LPRINT refers to the term LINE PRINTER, which describes the type
of printer used by larger computers.

LPRINT “JOHN WESTON”

If you have connected the printer properly

JOHN WESTON

will be printed out. If you have forgotten to switch on the
printer or connected it wrongly then the MTX computer will wait
until the printer is made ready, and so you do not necessarily
have to start again if you have made a mistake. The BRK (BREAK)
key can be used to return to ‘Ready’ and stop the printer at any
time.

You may wish to print out information as you work, in which case
the LPRINT command works in the same way for the printer as PRINT
works for the screen. Thus:

LPRINT “The answer to 2+2 is?tt
LPRINT 2+2

will print:

The answer to 2+2 is?
LI

To print out a program you have input you may use the command
LLIST. This command will send to the printer the program
currently in the memory. It cannot send to the printer a file
directly from your cassette. The procedure in that case would be
to LOAD the program and then LLIST.

27

It is possible to print out part of the program in memory, this

is done using the LLIST command and works in the same way as

LIST:

LLIST 100,200

will print lines 100 to 200 on the printer.

See Reference Section PRINT LPRINT LLIST

28

CHAPTER 6.

STORING INFORMATION: VARIABLES

OBJECTIVE: To introduce variables and their manipulation
using the LET statement.

CHAPTER 2 we used the PRINT statement to do
culations. If you look at the set of commands below
there is an alternative way to evaluate expressions:

LET A = 6
LET B 2
LET X = A+B
PRINT X

A, B and X are called variable names. When a variable
used in a program the computer automatically reserves
memory for information, and gives the space that name.
statements the values of 6 and 2 are stored in location
and B respectively. The sum of these is then stored in
location named X, and the contents of location X is then

EXERCISE 7 LET STATEMENTS
PRINT the values of X in each case as in the example above.

4) LET A=64a0.5

LET B(A—4Y2
LET CB—A
LET X=(A*C)/B

5) LET X=U
LET Y=X2
LET X=(Y—X)/6

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\//////////////////////////////////

In
cal
see

simple
you will

name is
space in
In these

s named A
a third
printed.

1) LET X 5*4a2

2) LET X (4_2r4*(6_3)’2

3) LET Az6*8
LET B=16/2
LET CB*6
LET XA/C

As with
well as
location
computer

JANE is
type th
printed

the PRINT
numbers.

name is
to expect

LET A$ “JANE”

command the LET command can
When text is allocated to a
followed immediately by a $
a STRING as below:

apply to
location
sign to

text
then
tell

a STRING and is,
is and then ask
on the screen.

as
the
the

therefore, in inverted commas. If you
the computer to PRINT A$,JANE will be

29

Now type in LET 8$
LET C$ = “SMITH”

PRINT A$+B$+C$

Remember this is not an addition. The ‘+‘ signs tell the
to join the STRINGS end to end. 8$ in this case simply
space between the two STRINGS which contain JANE SMITH’s

Use the
yourself
send the

LET command
into string
information

in exercise 8
locations and
to the screen

to place
then use

the information about
the PRINT command to

EXERCISE 8
Use the LET command to locate the information below in
N$,A$,B$ AND J$.
Your Name

Address
Date of Birth
Occupation (Job, School etc)

This method of storing information in locations
26 separate locations since there are 26 letters

Z$.

allows for only
in the alphabet.

The same letter (for example A) can be used to allocate
variable name to a STRING and a number; the STRING in A$ will
given a quite separate location from the number in A. You
also extend the number of locations by using additional let
and numbers in the variable name. In the example below all
variable names refer to different memory locations.

eg As, AA$, Al$, A, AA, Al, NAME$, AGE, ADDRESS$, etc.

It is sometimes useful to CLEAR
calculations can start afresh.
locations to alter EXERCISE 8.
command CLEAR and press <RET>.

the variables in memory so
Perhaps now you may wish to

To CLEAR the locations type

I! II

computer
puts a

name.

Your
Your
Your

CLEAR

a
be

can
ters
the

All variables are automatically CLEARed every
RUN or edited without using the command CLEAR.

that
CLEAR

the

time a program

30

EXERCISE 9 SETTING THE CLOCK

Your MTX computer contains a clock which can be set to REAL TIME.
It can be also be used as a stop watch by setting it to zero.
To set the clock for half past twelve for example,

CLOCK 1112300011

type:

This has set the hours to 12,
to zero.

the minutes to 30 and the seconds

To display the time as you are working, type:

Try this program demonstrating
time as a six digit number.

the clock. Remember to input the

20

140
SO

CLOCK AS

CSR 0,0
PRINT TIME$

///////,/////////////////////////////////////,////////////////

See Reference section LET, CLEAR, CLOCK, TIME$, CSR

The STRING consists of six digits, the first two representing
hours, the second two minutes and the last two seconds.

PRINT TIMES

This displays the whole clock.

the

10 INPUT

30 CLS

“WHAT IS THE TIME? “;A$

60 GOTO 140

31

‘I’

CHAPTER 7.

PROGRAM WRITING

You are now ready to begin writing programs in MTX BASIC. As you
will have realised when copying the program in CHAPTER 1 there
are strict rules to be adhered to if your programs are to work.
Also, as you may have realised they can become fairly
complicated, and therefore, it is essential that you plan your
program before writing it, and that you keep your work organised

In this CHAPTER we are going to show you how each of these can be
achieved by using FLOW CHARTS and REM statements.

A FLOW CHART is a step by step description of the way in which a
particular problem is going to be solved. Consider a problem for
example, where JOHN had 5 apples, MARK had 3 and KATE had 7. How
could we design a program to share these apples evenly? The
information we need is placed into a table to show the VARIABLES

The first step would be to tell the computer the number of apples
each person had. When drawing flow charts, information to be
input to or output from the computer, is placed in
parallelograms. The first step then is:

The second step is the calculation itself. We want to find thetotal number of apples (5+3+7) and divide this by the number of
People (in this case there are three). Calculations of this typeare Placed in rectangular boxes. So this step looks like:

OBJECTIVE; To introduce the method of designing programs,
using flow diagrams, numbering and the use of AUTO
and REM.

as you write

FLOW CHARTS

required

VARIABLES

A Marks Apples (5)
B Johns Apples (3)
C Kates Apples (7)
D The number of apples

each

/ A= 5
B=3
C=7 7

33

Calculate

D=(A÷B÷C)/3

We have already discussed the order in which the computer does

the calculations, in this example the division will be carried

out first unless we place A÷B+C in brackets.

The computer now has to be told to display the answer and since

this is output, the instruction on the flow chart is placed in a

parallelogram. The completed diagram now looks like this:

Calculate

D = (A+B+C)/3

/ Display D /

34

EXERCISE 10 FLOW CHARTS

CALCULATE
PERCENTAGE

DISPLAY ?

—9

Draw flow charts

2)Petrol costs £1

to solve these problems.

.89 per gallon. How much would you pay to buy:

a)5 gallons, b)7.25 gallons, c)11.68 gallons

3)A gallon of
petrol. At £1.89

petrol costs 4.511 times more than a litre of
per gallon, how much would the following cost?

a)24 litres b)36 litres c)42 litres

1) Complete the flow chart below
This flow chart shows how to design
scores into percentages. The test has
of correct answers are.

a)24
b)19
c)20
d)15

out
out
out
out

of
of
of
of

a program to
25 questions

25
25
25
25

convert test
and the number

READ 9

35

WRITING A PROGRAM

A BASIC program is a series of instructions which are given to
the computer in a language which it understands. Each instruction

is generally placed on a new line, and must follow exactly the
format which is required by BASIC. The instructions are then
carried out in the order you have specified by numbering each

line. Line numbers can range from 1 to 65536. Each line in BASIC
must begin with a whole number. There can be any interval you

like between the numbers and it is usual to write programs with
an interval of at least 10 so that lines which have been

forgotten can be included. Look at this example of the program
written to share apples:

10 REM SHARING PROGRAM
20 LET A = 5
30 LET B 3
40 LET D CA+B÷C)/3
50 PRINT 0
35 LET C = 7

Line 35 was deliberately left out at first to demonstrate that it
can be added at the end. This does not affect the working of the
program since the lines are run in line number order and if you
input this program you will see that it works perfectly well.
Tidying up the program by putting all the lines in their correct
order can be done by using the command LIST.

The REM statement in line 10 is the title of the program. The
computer ignores anything that immediately follows the word REM
They are used to REMind you of anything you think is relevant to
help you remember how you structured your program, and as you can
see in the rewritten program below, the REM statements refer to
each box in the flow chart.

10 REM SHARING PROGRAM
20 REM LOCATING QUANTITIES OF APPLES
30 LET A = 5
40 LET B 3
50 LET C = 7
60 REM CALCULATE SHARE
70 LET 0 (A+B÷C)/3
80 REM PRINT SHARE
90 PRINT 0

Remember that flow charts when used in conjunction with REM
statements keep you organised, so use them as much as possible.

36

j

When you have completed a program do not forget that you have to
tell the computer to make it work with the command RUN. You can
only work on one program at a time, so remember to use NEW before
starting your next exercise. Experiment with CLEAR, SAVE, LOAD,
LIST and VERIFY. In other words, use the combined knowledge you
have so far gained to become familiar with your computer and MTX

You will find that at first you will make a lot of mistakes. If
you find that there are things happening which you cannot control
then do not be afraid to RESET the computer and start again.

The AUTO command automatically places a new line number in the
edit screen after you press <RET>. Try the example below to see

Type AUTO 100,25. This will start at line number 100 and go up in
units of 25.

When you have typed the last line of your program, or if you have
made a mistake and wish to exit from AUTO, then press the CLS
key, followed by <RET>. This will cancel the AUTO command. The
CLS key will abandon the line you are working on whether you are
working in AUTO or not. To return to AUTO, type AUTO followed by
the next line number you need with a comma and step size as in
the example above.

This can be a very useful and time saving command if you are
simply copying a program already written, but can be a bit
annoying if you are writing a program from scratch, as you will
find you are forever jumping in and out of AUTO, wasting more
time than you save!

The command AUTO has a second use, and that is for deleting
Sections of your program. When we were looking at ways of
editing, it was mentioned that a line of program could be deleted
by simply typing the line number followed by RETurn. Using the
AUTO command it is possible to delete several lines quickly.
First set the line number you wish to start deleting from. Then
set the step size taking care to avoid lines which you still
need. Press the RETurn key as each line number you want to d•elete
appears. Used with caution, this can be an invaluable time—saving
device.

REVISION

Try to write programs for the flow charts you completed in
Exercise 10.

BASIC.

how it operates:

See Reference Section AUTO, LIST, REM

37

I.

CHAPTER 8.

USING DATA

The commands we have used so far to do calculations, have
involved placing numbers in locations and then executing the
program. If we wished to use the same program again for a
different set of figures there would have to be a fair amount of
rewriting to change the data. In the apple 5haring program for
example all the LET statements would have to be changed if John
had 14 apples, Kate 5 and Mark 6.

One way to solve this problem is to use the DATA statement. In
this case the numbers are placed at the end of the program using
a DATA instruction:

60 DATA ‘4,5,6

Notice that each number is separated by a comma but there is no
comma included either after DATA or at the end of the line.

The command which tells the computer to place the DATA statement
information into working memory is READ. Look at the flow chart
and program below for the new sharing problem:

OBJECTIVE: To design programs which can be used for
handling information using the READ aM DATA statements.

eg.

VARIABLES

A Marks Apples (14)
B Johns Apples (5)
C Kates Apples (6)
D The number of apples

each

39

In the program you can see that we have introduced a new command,

STOP. The DATA statement in line 60 is not a command but holds

data for the READ command in line 20. STOP in line 50 tells the

computer not to execute the rest of the program.

This program can now be used for any sharing problem where there

are three people. The only change which has to be made is to re

type line 60 with the new data. Before trying EXERCISE 11 run the

program again using the following sets of data.

Rewrite the program to enable you to share apples between five

people and invent a number of apples for each person to place in

the DATA statement.

Though the DATA statements can appear anywhere in the program, it

is advisable to place them at the end, since it is then easier to

add new lines here without disturbing your program.

Now try the problem in EXERCISE 11. The flow diagram has been

partly completed for you.

/ READ values /
10 REM NEW SHARING
20 READ A,B,C
30 LET Dt(A+B+C)/3
U0 PRINT D
50 STOP
60 DATA 4,5,6

CALCULATE
D=sum of values
divided by 3

L.

/ Display D /

VARIABLES

A Marks Apples (8) (12) (14)

B Johns.Apples (8) (10) (11)
C Kates Apples (8) (11) (3)
o The number of apples

each

40

/////////////////,/////////////,/,///////////////////////////////

EXERCISE 11 PRODUCING A LIST OF EXAM RESULTS
In the ENGLISH RESULTS data table the results of three pupils are
listed. Complete the program using the FLOW CHART, together with
the READ, PRINT and DATA statements to print the list.

110
120
130
140
150
160 STOP
170 DATA
180 DATA

Mark, John ,Kate
64,68,45

Re—write the program to include more data:
Jill (72) Harry (48) George (56) Sandra (35)

See reference section DATA, READ, STOP

ENGLISH RESULTS

1ark 64
John 68
Kate 45

FLOW CHART

VARIABLES TABLE

Mark = M$ A = 64
John = B = 68
Kate = K$ C = 45

PROGRAM

/ READ M$,J$,K$, / 100 REM ENGLISH RESULTS

/READ

READ A,B,C
PRINT M$,A
PRINT J$,B

/

41

-I,

CHAPTER 9.

ENTERING DATA

The DATA statement is used to store data within a program before
it is RUN. It is also possible to give data to a program whilst
it is running. To do this you use the command INPUT. When the
computer encounters an INPUT statement it waits to receive
information typed in at the keyboard. The user inputs the
information required followed by <RET>. The computer stores the
information in the variables named in the statement. The ENGLISH
RESULTS example from Exercise 8 would look like this if rewritten
to use the INPUT statement.

PROGRAM

DISPLAY M$,A
DISPLAY J$,B
DISPLAY K$,C

REM ENGLISH RESULTS 2
READ M$,J$,K$
INPUT “A =

INPUT “B
INPUT “C z

PRINT M$,A
PRINT J$,B
PRINT K$,C
STOP
DATA Mark,John,Kate

If insufficient information is INPUT or non—numeric data is input
to a numeric variable, a question mark will be printed after the
entry and you must type the information again from the start.

OBJECTIVE: To design programs which allow the user to enter
information whilst they are running.

FLOW CHART

/ READ M$,J$,K$, /

/ INPUT MAR /

100
110
120
130
140
150
160
170
180
1 90

/

EXERCISE
Redesign

12 INPUT
the rectangle program to find:

A)The area of a triangle.
B)The area of circle.
C)The circumference of a circle.

The area of a rectangle.

FLOW CHART

DIS FLAY
ANSWER

PROG RAM

100 REM AREA OF A
110
120
130

CIRCLE

1.90 REM CIRCUMFERENCE OF A
1 10
120
130

See Reference Section INPUT

CIRCLE

INPUT MEASUREMENT

CALCULATION

/

100 REM AREA OF RECTANGLE
110 INPUT “LENGTH =

120 INPUT T1BREADTH = tI;3

130 LET A = L * B
140 PRINT T1AREA =

100 REM AREA OF A TRIANGLE
110
1 20
130
140/

1414

make decisions.

CHAPTER 10

The programs you have been writing so far involve straight
forward calculations where a result is obtained in a variable
(LET A z 5 + 4, for example, where A is the variable) and then
printed on the screen. In this Chapter we are going to look at
the ways in which you can write programs that make decisions. To
do this the computer considers whether a statement is true or
false and depending on the logical conclusion it reaches may
enter different calculation pathways. CONDITIONAL STATEMENTS such
as IF and THEN are used: IF the answer is true a THEN statement
would be used to tell the computer what to do next; and if false
an ELSE statement could be used to tell the computer to take
another calculation path. Think about this example in English;

IF the milk is fresh

THEN I will drink white coffee

ELSE I will drink my coffee black

The use of IF THEN ELSE in MTX BASIC can be thought of in exactly
the same way, the path taken by the program depends on whether
the condition in the IF statement is true or not.

10 INPUT “YOUR AGE “;A
20 IF AO THEN GOTO 10 ELSE GOTO 30
30 PRINT “YOUR AGE IS “;A

The relation between A and 0 is a relation between two values.The
example above is an operation to test the relationship of the two
values, and is termed a BOOLEAN operation. There are six possible
BOOLEAN operators which are listed in the table below.

OPERATOR RELATION TESTED EXPRESSION

AzB

is less than or

is greater than

equal to

or equal to

45

A <z B

A)= B

BRANCHING PROGRAMS (MAKING DECISIONS AND CONDITIONAL STATEMENTS)

OBJECTIVE: To design programs which instruct the computer to

0

is equal to

is not equal to

is less than

is greater than>

>2

A <> B

A<B

A>B

1

Where an expression includes relational and arithmetical

operations the arithmetic is carried out first.

EXAMPLE

If we were to ask eight schools in the UK to send in the

temperature recorded in their weather station at noon on a given

day, it is likely that some schools would send their results in

CENTIGRADE and some in FAHRENHEIT. If we wish to compare these

temperatures we must convert them to either one scale or the

other. The program below is an attempt to do this by converting

the FAHRENHEIT results into CENTIGRADE.

DATA TABLE.

CENTIGRADE FAHRENHEIT

MANCHESTER 10 SHEFFIELD 56

LIVERPOOL 11 OXFORD 62

BRIGHTON 13 GLASGOW 52

CARDIFF 10 NEWCASTLE 54

46

Look at the program below. Line 110 stores a temperature in
variable T and line 120 stores F or C in ES to identify the
temperature as Fahrenheit or Centigrade. In line 130 the computer
decides by asking if ES is an F or C which branch of the program
should be followed. IF the variable 8$ holds an F then it has to
be converted to centigrade and so the instruction ‘THEN GOTO’ is
used to tell the computer to carry out the calculation in line
135. IF 8$ holds a C ‘ELSE GOTO’ tells the computer to miss out
line 135 and continue with the PRINT instruction in 140.

There are a number of ways to make this program more “user
friendly”. We may, for example, add a simple counter so that the
computer knows how many temperatures it is going to work out.
Counters are used where the same calculations are carried out on
a lot of numbers. When you use a counter, your first step is to
INITIALISE it (this is the number that you want the counter to
count from). Usually counters are initialised to 0, but they can
be set to any number you like. Then each time the calculation is
performed i is added to the counter and the computer checks to
see whether the desired number has been reached.

INPUT CENTIGRADE
OR FAHRENHEIT

100 REM TEMP CONVERSION
110 INPUT “TEMP = “;T
120 INPUT “C or F “;B$
130 IF B$z”F” THEN GOTO 135

ELSE GOTO 140
135 LET T=(T_32)*5/9
140 PRINT “Temp in CENTIGRADE=”;T

COUNTERS

L47

In the temperature conversion example the program could be
rewritten like this:

10 INPUT “NUMBER OF TEMPERATURES “;N

—20 LET CzO

30 INPUT “ENTER TEMPERATURE ‘T;T
40 INPUT “IS IT FAHRENHEIT “;B$

50 IF B$:”N” THEN GOTO 70
60 LET Tz(T_32)*5/9
70 PRINT T

— 80 LET C=C+1

90 IF CN THEN GOTO 100 ELSE GOTO 30

100 PRINT “END”

Another way in which the program could be made more effective and
easy to use is to redesign it to handle more than one entry at a
time. Since we wish to produce a table giving a picture of the
country as a whole we need to be able to INPUT all the data
together and print the results in one table at the end.

One way to do this is to use the READ and DATA statements.

48

j

EXERCISE 13
1) Redesign the temperature conversion program using the READ
DATA statements to produce a single table

2) Design a program
gale force.

to classify winds into gale force or non

Speeds are on the Beaufort
scale. A gale is
to or over force

NO
DISPLAY NON
GALE WINDS /

See Reference Section IF, THEN, ELSE, GOTO, BOOLEAN EXPRESSIONS

VARIABLES TABLE.

WINDSPEED

WINDSPEED 1 4 CA)
WINDSPEED 2 12 (B)
WINDSPEED 3 8 (C)
WINDSPEED 4 11 CD)
WINUSPEED 5 10 CE)
WINDSPEED 6 9 CF)

any
10.

wind equal

49

CHAPTER 11

PROGRAMS WITHIN PROGRAMS

OBJECTIVE: To introduce subroutines to carry out calculations
whilst the program is running.

The GOTO statement is useful when used in simple branching

programs. However when many calculations are used to solve a

problem GOTO statements become complicated and difficult to

follow. In order to keep your program organised and to make it

run more efficiently it is often best to use subroutines.

When the computer encounters a subroutine it leaves the main set

of instructions, having recorded where it is up to, and then

carries out a separate set of commands, returning on completion

to the point of departure.

The commands used to tell the computer to leave and re—enter the

main program are GOSUB (GO to the SUBroutine) and RETURN. You can

see them used in the simple example below.

In this example you are given the values for the mass and volume

of a set of liquids and the program is designed to work out the

density of each and then print them all in a table.

100 REM DENSITY PROGRAM

iid PRINT ‘TMASS”,”VOLUME”,,
TTDENSITY”

READ N
IF M:O THEN STOP
READ V
GOSUB 500
PRINT M,V,,D
GOTO 120

120
130
140
150
160
170
180
500
510
520

DATA 8,4 ,6,3,12,6,O
REM SUBROUTINE
LET D=M/V
RETURN

Y

r
51

Notice that line 130 of the above program is used to instruct the
computer to stop when a 0 value for N is encountered. At the end

line 180 you will find the 0.
technique for terminating data.

Now try some more conversion programs.

EXERCISE 14
following:

Design a program with a subroutine to solve the

1) To convert Pounds Sterling
the pound.

into Dollars at the rate $1 .54 to

2) To convert pounds (weight) into kilos.

3) Think of other conversions which require a subroutine,
then design suitable programs.

and

Check your answers by

See Reference

converting known values

of the DATA This is a common

Section GOSUB, RETURN

52

CHAPTER 12

STRUCTURING YOUR PROGRAMS

OBJECTIVE: Using BASIC commands to structure programs with
loops.

Until now, we have used GOTO statements to repeat calculations.
Look at the following programs which both print out a list of
numbers from 1 to 10.

II.

10 LET 1=1
20 PRINT I
30 LET II+1
‘10 IF 1>10 THEN STOP
50 GOTO 20

10 FOR Izi TO 10 STEP 1
20 PRINT I
30 NEXT I
40 STOP

The FOR statement tells the computer that it is at the start of a
loop. This loop is called a FOR LOOP. Each FOR LOOP has a
variable associated with it called its control variable. In the
above example the control variable is I but could be any simple
numeric variable.

When the FOR LOOP is met for the first time a value is given to
the control variable. In the example it is 1 but could be any
number or mathematical expression.

The FOR LOOP is now executed until a NEXT statement
encountered with the same control variable. (Line 30 above).

is

The program now returns to the start of the FOR LOOP to see if it
has finished. There are two more numbers in the FOR statement.
The second is called the limit and the third is called the
increment. The increment is now automatically added to the
Control variable and the computer tests to see whether the limit
has been reached. In the example the limit is 10 and the
increment is 1.

10 FOR I z 1 TO 10 STEP 1

If the limit has been reached, the program will jump to the
Statement following the NEXT statement. If not, the loop will be
performed again with the new value of the control variable. The
following program is a practical example.

Loops are required so often in programs that a special command is
provided to make them faster, more flexible and easier to
understand.

10 FOR I . . .

10 FOR 1=1 .

53

100 PRINT “G—MARK” ,“FAHRENHEIT”, “CENTIGRADE”
110 FOR Izi TO 8 STEP 1
120 LET F=250+I*25
130 LET C=(F_32)/9*5
140 PRINT I,F,,C
150 NEXT I
160 STOP

This program converts GAS MARKS used on domestic cookers to
temperatures in both Centigrade and Fahrenheit and prints out a
table. I is used to represent the GAS MARK. Line 110 tells the
computer how the loop is to be operated. The computer understands
that it is to begin with Gas Mark 1 and repeat the loop 8 times
incrementing the GAS MARK by 1 step each time.
If the cooker for which the conversion is being made begins at .5
and increases in units of 0.5 to gas mark 8 then the line 110
would be rewritten to:

110 FOR Iz.5 TO 8 STEP .5

Line 150 is the end of the loop. The computer is told to return
to the FOR statement and to carry out the instructions for the
next value of I. It does this by increasing I by the value of
STEP. If it has reached the limit the FOR NEXT loop is complete
and control is passed to the next line in the program Cie line
160). The lines between the FOR and NEXT statement (120 — 140)
are the instructions to be carried out for each step.

EXERCISE 15
Re—design your programs in exercise 14 (conversions) to use
FOR, NEXT loops and to print out tables.

In the examples so far it has been simple to provide all the
information for the FOR.. . NEXT statement. You may wish to write a
program however, where the number of calculations constantly
change. An example of this would be a program to estimate batting
averages for a cricket team. In the example below, instead of
specifying exactly the number of times the loop has to be carried
out, a VARIABLE ‘N’ has been used, so that this information can
be read while the program is running, i.e.:

54

1

REM BATTING AVERAGES
PRINT “BATTING AVERAGET’
REM SET SUM TO 0
LET StO
REM READ VALUE OF N
READ N
REM SET UP LOOP
FOR 1:1 TO N
REM READ SCORES
READ X
LET StS+X
NEXT I
REM CALCULATE AVERAGE
LET AtS/N
PRINT A
DATA 7
DATA 125,0,45 ,67 ,83 ,90 ,68

situation where the number of times the loop is performed

changes. Consider the program below which uses more than one FOR

ioop to automatically adjust tyre pressures on a car to 32.

10 INPUT “TIRE PRESSURE”;P
20 IF P<>32 THEN GOTO SO
30 PRINT “TIRE PRESSURE CORRECT”
40 GOTO 10
50 IF P>32 THEN GOTO 100
60 FOR IP TO 32 STEP 1
70 PRINT I
80 NEXT I
90 GOTO 30
100 FOR 1P TO 32 STEP —1
110 PRINT I
120 NEXT I
130 GOTO 30

100
105
110
120
130
140
150
160
170
1 80
1 90
200
210
220
230
240
250

In the previous example the FOR statement was applied to a

See reference section FOR, NEXT, STEP

H, 55

I

II

II!

III

I-

I

IF

CHAPTER 13

MORE BRANCHING PROGRAMS (CONDITIONAL JUMPS)

OBJECTIVE: To design more complicated decision making programs

In the previous sections we have looked at how programs can be
made to branch and loop. These methods are not particularly
suited to the input of data which is continually changing. In a
game of billiards between four players for example, as each
player takes his turn his total is raised by his new score and
the other scores are unaffected. The program below is a possible
way to solve this problem.

10 REM ENTER PERSON AND SCORE
20 LET SizO: LET 32=0: LET 33=0: LET S40
30 INPUT “PERSON NUMBER AND SCORE”;P,S
14(3 IF 5=5000 THEN GOTO 140
50 ON P GOTO 30,60,80,100,120
60 LET S1=S1+S
70 GOTO 30
80 LET 52=52+5
90 GOTO 30
100 LET 53=53+5
110 GOTO 30
120 LET 54=54÷5
130 GOTO 30
1140 PRINT:PRINT
150 PRINT “PLAYER,,SCORE”
160 PRINT
170 PRINT “ 1”;Sl
180 PRINT “ 2”;52
190 PRINT “ 3”;S3
200 PRINT “

210 PRINT:PRINT
220 PRINT “END OF GAME”

Notice that in line 40 the instruction to end the game is by the
use of an IF statement which would only be true if an impossible
situation arose, that is, a score of 5000 is input.

///

EXERCISE 16 ON. .GOTO ON. .GOSUB.

1) Design a game program for four players where the object of the
game is for each player to guess a number between 1 and 100 which
has been input by a fifth person. The structure of the program
above will be a useful starting point.

See Reference Section ON GOTO

L

CHAPTER 14

MORE ABOUT VARIABLES

OBJECTIVE: To introduce the handling and manipulation of variables.

So far you have used data to calculate answers and then asked the
computer to display the results on the screen. There may be times
when you want to display the data as well. For example,if you
were producing accounts you might need to list all the entries as
well as totals and other calculations.

ARRAYS and DIM
You may remember from CHAPTER 2 that variables are locations
where information is stored and that they are allocated letters
to identify them. You may also remember that it is possible to
extend the number of variables available by allocating a letter
with a number. So, for example, the A variable may become
A1,A2 A9. If we place the numbers in brackets CA(1),A(2) and
so on) the computer understands that the variables are linked
together. In this case we have a set of numbers (A) which are
sub—divided into members of the set by the use of the subscript
(1,2,...9). This type of set is called an ARRAY.

In order that the computer can organise the storage of an ARRAY
in appropriate locations it is necessary to tell the computer how
many members of the set there will be. To do this you use the
DIMension statement.

10 DIM 3(40)

This example indicates that there is to be an ARRAY, which
consists of 140 numbers. It is not essential for all forty
variables to be used, you have told the computer that the number
will not exceed 40. In other words the DIM statement places an
upper limit on the size of the array to be set up. The example
above therefore would tell the computer to set up the array as:

5(1) ,S(2),S(3) ,S(4) S(’40)

DIM statements can also be used to dimension strings. They are
used to define the length of the string in much the same way as
with numbers. For example, the DIM statement to make space for a
string of length at most 14 characters would be:

10 DIM R$(14)

This would allow

20 LET R$&’STEVEN JAMESON”

but not

20 LET R$Z”STEPHEN JAMESON”

59

If a DIM statement is not used before the first use of a string

array, the string array is assumed to be of one dimension. In

other words, space is made to hold a single string of characters.

(see the reference manual for more details).

a number of strings we
the computer how many
ng to be.

10 DIM R$(20,1O)

tells the computer that space is required for 20 strings of
maximum length of 10 characters.

DIM R$(4,5)
DIM SCU)
FOR In TO
READ R$CI)
PRINT R$(I
NEXT I
STOP
DATA FRED,g7 ,HARRY,62,JOE,26,SID,54

EXERCISE 17 DIM STATEMENTS

Re—design the above program to print
additional members of the cricket team,
calculate the average age of the players

Try and work out what the following program is doing.

10 LET A$=l23I56789TT

20 FOR 1=1 TO 7
30 PRINT A$(I,3)
40 NEXT I

See the reference section DIM, ‘MANIPULATING STRINGS’

j

60

To make space for an array which can hold
need to use a dimension statement to tell
strings and how long the longest one is goi

e.g.

10
20
30
40
50
60
70
80

4 STEP 1
,SCI)
) ,S(I)

the names of the 7
and at the same time to

j

CHAPTER 15

SORTING

OBJECTIVE: Using nested loops and arrays in programs designed to
sort numbers.

One of the more useful tasks a computer can do for you is to sort
large amounts of data into the order you require very quickly and
efficiently. Sorting may be alphabetic, numeric (ascending or
descending) or in fact almost any way you can think of.There are
many different ways of sorting, but there is only space here to
mention a few, and we will concentrate on one method in
particular.

The main problem that all sorting techniques have to overcome is
the large number of tests required. That is to say the computer
is forced to ask many questions about the data in order to sort
it effectively. Say, for example, we have three numbers which we
will call A,B,and C.The first test would be to ask if A is
greater than B If it is then A and B are in order. If A is less
than B then the order has to be changed. To do this the number in
B has to be switched to the variable A and A to B. A third
location T is used to do this as below:

10 IF A<B
20 LET TzB
30 LET B:A
40 LET A=T

Having placed A and B in order we then have to place C in
position. To do this there are two questions required, though we
may get away with one.

1) is C greater than B,
2) is C greater than A.

By using this method as each new number is included in the sort,
the number of questions to be asked increases. As you can imagine
the number of questions needed to place the 50th number in order
is daunting and would take a long time to compute.

They are:

61

The RIPPLE SORT technique places the numbers into a row and is
designed so that the computer asks only one question as it moves
along the row: Is the number I am holding (which is the largest
so far) larger than the next number? If the answer is yes then
the computer moves on, if no then an exchange is made. By this
method the largest number moves to the last position.

The process is then repeated by using a loop until all the
numbers are placed in order. We have to tell the computer when to
stop and this is achieved by setting a flag to zero. A flag is
just a simple counter which can be looked at at any time to check
the status of the program. The way flags are used in programs can
be seen in the examples below. Each time an exchange is made then
the flag ‘F’ in line 120 is set to 1. The main loop includes the
line which sets the flag to 1 and so if at the end of the run it
is still 0, no exchanges have been made and the sort is complete.

10 DIM A(20),B(20)
20 PRINT:PRINT
30 PRINT “NUMBERS”,”SORTED LIST”
40 READ N
50 FOR 1=1 TO N STEP 1
60 READ AU)
70 LET BCI)tA(I)
80 NEXT I
90 LET FrO
100 FOR In To N—i
110 IF B(I)<nB(I+1) THEN GOTO 160 ELSE GOTO 120
120 LET Ezi
130 LET TzB(I)
140 LET B(I)zB(I+1)
150 LET B(I+1)=T
160 NEXT I
170 IF F=1 THEN GOTO 90
180 FOR Inl TO N STEP 1
190 PRINT A(I),B(I)
200 NEXT I
210 DATA 10
220 DATA6,4,8,1,3,2,5,7,9,10

In order to improve the efficiency of sorting tasks a number of
different methods are used. One way is to put decision making FOR
loops inside one another. This is called NESTING. Below are some
combinations of permitted and illegal FOR... NEXT loops.

62

LEGAL LOOPS ILLEGAL LOOPS

FOR I

r FOR J

FOR K

NEXT K

FOR I

FOR J

NEXT I

— NEXT J

NEXT J

FOR X

NEXT X

NEXT I

Work through these loops and see why they aren’t allowed and,in

An example is given in the program below to place in order the
Top Ten records based on sales.

150
200
210
220
230
240
250
260

270
280
290
300

INPUT N$
IF N$:”” THEN
LET R$(I)zN$
PRINT “SALES
INPUT 5(I)

LET ItI+1
GOT0 40
CLS
LET NtI—1
FOR 1=1 TO N
LET Kz1
LET WzR(1)
LET MAXzS(1)
FOR J=1 TO N
IF S(J)>MAX
LET KtJ:LET
NEXT J
LET S(K)=0
PRINT W$,MAX
NEXT I

NAME”;

STEP 1
THEN LET
WrR(J)

fact would not work.

10 DIM R$(40,40)
20 DIM 3(40)
30 LET I1
40 PRINT I?RECORD
50
60
70
80
go
100
110

GOTO 150

TI

STEP 1

MAXrS(J)

63

EXERCISE 18 DIM

1) Design a program to input football teams and their points and

then sort them into a final order.

2) Design a program to sort the teams on the basis of points and

goal difference

A useful way of sorting in larger programs is to separate the

sort from the main program by placing it in a sub routine. Below

is a listing of a useful sub routine doing exactly that. The

instruction to call up the routine would be GOSUB 1000.

1000 REM SORTING SUB ROUTINE

1010 LET F:O
1020 FOR 1=1 TO N—i

1030 IF A(I)<z A(I+i) THEN GOTO 1080

lOflO LET F:1
1050 LET T=A(I)
1060 LET A(I)tA(I+1)

1070 LET A(I+1)T
1080 NEXT I
1090 IF Fri THEN GOTO 1010

1100 RETURN

REMEMBER THAT THIS IS A SUBROUTINE

64

CHAPTER 16.

MULTI DIMENSIONAL ARRAYS

OBJECTIVE: To analyse data in tabular form.

In CHAPTER N the DIM statement was
are now going to look at how an array
dimensional data. As before, the DIM
the following section of a program.

TWO DIMENSIONAL ARRAYS

10 DIM XC5,B)

used to define arrays. We
can be used to store two

statement is used. Consider

xci ,3)
X(2,3)
X(3 ,3)
X(4,3)
X(5,3)

X(1 .1)
X(2,1)
X(3 .1)
X(4,1)
X(5,1)

store the

x
1
2
3

This statement sets up an array which
columns. This looks like;

And could

Xzl
Xz2
Xz3

Xz5

X(i ,2)
X(2,2)
X(3 ,2)
X(4,2)
X(5 ,2)

information:

2X
2
‘4
6

etc

has five rows and four

xci ,‘4)
X(2,U)
X(3,4)
X(4,Ll)
X(5,Ll)

X3
1
8

27

r2
1
4
9

65

EXERCISE 19 Two dimensional arrays

1) Design a program to complete and print the table above.

2) In the example below part of the third year exam results

given. All the figures are percentages and each class took

same exam in each subject. In order to look at the progress

children in the three subjects a program has to be devised

work out:

a) The
b) The
c) To
d) To

average results for each

average result for the y

print a table of results

print a list in order of

class in each subject.

ear in each subject.
as below
score for each subject.

The input part of the program

points to a possible way to

completed for you. Notice that

use of input statements making

different situations.

are
the
of
to

YEAR 3
CLASS PUPIL NUMBER GEOGRAPHY HISTORY MATHEMATICS

3A 1 58 62 23

2 45 58 29

3 67 76 53

3B

3C

25
26
27
28
29
55
56
57

4 53 45 12

5 68 72 43
46 43 51
48 41 45

53 41 55
49 36 62

51 68 65
43 38 42
54 37 51
47 56 49

58 43 43 28

59 54 45 43

and a section of program
complete the design has

the array is initialised by

the program adaptable to

which
been

the
many

10 REM INPUT PROGRAM
20 INPUT “MAX NUMBER OF PUPILS PER CLASS”;PUPIL

30 INPUT “NUMBER OF CLASSES”;CLASS

40 INPUT “NUMBER OF SUBJECTS”;SUBJECT

50 DIM R(PUPIL,CLASS,SUBJECT)

60 REM START ENTERING DATA

70 INPUT “PUPIL,CLASS,SUBJECT,MARK”;P,C,S,M

80 IF P=O THEN GOTO 110
90 LET R(P,C,S)zM
100 GOTO 70
110 REM CONTINUE

66

1000 REM AVERAGE PROGRAM
1010 REM ASSUME RESULTS ARE IN R
1020 FOR C=1 TO CLASS STEP 1
1030 LET TzO
1040 LET N=0
1050 FOR Pzl TO PUPIL STEP 1
1060 FOR S1 TO SUBJECT STEP 1
1070 LET MR(P,C,S)
1080 IF R(P,C,S)<>0 THEN LET T:T÷M:LET N=N+1
1090 NEXT S
1100 NEXT P
1110 LET AzT/N
1120 PRINT “AVERAGE OF CLASS “;C;” IS “;A
1130 NEXT C

In this example the same data is used for a number of
calculations. MTX BASIC provides a command for placing data back
into the working memory for further analysis. The command RESTORE
is used with the READ and DATA statements to do this as follows;

10 READ N
20 LET T0
30 FOR 5=1 TO N STEP 1
10 READ X
60 LET T=T+X
70 NEXT S
80
100
110 SCORE IS
120
125
126 MARKS DEVIATION”
127
130
140 FOR 1= 1 TO N STEP 1
150 READ Y
160 PRINT I,Y,Y—A
170 NEXT I
180 STOP
190 DATA 5
200 DATA 45,67,89,34,51

See the reference section RESTORE

LET ArT/N
PRINT: PRINT
PRINT “AVERAGE
RESTORE 0
PRINT
PRINT “PUPIL
PRINT
READ N

67

CHAPTER 17

FORMATTING WITH PRINT

OBJECTIVE: To introduce methods of formatting when using the
PRINT command.

We have used the PRINT command to print tables by using commas totake you to the next TAB position. You may however wish to set upa table or enter text which does not start at the first TABposition and then use each subsequent position. MTX BASIC has acommand CSR (CURSOR) which is used with the PRINT command to helpyou format your work in this way.

The first step is to set the starting position by giving theCURSOR two co—ordinates. The first is the number of columnsacross the top of the screen and the second the number of rowsdown.

CSR 3,11

will place the cursor three character spaces from the left handedge of the screen and four lines down from the top. CA fullerexplanation is found in GRAPHICS.)

Try this simple example to print your name in the middle of the

Notice we have placed the PRINT command on the same line as theCSR command. This is all right if you separate the commands witha colon. You can use multiple statement lines in this wayprovided you do not exceed the length of the EDIT screen.

See Reference section CSR

screen.

10 REM YOURNAME
20 CSR 12,15:PRINT “YOURNAME”

69

CHAPTER 18

MATHEMATICAL FUNCTIONS

OBJECTIVE: To introduce arithmetical functions and their use in
programs.

Remember in chapter 3 we looked at roots and wrote the squareroot of four as 4aC1/2). At the time it was hinted that there
were more efficient ways of doing these calculations, and if you
haven’t discovered these for yourself already, then now is the
time. An example of the method you have used to calculate square
roots is below on the left with the alternative on the right:

30 PRINT I

10 LET X=16 10 LET Xz16
20 LET Y=(X)O.5 20 LET flSQRCX)

30 PRINT I

A complete list
reference manual.
because even if y
that there are som
future if you know

of mathematical functions
It is worth having a look

ou have discovered some of
e you have not, and it may
what is available.

EXERCISE 21

is included in
at all of these
them, it is li
save you time in

the
now,
kely
the

FUNCTIONS

1) The following program
for values between .1 and
functions.

prints out
.9. Alter

10
20
30
40
50

the values of SIN
it to print values

TO .9 STEP .1FOR X=.1
PRINT “

PRINT
PRINT X,SIN(X),C0S(X)
NEXT X

and
of

CO S
other

See Reference Section SIN, COS, P1 and find the other functions

71

CHAPTER 19

STRING FUNCTIONS

There are two types of string functions. The first type is usedto instruct the computer to perform operations rather likeprogram statements. The second is used to manipulate strings.

We will first deal with string functions as operators. Thekeyboard can be read by the use of the function INKEY$. This isin practice a very useful function since it enables you to writeprograms where the computer interacts with the person operatingthe keyboard. The short program below is an example of this wherethe computer expects the operator to answer “f” and any otherresponse will result in a loop.

10 PRINT “PRESS Y TO CONTINUE”
20 LET A$tINKEY$
30 IF A$<>”Y” THEN GOTO 20
BO PRINT “YOU PRESSED Y”

If you cannot understand this program insert

25 PRINT A$

Another useful string function is CHR$. This function is used tosend character codes to the screen, usually because the codesdon’t have a corresponding printable character.

e.g.PRINT CHR$(65)

This will print a capital A at the next position because 65 isthe ASCII code of ‘A’. The Appendix includes a full list of the

In the same way, printing can be controlled by using the specialcontrol characters

OBJECTIVE: The use of String functions as controls

character codes

e.g

PRINT CHR$(12) CLEARS THE SCREEN.PRINT CHR$(26) MOVES CURSOR TO HOMEPRINT CHR$(10) MOVE CURSOR DOWN

73

The second type of string function is concerned with the

manipulation of strings.

If you want to display only part of a string for example,MID$ can

be used. Look at the following program:

10 LET A$Z”ABCDEFG”

20 PRINT MID$(A$,3,2)

When this is run CD will appear on the screen. In the instruction

you have told the computer to go to the third letter which is ‘C’

and print two letters.

LEFT$ and RIGHT$ are used to instruct the computer to count from

the beginning of the string (LEFTs), and the end of the string

(RIGHTS). The number of characters specified will be printed.

Replace line 20 with the following lines.

20 PRINT LEFT$(A$,3) ABC will appear.

20 PRINT RIGHTCA,3) EFG will appear.

See Reference Section LEFTS, RIGHTS, MID$, CHR$ and other string

functions

7k

CHAPTER 20

SIMPLE GAMES AND RANDOM NUMBERS

OBJECTIVE: To introduce the methods used in the design of games
programs.

Most of the games constructed for the computer involve
complicated graphics which are controlled by a series of loops,
conditional jumps and sub—routines. In this CHAPTER we are goingto concentrate on the programs rather than the graphics. Later on
when you feel more confident you could attempt to make the games
you create here more interesting by adding appropriate graphicsbut don’t worry about that at the moment.

An important feature of any game is that the events in it occur
by chance and are in no way predictable. To produce this ‘random’
effect BASIC has a function RND and a command RAND. Randomnumbers are created by the random number generator. To activate
this you need to set a starting point in the RAND statement and
set a limit of numbers to be generated in the RND statement. We
have included a program designed to fill out a pools coupon withnumbers derived by the computer at random. In this case the
coupon allows you to enter 20 possible draws and therefore, you
need to generate 20 numbers.

When you have tried this program a few times you will see that ithas a problem. It always starts from the same point and
therefore, it continues to produce sets of identical numbers.This is called a pseudo—random number sequence where RAND 5 will
always produce the same set of numbers. RAND 6 would produce anew set of numbers but then repeat them each time it is used.This is true for all positive whole numbers used in the RANDstatement.

To obtain truly random numbers you would use a negative value inthe RAND statement. Now try RAND —5 in line 10. As with positivevalues you can use any whole number.

RND returns random numbers in the range 0 to .9999999.To obtain a different range, the result can be multiplied by a
Scaling factor.

Line 30 tells the computer that you wish to display a wholenumber CINT) between 1 and 64. The computer would start from 0and go to 63 if no further instruction is given. The easiest wayto solve this is to simply add I to each number generated and so:

10 RAND 5
20 FOR 1:1 TO 20 STEP 1
30 PRINT INTCRND*64+1),
40 NEXT I
50 PAUSE 5000

INT(RND*64÷1)

75

EXERCISE 22 RANDOM NUMBERS

1) Design a program to generate a random number table in 10

columns from 1 to 99.

2) Complete the dice throwing program below.

10 RAND 5000
20 LET D1=INT(RND*6+1)

30 LET D2tINT(RND*6+i)

40 PRINT:PRINT

50 PRINT “DICE it “;Dl

60 PRINT “DICE 2= “;D2

70 IF D1=D2 THEN GOTO 80 ELSE GOTO 100

80 PRINT “PRESS SPACE FOR EXTRA THROW”

85 LET A$=INKEY$

86 IF A$<>” “ THEN GOTO 85

90 GOTO 20
100 INPUT “NEXT TURN 7 Y FOR YES N FOR N0”;A$

110 IF A$=”Y” THEN GOTO 20 ELSE GOTO 120

120 PRINT “GAME OVER”

3) Redesign the above program to allow four dice to be used by

three or four players and include a counter to print scores for

each player in a best out of three game.

//////////I///////////
//////////////////////

/////////////////////

There are two programs below to set up a game of bingo. By making

these into subroutines and by properly formating the cards in an

array you could enable the game to be run on the screen. Try

first of all with two players.

BINGO
10 REM BINGO NUMBERS

20 DIM A(99)

30 CLS
40 PRINT “PRESS A KEY FOR NEXT NUMBER”

50 INPUT AS
60 LET XtINTC99*RND+1)

70 IF A(X)=1 THEN GOTO 60

80 LET A(X)=1

90 PRINT X
100 GOTO i10

76

J

BINGO CARD

FOR I1 TO 15
LET X=INT(RND*99+1)
IF R(X)zl THEN GOTO
LET R(X)=1
LET NzINT(RND*30÷1)

IF B(N)<>0 THEN GOTO
LET BCN)=X
NEXT I
FOR Izi TO 10
FOR J=1 TO 3
PRINT BCCJ_1)*1O+I),
NEXT J
PRINT
NEXT I

10 REM BINGO CARD
20 DIM B(3O)
30 DIM R(100)
40 CLS

60

50
60
70
80
90
100
110
120
130
140
150
160
170
1 80

80

See Reference section RAND, RND, INT

77

CHAPTER 21

MATRICES

OBJECTIVE: To introduce matrix operations in ba3ic.

The two dimensional arrays introduced in CHAPTER 14 were forms of
MATRICES. The principal difference between arrays and matrices is
the way in which arrays are dealt with. In the case of two
dimensional arrays we are concerned with the manipulation of
separate parts of the arrays. The Geography results for 38 for
example. In a matrix operation we are concerned with the whole
matrix, so any operations affect the matrix as a whole.

There are a number of useful operations which can be carried out
in this way on tables of information. Matrices can be added to
each other, multiplied, divided, and constants can be applied to
update them. Monthly sales figures, for example, can be combined
to produce quarterly or yearly totals.

The sub—routines below can be used to set up, input data and
print out matrices. They would be used as normal GOSUB/RETURN
routines within a program. We have used a 3x3 matrix here but
clearly by changing the I,J values you can design matrices of any
dimension.

SUBROUTINE TO PRINT OUT A MATRIX
1000 FOR I1 TO 3
1010 FOR J:1 TO 3
1020 PRINT ACI,J)
1030 NEXT J
1040 NEXT I
1050 RETURN

SUBROUTINE TO SET A TO 0
2000 FOR 1=1 TO 3
2010 FOR J=1 TO 3
2020 LET A(I,J)zO
2030 NEXT 3
20110 NEXT I
2050 RETURN

SUBROUTINE TO INPUT DATA
3000 INPUT “I,J,DATA “;I,J,D
3010 IF Dz99999 THEN RETURN
3020 LET A(I,J)rD
3030 GOTO 3000

This method can be used to add,copy, multiply and apply constants
to the matrix. For example in the first sub routine above the
replacement of line 1020 with:

1020 LET A(I,J)z B(I,J)
Will lead to matrix B being copied into matrix A.

79

1020 LET C(I,J)= A(I,J)+B(I,J)
Now matrix A is added to B and the sum is copied into C.

1020 LET A(I,J)z 5*A(I,J)
All the elements of matrix A are multiplied by the constant 5.

To multiply two matrices a slightly more complex routine is

required to fit the rules of matrix algebra. Consider the example

below where matrix A has H rows and C columns and matrix B has C

rows and S columns.

4OOO REM SUBROUTINE TO MULTIPLY MATRICES
‘1010 FOR 1=1 TO H STEP 1
‘1020 FOR J=1 TO C STEP 1
‘1030 LET D(I,J)zO
4O’IO FOR Kz1 TO C STEP 1
‘1050 LET DCI, J)=DCI,J)+A(I,K)*B(K,J)
11060 NEXT K
‘1070 NEXT J
4080 NEXT I
4090 RETURN

80

J

fish and chip shops and the table below shows
sold in the four quarters of the year.

Haddock

rices to print out
to add matrices

out the following

the data
together
totals:

in
and

1) The 6 monthly returns for each shop.
2) The yearly returns for each shop.
3) The combined figures for all shops.
4) Create a table to express each shops monthly figure as a
percentage of the total sales for all shops.

/////////////I//////////////////,///////////////////////////////,

EXERCISE 23
Mr Jones has three
the numbers of fish

Cod Plaice

Shop 1 JAN — MAR 3,456 460 212
APR — JUN 2,458 238 146
JUL — SEP 1,845 67 35
OCT — DEC 4,153 354 286

Shop 2 JAN — MAR 2,998 342 189
APR — JUN 2,135 154 89
JUL — SEP 1,225 52 38
OCT — DEC 2,509 189 139

JAN — MAR 4,806 589 354
APR — JUN 2,678 453 302
JUL — SEP 2,686 220 148
OCT — DEC 4,766 554 386

Shop 3

Use the sub routines to set up mat
the form above. It is possible
therefore, it is possible to work

81

I

PART 2

NODDY

In the early chapters you experienced how difficult it is to
format your work when writing programs in BASIC. The new language
NODDY has been designed to simplify text handling. The second
important advantage of NODDY is that it allows you, with very
little programming knowledge to write your own interactive
programs. As you would expect the method of writing programs
involves planning in advance and understanding the commands.
However, since there are only ELEVEN commands this is not a
difficult language to master.

NODDY COMMANDS

The use and meaning of the commands will bec’bme obvious as we
work through some examples of NODDY programs.

NODDY is accessed through BASIC by typing NODDY. You will
later that this is not accidental but to enable you to write
complicated programs where NODDY and BASIC work together.

NAME

Press the <RET) key.

(make sure that you type this in capitals.)

NAME will appear at the top of the screen.

This is the title of the page.

B BRANCH E ENTER P PAUSE
I IF A ADVANCE L LIST
6 GOTO H RETURN 0 0FF

S STACK D DISPLAY

Type NODDY <RET>

Noddy will appear at the bottom of the screen.

see
more

Now type

Noddy>NAME

83

Move the cursor using the EDIT keys and type some information

about yourself. Remember that each N000Y page is treated by the

computer as a separate entry and so you do not press <RET> until

you have typed all the information you wish to store. If you make

a mistake and <RET> before you have finished simply type NAME

<RET> again and the page will be placed back on the screen.

DO NOT PRESS THE CLS KEY SINCE THIS DELETES THE PAGE.

Continue as before and when the page is complete press <RET>.

You have just created a NODDY page called NAME.

If you now type DIR <RET>, the screen will be cleared and NAME

will appear in the top left corner. This is the NODDY directory

and tells you what pages are present. In this case the page title

NAME will appear. When you type DIR make sure that you are using

capitals since if you use dir you will create a page called

‘dir’.

Now type NAME again, the information you entered before will be

printed on the screen just as you typed it. If you want to change

or add information edit the screen using the cursor keys and when

you have finished <RET>.

Remember that the CLS key is used to remove a page from the

system. When you press the key the page currently on the screen

is lost. Though this key is very useful for editing out redundant

pages it can be frustrating to watch an hours work disappear in a

moment of carelessness.

NODDY provides you with a means of storing and displaying textual

information.

When you typed NAME <RET> the first time, you were telling the

computer that you wanted a page of text which you could refer to

by the title “NAME”.

Try creating other pages with different titles. Each time you

create a page and press <RET>, Noddy should appear at the bottom

of the screen.

84

j

When Noddy appears you can:

1) enter another page by typing a new title

2) type DIR to see what you have done.

3) look at a page already in the DIRectory by typing
the title.

4) return to BASIC by pressing the CLS key followed by
<RET>. This is one of the occasions where it is safe
to use <CLS>.

To make sure that you are in the correct mode to CLS it is useful
to get into the habit of typing DIR before returning to BASIC.
This gives you an opportunity to check that all the files you
require are present and avoids the situation where work is lost.

Ready will appear at the bottom of the screen.

If you return to BASIC you will not lose your work provided you
do not switch the computer off. When you return to NODDY the
pages will be just as you left them. You may wish to make a more
permanent record.

To save NODDY files use the system described in chapter 1 on
saving and loading programs. The NODDY file is given a name as
with a BASIC program. If both NODDY and BASIC programs are
present at the same time they will both be saved together.
Similarly if you erase a BASIC program by typing NEW then the
NODDY pages will go as well. You should think of NODDY and BASIC
as languages linked closely together.

To write programs in NODDY special program pages
the commands described above. To show you how
commands work we have set up four programs to
numbers each one capable of better storage and
last.

The first program consists of a telephone page
page. We shall call the telephone page FRED and
PROG1

Type N000Y <RET>

are set up using
each of these

store telephone
recall than the

and a program
the program page

FRED <RET>
Fred’s telephone number is

(Enter this page by pressing the return key.)

555686

To return to BASIC from a NODDY page:

Type DIR <RET>

Press the <CLS> key followed by <RET>

Type

85

The program page uses three commands DISPLAY,PAUSE and RETURN.

Each command is preceded by * to tell the computer to regard the

next entry as a command. Now type the following page called

PROG1.

PROG1

*DISPLAY FRED.
*PAUSE #PAUSE

*RETURN
<RET>

The first line *DISPLAY FRED. tells the computer to place the

page called FRED on the screen. Where a page title is referred to

in this way the page name is completed by a full stop. If you

forget to do this the computer will not be able to carry out the

search.

The second line tells the computer to keep the information on the

screen for the length of two PAUSES (approximately 1 second per

pause)

The third line uses the command RETURN to return you to BASIC

after the PAUSES are complete.

Type DIR to see the page names.

To run this program you first of all have to go into BASIC. To do

this press the CLS key followed by <RET> and Ready will replace

Noddy at the foot of the screen. The word used to run a NODDY

program is PLOD. This should be followed by the name of the

program page in inverted commas.

Type PLOD “PROGH’ <RET>

If you wish to run a NODDY program a number of times then it is

best to place the PLOD instruction in a program line.

10 PLOD “PROGi”

Each time you wish to run the program simply type RUN <RET> and

the NODDY program will be activated.

86

The second program page (PROG2) will allow you to RETURN to BASICby pressing one of the keys. The command used to achieve this is*ENTER which is not dissimilar to the BASIC input command. Where*ENTER is used the computer waits for a key or keys to be pressedbefore continuing with the program. Type in and run the programas before calling the page PROG2. When the page FRED appearspress any key followed by <RET> or just <RET>, the program willcontinue and Ready will appear at the bottom of the screen as youreturn to BASIC.

PROG2

*DISPLAY FRED.
*ENTER

Program 3 uses the commands *IF, *GOTO and uses labels to placeyou more in control of the program. *IF is used to instruct thecomputer to ask if your *ENTER is the correct one. If it is thenthe computer will move onto a different part of the program asrequired. This is carried out by using a label. For example inline 3 the instruction *IF R,r tells the computer to compare the*ENTER with R and if R is the key pressed to find a letter ‘r’and continue from there. So that the computer does not confusethe ‘r’ at the beginning of the new program line with any otherit looks for an ‘r’ preceded by .

(Labels can be any character on the keyboard and you shouldattempt to work out the best system for you to use. The importantthing is to be consistent and keep to a plan.)

If a key other than ‘R’ is pressed then the program continueswith *QOTO PROG3. The *QOTO command is used in this page to
return the control back to the beginning of the program page weare in. Normally *COTO would be used to activate other programpages. Notice the fullstop after PROG3 and the position of “r.

PROG3

*DISPLAY FRED.
*ENTER
*IF R,r
*QQTO PROG3.

r *RETURN

A better way to take control to the beginning of the presentProgram page is to use the command *BRANCH. PROG4 illustrates theuse of *BRANCH and extends the use of labels to allow you to use

*RETURN

BRANCH

87

a *ENTER to print FRED on the screen

PROWl

*ENTER
*IF F,a
*IF R,r
*BRANCH t

A *DISFLAy FRED. *BRANCH t

*11 ETU RN

The final program in this series PROG5 allows us to use the pages

as a telephone directory. The first step is to create more pages.

Type SID <RET>

Sid’s telephone number is 555987

BERT

Bert’s telephone number is 555321

Now type in the program page

FROGS

at *ENTER
*IF F,a
*IF B,b
*IF S.c
*IF RET,r
*BRANCH t

“a *DISPLAY FRED. *BRANCH t

“b *DISPLAY BERT. *BRANCH t

“c *DISPLAY 310. *BRANCH t

*RETURN

The first six lines of the program are a loop where the computer

is waiting for a *ENTER of F,B,RET or S. If any other input is

received then you will *BRANCH to t. If RET is entered then you

will branch to r and RETURN to BASIC.

If F,B or S are pressed with a <RET> then control is passed to

labels a,b and a respectively. As each is displayed the program

branches to “t at the beginning of the program and you are ready

to begin the process again.

88

////////I/////////////////////,//////////,,////,,///////,/,//,,

EXERCISE 24 NODDY
Improve the final address
display a MENU page at the
the program so that it
display. The MENU page is
the page PROG5.

book program by getting the computer to
beginning of the program and arranging
returns you to the MENU after each

designed for you. Your task is to amend

MENU

There are three telephone numbers in the directory:

SID ,FRED, BERT.
To display their numbers type the first letter of their names and
press the <RET> key.
To return to BASIC type RET

As a further exercise try to design a
address book.

program to hold your own

To further illustrate NODDY programs, the next example shows you
step by step how to create a program to simulate a book.

it!”.

When reading a book there are a number of mechanical tasks
required. You need to be able to turn a page, look through
chapters to find your place, look back to check on some detail or
if you wish to cheat look at the last page to find out “who dun

To write such a program in basic would involve a fairly
complicated program with many loops perhaps using subroutines and
so on to enable you to call up the required pages. Then there
would be the difficult task of formatting each page. NODDY
requires only one program page, a contents page and a contents
page for each chapter. The plan for the program is shown below.

STAGE 1
WHICH CHAPTER

CHAPTER
PETS

1 CHAPTER 2
FARMS

CHAPTER 3
ZOO

P1 DOGS
P2 CATS
P3 MICE

STAGE 2
WHICH PAGE
P1 SHEEP
P2 PIGS
P3 CATTLE

P1 LIONS
P2 ZEBRA
P3 SNAKES

89

There are no hard and fast rules as to how you approach the task

of setting up the book. It is often easier to start with contents

and work through the book, rather than begin with the program

since you may wish to change the contents.

The book you are about to write is called MAMMALS.It consists of

four chapters as in the plan and page one is entitled DOGS.

Type DOGS <RET>

Type on the remainder of the page, in any form you wish, some

information about dogs. When you have completed the page press

the <RET> key and the page will be saved exactly as you typed it.

Repeat this for each page in the plan.

The next stage is to write a contents page for each chapter.

As before you first type a title to the page followed by the

information required as below.

CHAP1 PETS

CONTENTS

Choose which page and type P1,P2, or P3

P1 DOGS
P2 CATS
P3 MICE

Complete a contents page for each chapter. To check whether all

the information you need has been input type DIR and a directory

of your pages will appear on the screen as below.

CHAP1 CHAP2 CHAP3

DOGS SHEEP LIONS (NB The order of the directory

CATS PIGS ZEBRA varies according to the inputting)

MICE CATTLE SNAKES

In order to start in the book at the appropriate chapter a

Chapter contents page is needed, So as not to confuse this page

with those contents pages already input we will call this page

TITLES.

Type TITLES <RET>

90

j

1 CHAPTER 1 PETS
2 CHAPTER 2 FARM
3 CHAPTER 3 ZOO
B RETURN

This completes the contents of the book and all that remains is
to write the program page. As before we give this page a title
(MAMMALS) and then type in a series of command statements. You
will notice that the full form of the commands has been replaced
by the use of a single letter. Also notice that *E can appear on
the same line as *0 and that the *IFs are all grouped together.
The labels indicated by a preceding a letter have been structured
in such a way that it is clear which letters refer to title pages
and which to pages of text. Your N000Y programs will work without
all this careful formatting. However, when you arrange your
programs in this way you reduce the number of mistakes you are

Examine the program carefully line by line as you input, thinking
about what is the function of the line and how does it carry out
the desired instructions:

Line 1 displays the main contents page called TITLES and tells
the computer to wait for an input to be *ENTERED from the
keyboard.

Line 2 compares your input with the expected 1,2,3 or B for
RETURN and instructs the computer to find labels a,b,c or r
respectively and continue from the label. If any other letter or
number is input then control is returned by the *BRANCH t command
to the beginning of the program.

Choose which chapter and type 1,2,3 or RETURN to BASIC.

likely to make

91

Continue analysing the program in this way.

MAMMALS
At *D TITLES. *E

*1 1,a *1 2,b *1 3,0 *1 R,r *8 t

“a *J) CHAP1. *E

*1 P1,g *1 P2,h *1 P34 *6 t

*0 DOGS. *8 d

*D CATS. *3 d
*J MICE. *8 d

*D CHAP2. *E

*1 P1,j *1 P2,k *1 P3,1 *8 t

*D SHEEP. *3 d

*0 PIGS. *8 d

Al *0 CATTLE. *3 d

“0 *1) CHAP3. *E

*1 P1,m *1 P2,n *1 P3,o *3 t

*D LIONS. *5 d

*0 ZEBRA. *8 d

*D SNAKES. *3 d

*E *3 t

Press the enter key to save the program page “MAMMALS1’ and

provided you have made no errors inputting the program it is

ready to run. If you have made a mistake the computer will give

you one of three error messages: ‘NO DATA ERROR’ ,‘OVERFLOW’ or

‘MISSING SYMBOLT and return you to BASIC.

No data means that the computer is looking for a page title that

it cannot find. It is more likely that you have not entered the

page, however it could be that your entry for the page is

misspelt or that you have forgotten a space etc.

Overflow occurs where the computer has reached the end of the

program page whilst looking for a label or command.

Missing Symbols could occur if * or • are missing from the

program page.

These error messages are only hints about the error. To find the

error, the message should be considered together with the page on

which the error occured.

To correct the page press the CLS key and type N000Y. When Noddy i

appears on the screen, type the page title MAMMALS and the page

is ready for editing. Check that all punctuation is correct and

when you are satisfied that it is correct press the enter key

again.

Go back to BASIC.

92

Use the
Clearly
each wi
without
program
*GOTO S

better
program
MAMMALS

command PLOD to run the program.
this program can only operate a book with three chapters
th three pages. It would be a very limited book and
radical alteration cannot be increased in size. The

barely fits on the page. To get around this problem the
tatement allows you to switch to another program page. A
design would be to make each chapter contents a new

page and instead of using the *3 t you would use *QOTO
for example.

//

Exercise 25 NODDY Book
Redesign the program
pages.

Program
to contain four chapters each with four

The *GOTO statement is one of four program handling commands.

Program pages are stored in
plates. When they are used they
top. Imagine you have three pr
other. Using the STACK statement

a stack rather like a stack of
are taken from the stack from the
ogram pages to run one after the
it t.tould be written like this:

They would be taken from the stack in the order PROG1 ,PROG2 and
finally PROG3.

command *STACK is used
ams to be run. They are

and therefore in the
,PROG2 second and PROG3

to tell the computer
taken from the top of
example above, PROG1
third.

The *OFFSTACK command
off the stack without

*STACK PROG3,PROG2,PROG1

The
progr
time
first

The
thro
top

command
ugh the
of the stack.

the order of
the stack each
would be run

*ADVANCE tells the computer
program stack. ie remove and

to advance or move
execute the program on

We have designed a set of programs
Operate.

tells the computer to take the next program
executing it.

to show you how these commands

93

Set up the following three pages called AA,BB and CC.

AA

AkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SB

BBBBBBBBBBBBBBBBBBBBBBBBBBSBBBBBBBBBB

CC

CCC CCC C C C C C C C C C C CCC CCCCC CCCCCCCCCCCC

The main program page is called PROC and looks like this:

PROC

*S PROG,PA,PB,PC.

There are three other program pages called PA,PB, and PC.

PA

*D AA. *p *p *A

PB

*D SB. *p *p *A

PC

*D CC. *p *p *A

When you PLOD “PROC” the computer pushes four program pages onto

the stack:
PC
PB
PA

PROC

91

J

*A at the end of FROG takes the first program of
is PC and executes it. CC is displayed for thepauses *• Meanwhile PC has been discarded andlooks like this:

the stack which
length of the
now the stack

PC

end of PC instructs the computer to take PB from theworking memory execute and discard it. This process isuntil PROC is reached and the stack is reassembled.Inloop has been formed.

the program press the BRK key. If you insert an OFFSTACKin program PC as below then PB is taken offstack eachmissed out.

*D CC. *p * *0 *A

Noddy Program Handling Commands
incipals in this section to design a program to enablethe four chapter contents pages in Exercise 1
advantage would be to use the *OFFSTACK commandoption where you only scan the chapters beyond
book you have reached

The final
cannot use
full pages.
line length
manual supp
If you have
would use is

yet is *LIST. You
e text is stored in
printer to accept a

will find instructions in the
on how to change line length.
for example, the command you

LPRINT CHR$(27);”Q”;CHR$(39)
To print out a page of NODDY yo
the page title with a full stop.

*L TITLES.

The computer will print out the page called TITLES

Noddy is a new and evolving language where there are few rules togovern the way in which programs are written. We have attemptedto give you some guidelines as to the way to procede. Howeverthey are only guidelines; it is for you to develop your ownProgramming technique. The applications of NODDY are only limitedby your imagination.
(The NODDY commands on the MTX are a subset of the completelanguage as described in the NODDY report (1982).

PB
PA

PROC
*A at the
stack into
continued
this way a

To stop
COMMAND
time and

Exercise 26
Use the pr
you to scan
A further
create an
point in th e

to
the

command which we have not used as
LLIST or LFRINT in NODDY since Ui

have to set yourYou will also
of 39 characters. You
lied with your printer
an EPSON type printer,

u simply type *LIST
For example:

followed by

95

I

PART 3

GRAPHICS

The MTX 500 is capable of very sophisticated graphic effects. You
will be able to control the graphics screen in a variety of ways,
changing its size shape and colour, as well as designing complex
animation programs.

Until now you have been using text screens with characters like
a,b,c etc. However, the MTX is capable of high resolution
graphics using its graphics screens. There are two distinct types
of screen; The text screen which is 40 columns wide and 24 lines
deep and the graphics screen which is 32 columns by 24 lines.
Text can be written to a graphics screen but graphics cannot be
written to a text screen.

It is important, even .if you are familiar with graphics
production on other machines, to follow this part of the course
very carefully. MTX graphics are designed to use a few
interactive commands rather than a large number of commands which
operate alone. Though this can make your graphics programs simple
to set up, it does mean that you have to have a thorough
understanding of the commands.

The graphics manual is split into five sections: Controlling
Text, Controlling Graphics, BASIC Graphics, Further Graphics and
Animation.The first concerns the control of the text screen.

Though we are introducing these controls as text screen control
as you will see they are used interactively with the other
graphics commands. We will first of all give you the simple uses
of the words and then in the final section draw them together in
sample programs where their interactive use is explained.

CLS The CLS key is used as in many other applications in MTX
BASIC to clear the screen to begin a new task. The
command CLS, however, can also be used as a command
within your program to carry out a similar function.

CSR x,y The command CSR (cursor) places the cursor on the screen
at the coordinates x,y.

To illustrate the use of these commands type in the following
Program line and run it.

10 CLS:CSR 10,10:PRINT “HELLO”

CONTROLLING THE TEXT SCREEN

97

When you run this line the screen is cleared, the cursor moved to

position 10,10 (near the middle of the screen) and HELLO printed

from this position.

Use the CLS and CSR commands to print text on the screen in

different positions. By observing the effect of the coordinates

you can develop a mental map of how the screen is divided. This

will be a useful skill to develop for the more advanced stages of

graphics production. There are further notes in the reference

section.

VS (Virtual Screen)

All print commands are relative to the screen you are using. If

you have a small TV screen the coordinates 10,10 would be in the

same relative position as 10,10 on a large TV screen. The MTX has

an inbuilt method to allow you to create smaller screens within

your screen. These are called virtual screens. The coordinates

10,10 would also be in the same relative position within your

virtual screen. This is demonstrated in the three screens below.

HELLO HELLO HELLO

MTX BASIC uses four virtual screens. The editor is VS 0 and

consists of four lines which behave as a single line. The list

screen is VS 1 and consists of 19 lines, the message screen is VS

7 and consists of one line at the bottom of the screen. The whole

screen is called VS 5.

VS 1 LIST SCREEN 19 LINES VS 5
(whole screen)

VS 0 EDITOR 4 LINES

VS 7 EDITOR 1 LINE

CRVS n,t,x,y,w,h,s

This is the command used to create your own virtual screens. The

information is placed into the computer in the form of a

parameter statement rather like sound:

CRVS n is the VS identification number in the range 0-7’

t screen type (0 for text and 1 for graphics)

x is a coordinate of the top left hand corner of the VS

y is a coordinate of the top left hand corner of the VS

w width of screen in characters

1 depth of screen in lines

s the number of characters which exist in one line of the

type of screen in ‘t’ (40 for text screen and 32 for graphiC

98

* NB do not use VS 0,1,5 or 7 since these are used by BASIC
itself as identifiers.
VS ‘I is used by BASIC for its full graphics screen.
If you should create one of these then it will be redefined
whenever you return to the BASIC Ready.

A simple example of a VS would be to define a block 10 charactersby 10 characters in the centre of the screen:

Line 10 defines the screen, line 20 selects the VS number you
wish to use, this should agree with the first parameter in line
10 and line 30 introduces a new command DSI. DSI (Direct Screen
Input) tells the computer to direct input from the keyboard to
the new VS. If you now type information to the screen you will beable to see where the screen is located and its size.

Now press the <CTRL> key at the same time as the hat key <> the
cursor will appear in the VS. You can now use the cursor keypad
to edit the information in your VS. If you switch from one VS to
another the cursor will be exactly where you left it so that you
can easily carry on inputting from where you left off.

Take this opportunity to try some of the other keyboard controls.

The <PAGE> key is used to decide whether you are in page or
scroll mode. In page mode when you reach the bottom of the page
the cursor moves to the top of the page for the next page of
input. In scroll mode when you reach the bottom of the screen the
information you have typed scrolls up. Switch from one to the
other to see how the different modes work.

Experiment with <ESC>I and <ESC>J. (Unlike the <CTRL> key in this
case type <ESC> followed by I or J). In the reference section
there is a list of control characters and escape sequences which
you will find useful.

10 CRVS2,0,20,10,10,10,40
20 VS 2
30 DSI

EXERCISE 27 VIRTUAL SCREENS

Set up three VS to take your name address and date of birth. You

will have to estimate the ammount of space you will need in each

case to make sure that they do not overlap.

NAME

ADDRESS

DATE OF BIRTH

/////I///II///////7
I/7/////////////////,,//

,////JI/////////////

The two remaining text control commands PAPER and INK were dealt

with in the BASIC tutor. You should read through this section if

you have not already done so.

Before moving on to the graphic section you should be aware that

the default screen in operation when you switch on is a text

screen. Before you can begin any graphics you first of all have

to define a graphics screen. You will see in the sample programs

at the end of this chapter that either a special screen is set up

using a CRVS command or VS U is selected. This is usually

combined with a CLS command. (eg 10 VS 4:CLS)

BASIC GRAPHICS

The commands used in this section are those to be found in

standard BASIC graphics. They are used to plot points,lines,

arcs, circles and so on.

PLOT x,y is used to plot a pixel(point) at the coordinates x,y.

LINE x,y,p,q draws a line from the coordinates x,y to p,q.

CIRCLE x,y,r draws a circle of radius r with centre x,y.

We have included a small program to show you how these work.

10 VS 4
20 CLS
30 FOR I = 1 TO 191 STEP 1

L40 PLOT 1,1

50 NEXT I
60 CIRCLE 100,100,50

70 INPUT A$
80 IF A$ = “5” THEN STOP ELSE GOTO 10

100

Lines 70 and 80 are important since the computer completes theprogram in a fraction of a second. The two lines can be replacedby the single line 70 PAUSE 10000. This line will show theeffect for ten seconds before returning to BASIC.

Try experimenting with this program. For example you could insertlines:

65 LINE 10,20,150,170
68 LINE 35,150,170,55

Design your own programs which draw circles and lines on thescreen. Try to become sufficiently familiar with the commandsthat you are able to plot on the screen exactly what you intend,without trial and error type guesses.

FURTHER GRAPHICS

In BASIC graphics you have learnt how to plot lines on thescreen. In recent years the development of TURTLE graphics hasled to an interest in interactive graphics (LOGO for example).Your MTX has the ability to handle this type of program butbefore we show you the type of program that enables you to set upLOGO—like graphics we will look at the commands which achieve

There are four commands which we will be using; ANGLE, PHI, DRAWand ARC. The first three of these we will deal with together.They are used to determine the direction of the lines or patternsto be drawn. The computer remembers a direction which is set bythe ANGLE and PHI commands.

ANGLE (radians)
The ANGLE command sets the initial orientation of the computerfrom a zero value in the horizontal plain through 360 degrees.The values of ANGLE are given to the computer in radians whichare converted by the formulae:

To obtain radians: To obtain degrees:

R 2 x P1 * P D 360 H
360 2xPI

There are several steps which are required to design yourprograms with accuracy. The first involves working out theinitial value of ANGLE. Remember this sets the initial directiongiven to the computer. The value of 0 would set the initialdirection as horizontally across the screen to the right. As youadd radians to this the angle with the horizontal is made largerand the intial direction is moved in an anti clockwise direction.You can use ANGLE therefore, to rotate your pattern or shape.

this.

101

You may not be accustomed to thinking in RADIANS and so we have

designed a short program to convert degrees to radians:

10 INPUT “TYPE IN THE ANGLE

20 LET ArA*(2*(PI/360))

30 PRINT “PHI VALUE=

40 PRINT:PRINT:PRINT:PRINT

50 PRINT “DO YOU WANT ANOTHER NUMBER?”

60 INPUT “Y FOR YES N FOR NO

70 IF B$:”Y” THEN GOTO 10 ELSE GOTO 80

80 CLS:STOP

Amend the program to carry out the reverse calculation from

RADIANS to degrees.

The second step is to use the PHI command. Each time PHI is

encountered, its angle is added to the direction already held by

the computer. We have given you an example of this in the program

below.

io vs 4:CLS

20 ANGLE 0

30 FOR I1 TO 10

210 PHI .1
50 PLOT 120,100

60 DRAW 50
70 PRINT ,,,I

80 NEXT I
90 GOTO 90

In this program you will see that as each FOR ioop is executed an

additional PHI is added, changing the direction of line drawn

from the original plot position. This shows you the simplest form

of relationship between ANGLE and PHI. The other programs later

in this section show you a more dynamic relationship where the

two commands combine to draw arcs and spirals.

DRAW x
Draws a line of length x from current plot position in direction

set by the other two commands. (ANGLE and PHI).

We have included three programs to help you to see how these

commands operate.

10 VS 4:CLS

20 ANGLE 0

30 PLOT 100,20

40 FOR 1=1 TO 8

50 DRAW 70
60 PHI P1/4
70 PAUSE 1000

80 NEXT I

102

By changing lines 40 and 60 you can make any symmetricalgeometric shape using this program. The number of sides isdecided in the FOP statement and the size of the angle in 60.P1/U for example is equivalent to an angle of 145’. Using thismethod to produce a square the line 40 would be amended to draw 4sides and PHI would be P1/2.

VS fl:CLS
PLOT 100,100
ANGLE 0
FOR I = 0 TO 1 STEP .01
DRAW 7
PHI I
NEXT I

Clear the graphics screen.
Set starting position.
Set initial direction.

As the value of I changes PHI is altered in line 60 thusproducing a spiral effect. Try changing this program by alteringthe values for ANGLE and DRAW and see what happens. If we changethe size of the step in line 40 to .001 then this smaller stepproduces a bigger spiral. You will find that to fit the newspiral on the screen you will have to reduce the line length toless than 2.2 in line 50. The alternative to this would be toplot a lower position in line 20.

EXERCISE 28
By changing
by beginning

ANGLE PHI AND DRAW
line 40 in the above program make the

in the centre and spiralling slowly
spiral reverse

outwards.

Make the following alterations to
and at each stage run the program

the above program one at a
to see the effect.

time

Move the plot command at line 20 to within the FOR loop at line45

Now insert a test at line 65 to prevent the program fromstopping.

65 IF 1=1 THEN GOTO 45

The second program uses the same
pattern. Again try amending the p
and smaller and move the starting

principle to set up a continuous
rogram to make the effect bigger
point around the screen.

10
20
30
40
50
60
TO

Draw a line
Add angle I

of length 7.
to direction.

103

io vs 4:CLS

20 PLOT 200,55

30 LET IzO

40 ANGLE 0

50 DRAW 1

60 LET II— .1

70 PHI I

80 GOTO 50

The commands you have used so far will give you increased control

over the displays you can produce. The curves in the two programs

above are useful to produce spirals; (the curve gets steeper and

steeper).

ARC x,theta

Draws an arc length x while turning through an angle theta. In

the program below we have used ARC to draw a series of lines from

the plotted position in a spiral manner. By adding another loop

and reversing the effect try to make the shape into an 11 leaved

flower.

DIAGRAM

io vs L4:CLS

20 ANGLE 0

30 FOR Izl TO 11
JnitiaI direction set

40 PLOT 120,100
by ANGLE and PHI

50 ARC 100,2: PHI 2

60 PAUSE 1000

70 NEXT I

CONTROLLING THE GRAPHICS SCREEN

Before moving on to the creation of more complex shapes and

sprites it is well to remember how your graphics and text screens

work. They consist in both cases of a series of points called

pixels which can be switched on and off. When working in the

default setting of the text screen, the background (paper) is

blue and text (ink) is white. When you press a text key ‘A’ for

example the pixels which make up ‘A’ are switched from background

PAPER to foreground INK and the letter A appears. The letter A iS

a pattern made up of pixels within an eight rows by eight columns

matrix.

lou

New direction

......

.....

......

Notice that there are spaces below and to the right of the letterto stop adjacent characters merging together.

You may have noticed already that the size of characters on thegraphics screen appears larger than on the text screen. This isbecause in order to place 40 characters on the text screen thecomputer ignores the two rightmost columns of dots. If you lookat a letter ‘A’ displayed on the screen you may be able to seethe dots which make up the pattern. The text screen can thereforebe considered as a matrix of dots large enough to display 24 rowsof 40 characters. The number of dots can be calculated as:

40 X 24 characters
(40x6) X (24x8) dots

= 240 X 192 dots

The ASCII characters are simply an internationally accepted setof patterns including letters numbers and symbols each of whichis associated with a unique number called its ASCII code.(seereference section)

Type in and run the program below.

io vs 4
20 CLS
30 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
40 PSI

This allows you to type characters on the graphics screen and youshould be able to see the dot pattern of each character and thegap between them caused by displaying the complete 8X8 pattern.
The above calculation for the graphics screen is:

32 X 24 characters
(32x8) X (24x8) dots

= 256 X 192 dots

When using graphics therefore you can think of the screen asbeing made up of a 256 X 192 matrix, where the dots are selectedin commands such as PLOT by considering the screen as a graphWith the axes along the bottom and left hand side and therequired dot being specified as coordinates.

105

In the text mode we set the foreground and background colours on

the screen using the commands PAPER and INK and the only patterns

which we displayed there were the pre—defined ASCII characters.

The GRAPHICS screen is much more flexible in terms of colour and

patterns and accordingly we need a number of extra commands.

When we used PLOT, DRAW and ARC, we were actually changing the

colour of individual pixels. When you clear the screen with the

CLS command you are setting all of the pixels to the colour

chosen by the PAPER command. Typing or PLOTting on the screen

changes some of the pixels to the colour chosen by the INK

command thereby creating a pattern. Changing colour in this way

gives the illusion of switching pixels on and off.

Aspects of control such as defining screens and their

manipulation are the same for text and graphics. However, the use

of colour in graphics is much more complex and sophisticated. The

commands COLOUR and ATTR are used to set up parameters. They

enable you to have greater control over the colours you produce.

COLOUR p,n (Graphics only)

Colour is the command which determines which colour is used.

p is the parameter

n is the colour

The parameter concerns which areas of the screen are to be of the

colour defined by ‘n’. The values of n are as in the commands

PAPER and INK. The values of p are explained below. To understand

graphics colour you have to be aware of the composition of the

graphics screen which we have just explained to you. You may for

example be writing text to the screen in which case you would use

the normal paper and ink values.

p 0 print paper

p 1 print ink

The pixels which are changed from the PAPER to INK colour when

characters are sent to the screen are determined by the ASCII

codes.

When using graphics commands to plot or manipulate the graphics

screen, however, each pixel is potentially treated individually.

There are 256 by 192 pixels on your graphics screen. Each of

these therefore, can have the same colour properties as the text •

screen. To control these you would use the non print paper and -

ink commands. In this case pixels which you have plotted would

take on the colour defined by the parameters 2 and 3.

p z 2 z non—print(plot) paper

p = 3 = non—print(plot) ink

106

The final parameter is concerned with the remainder of the
screen. The use of this value will make the border around thegraphics screen the colour ‘n’

p z 4 r border colour

Try this program and vary the colours in the lines 20,30 and 40
using the chart in CHAPTER 1

io vs 4:CLS
20 COLOUR 2,5
30 COLOUR 3,3
40 COLOUR 4,6
50 ANGLE 0
70 PLOT 120,100
80 DRAW 50
90 PHI .2
100 GOTO 70

ATTR p,state (graphic only)
The second graphics command involves the further manipulation ofthe pixels as set by the COLOUR command. The command ATTR can
help you achieve very sophisticated graphic effects by changingthe properties of the pixels you have activated by typing orplotting information on the screen. We have written a short
program to show you how the command works:

io VS 4:CLS
20 INPUT “ATTR P N 7
30 ATTR P,N
40 DSI

If you run this program it will ask you for values of p and n.Tn’ simply switches the ATTR on and off where 1 is on and 0 isoff. Try typing over characters to see what happens for differentattributes. Continue the program loop by <RET> to exit from theDSI command and select another ATTRibute.

p = 0 ; inverse print ATTR

If you set the n value to 1 you will see that the characters you
print are reversed so that the characters are printed in thepaper colour and the paper in the ink colour. If you return tothe home position then type another character the point ofoverlap in the characters is reversed. This can give youinteresting pattern effects.

If an attribute is switched on, it can be switched off by typingin p,O. (pzl,2,3 or 4).
The ATTR settings are switched on and off rather like using thePAGE key to switch from mode to mode.

50 GOTO 20

Switch off attribute 0

1 07

Enter 0,0 as the p,n values.

p = 1 ; overprint ATTR

If you now switch this ATTR on by typing in 1,1 and type in 10

‘D’s and ten spaces followed by 10 ‘D’s and so on, Return to the

home position and hold down the 0 key. ‘D’s will be replaced with

spaces, and spaces with ‘D’s. With this attribute switched on,

points plotted on top of other points will always have the effect

of unplotting the point. This is why a D typed on top of another

D erases it.

The ATTR commands are not used exclusively and can be merged to

combine effects. If you now return to the program and input 0,1

this will have the effect of leaving 1,1 switched on but adding

the inverting paper and ink effect in 0,1.

Now try switching on and off the following ATTR effects and

experiment merging the different commands.

p 2 ; unplot ATTR

When this is set points will be unplotted rather than plotted. In

other words, the points will be plotted in the paper colour

rather than the ink colour.

p = 3 ; over plot ATTR

If this is set:

A) During plotting, plots a point if it wasn’t already there and

leaves points already plotted unchanged. This allows characters

to be written over each other.

B) During CLS and other functions, the text is unchanged but

colours can change. This is useful for changing paper and ink

while leaving text intact.

If both inverse plot and over plot attritubes are set then the

effect during plotting is to do nothing on the screen. This can

be used to move plot position but leave the screen the same. You

can use this to guide the PLOT SPRITE (see below) around the

screen.

108

ANIMATION
Animation can be achieved on the MTX by the use of SPRITES.

A sprite can be thought of as a small drawing board on whichobjects can be drawn. By moving the drawing board, the objectdrawn on it will appear to move around in front of the graphicsscreen.
Type in and run the following program which should produce anarrow moving from left to right across the screen. Don’t worryabout how the program works at this stage.

io vs 4:CLS
20 CTLSPR 0,1
30 CTLSPR 2,1
Lw CTLSPR 3,1
50 CTLSPR 5,1
60 CTLSPR 6,1
70 GENPAT 3,1,24,1,2,255,255,2,4,2B
80 SPRITE 1,1,1,100,10,0,1
90 GOTO 90

The sprites are similar to characters and are either 8x8 pixelsor 16x16 pixels but unlike characters a sprite can have only one

There are 32 sprites which are numbered from 0 to 31 and arearranged as in the diagram below: I

I I_1
31

28
29

etc

o
2

etc

Each of the pictures in the diagram represents a single displayplane within which a sprite can move. The sprites are arranged inthis way so that you can build up animations which have depthwith sprites able to pass in front of and behind each other.

Since each sprite can be a different colour, multi—colouredobjects can be created by overlaying several sprites. Bewarehowever that a maximum of 4 sprites are allowed in any horizontalrow before the results become unpredictable.

If you study the diagram above you will see that the PAPER andINK plane is behind the sprites. As the sprites move, thebackground remains static. In order that your graphic displayscan appear real ie. where the sprites enter and leave the screen,the sprite planes are bigger than the screen. This means that thesprites you are to use need not suddenly appear but can bewaiting in the wings offscreen until the program calls them intoaction. Circling sprites can also be defined which apparently
orbit your television so that when they disappear off one sidethey will reappear on the other some time later.

colour.

109

Change line 80 in the above program to

80 SPRITE 1,1,1,100,120,0,1

When you run this program, wait a few seconds and you will see

the sprite orbiting.

The commands used to set up these complex pictures are

interactive. That is to say each affects the other to control the

activity on the screen. You have already seen how the pixels on

the text and graphics screens are manipulated to give interesting

patterns and effects. These are used to form the background to

your animation. The sprite commands are used in much the same way

to define each sprite plane in turn to build up the total

picture.

Before giving you the details of the commands, we are going to

build up a diagram to show you how they relate together:

The whole basis of animation is that your shapes (sprites) can

move. The first command we will look at therefore, is MVSPR

(movesprite). In each command we have to tell the computer which

sprite we are referring to (numbers 0—31) and in the MVSPR

command we can tell the computer how to move the sprite and in

which direction.

[MVSPR] MOVEMENT , SPRITE No , DIRECTION

Though this command has told us which sprite plane is to be used

the sprite has no shape or colour and so at this stage you could

not see it. We therefore use the SPRITE command to define the

sprite.

[SPRITE] : PATTERN,POSITION,SPEED,COLOUR

t
[MVSPR] : MOVEMENT , SPRITE No , DIRECTION

In the SPRITE command the sprite is given a position, a speed, a

colour and a pattern number. The pattern number selects a shape

for the sprite which has been defined using the GENPAT command.

110

[GENPAT] PATTERN NO,PATTERN

[SPRITE] PATTERN,POSITION,SPEED,COLOUR
NO

[MVSPR] : MOVEMENT , SPRITE No , DIRECTION

Having set up the sprite you now have to control it. Each timethe MVSPR command is used, it tells the sprite to move one stepin the given direction. The step size however is specified in theCTLSPR command, as are other parameters such as the size of thesprites, the unit of speed and how many sprites we actually wantto use.

[GENPAT] PATTERN NO,PATTERN

L

speed unit
distance unit
number of sprites

. [SPRITE] : PATTERN,POSITION,SPEED,COLOUR

t
NO

[MVSPR] MOVEMENT , SPRITE No , DIRECTION

Notice that the CTLSPR command affects all of the sprites,andthat the SPRITE command only affects an individual sprite. If wewish to change the speed colour or position of an individualsprite we don’t repeat the SPRITE command but instead makeadjustments to it using the ADJSPR command. This has the affectof altering a single parameter by specifying which sprite, whichparameter and its new value.

111

size
[CTLSPR]

speed unit
distance unit
number of sprites
size
[CTLSPR]

Remember there are two sizes of sprite. The first is 8 columns by

8 rows of pixels whilst the larger version is 16 by 16. The first

of these requires only one GENPAT statement whilst the larger

requires I, one to define each 8 by 8 quadrant of the whole

shape. All sprites in use at any time must be the same size which

is selected using the CTLSPR command. Having defined the size in

this way you can make it grow to twice its size by using the

MAGNIFY parameter again in the CTLSPR command.

In CTLSPR we defined the distance unit. This is the number of

pixels to be moved during a MVSPR command. CLTSPR can also allow

a number ot sprites to move by themselves. These sprites are set

up by GENPAT and SPRITE as before but they now need to be given a

speed. The speed of a sprite moving in this way is determined by

the speed unit set up in CTLSPR. The CTLSPR speed unit sets the

step size Cie pixels per second). The actual speed is then

determined by the SPRITE command which sets the number of steps.

Therefore, if the step is set at 20 pixels per second in [CTLSPR]

and 5 units in [SPRITE] the final speed would be:

20 pixels x 5 units = 100 pixels per sec

We are now going to build up a program step by step to create a

sprite and make it move. You will find it useful to refer to the

introduction and diagrams above to make sure that you understand

each step. As we use each command we will give you all of the

parameters which can be selected.

GRAPHICS SAMPLE PROGRAM

Remember the first step when writing graphics programs is to set

up a graphics screen:

10 VS 14:CLS
20 CTLSPR 2,1
30 GENPAT 3,0,255,129,129,129,129,129,129,255

10 SPRITE 1,0,128,96,0,0,1

50 CTLSPR 1,1
60 LET YASC(INKEY$)—U8
70 IF Y>8 OR Y<1 THEN GOTO 60

80 MVSPR 9,1,Y
90 GOTO 60

[GENPAT] : PATTERN N0,PATTERN

[ADJSPR]

[SPRITE] : PATTERN,POSITION,SPEED,COLOUR

NO

[MVSPRI : MOVEMENT , SPRITE No , DIRECTION

112

Line 20 CTLSPR is used to tell the computer that there is goingto be only one sprite in the program. If you look at COMMAND 1below you will see that the CTLSPR command works like this:

The value for x varies as you can see for each parameter. In thecase of line 20 parameter 2 tells the computer how many spritesto expect and the x value of 1 indicates that only one is to beused. This parameter is used like the DIM statement in that it isinforming the computer of the amount of space required.

Line 30 defines the pattern for the sprite. Read through thedetails in COMMAND 2. You will see that GENPAT 3 defines thepattern for an 8 by 8 sprite.

30 GENPAT 3,0 The 0 is the pattern number. Any sprite which is
assigned the pattern number zero will be given
this pattern.

30 GENPAT 3,0,255,129,129,129,129,129,129,255
ri r2 r3 rU r5 r6 r7 r8

The rest of the numbers ,rl to r8 above, define the pattern.
Each row of the sprite is defined by one of the numbers i.e. ridefines the top row,r2 the second and so on.

To design a sprite, first draw the pattern in an 8x8 matrix ongraph paper.

128 614 32 16 8 4 2 1

0 0 0 1 1 0 0 0 r1z24
0 0 0 0 0 1 0 0 r2=4
0 0 0 0 0 0 1 0 r3z2
1 1 1 1 1 1 1 1 r4=255
1 1 1 1 1 1 1 1 r5z255
0 0 0 0 0 0 1 0 r6=2
0 0 0 0 0 1 0 0 r7z4
0 0 0 1 1 0 0 0 r8z24

This pattern is the orbiting arrow in the example above. To find
the numbers in the GENPAT statement, just add up the numbers at
the top of any column which has a 1 in it.

To give you experience setting up GENPAT statements input the
program below. You will be able to input this program with the
other still in working memory since it starts at line 100. When
You run it the cursor will go to the top of a virtual screen and
the number 4 will appear with a question mark. The U indicatesthat you are inputting the GENPAT statement U and the question
mark is asking you to input 8 numbers between 0 and 255. Eachnumber has to be separated by a comma.

113

Try the following line first:

255,129,129,129,129,129,129,255

When you <RET> the sprite will appear at the foot of the screen

and the top left hand corner will take on a square shape. On the

virtual screen HAPPY 7 will appear. This is to give you a chance

to change the line if you wish. If you are happy press NY” and go

on to GENPAT 5 if not press “N” and do J4 again. Now experiment

with different numbers for the other lines. When you have

completed lines 4,5,6 and 7 you have completed a sprite.

100 CRVS4,1,1,3,30,1O,O

no vs 4
120 CLS
130 CTLSPR 2,32

140 CTLSPR 5,0

150 CTLSPR 6,3

160 FOR 1=4 TO 7 STEP 1

170 PRINT I

180 INPUT A,B,C,D,E,F,G,H

190 GENPAT I,O,A,B,C,D,E,F,G,H

200 SPRITE 1,0,100,30,0,0,1

210 INPUT “HAPPY ?“;A$

220 IF A$=”Y” THEN GOTO 230 ELSE GOTO 170

230 NEXT I

240 GOTO 160

To return to the explanation of the program, line 40 is the

command which sets the parameters to control the sprite.

I0 SPRITE 1,0,128,96,0,0,1

The first digit is the sprite number which tells the computer

which sprite plane this sprite will operate in. The second is the

pattern number which was set in the GENPAT statement. The number

128 is the position of the centre of the sprite on the x axis and

96 sets the coordinate on the Y axis.(The coordinates are set as

in PLOT with 0,0 being the bottom left hand corner of the

screen.)

The fifth and sixth digits set the speed of the sprite, the first

being the speed along the x axis the second the speed along the Y

axis. In this case we do not want the sprite to travel

independently and so no speed instruction is given. The final

number in the statement sets the colour at 1

Line 50 of our program is used to give the sprite its

instructions about the way it is going to move. If you look in

COMMAND 1 the instruction 1,1 means that the sprite will move 1

pixel at a time when requested by a key depression. (NB the Auto

Repeat function affects the plotting in that the sprite will mcve

at the speed of auto repeat if it held down.)

50 CTLSPR 1 , 1

114

Lines 60 and 70 are used to allocate keys to move the sprite indifferent directions. Each direction is allocated a separate keyin 60 (the —48 is to reduce the ASCII code to a range of 1—8) andif any other key is pressed a loop places control back in line

Line 80 uses COMMAND 4 to instruct the computer to move inresponse to the eight key depressions. The CTLSPR command wasused to set movement on request. The MVSPR command now instructsthe computer to move the sprite in one of eight directions. TheMVSPR uses a bit pattern rather like the GENPAT statement toinstruct the computer about the nature of the movement. Thisenables you to give a series of instruction in one digit byadding the options together.(See COMMAND 4)

80 MVSPR 9,1,!

The final line 90 takes control back to line 60 to wait for thenext input.

90 GOTO 60

There are two other commands which we havenTt used. These areADJSPR and VIEW.

ADJSPR is used to alter any one of the values which havepreviously been set up by the SPRITE command. For example if wewish to change the colour of sprite number 3 from I to 5, weshould use the command

ADJSPR 1,3,5

This command has advantages over re—using the SPRITE commandbecause it is faster in that only one parameter is changed at atime, and also we donTt have to worry about altering any of theother parameters.

The VIEW command has the effect of looking through a window infront of the sprite planes (8192X8192 pixels) where the window isyour television screen (256X192 pixels).

Initially the window is located near the centre of the spriteplanes with location 0,0 in the graphics screen equal to location0,0 in the sprite plane.

60

60 LET YASC(INKEY$)—48
70 IF Y>8 OR Y<1 THEN GOTO 60

r 115

+4095
.4095

t___

-4095
[vIEwj .4095

-
7

0,0

[viEw]

-4095

V
0,0

—4095
-4095

Whereas the MVSPR command moves an individual sprite relative to

the graphics screen, the VIEW command moves the graphics screen

relative to all of the sprites. This means that complicated

sprite patterns made up of many different sprites can easily be

moved. Also sprites can be hidden in the sprite planes in fixed

locations such that they will only come into view if the window

is moved over them.

We have tried to give you an overview of the way in which MTX

series graphics works. You will need to experiment yourself to

become an expert. The COMMAND words below will give you all that

you need to know, but the descriptions cannot tell you how they

interact. This you will have to find out for yourself. We have

listed two more programs for you to input. Try to understand how

they work and then try to change and add to them to produce

different effects.

EXAMPLE PROGRAM

10 CTLSPR 0,6
20 CTLSPR 2,10
30 CTLSPR 6,3
1O GENPAT 4,O,1,O,1,2,3,15,1,3:GENPAT5,O,2,3,2,6,6,0,O,0:

GENPAT 6,0,64,128,1 92,160,224,248, 192,224:GENPAT 7,0,32,22,

32,48,48,0,0,0
50 SPRITE 1,0,0,0,0,0,6

60 CTLSPR 4,1
70 CRVS6,1,0,0,32,24,O:PAPER 15:COLOUR 4,6:INK 1:CLS

80 ATTR 3,O:ATTR 2,0

90 PLOT 80,80:ANGLE 0
100 FOR 1:1 TO 11
110 ARC 100,2:PHI 2
120 NEXT I

Line 10 controls the speed of the sprite.If you alter this

refering to COMMAND 1 you will be able to speed up and slow down

the sprite.

116

L

You can make the sprite grow by changing line 30 to:

30 CTLSPR 6,3

You can also extend the program by amending line 80 to:

165 ATTR 3,1:ATTR 2,1

and then add:

200 ATTR 2,0
210 CTLSPR 5,3
220 CTLSPR 0,1
230 LET 3=25
2110 SPRITE 3,0,100,130,3,0,2
250 FOR Wl TO 20
260 LET 1=0
270 FOR Zn TO 8
280 LET Y=Y+1
290 FOR Xz1 TO 25
300 NEXT
310 LET 0=Y—8
320 MVSPR 12,3,0
330 ADJSPR 1,3,0+2
340 NEXT
350 LET SnS+5
360 ADJSPR 24,3,3
370 NEXT

EXAMPLE PROGRAM

io vs 4:CLS
20 PAPER 1:INK 7:CLS:ATTR 3,1
30 FOR XzO TO 255
40 LINE X,191,255—X,O
50 NEXT
60 FOR Yzi TO 190
70 LINE 0,Y,255,191—Y
80 NEXT
90 FOR Kz2 TO 94 STEP 4
100 CIRCLE 128,96,K
110 NEXT
120 GOTO 30

(NB This program will continue running until you press the BRK key)

117

COMMAND 1: CTLSPR p,x

p parameter and can be any of the six below:

0 Speed
1 to 255 to 0 (1 is fastest)

1 Distance
Tells the computer to move the sprite by ‘x’ pixels when

requested.

2 Number of sprites

0 to 32 (The number of sprites must be at least 1)

3 Number of circling sprites

Sprites that will orbit when they go off the edge of the screen

(must not exceed total number of sprites)

B Plot sprite
A PLOT SPRITE can be chosen which will subsequently appear

whenever a point is plotted. This sprite will move around the

screen following any points or lines drawn by the BASIC

GRAPHICS commands. This sprite can be any of the 32 defined

in the normal way.

5 Number of moving sprites 0 to 32

This is the number of sprites that will move by themselves

according to the x—speed and y—speed set in the SPRITE and

ADJSPR commands.

6 Magnitude and size

xza size 8X8 mag 1

x=1 size 8X8 mag 2

x:2 size 163(16 mag 1

x3 size 163(16 mag 2

COMMAND 2: GENPAT p,n,d1,d2,d3,dL,d5,d6,d7,d8

The GENPAT command is the command used to generate all types of

patterns required by BASIC for characters and SPRITES. There are

5 modes.

1 To redefine an ASCII character. (CODES 32 TO 127)

2 To define a non ASCII characterjCODES 129 TO 15B)

3 To define colour for each line of a character.

This only applies to user definable characters with codes

117 to 15B.
B To define an 8 by 8 sprite pattern.

5 To define each quadrant of a 16 by 16 sprite.

118

User definable characters have codes from 129 to 1511

Mode 1 allows the user to redefine one of the standard ASCIIcharacter patterns. Note that the ASCII characters are the oneswhich are most often used by the computer

The values for ink and paper are as specified in the table inCHAPTER 1 but in this instance we are specifying two colours (inkand paper) at the same time. Each of dl to d8 specify a paper andink colour as a single number:

bit 0 1 2 3: U 5 6 7
ink : paper

value = 16 * paper + ink

e.g. Red ink on blue paper

z RED : BLUE

tELUE * 16 + RED

u * 16 + 9

t 73

P N
0 ASCII code (32 to 127)
1 user definable (code 129 to 1511)
2

Mode 2 allows the user to define his own character patternswithout destroying any of the standard ASCII characters.
Mode 3 allows some of these user defineable characters to befurther defined by specifying an ink and paper colour for each ofthe eight rows of the character.

MODE
1
2
3
U
5

3 pattern number
U pattern number
5 pattern number
6 pattern number
7 pattern number

8 by 8 sprite pattern
16 by 16 NW quarter
16 by 16 SW quarter
16 by 16 NE quarter
16 by 16 SE quarter

119

COMMAND 3: SPRITE

SPRITE (: create sprite)

SPRITE n, pat,xp, yp,xs, ys,col

n is sprite number 1 to 32

pat is pattern number 0 to 127 (size 0)

0 to 31 (size 1)

xp is position x off centre

yp is position y off centre (in range —4095 to 4095)

0,0 is defined as bottom left hand corner of screen i.e same as

for plot.
NB Sprite coordinates are absolute and do not look at virtual

screen origins (i.e assume a 32 by 24 graphic screen)

xs is the speed in the x direction range —128 to 127 where 1 unit

of speed moves the sprite 1/8 pixel every master speed cycle as

set by CTLSPR 0

ys is the speed in the y direction (plus upwards) range —128 to

127

col colour 0 to 15

COMMAND 4: MVSPR p,n,d

MVSPR is a general purpose command which combines B distinct

functions:

p meaning

1 MOVEMENT
2 PATTERN SELECTION

B REDIRECT
8 PLOT AT CENTRE

The functions are combined to allow complicated movements to

occur whilst using only a single instruction. The type of

activity is selected by p as in the table above. If combinations

of activities are required, just add the p values together. Some

examples are given below.

120

eg 1 eg 2 eg 3
1 YES YES YES

YES NO

NO YES YES

NO YES

9 7 13

As before n selects the sprite number.

d is slightly more complicated as it must be able to reflect avalue for several activities. If d is not in the range of any oneof the chosen activities an error will occur.
MOVE (pl) moves the sprite 1 step in the direction specified byd. The step size is set in CTLSPR 1 and the direction must be inthe range 0 to 8 where directions 0 and 8 are the same.
PATTERN changes the sprite pattern to pattern number d. Thispattern should have been defined in a GENPAT statement.
REDIRECT picks up the current velocity vector and switches it tothe new direction.

PLOT AT CENTRE causes a point to be plotted at the centre of thesprite specified by n.This is not directly affected by the valueof d at all.

COMMAND 5: ADJSPR p,n,v

meaning range of v
pattern 0 to 31 (size 1) 0 to 127 size 0colour 0 to 15
X pos 0 to 255
y P05 0 to 255
x speed 0 to 255 (128 to 255 = neg)y speed 0 to 255 C”

COMMAND 6: VIEW direction, distance

14 0

MOVE

PATTERN 2 NO

REDIRECT 14

PLOT AT 8 YES
CENTRE

TOTAL
p value

p
0
1
2
3
14
5

directon = 0 to 7
distance 1 to 255 to 0

6
5 7

3 1
2

121

GRAPHICS FUNCTIONS

SPK$ (screen peek)
Gives the character at the cursor location on the current text

screen.

e.g LET A$ SPK$

Uses: storing screens

GR$ (x,y,b)
x and y are locations on the virtual screen

b is number of bits read.(If b 1 equivalent to “POINT” function)

bits are vertical bits ie GR$ (20,190,fl) gives a character made

up as follows:

bit 7 0
bit 6 0
bit 5 0
bit 4 0
Bit 3 pixel at 20,190
bit 2 pixel at 20,189

bit 1 pixel at 20,188

bit 0 pixel at 20,187

DSI

direct screen input

Allows you to roam about freely within screen only ending when

carriage return is pressed

CTL W Tab back
CTL] = PMODE
CTL \ = SMODE
CTL a

= CURSOR ON
CTL = CURSOR OFF
CTL D , letter A to 0 = paper A to 0 (1 to 15)

CTL F “ “ ink A to 0 1 to 15

ESC I = insert line
ESC J delete line
ESC K = duplicate line

122

PART 4
SOUND

Your MTX can produce a wide variety of sounds which can make yourprograms more interesting and is sufficiently complex that youcan use the computer as synthesiser.

Sound is obtained by inputting a sound statement which can be intwo forms:

1. DIRECT
This mode plays a single note until stopped.

2. CONTINUOUS
Sequences of notes can be played by loading theminto a sound buffer.

In each case a sound statement is used to tell the computer what

is produced by the statement:

SOUND CHANNEL,FREQUENCY,VOLUME

There are four channels available. 0,1 and 2 areall pure tone and channel 3 which is a pink noisechannel. The use of noise is covered later in thissection.

Frequency is determined by values in the range1023. The sound tables in the appendix givesthe relationship between this value andfrequency produced. The notes produced areincluded.

VOLUME — The volume is determined by entering a valuebetween 0 and 15 where 15 is the loudest and 0 isoff.

Now try the following sounds:

SOUND 0,200,10 <RET)

Press the two reset buttons and try

and

sound you want

Direct Sound

CHANNEL —

FREQUENCY —

O to
you
the

also

SOUND 1,600,10

SOUND 2,900,10

123

Try the sounds together by entering them one at a time without

resetting the computer. You will produce a chord in this way.

Experiment with your own sounds varying the channels, frequencies

and volumes. It is useful to refer to the sound tables to monitor

the effects of the changes you make and to enable you to

understand how the sound chips work.

CONTINUOUS SOUND is produced by a longer statement with seven

parameters to enable you to make the sound change in pitch,

volume and duration. To produce the continuous sounds the

computer loads the statement into a sound buffer.

The sound buffer is a block of memory allocated for use by the

continuous sound command. The size of the buffer is chosen by the

SBUF command. SEUF 3 for example allocates three blocks for each

channel. The default value is two blocks per channel and

therefore, if you do not specify a value high enough to

accommodate your sound then part or all of your statement will

not operate. In this way the SBUF command is similar to the DIM

statement. Each block takes 12 bytes per channel so the larger

the number of blocks, the less room there is for programming.

Each time a continuous sound command is used, an entry is made in

the sound buffer. Each entry is completed before continuing with

the next such that a complex sound lasting several minutes can be

constructed and left playing whilst other parts of the program

are running.

In the example we are going to try we are using only one

statement which does not require more than the default setting of

two sound buffer blocks. However, to remind you to use the

command SBUF we shall first set the buffer to accept 10. You can

use any value up to 255.

Type SBUF 10 <RET>

The sound statement looks like this:

SOUND CHAN,FREQ,VOL,FREQ GRADIENT,VOL GRADIENT,TIME,ACTION

We will first go through the statement step by step setting up an

example and then give you a series of sample sounds to try. You

should then be sufficiently confident to experiment and try your

own sounds.

To obtain continuous sound we use an extended version of th

sound command. There is an important difference between the

values for the different types of input. If you look at the sound

tables you will see that there is a column for DIRECT SOUND and a

column for SOUND BUFFER. The values for the sound buffer have a

greater range to allow you a greater degree of discrimination.

1 211

The first information the computer needs is the CHANnel which isin the range 0—2. Pink Noise is generated in channel 3 and sincein this case we wish to use a pure sound channel the statementbegins:

SOUND (0—2), ie SOUND 1,

We then set the FREQuency which is in the range 0—1023 when asound channel is in use. Frequency determines the pitch of thenote and if you examine the sound table you will see that thelower the value you place here the higher the note. We are goingto start with a very high note and therefore, we enter a 0 here.
SOUND 1,0,

The volume of sound when the sound buffer is in use is 0 to 240and we are going to select a medium volume of 100.
SOUND 1,0,100 (if we stop here and press <RET) a tone willbe heard)

If we wish to change the note we give the computer a FREQuencyGRADient instruction. This is in the range (—32767 to +32767) Theminus values make the note rise the plus values make the notefall. If we placed a 0 here the note will stay the same. Howeverwe are going to make the high note fall in pitch and so we entera value of 10.

SOUND 1,0,100,10

(Remember that increasing the frequency parameter decreases thepitch.)

We can make the volume level change in a similar way by using theVOLume GRADient. The range is (—32767 to +32767) and as before azero value would give us a continuous level. If we wished to makethe volume fade away we would use a minus value. A positive valueincreases the volume. We are going to use a 0 value so thatvolume will remain unchanged.

SOUND 1,0,100,10,0

The computer has to be told how long to sustain the note with theTIME parameter. This is in the range 0—65535 where each unit is1/64th of a second. We will iThe a value of 160 which gives usabout 2.5 seconds of sound.

SOUND 1,0,100,10,0,160,

125

L

I

I

So far we have instructed the computer about the nature of the

sound. Where the sounds are to be chained the computer has to be

informed about the way the sounds link together. This is achieved

using the ACTION parameter. If the sound is not to be linked to

the one which follow, a value of 1 is entered. This tells the

computer to enter the values in the statement each time the sound

is used. However, you may wish to join two sounds together so

that they run continuously. In this case a value of 0 is used.

This tells the computer to make the starting values of the new

sound command equal to the ending values of the previous one. We

will first try the sound with a 1 value to stand alone.

SOUND 1 ,O,100,10,0,160,1

To edit sound commands more easily it is best to place them in a

BASIC program.

10 SBUF 10
20 SOUND 1,0,100,10,0,160,1

30 EDIT 20

Type run and the sound should be heard. Make sure that you have

the volume turned up on your television.

To hear the effect of the action command edit line 20 to replace

the action command 1 with 0.

20 SOUND 1,0,100,10,0,160,0

Run this program a number of times and you will see that the

sound continues to descend in pitch each time from the final note

in the previous run. Now try again with 1 as the action value

and note the difference.

Try the following sounds:

1 SOUND 1,5,15,—6,—1,1000,1

2 SOUND 1,5,15,6,—1,1000,1

3 SOUND 1,5,15,0,—12,’lOOO,l

CHAINING SOUNDS

Sounds can be linked together in BASIC programs to produce either

combinations of sound or sequences. Try the program below and

then try to combine some sounds of your own.

10 SEUF 10
20 SOUND 1,5,15,1,1,750,1

30 SOUND 2,1,0,10,0,750,1

40 SOUND 3,7,15

Type RUN <RET>

126

i

Lines 30 and 40 in the program above are a special case since 30will not run without 40. The VOLume parameter in the statement isset at zero which means sound off. The effect produced is asudden burst of sound as the VOLume of 15 in line 40 activatesthe registers in line 30. Sound production is very subtle andtherefore, you should experiment as widely as possible using thetables in the appendix. Noise when used in combination with thesound channels can give you very interesting effects like theexample above.

There are many ways of incorporating sound production in yourprograms. In a game for example the graphic effects can beenhanced by adding sounds to them. The best way to do this is tostructure your programs so that a series of subroutines are setup to take the program to the appropriate sound when needed. Wehave listed a useful subroutine here which can be run with yourown program:

4000 REM SOUND SUBROUTINE
4010 SBUF 2
4020 SOUND 0,100*8,15*64,1 ,—1 ,8*64,1
4030 SOUND 1,101*8,15*64,1,_i ,8*64,1
4040 LET CHANz1
4050 GOSUB 5000
4060 SOUND 0,0,0
4070 SOUND 1,0,0
4080 LET DELAY = 400
4090 FOR Nzi5 TO 0 STEP —1
4100 SOUND 3,4,N
4110 FOR JzO TO DELAY
4120 NEXT J
4130 LET DELAY DELAY —30
4140 NEXT N
4150 STOP

5000 REM TEST SUBROUTINE
5010 IF PEEK(CHAN*10+64082) <> PEEK(CHAN*10+64O82+4) THEN GOTO 50105020 RETURN

The first part of the subroutine is concerned with soundproduction. The second subroutine at line 5000 is a useful way ofcontrolling your sound production. Line 5010 tests whether thesound in lines 4010, 4020 and 4030 have been completed. When thetest is complete control is returned to the main program and inlines 4060 and 4070 the first sound is switched off. The programcontinues in line 4100 where the noise channel is set up andoperated.

As you have seen the production of sound is both subtle andcomplex. You will need to play with the sounds that we have givento you as well as following the rules outlined in the referencesection and this chapter. If you discover a new sound why notshare it with the rest of us.

1 27

‘I

PART 5

ASSEMBLER

This section does not attempt to teach you how to use ASSEMBLYLANGUAGE (machine code) but rather how to interface assemblylanguage to MTX BASIC using the MTX assembler.
The assembler is invoked by telling the computer that you want towrite some machine code and where you want to put it.
Look at the program below. Lines 10,20 ,flO, and 50 are normalBASIC lines. Line 30, however has been created by the assembler.If you type in lines 10,20,40 and 50 and then follow theinstructions you will see how this is done.

10 PRINT “START OF FROG”
20 POKE 40000,5

30 CODE

8029 LD A,C’10000)
802C INC A
8020 LD (40000),A
8030 RET

Symbols:

40 PRINT PEEK(40000)
50 PRINT “END”

Type ASSEM 30 <RET>

Assemble will appear at the bottom of the screen.
Type <RET> again.

The screen should look like this:
8029 RET

Insert

INSERT tells you that you are in the insert mode. ie If you typein assembly language,it will be inserted without destroyinganything already there.

8029 is the address at which the code will be inserted. Thenumber is a hexadecimal number.

RET is the instruction which currently occupies the address.

129

L

Now type LD A,CU0000) <RET>

802C RET

Insert

will appear.

This tells you that the next line will be inserted at the address

802C and that the location is currently occupied by a RET

instruction.

Type INC A

The screen will now appear:

802C INC A RET

Press the <RET> key and the message Bad Code will appear.

Obviously you need to remove the RET from the end of the line. To

do this use the DEL key on the cursor keypad.

Now press <RET> again and type in

LDC’IOOOO),A <RET>

Press <CLS> followed by <RET> and Assemble <RET> will reappear as

you are returned to the assembler. You can clear the screen and

<RET> to the assembler in either Insert or Edit mode.

To list your program you first have to move the program pointer

to the Top of your program.

This is done by typing T <RET>.

Now type L <RET>.

The program pointer remembers the last position and you program

is listed to that point.

8029 LD A,C’lOOOO)
802C INC A
802D LD(40000),A
8030 RET

Symbols:

To return to BASIC you clear the screen and press return:

<CLS> <RET>

Ready will reappear

130

You are now ready to list your entire program and it shouldappear as the program listed earlier with code line 30 inserted.
If you run the program the screen should appear like this
START OF FROG

6
END

SUMMARY

The assembler is invoked by typing ASSEM <Line Number>
To return to basic type <CLS> followed by <RET>

To list your code whilst in the assembler type T <RET> followedby L <RET>.

a

a

Assembly code

The program pointer remembers the line you are editing or thepoint where you are inserting text into the program.
T moves the pointer to the top of the program. You would probablywant to do this before listing so that you need not remember theaddress at which the program starts.

In the insert mode, any lines typed into the computer will beinserted at the address on the left of the screen. The correctammount of space in memory will be made for each line as it isentered.

There are four ways of entering the insert mode:

1 <RET> enters at the program pointer position.2 £n enters at the HEX address ‘n’
3 n enters at the decimal address ‘n’4 Label enters at the label if it exists.

To exit from insert mode <CLS> <RET>

Edit Mode

In the edit mode each line entered replaces the line originallydisplayed. In this way it differs from the insert mode wherelines are inserted without altering what is already there.

To insert code enter the assembler and press <RET> and to stopinserting <CLS> followed by <RET>.

Program Pointer

Insert Mode

131

As with the insert mode there are four ways of entering.

1 E<RET> enters the editor at the program pointer

2 E £n enters the editor at the Hex address ‘n’

3 F n enters the editor at the decimal address ‘n’

4 E label enters the editor at the label specified if

it exists.

NB If a label F exists then if F <RET> is typed the insert mode

is entered at label E rather than the editor at the program

pointer.

List

1 L<RET> lists the program from the program pointer

2 L £n lists the program from the HEX address ‘n’

3 n lists the program from the decimal address ‘ii’

B L label lists the program from the label if it exists.

TP &C4, P’rr &&1-e

NB as with the edit mode a label L will lead to L<RET> entering

the insert mode at L instead of listing from the pointer.

Delete

Lines can be deleted either in the edit or insert modes. When a

line is displayed the cursor appears between the address and the

code. If you type EOL,or type spaces over the code and press

<RET>, the line will be deleted.

If the address is altered, then the program pointer will move to

the new address provided that it is within the range of the

program that already exists.

Labels: Address labels may be used followed by a colon:

eg. LABEL:NOP
JP LABEL

Comments: Comments may be written after any instruction by

preceding the comment with a semi—colon:

eg. RET;End of Prog

DS: DS may be used to define a block of space up to 25U

bytes:

eg. DS 200.

98: Bytes can be defined as a list of numbers or by

enclosing characters within ““:

eg. 98 1,2,”ABC”

,.

rv..L -

132

rl

WARNING When you exit from the assembler, all the code isassembled and all addresses are calculated. It is now possible toedit your BASIC program but if the assembly code is moved byinserting new lines beneath it, you must ensure that the addressare still calculated correctly. To do this simply enter theassembler with each code line in turn and exit again, therebyreassembling each program.
It would be sensible to write your assembly code as the first fewlines of the program if it is to be merged with BASIC as BASIClines edited above do not affect those with lower line numbers.
Having written your program, you execute it by typing RUN <RET>

FRONT PANEL
The FRONT PANEL is provided for you to test and debug yourprograms. Its effectiveness is dependent on the skill which youwill aquire by discovering what it can do for you.

PANEL <RET>

You will see that the z80 registers re displayed on the rightand a block of memory at the bottom.

Type L2000

and a block of code will be listed. The panel will list programs,display memory and registers and allow you to test your programsby stepping through them one instruction at a time.

If an assembly program is written and run using the MTXassembler, the break key can be used to stop the program and thePANEL will display its current status.

See the reference section for the instructions for the PANEL.

as with BASIC.

Type

133

j

“1

C.

l

REFERENCE SECTION

ABS(<number>)

Gives the absolute value of the specified number. The result hasthe same magnitude but the sign will always be positive.
e.g.

ABS (59) 59
ABS (—59) 59

ADJSPR p,n,v

This command adjusts a value which has been assigned to a spriteeither by the SPRITE command or subsequently by ADJSPR or MVSPR.The advantage of ADJSPR is that unlike SPRITE, only one parameteris altered at a time thereby increasing the speed of updatingsingle values.

n is the sprite number.
v is the new value to be assigned to the parameter chosen by p.
p meaning range of v0 pattern 0 to 31 (size 1) 0 to 127 size 01 colour 0 to 15
2 x pos 0 to 255
3 y P05 0 to 2554 x speed 0 to 255 (128 to 255 = neg)5 y speed 0 to 255 C” “ “

AND

See BOOLEAN EXPRESSIONS

135

ANGLE <angle>

The computer holds a ‘direction’ which is used in commands such

as ARC, DRAW and MVSPR.

The direction is made up of two components.. . PHI and ANGLE

ANGLE Initialises the direction to the specified angle. The angle

is in radians measured in an anticlockwise direction from the

horizontal.——>

PHI <angle>

Each time a PHI command is executed, the ‘direction’ is adjusted

by the specified angle.

e.g.
io vs B
20 CLS
30 ANGLE 0
40 FOR 1:1 TO 20

50 PLOT 100,100

60 PHI .1
70 DRAW 50
80 NEXT
90 GOTO 90

For conversion to degrees.. . degrees=.radians*2*PI/360

For conversion to radians... radiansdegrees*360/2/PI

ARC <length>1< angle>

This command draws an arc of a circle. The starting position is

the current plot position and the initial direction is the

direction currently held by the computer. Both the plot position

and the direction are updated. The angle parameter determines the

curvature of the arc by specifying what angle is subtended. In

other words the larger the angle, the tighter the curve. If the

angle is greater than 360’ or 2*pi radians, the arc will retrace

its path.

136 ç

N -1

ASC (<string>)

Gives the code of the first character of the string
e.g.

10 LET A=ASCC”B”)
20 PRINT A

Will print 66 which is the ASCII code of 11811

ASSEM <Line No>

Switches on the assembler to assemble at the specified BASICline. (See CODE)
If the Line already exists, the assembler will only be entered ifthe specified line is a CODE line.
Refer to the Assembler section of the manual.

ATN (<number>)

Gives the angle whose tangent is the specified number.

ATTR determines the effect on the graphics screen of using one ofthe plotting commands such as PLOT, DRAW or ARC.The attributes are not exclusive but may be used in anycombination.

The state of the attribute is either on or off where
1 rON
OrOFF

p takes the value 0,1,2 or 3.

pO Inverse print. Characters are printed in the paper colour onthe ink colour.

pri Over print. Characters are merged with those airead present.

137

p2 Unpiot. Plots the paper colour.

p23 Over—plot. Plots the ink colour if paper was there before

and the paper colour if ink was there before. During CLS,

and other functions, text is not over written but colours

may change.

The effect during plotting is to do nothing. This can be used to

move the PLOT:SPRITE around the screen whilst leaving the screen

unchanged.

AUTO <Line no>,<increment)

This command switches on the automatic line numbering.

The numbering will start at the specified line no and will be

incremented by the specified increment.

e.g.

AUTO 10,10

This will result in lines being numbered 10,20,30,40...

To switch of the numbering press the CLS key followed by <ret>

AUTO SCROLL

The auto scroll facility is provided to allow the computer to

automatically halt printing to the screen when the screen is

full.
It can be switched on and off by the user or by the programmer.

The PAGE key is used as a switch to switch the AUTO SCROLL off

and on.
If the AUTO SCROLL is switched on however, any key can be used to

tell the computer to continue.

e.g. Type the following

10 FOR 1= 1 TO 1000

20 PRINT I

30 NEXT

RUN

Press the PAGE key and the printing will stop.

138

1

Press any key once and the printing will continue for one morescreen. This may be repeated any number of times.Pressing the PAGE key again will turn off the AUTO SCROLL.
The PAGE key alone may be used as a switch to stop and startprinting at will.

The programmer may control the scrolling using the escapesequence ESC P as a switch in the same way as the PAGE key.
For example:

10 PRINT CHR$(27) ;ITPII;

20 FOR It 1 TO 1000
30 PRINT I
40 NEXT

In this case it will be seen that when the program is run theAUTO SCROLL will be switched on.

See LIST,ASSEM,PRINT.

BAUD <C ha nn Ba ra te >

Sets the R3232 channel 1 or 0 to the selected baud rate.The following rates are allowed.

75 1200
110 2400
150 4800
300 9600
600 19200

e.g. BAUD 0,1200

139

BOOLEAN EXPRESSIONS

The computer needs a way to combine expressions logically to give

one value which is either true or false so that a decision can be

made according to a single value.

10 INPUT ‘1ENTER X,Y “;X,Y

20 PRINT “Xzl “,X,(Xtl)

30 PRINT “Y=2 “,!,(Yz2)

110 PRINT “X:l AND 1z2”,(Xrl AND Yr2)

50 GOTO 10

Notice that when truth values such as yzi are printed or used in

expressions, they are enclosed by brackets.

When the above program is RUN enter values for X and Y and look

at the results. You will see that if an expression is true the,

result is 0, otherwise it is —1. There are no other TRUTH values.

Expressions which yield a TRUTH value are called BOOLEAN

expressions. When a Boolean expression is used in an IF

statement, it need not be enclosed in brackets.

For example:

40 IF X1 AND Yz2 THEN STOP

RULES FOR BOOLEAN EXPRESSIONS.

There are three BOOLEAN OPERATORS, AND OR and NOT.

There are 6 relational operators <,>,r,<>,<z,>:

A relational expression is a relation between two values of the

same type.

For example:

X<>2
A $ “A A A” + “B B B”

(X=2)(Yz3)

Relational expressions yield truth values.

A Boolean expression is an expression which yields a truth value

and so relational expreSsions are also Boolean expressions.

However using the Boolean oiierators AND OR and NOT to combine I

relational expressions, more complex relationships between values

can be evaluated.

For example:

10 PRINT (NOT 2z2)

20 PRINT (NOT 2=2 OR 3z2)

140

An example of the use of Boolean expressions is given below.

10 INPUT X,Y
20 IF X=2 AND Y:2 OR Y=7 THEN STOP
30 GOTO 10

This example will stop if either 1=7 or both X=2 and 1:2.

In an expression like

10 PRINT (2*2=5 OR 3+3=14 OR 22 AND 1=2)

we need to know in what order the expression is going to beevaluated.

Just as there are rules for evaluation of arithmetic expressions,there are also rules for evaluation of any type of expression.We know that * has a higher priority than + so that
3*14+5 = (3*10+17 and not 3*(14+5)—27

To know how a complicated expression is going to be evaluated wefollow a few simple rules.

Arithmetic operators have highest priority.
Relational operators all have the same priority which is lessthan all arithmetic and greater than AND OR and NOT.AND, OR and NOT have the lowest priority with AND having thehighest and NOT the lowest.

ORDER OF PRIORITY

a

* /
+

= <> < > <: >=
AND
OR
NOT

The priority defines the order of evaluation, which as witharithmetic can be altered by the use of brackets.

For example:

10 PRINT (2*2=5 OR 3+3=4 OR 2=2 AND 1:2)

is the same as

10 PRINT (((2*2)=5) OR ((3+3)z4) OR ((2:2) AND (1=2))

1141

CHR$ (<number>)

Gives the character whose code is the specified number.

For example:

PRINT CHR$(65)

Will print the character ‘A’.

CIRCLE X,Y,r

Draws a circle of radius r with centre X,Y

For example:

io vs n
20 CLS
30 CIRCLE 100,100,50
40 PAUSE 1000

CLEAR

CLEAR removes all of the variables

CLOCK <String>

e.g. CLOCK “120000”

The clock is initialised to the value of the string.

The clock is a 100 hour clock which counts accurately in seconds

minutes and hours up to 100 hours when it resets to 0.

To print the time see TIME$.

For example: To print the time in the top left corner:

10 CLOCK “120000”
20 CLS
30 PRINT TIME$;CHR$(26);

4O GOTO 30
50 REM CHR$(26) Homes the cursor.

See TIME$

112

In TEXT mode CLS will clear the screen (or Virtual screen).
In GRAPHICS mode CLS will clear the screen unless one of thescreen attributes has been set using the ATTR function, in whichcase it may be necessary to switch off the attribute before CLS

Code is not a
following lines
and is inserted

For example:

command but rather a word to indicate that theare assembly language. The word can not be typedby the assembler into the BASIC line.

10 REM START OF
20 CODE

PROGRAM

8030 LABEL: LD A,(HL)
8031 RET

Symbols

30 REM END

All labels

8030 LABEL

OF PROGRAM

are listed at the end of each block of code.local to each block.

The COLOUR command sets the colours for the graphics screen.n selects the colour (see colour table in the appendix).
The value of p selects which areas of the screen the colourrefers to.

Two sets of colours are defined. The print colours refer tocolours that will be used when colours are printed. The non—printor PLOT colours refer to colours that will be used when coloursare plotted or when screen functions are used.
PzO Print paper.
P1 print ink.
Pt2 non—print (plot) paper.pz3 non—print ink.
pt4 border colour.

1 fl3

4

C LS

Clear screen

will operate.

CODE

Labels are

COLOUR p,n

CONT

CONT can be used directly after a STOP command or after pressing

the break key to restart the program. Any editing or alteration

of the program will prevent CONT from operating.

COS (<angle>)

Gives the cosine of the angle specified in radians.

To create your own virtual screen, use the CRVS command to define

the required area and then select the screen using the VS

command.

n Virtual screen reference number. (0 to 7)
t Type of screen. Ortext,1=graphics.
x Coordinates of top left corner.
y
w Width of virtual screen in characters.
h Height of screen in lines.
s Width of screen. (40 for text, 32 for graphics)

If s is a different value, to the actual width of the screen, the

virtual screen will become distorted. This can however be used to

advantage. If for example s is set to 80 in a text screen, the

virtual screen will only allow printing on alterate lines.

CSR X,Y

Moves the cursor to position X,Y

e.g.

10 CSR 12,10

Moves the cursor to position 12,10.
Any subsequent Printing or Input will occur at the new cursor

position.

[

CTLSPR p,x

p parameter and can be any of the six below:

0 Speed
1 to 255 to 0 (1 is fastest)

1 Distance
Tells the computer to move the sprite by ‘x’ pixels whenrequested.

2 Number of sprites
0 to 32 (The number of sprites must be at least 1)

3 Number of circling sprites
Sprites that will orbit when they go off the edge of thescreen (must not exceed number of sprites)

4 Plot sprite
A PLOT SPRITE can be chosen which will subsequently appearwhenever a point is plotted. This sprite will move around thescreen following any points or lines drawn by the BASICGRAPHICS commands. This sprite can be any of the 32 definedin the normal way.

5 number of moving sprites 0 to 32
This is the number of sprites that will move by themselvesaccording to the x—speed and y—speed set in the SPRITE andADJSPR commands.

nO size 8X8 mag 1
xzl size 8X8 mag 2
n2 size 1SX1G mag 1
x=3 size 16X16 mag 2

DATA <list of values>

If the computer encounters a READ command the program is searchedfor the first DATA statement. Once a DATA statement has beenfound a pointer to the values in the DATA statement ismaintained. Each time a READ statement requires a value, thevalue at the DATA POINTER is assigned and the pointer is moved tothe next value.

6 magnitude and size

145

For example:

10 REM PROGRAM TO PRINT FROM A DATA STATEMENT

20 FOR 1=1 TO 10

30 READ X
40 PRINT X
50 NEXT I
60 DATA 1,1,2,2,3,3

70 DATA 4,’l,S,S

DATA statements aren’t themselves executed and will be ignored

other than when required by a READ statement.

If all of the data on a line has beenread by a READ statement,

the computer will search for the next DATA statement and update

the DATA POINTER accordingly.

If no more DATA is available, a No Data error will occur.

You may find that the space after the word DATA is accepted as

part of the string when READing strings. To guarantee that this

does not happen, the abbreviated form DAT. can be used.

e.g.

Type 10 DAT.AAA,BBB

instead of

10 DATA AAA,BBB

See READ and RESTORE

DIM <array list>

Before an array can be used, space must be made in the computer

memory using a DIM statement.

For example:

10 DIM A(1O,1O),A$(1000)

Each element of a numeric array takes 5 bytes and each element of

a character array takes 1 byte.

An array cannot be redimensioned unless all of the variables are

cleared.

146

For example:

10 DIM AC 10)
20 DIM AC2O)

This will result in an error as the array already exists by thetime the program reaches line 20.

e.g.

10 LET A$t”ABC”
20 DIM C100)

This will result in an error since line 10 automatically definesa character array large enough to hold the data “ABC”. In fact,the computer will make space enough for A$ to hold 64 characters.

All strings are treated as character arrays rather than variablelength strings. The amount of space allocated to the characterarray will depend on whether or not a DIM statement is used.

If a DIM statement is used,
specified will be allocated.

For example:

10 DIM MCi)

the exact number of characters

This will result in a string of length 1 character

If a string is used without a DIM statement, the space allocated
will depend on the first assignment where the amount of space
will be the amount required increased to the next multiple of 64.

DRAW X

Space 64 bytes
Space = 128 bytes

Draws a line of length X from the current plot position in thecurrent direction. The plot position is updated to the end of the
line.

For example:

10 LET A$z”ABC”
20 LET B$(100)=”X”

147

DSI

Direct Screen Input

This command allows you to roam about freely within a screen only

ending when carriage return is pressed. Within this instruction,

the break key is not operational but will generate CTL C.

CTL W tab back

CTL I PMODE

CTL \ = SMODE

CTL CURSOR ON

CTL CURSOR OFF

CTL 0 letter A to 0 parer A to 0 (1 to 15)

CTL F “ ink A to 0 (1 to 15)

ESC I = insert line

ESC J = delete line

ESC K = duplicate line

EDIT <Line no>

This command causes the specified line to be copied into the EDIT

screen for editing.

For example:

10 REM ABCDEDFG

EDIT 10

If the line number is changed a copy of the line will be created

at the new line number.

To edit a CODE line, the assembler should be entered and the

assembler editor invoked. (see the assembler section of the

manual)

148

The EDITOR leaves the current screen as screen 0 and musttherefore be reset if printing is required on the full BASICscreen or any other screen. Line 30 resets the current screen tothe full basic screen.

See IF

EXP (<number>)

EXP is the exponential function whose value is e raised to thepower of the specified number.

For example:

FOR <control variable> = <start> TO <limit> (STEP <increment>)

<control variable> is a simple numeric variable but in thisinstance is called the control variable.

<start>, <limit> and <increment> are numeric expressions.If STEP <increment> is not present then the computer will behaveas if STEP I were present.

EDITOR <variable list>

The editor gives the programmer the facility to accept input froma defined area of the screen. The area is defined by virtualscreen 0 which may be set using the CRVS command.
For example:

10 CRVSO,O,20,1O,1O,1,4O
20 EDITOR A$
30 VS 5
‘40 PRINT A$
SO GOTO 20

ELSE

EXP (1) 2.71828183

NEXT <control variable>

1 ‘49

FOR and NEXT delimit a block of program.

For example:

10 FOR 1= 0 TO 10 STEP 1

20 PRINT 1,1*1

30 NEXT I

When the computer meets the FOR statement in a program, it

assigns <start> to the <variable> just as if it were a LET

statement.

Execution of the program now continues at the following line

until a NEXT statement is encountered with the same control

variable. At this point <increment> is added to the control

variable and the new value of the control variable is compared

with the <Limit>. If the limit has been reached, the program

continues after the NEXT statement otherwise control is returned

to the statement following the FOR statement.

The increment may be negative.

If the control variable is not present in the NEXT statement, an

appropriate variable will be assumed.

See NEXT

n& (<n-i-.->)

P 0AL.L, &p’ - A -tiJ-k f.....J., t. ,cL, u. g.Jt o (c. p&q

GENPATp1n1di1d2,d3d41d5,d6,d7,d8

The GENPAT command is the command used to generate all types of

patterns required by BASIC for characters and SPRITES. There are

5 modes.

1. To redefine an ASCII character. (CODES 32 TO 127)

2. To define a non ASCII character. (CODES 129 TO 154)

3. To define colour for each line of a character.

This only applies to user definable characters with codes 147

to 154.
B. To define an 8 by 8 sprite pattern.

5. To define each quadrant of a 16 by 16 sprite.

User definable characters have codes from 129 to 154.

Mode 1 allows the user to redefine one of the standard ASCII

character patterns. Note that the ASCII characters are the ones

which are most often used by the computer

Mode 2 allows the user to define his own character patterns

without destroying any of the standard ascii characters.

Mode 3 allows some of these user defineable characters to be

further defined by specifying an ink and paper colour for each of

the eight rows of the character.

150

The values for ink and paper are as specified in the colour tablein the appendix but in this instance we are specifying twocolours (ink and paper) at the same time. Each of dl to d8specify a paper and ink colour as a single number:

bit 0 1 2 3:
ink

4567
paper

2

value r 16 * paper + ink

3 pattern number
4 pattern number
5 pattern number
6 pattern number
7 pattern number

8 by 8 sprite pattern
16 by 16 NW quarter
16 by 16 SW quarter
16 by 16 NE quarter
16 by 16 SE quarter

Continue execution from the specified line until a RETURNstatement is encountered at which point return control to thestatement following the GOSUB

For example:

10 FOR It 1 TO 10
20 GOSUB 100
30 NEXT
40 STOP
100 PRINT I,SIN(I),COS(I)
110 RETURN

Gosubs may be nested up to 34 deep at which point an error willOccur.

e.g. Red ink on blue paper

= RED : BLUE

16 * BLUE÷INK

16 * 14
+ 9

= 73

P NMODE
0 ascii code (32 to 127)1 user definable (code 129 to 154)

1
2
3
4
5

GOSUB <line no>

See RETURN

151

COW <Line no>

Control is passed to the BASIC line specified.

For example:

10 GOTO 40
20 PRINT “LINE 20”

30 STOP
40 PRINT “LINE 40”

If the line doesn’t exist an error will occur.

GR$ reads a bit pattern from a graphics screen, returning the

value as a character. This function should be used if you wish to

print the graphics screen to a high resolution printer.

x and y are locations on the virtual screen.

b is the number of bits to be read (if b 1 equivalent to

“POINT” function).

The bits are read in a vertical direction. ie. GR$C20,190,4)

gives a character made up as follows:

bit 7 0
bit 6 0
bit 5 0
bit 4 0

pixel at 20,190
pixel at 20,189
pixel at 20,188

bit 0 pixel at 20,187

IF <boolean expression> THEN <statement> {ELSE <statement>}

The IF statement allows the program to branch dependitg

whether a condition is true or false.

on

<boolean expression>
value.

is any expression which yields a truth

e.g. Y:2 AND Xz3

152

bit 3
bit 2
bit 1

<Statement> is any legal BASIC statement (which may include an IFstatement).

If the boolean expression is true, the statement after the THENis executed.

If the boolean expression is false and ELSE is not present, theprogram continues at the next line.

If the boolean expression is false and ELSE is present, theprogram continues after the ELSE.

For example:

10 INPUT “ENTER Y OR N “;A$
20 IF A$=”Y” THEN GOTO 40 ELSE GOTO 10030 GOTO 10
‘W PRINT “YES’1
50 STOP
100 PRINT “NO”

See BOOLEAN EXPRESSIONS

INK <colour>

Selects the INK colour. <colour> is a number in the range 0 to 15and selects a colour from those in the colour table in theappendix.

IrP (<&rk>)

PJrrr t1

INPUT (“string”;}<variable list>

The INPUT command is used to input information into the computer.The variable list is a list of array or numeric variablesseparated by commas.

e.g.

INPUT A,B,ABC$

If the {string} is not present, a question mark will appear as aPrompt whenever the INPUT statement is used.If non—numeric information is entered into a numeric variable, orthe too few items are input, a question mark will appear afterinformation which means that it should all be typed in again.
If the {string} is present, it replaces the question mark as aPrompt. The string must be followed by a semicolon.

153

e.g.

INPUT “ENTER YOUR NAME”;N$

INT ((number>)

Gives the integer part of the number.

For example:

INT (2.5) 2

INT (—2.5) r—2

The string is truncated after the specified number of characters.

For example:

LEFT$(”abcdef”,3) = “abc”

LEN <SPACE>(<string>)

Gives the length of a string.

Notice that a space must be left between LEN and (<string>)

otherwise LEN will be considered as a numeric array.

For example:

PRINT LEN (ttABC “+“DEF”)

Will print 6.

154

LET <variable>=<value>

The LET statement assigns a value to a variable.
For example:

10 LET X=2
20 LET A$=”abc”

This assigns the value 2 to the variable X and the value “abc” to

i.e. numbers cannot be assigned to string variables and strings

LIST {<start line no>), (<finish line no>)
LIST lists a program to the screen.

There are three different formats depending on how many linenumbers are specified.

Lists the entire program from start to finish.
LIST 100
Lists the program from

LIST 100,200
Lists the program from

LIST 100,100
Lists line 100 only.

See LLIST, AUTO SCROLL

line 100 to finish.

line 100 to line 200.

AL

LLIST lists a program to the printer.

The formats are as for LIST

155

the variable As.

The value and variable must be of the same type.
cannot be assigned to numeric variables.

F L.lNe)t

- cL-.-. ()‘,‘) to

LIST

LLIST

See LIST,AUTO SCROLL

LN (<number>)

Gives the natural log of the specified number.

LPRINT (List of expressions}

LPRINT has exactly the same format as PRINT but sends output to

the printer instead of the screen.

See PRINT.

MANIPULATING STRINGS

An MTX string is treated as a character array as if a DIM

statement had been used to make space for it.

e.g.

10 LET A$z”AAA”

is equivalent to

10 DIM A$(64)
20 LET A$rn”AAA”

The MTX allows selection of parts of a string by use of one fewer

or one more subscript than are normally required.

Since a string is considered as a one dimensional character

array, specifying a single subscript would refer to a single

character at the subscript position.

e.g.

10 LET A$=”ABCDEFG”

20 PRINT A$(3)

30 PRINT AS
40 PRINT A$(3,3)

Line 20 will print the letter ‘C’

If one subscript too few is specified as in line 30, the entire

string will be printed.

If one subscript too many is present the part of the string will

be printed starting at the first subscript for as many characters

as are specified in the second subscript.

156

Line 40 therefore will print TCDE’

These rules can be extended for character arrays with any numberof dimensions.

MVSPR is a general purpose command which combines 4 distinctfunctions

MOVEMENT
PATTERN SELECTION
REDIRECT
PLOT AT CENTRE

The functions are combined to allow complicated movements tooccur whilst using only a single instruction. The type ofactivity is selected by p as in the table above. If combinationsof activities are required, just add the p values together. Someexamples are given below.

Gives I characters starting at position X in the string.

For example:

MID$(HABCDH+HEFGHTI,3,t1) “CDEF

Gives the remainder on dividing X by I.

e.g. MOD C1O,7)=3

MOD (X,Y) is equivalent to X_INT(X/Y)*Y

p meaning

2
4
8

157

egi eg2 eg3

MOVE 1 YES YES YES

PATTERN 2 NO YES NO

REDIRECT 4 NO YES YES

PLOT AT 8 YES NO YES

CENTRE

TOTAL 9 7 13

p value

n selects the sprite number.

d is slightly more complicated than with other graphics commands

as it must be able to reflect a value for several activities. If

d is not in the range of any one of the chosen activities an

error will occur.

MOVE (p:l) moves the sprite 1 step in the direction specified by

d. The step size is set in CTLSPR 1 and the direction must be in

the range 0 to 8 where directions 0 and 8 bare the same.

PATTERN changes the sprite pattern to pattern number d. This

pattern should have been defined in a GENPAT statement.

REDIRECT picks up current velocity vector and switches it to the

new direction.

PLOT AT CENTRE causes a point to be plotted at the centre of the

sprite spçcified by n.This is not directly affected by the value

of d at all.

NEW

This command resets the computers system variables thereby

preparing it to accept a new program.

NEXT <Control variable>

Next specifies the end of a FOR statement block.

If the control variable is specified, the NEXT is matched with a

FOR and all nested FOR blocks which are either complete or

incomplete are terminated.

If the variable is not specified it is assumed that this NEXT

belongs to the last active FOR statement.

See FOR.

158

NOD DY

Pass control to the Noddy editor.Noddy should appear at the base of the screen.
Noddy commands:

A Advance to next program page on the stack.B label Branch to a label.o page Display a Noddy page (on virtual screen 5)E Enter input (into virtual screen 7)G page,{label} Goto page at label if specifiedI match,label If input = match then goto labelL page List a Noddy page to the printerO Remove a program page from the stackP Pause before continuing with the programB Return to BASICS page,page.. . Stack up program pages

The Noddy interpreter accepts its input from virtual screen 7 anddisplays on virtual screen 5.
These virtual screens will normally be the complete screen fordisplay and the bottom line for input but they may be redefinedusing the CRVS command.

e.g.

1OCRVS5,O,1O,1O,20,5,B0
2OCRVS7,0,1O,16,20,1,4O
30 N000Y
RUN

Two smaller screens should be defined for use by Noddy leavingeverything else unchanged.

See Noddy Section of the manual.

NOT

See BOOLEAN EXPRESSIONS

ON GOTO and ON GOSUB

The ON command is used when you want to GOTO or GOSUB to a partOf the program depending on the value of a variable.
e.g.

10 LET X=2
20 ON X GOTO 100,200,300,1100,500

159

This part or a program would goto line 100,200 etc depending on

the value of X.

If XzO it would branch to 100, X=1 would branch to 200

Similarly, in the example below, the program would go to the

subroutine at 100,200,300,400 or 500 depending on the value of X

and return to line 30 when a RETURN is encountered.

10 INPUT X
20 IN X GOSUB 100,200,300,400,500

30 REM Program continues here.

OR

See BO0LEAN EXPRESSIONS

Outputs the specified value to the specified port.

Refer to Technical Manual — System Block Diagram

160

Exit?

Hex

Hexl to Hex2

A (cursor up)
V (cursor down)

Hex

Hex

Answer Y to return to BASICClears the List screen
Display a block of memory aroundHex. L.JI, tL th,j.Run a program starting at Hexiupto Hex2.
Display ASCII/HEX
List from Hex , LLca> t UA A 2 tctkL. lists from the program counterMoves a block of memory Hexl—Hex2to Hex3.
Change register at register cursorTo Hex
Execute the command at the programcounter
As S but calls are treated as asingle instruction.
Display the alternate register set.Move the register cursor.Move the display cursor back.Move the display cursor forwards.Move display cursor up.Move display cursor down

Example of PANEL Screen

0100
0103
0105
0108
01DB
O1OE
0111
0114
0117
0119
01 1C
011 E
0121
0123

OOFO:
00F8:
0100:
0108:
0110:
0118:

JP Z,E8
LD A,0C3
LD (0050),A
LD (0053),A
LD HL,2B09
LO (0051),HL
LO HL,3B04
LO (0054),HL
LO A,OE1
LD (0028),A
LID A,7E
LO (0029),A
LD A,OFE
LD (0020),A

21 2A 87 28 A9
DO 02 SC 140 AT
C3>E8 02 3E C3
32 53 00 21 09
21 2A 87 28 A9
DO 02 SC 40 A?

AF >0000 C3
BC 0000 C3
OF 0000 C3
[-IL 0000 C3
IX 0000 C3
IY 0000 C3
SP 0100 C3
PC 0100 C3

A9 A7 2F
2F 90 12
32 50 00
2B 22 51
A9 A? 2F
2F 90 12

PANEL

Switch on the front panel

Basic
Clear
Display

Go

I
List

Move Hexi End Hex2 To Hex3

Register

Single step

Trace

X

<ret>

JP 02E8

161

PAPER <colour>

Selects the paper colour. <colour> is a number in the range 0 to

15 and selects a colour from those in the colour table in the

appendix.

PAUSE <number>

The program will pause for a length of time dependent on number.

The time cannot be specified accurately but will vary according

to how many incidental functions the computer is performing at

the same time such as flashing the cursor or updating the clock.

PEEK <address>

Gives the contents of the specified address in the current page.

Notice that the MTX pages its memory in 32K blocks and so care

must be taken to ensure that when PEEK is used you are peeking

the correct page. The top 16K of memory is available to all

pages.

PHI <angle>

See ANGLE.

P1

The MTX stores an accurate value of P1 so that it doesn’t have to

be calculated each time that it is needed. P1 can be considered

as a number and used whenever a number would be used.

e.g.

PRINT P1
PRINT C0S(PI/2)

162

This will run a Noddy program starting with the page called

PLOD may be used within a BASIC program and control may beswitched backwards and forwards. When a Noddy program returns,execution continues at the next basic line.

Plots a point in the graphics screen at the point x,y.
See COLOUR and ATTR

POKE <location),<value>

The POKE command loads a the specified memory location with thespecified value.
If more than 32K of memory is present, the basic program mayspread over several pages C see the ROM BASED MEMORY MAP).Thetop 16K will always be present but POKing into any other area maybe dangerous unless other precautions are taken.

PLOD “string”

PLOD is used to run a Noddy program where string is the name ofthe Noddy page at which execution starts.
e.g

10 PLOD “PROGl”

P11001

PLOT x,y

e.g

POKE 50000,100

Loads 100 into location 50000

163

PRINT <expression list>

The print command is used to print information onto the

television screen or monitor.

e.g.

PRINT “SIN OF 8 = “;SIN(8)

PRINT is followed by a list of expressions separated by commas or

semicolons. The expressions can be string expressions or

mathematical expressions and any number of commas can be used to

tabulate the information.

A comma moves the cursor to the next TAB position.

A Semicolon leaves the cursor immediately after the printed

information.

RAND <number>

This command sets the seed for the random number generator. If no

number is specified the seed will be set to a random number.

e.g

10 RAND 1000

20 FOR 1=1 TO 100

30 PRINT INTCRND’50),

40 NEXT I

See RND

READ <variable list>

e.g.

10 READ A,B,A$,B$(8)

20 PRINT A,B,A$,B$

30 DATA 1,2,AA,BB

Values are read from the DATA statements (See DATA) sequentiallY

into the variables specified in the READ statement.

If an invalid assignment is made to a numeric variable an error

will occur

164

Data statements may occur anywhere within a program and areaccessed sequentially in order either from the start of theprogram or from the value specified in a RESTORE statement.
See DATA,RESTORE

REM <anything>

The REM command allows comments to be inserted into a program.The REM statement is ignored by the computer and is used only fordocumentation.

RESTORE <line no>

Restore tells the computer from which line the next READstatement should start reading the next DATA itemThis is particularly useful if the same DATA has to be read intwo or more parts of a program.

e.g.

10 DIM AC20)
20 FOR It 1 TO 10
30 READ A
40 PRINT A
50 NEXT I
60 RESTORE 100
70 FOR 1= 1 TO 10
80 READ AU)
90 NEXT I
100 DATA 1,2,3,4,5,6,7,8,9,0

See DATA,READ

RETURN

Returns control to the line following the last GOSUB executedIf no GOSUB has been executed, an error will occur.
See GOSUB

165

RIGHT$(<string>,<number>)

The specified string is truncated on the left

specified number of characters on the right.

e.g.

leaving the

RIGHT$(”ABCDEFG”,3) — t’EFG11

RND

RND returns a pseudo random number.

See Rand

ROM <rom number>

Passes control to an additional ROM pack for example PASCAL or

FORTH. Details will be supplied with the ROM

It is dangerous to use this command unless the appropriate RON is

actually present.

RUN tells the computer to start running the program from the

beginning.
All variables will be cleared.

A program can also be run by using a GOTO statement as a direct

command. In this case the variables will be unaltered.

e.g.

10 REM START

20 PRINT 1,2,3

30 REM END

GOTO 20

RUN

a

I JIlL
166

SBUF <Number>

This command makes space in a sound buffer for use by the SOUND
command.

e.g.

10 SBUF 8

This will make space for 8 blocks of sound data for each of the 3
channels and the noise channel. ‘e-c,Each block takes 10 bytes. The above statement therefore takes atotal of 320 bytes. i.e. 8 * 14 * 1O.C8*channels*block length).The Buffer is made at the top of memory below the system variables

SON (<number>)

Gives a result depending on the sign if the specified number.
If the number is positive the result is +1If the number is negative the result is —1If the number is zero the result is 0.
e.g.

SGN(—2.5)z —1
SGN(2.5) 1
SGN(0) 0

SIN (<angle>)

Gives the sine of the angle specified in radians.

167

10 CLS
20 FOR 1z32 TO 6’l

30 PRINT CHR$(I);

40 NEXT
50 CSR 0,0
60 FOR 1z32 TO 611

70 LET A$(I)SPK$

80 NEXT
90 PRINT
100 PRINT A$

SOUND <expression list>

The effect of the sound command depends on the number of

expressions in the expression list. -

SOUND <channel>,<frequency>,<volume> <

(3 parameters)

4 ic

Channel 0.1,2 or 3
0,1 and 2 are pure sound channels.

3 is the noise channel.

SOUND <channel>,<freq>,<vol> ,<freq inc>,<vol inc>,<duration>,<mode)

(7 parameters)

Channel,freq and volume are as described above.

Every 1/64th of a second the computer adds the frequency

increment to the frequency and the volume increment to the

volume. This continues for a length of time equal to the duration

which is also measured in 1/6Uths of a second.

The mode can be either 0 or 1

If modetO the freq and vol parameters will be ignored which means

that the increments will increment whatever values of frequency

and volume were current when the command was encountered.

If modeti the freq and vol will be loaded into the sound buffer

to initialise the frequency and volume of the relevant channel.

o

o £

c.,

¶ jo ct%.

Peeks the character at the cursor location and auto increments

the cursor location. The character is returned as ASCII.

e.g. To read characters from the screen into an array, and

reprint them.

168

0 to 31 (size 1)

0,0 is defined as bottom left hand corner of screen i.e same

N B Sprite coordinates are absolute and do not look at virtualscreen origins (i.e assume a 32 by 24 graphic screen)
xs is the speed in the x direction range —128 to 127 whereof speed moves the sprite 1/8 pixel every master speed

Stops execution of the program.

direction (plus = upwards) range —128

CONT may be used to continue execution provided that the programhas not been altered in any way.

10 REM LONG PAUSE PROGRAM
20 CLOCK “000000”
30 PRINT “START”go IF TIME$z”00013O” THEN STOP50 GOTO 40

n is sprite number 1 to 32

pat is pattern number 0 to 127 (size 0)

xp is position x off centre

yp is position y off centre (in range —4095 to ‘4095)
as for plot

as set by CTLSPR 0

ys is the speed in the y
to 127

col is the sprite colour,

1 unit
cycle

0 to 15

I
STEP

See FOR.

STOP

e.g.

169

STR$(<number>)

Gives the string which represents the specified number.

e.g.

STR$(2+2) “LI”

Note that STR$ has a string value and can therefore not be used

in numeric expressions.

TAN (<angle>)

Gives the tangent of the angle specified in radians.

THEN

See IF.

TIME$

Gives the time on the real time clock in the format

H HMMS S

Where H H is the number of hours elapsed since the clock was

started with the CLOCK command. The hours will count up to 99

before resetting.

M M is the number of minutes.

S S is the number of seconds.

For example:

10 CLOCK TI000000IT

20 CSR 10,10
30 PRINT TIME$
1O GOTO 20

See CLOCK

170

USR causes control of the program to be transferred to thespecified memory address. This is the usual way of interfacingmachine code to BASIC programs although the MTX assembler makes

On return to BASIC, USR has the value in the register pair BC.
e.g. if you assemble the following program and run it, ‘100’ will

Symbols:

LO BC,100
RET

20 PRINT USR(32775)

32775 is the decimal of the HEX value 8007.

VAL (<string>)

Gives the numeric value of the specified string.If the string is not a valid number, VAL will try to evaluate thestring from the left hand side as a number until it can go nofurther

For example

VAL (“lOO”)zlOO
VAL (“100000000000”)zlE+12
VAL (“lOOOABCDEFOO°)—lOOOVAL (“12”+”12”)=1212

For example:

33

TO

See FOR.

USR (<address>)

this function redundant in most cases

be printed on the screen

10 CODE
8007
800A

VAL returns a number which may be used in arithmetic.

VAL(”23”)+1O =

171

VERIFY <string>

VIEW direction, distance

The Graphics screen can be considered as being a window into the

sprite planes. The graphics screen is initially located as in the

diagram below.

The view command moves the window relative to the sprite planes

whilst leaving the position of the sprites unchanged.

direction z 0 to 7
distance = 0 to 255

VS n

This command selects a virtual screen from those already defined

or created using the CRVS command. The computer will

automatically switch to the type of screen selected whether

graphics or text.

See CRVS

.4095 .4095

—4095 -4095

172

Verifies a program in tape against the program currently in the

computer.

—4095 [E] +4095

7’
0,0

-4095 .4095

V
0.0

t

SOFTWARE APPENDICES

1 ASCII Code Table
2 Control and Escape Sequences3 Error Messages
4 Numeric Keypad
5 System Variables
S Function Keys
7 Colour Table
8 Sound Tables
9 Absolute Directions

10 Flowchart conventions

cd’ 64’ 2Z4 E’fl
Zc ‘-1-a ZM P ‘S ;rarrE

?i It CLç Si I6I cLCva
c, ‘U

t) (‘ ‘‘ ct ‘4 CcC t ttk

63 c ‘c ts —

14 fl AC. ISA- C4 “fl FR E4 t-r tr.’

cc “iT 0FFç eeC

i4Y qNt
6& , Its 66 tW

C) I’’1
fl i;c t&c It)) 2I ç

? 3L 6v ey 6? PO -

31) CC / e CF 27 • fl, —

L’ ‘w / Se c’ — c-n -fl

/ AU i,, °‘ &z5 tc V’
rc , , pnr Pt / Eit

4, tii t cc
/

14 tfl- qAY?C ,4j etc fl4—
pç t3 3 CF vv’ Vt.

r
“ L25 “ < P4’ ‘44’ LL-’

94 +
ó4’ no Rc

tr

5’ I))
F’ 2c

Pt 24t i’s

i,

IC.c

_
p

P1
P3 2-41 r’

‘3 11TDL6

Zn Di
t,g _i)

11_ ‘46 AP5pft

F4 t44.-
‘6) tan—

‘41 ET c oc n
cc z(

FL 4g

F)

‘k G-r &prvv,t T t4r
PP Tfli) S ‘74 Ocr

?f QCor p
1ct 5N?’4T

__

6A iU cmp
2(

Fc 1C1_
‘T4 VVgf

85 ‘.0 e—&Lc

qq St in çg,.p

‘ ry
p6 S4 —

E ‘14 a(Ln” rr -L5 EØ(LjLLJc-1 173
ØF 1’ Thtc

APPENDIX 1

ASCII CODES

I

4-J.1.c) ASCII HEX DEC ASCII HEX DEC ASCII HEX DEC

NUL 00 0 / 2F 47 A SE 94

<-(A7SOH 01 1 0 30 48 — SF 95

K))STX 02 2 1 31 49 t 60 96

ç04oETX/tv 03 3 2 32 50 a 61 97

4)EOT/?> 04 4 3 33 51 b 62 98

(t) <t>ENQI&ct 05 5 4 34 52 c 63 99

!flr)ACK r’rrQ 06 6 5 35 53 d 64 100

Qfl&>BEL 07 7 6 36 54 e 65 101

< <“)BS)c-,.L408 8 7 37 55 f 66 102

<))CJ)HTIT,w 09 9 8 38 56 g 67 103

OA 10 9 39 57 h 68 104

“*VTI’-””p GB 11 3A 58 - 1 69 105

C,’_’OFF1Lc OC 12 38 59 j 6A 106

(‘ CR GD 13 < 3C 60 1< 68 107

H <‘<)S0 GE 14 = 3D 61 1 6C 108

• O>(5 OF 15 > 3E 62 in 6D 109

. .. IY)cnDLE 10 16 3F 63 n 6E 110

4’)<’ DC1 11 17 40 64 o 6F 111

r t<4DC2 12 18 A 41 65 p 70 112

‘-‘.)<&DC3 13 19 B 42 66 q 71 113

<-‘4’ DC4 14 20 C 43 67 r 72 114

cc’1ONAK/2N 15 21 V 44 68 s 73 115

‘‘Cv)5YN1PaL,.. 16 22 E 45 69 t 74

: <))4ETBTk 17 23 F 46 70 u 75

cXi3CAf4 18 24 G 47 71 v 76

.

I)çEM ep19 25 H 48 72 w 77

‘c>SuB/” lÀ 26 I 49 73 x 78

c;)Esc 13 27 J 4A 74 y 79

1C 28 K 4B 75 z 7A

1D 29 L 4C 76 78

<nyRSc._cn 1E 30 M 4D 77 7C

CI). ,US -n-rO(%- iF 31 N 4E 78 7D

space 20 32 0 4F 79 7E

I 21 33 P 50 80 DEL iF

“ 22 34 Q 51 81 -,

£ 23 35 H 52 82 it

$ 24 36 S 53 83

% 25 37 T 54 84 Cc

& 26 38 U 55 85 cc

T 27 39 V 56 86 tc

C 28 40 14 57 87 11

) 29 41 X 58 88
* 2A 42 Y 59 89

+ 28 43 Z 5A 90

, 2C 44 t SB 91 rI’
— 2D 45 SC 92 in

2E 46 1 SD -93
r’c
14

116
117
118
119
120
121
122
123 •
124
125
126
127Fr—

3U-
L-QU- 7,,L..k

CLA-rrr Kct. ÷ k ,<

Z f1 , gL,u
-; C U!

(L

3r

174

APPENDIX 2

SOME USEFUL CONTROL AND ESCAPE SEQUENCES

On Sets background colour to n
E Erase to end of line
Fn Sets foreground colour to n
C Sounds the bell
H Backspace, cursor left
I Tabulate the next block of eight columns
J Line feed, cursor down
K Cursor up
L Clear screen and home cursor
M Carriage return, cursor to left edge of screen
W Tab back
Y Cursor forwards
Z Homes cursor

Page mode
\ Scroll mode

Cursor on
Cursor off

Standard character font
American character font
English character ±‘ont
French character font
German character font
Swedish character font
Spanish character font
Inserts a blank line at cursor line
Deletes the current cursor line
Duplicates a line
Simulates CONTROL character c

CONTROL SEQUENCES

CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL
CTL

,:ç c€

ESCAPE SEQUENCES

ESC S
ESC DO
ESC Dl
ESC B2
ESC 33
ESC 34
ESC 85
ESC I
ESC 3
ESC K
ESC Xc I

A
N

a

175

APPENDIX 3

ERROR MESSAGES

Par ams
Incorrect or wrong number of parameters for a function or

command.

I Mistake
A mistake has been made which should be obvious from the context.

‘ A
Dot outside virtual screen.

SE.A
Screen type not in type table.

S

4 SE.B[Invalid ESC sequence.

H. SE.C
Command not valid for this device.

‘° SE.D
Switch to absent Virtual Screen.

•n- SE.E
Invalid UDG/UDG type.

ijj c Symbol?
A symbol is missing, such as 11T0”, “THENTT, “,“

t Not numeric
A number is expected.

) Not a string
A string is expected.

T Boolean?
A truth value is expected.

‘ Mismatch
An illegal relationship between different types of values.

‘r BK
Break in tape LOAD or SAVE.

1 No data
No data for READ or No page for NODDY.

‘- Overflow
Number too big.

Div /0
Division by zero

176

C(U00

íazU
)

•
0

cx
0

0L
,.

bUC
bO

H
C‘H

04
3

o
(U

3
-)

(U
(U

N

Il’‘3..

I
J

L
-j

I’

-P
‘

U
’

S

‘)-
‘

Ii
—

i
t
:
i
j
j
J

t
4.

44
t

-
4

-

±
0

.7
1:
:
‘‘3

3

-1
1

C

0bDC(US..

0--4
r-IEU>(UC--4

4
3

0
0

bD
C

CS..
-ri

‘4_4
S..

0
0.0

3
3
$

0
z

43
•

0
rj

C
0

5
)

>
)

S..
CU

r-1
(U

(U
‘H

£.
>4

(U
4
3

5
)

S..
0)

0)
2

C
(U

5..
4
3

0
(V

0
4
3

•
2

.C
4
3

S..
.C

H
0

43
0

0
4
3

0
.C

H
43

•
0

C
43

>4
0

5-.
n

S..
•H

H
V

(
U

.
0

0
4-.

t
S

_
C

C
O

4-4
0

0
C

m
a

o
V

-c
a

.C
-r4

bO
C

.0
0

0)
C

0
-
P

C
(U

C
5-.

4
3

It
(U

.C
t

0
0

C
(U

(U
S

_
5.

4
3

0
0

43
3

0
0
)

.0
C

0
0

0
0
.

C
.-.

a)
3

3
0

4
3

4
0

0
5..

0
C

$
0

bO
V

0
0

cii
E

U
b
O

O
43

C
(U

C
t

L
.C

b
O

3
‘
.
.
.
-

H
0

0
C

(U
bQ

-r-1S
.

0
0

5-.
0

8
0
5
.m

(I)
.0

n.E
C

0)
S

_
4
3
r
4

07
(U

0
U

)
O

.D
2

U
I

II)
‘ri

EU
(/2

H
0
7
1
1
)

.0
0)

m
I
t

43
0

4
5
(
0

(U
a)

E
0

0
U

)
S

03
.C

o
V

C
S

.
J
J
d

t
n

n4
(U

C
C

b
O

O
0
.1

..
>

,
0
.0

>
4
>

.
.C

0
(U

.,-1
’4

.
-
H

O
C

C
(U

O
W

n-IC
C

(D
L

.
0
.0

5
.

S
.L

U
(U

4
S..

D
3

r
l
Z

C
U

)
>

4
0
2
0
)

0
.0

.0
S

‘4
-S

.
>

.L
.

O
X

m
E

-i
-H

4
-4

a
)
m

O
.

0
3

3
0
(U

(U
C

U
L

L
.0

C
flzJ

n
C

)
.0

(/2
1
1
)0

t
>

5..
C

5..
0
0
0

2
0
0

C
S

_
C

0
0

0
E

-.[-E
-4

/2
c

C
L

—
i

>
1

EUS..
5-.
EUCEUci)

O
C

0
H

(U
‘4

-4

0
.0

U
)
t

0
0

/
‘

p
A

I-
_

1

..A
.P

F-
-

‘—
_fl

.A
c
.

(A
IA

APPENDIX 4

THE NUMERIC KEYPAD

There is however a numeric padlock which is set by a Bit in the

keyboard flags. If this bit is set, the number pad will be locked

to Numbers but for safety the Break key will over—ride the 9. To

use the 9 you must turn off the Break key, by switching the Break

key bit in the Interrupt flags INTFFF.

I.

• II

e.g.
10 POKE 641’15,132

20 POKE 64862,13

30 PRINT INKEY$:GOTO 30

CrJLt $qq t c biL, -J’ - ‘ (— .-<i- —----x - .k cr& (Pint))

13 ¼

C
in

)

L AJ4., e ;rj 4•.a.2
6-21c- %..- J.,A

.rC 4.-J

C C,.--I ,tc-J
A3tt

(t.k
)

t
‘J.ytha4

,- V,4j VaAka,j,

c0 &r-4fl tt[0
(t byAsn eA ck—J

sr)

I 3 I,tJ VL2t v0-tt,

tcc rk7t4t V1%c &rJ2tJc

6-’ vc4j V?k6t, CrJ.LJ

1A L
(Jnka)

IC c*J %,
i

L-nAA.T: k-U- 01%,Ja Jin,n-atL Ccn (Fflç.t) a (cW’4”)

178

The Numeric Keypad has been designed for use with application

programs. Notice that the Break key is in the top right hand

corner of the numeric pad and you must decide if you want to

allow this key to Break in or not. To use the numeric pad, press

the shift key and one of the numbers. In this mode the Break/9

key will give a 9 and not Break.

C - I Rer*._4, VALc.s.e

I C1t6 e

CnAJ-

LA k%fe..,

APPENDIX 5

SYSTEM VARIABLES

variables saved to here on tape **

F’i çt ,c c-L7 ln—U-cn 4r -o-cFA52 CTRBADR Control buffers for sound (“5tFA7A STKTOP Top of stackFA7A LSTPG Number of 32K pagesFA7B VARNAM Bottom of variable namesFA7D VALBOT Bottom of variable values C4FA7F CALCBOT Bottom of calculator stackFAS1 CALCST Top of calculator stackFA83 KBDBUF Address of keyboard buffer r-FA85 Syntax for user routineFAB9 USER Basic user jump Ntr fZ MrFASC c&7c.
FA8F IDPL List device• FA9O REALBY Panel breakpointFA91 KBFLAG See below
FA92 STKLIM Top of free spaceFA94 SYSTOP Top of variables to be saved {“6’-3FA9G SSTACK Address of machine stackFA98 USERINT See below
FA9B NODLOC
FA9E FEXPAND Panel expansionFAA1 USERNOD Noddy expansionFAAB NBTOP Top of Noddy ‘eu /&d’&FAA6 NBTPG Top of NoddyFAA7 BASTOP Top of current Basic page ‘/a>&FAA9 BASTPG
FAAA BASBOT Bottom of BasicFAAC BASTPO Top of each Basic page &o4.fb4FACC ARRTCP Top of arrays — VLJFACE’ BASELIN
FAD1 BASLNP
FAD2 PAGE Current page configurationFAD3 CRNTPG Current Basic page

rrL, ICLfrSVFL
FAD4 PGN1 £m-t, ‘t } ?JL 4_ •P)flFADS PGN2 -‘*,‘ Ct) U
FADS PGTDP
FADS GOSTACK GOSUB stackFBfl GOPTR
FBU3 GOSNUM Number of nested GOSUBS C*

rsc rQftoL4T
FBUS CTYSLT Keyboard configuration r3FB’16 DATAAD Data pointerFB’18 DATAPG
F8U9 DESAVE

** System

179

FB4B START Keyboard buffer

FD48 STACK Machine stack

FD48 SETCALL
FD4B RICHJL
FOBE USRRST Restart 38

F051 USERIO See below e

FD5B USERROR Error trap 5P ‘icr

F057 CLOCK Real Time Clock

FD5E INTFFF See below 3AI_L r-1.

FO5F CASBAUD Cassette Baud rate c-+

FD6O MIDVAL
FD61 RETSAVE Start address for Auto Load -icrj,’_ 2CP’

FD65 VAZERO 4J4’d’ /p&c

P9)67 VERIF 4’ Lc,.-.t I

P9)68 TYPE
FD69 CONTFLG ‘V

FD6A CONTAD } Address of line to FVFe

FD6C CONTPG confine after STOP or Break

FD6D ASTACK
FD6F TMPHL a-
FD71 TMPA 4- ,1_c

F073 STACCT

FD75 PRORPL See below (jtJ- IL.ç(- th,tJ)

FD76 IOPR See below C.

F077 AUTOIN Increment for Auto Line

F079 AUTOST fl,.J t-L

FD7B AUTOCT r a cJ Ctpe,i CtLr 2

FD7C LASTKY Last key pressed

FD7D LASTASC ASCII of last key read

FD7E LASTDR

FD7F RNSEED
P9)81 BREAK 9J9r’—J-’, ,__t•a. 6!.& Q.Sk4_ et-. &. &‘

FD82 COMMAND Address of First Command executed

FD814 ERRPOS Position of syntax error

F086 FLAGS1
FD87 ITYPE Used by Assembler and Panel

F089 MAFD)

FD8B MBCD
FO8D MDED
FD8F MHLD
FD91 MAF }
FD93 MBC }
FD95 MOE } Temporary locations for

F097 MHL } storing registers

FD99 MIX }
F098 MIY }
FO9D MSP }
FD9F MPC }
FDA1 MEMPOINT

FOA3 WCHJUMP 234C/210G. AJ3t., gL -
)Au

FOAS POINTERR
FDA6 DADO
FDA8 ASBYTE
FDAS INDEX
FDAA DBYTE

180

y_p
c - ViLn JJL,jqu1 181
1 ,ji - HA. ct

FOAC LINKER
FDAD EDIT
FDAE LENGTH
FDAF DETYPE
FDBO DTYPE
FOWl DISAD
FDB3 OPROG
FOBS LABTABL LJnJ,
FDB7 APROG c_*
FDB9 ENDTAB C ,tVm

FDBB COMMENT
FDBC COMAD
FOBE ADLABEL

‘ -r-9’ 1’k
FOCi INOEXLAB
FDC3 DATALAB AdJ—t

FDC6 UBLABEL W,,uc 4Z.*_ ,eo’,tc a —
FDC7 BASEM sL&- 4 t’&’

FDC9 CURLAB , oC a—a Laa,aa,.- csLFDCC ACC1 Used by Maths
FDF2 INTTAB Node Interrupt TableFEO2 GASH Used by Sound
FEOU TEMP ct ,)LL rj r’-9FElL! CHAN
FE16 FREQ

---.—FE18 VOL
FE1A WKAREA VS work area
FE3F BSSTR wlfrr ftc cftL<LL, ht,k L •FE4B SPEED Sprite speed
FE4C SPBASE
FEL!D MVDIST Move.djstance
FE4E NOSPR Number of SpritesFEL!F DLSPNO Number of circling SpritesFE5O PLSPNO Plot sprite numberFE51 MVNO

‘ —---

FES2 DELSPR
FE53 VCOUNT Counter for cursor flashFES’! VDPSTS Copy of VDP Status registerFE55 SPRTBL Control Buffers for Sprites (t k,t, pxrFF55 5MBYTE Size/MagnificationFF56 LENLO
FF57 LENHI
FF58 VINTFG Sprite interrupt flag: If 0 implies safe to
FF59 CHPTR Character pointer

k 44cc) -L9
t £.J1,Lj Ccnu.)Virtual screen controls — see belowFr-ç CIARSc$. A4J-4-.,C c..n.J ‘Ic •-.-J4 6-V%.FF50 SCRNO FF87 SCRN6

FF6C SCRN1 FFC5 SCRN7
FF7B SCRN2 FF05 VS TYPE TABLE — Screen subfunctions.FFBA SCRN3 FEED VIRTUAL SCREEN stt-r Ict t&iFF99 SCRN4 FFEE OVERLAY 4, Zc,FFA8 SCRNS

write to screen
e-u 4’ .itL tc) S4f.<- (‘) 4

I FFr

1 iqç3
-

Virtual Screens — Byte format for each screen

S%t Byte No Contents 1

1 Screen Type, Auto Scroll, Cursor Flash, Page Mode ,a1,-t ‘-I.

2 Current print position in virtual screen

2 3 2nd Byte of above iZo)

LI Absolute top left—hand corner (CCAIUI)

4- 5 2nd Byte of above Qr,—)

6 Size of screen in characters (

7 2nd Byte of above e.-...-,)
8 Line width of Physical screen

9 Holds Cursor character Eiwc

1D Border colour, Paper, Ink

11 Print colours: Ink, Paper; Print Attributes

12 2nd Byte of above

13 Non—print colours: Ink, Paper; Non—print Attributes

V 14 2nd Byte of above

6 15 Scroll count

INTFFF (FA98 Hex 614862 Decimal) -

The computer generates interrupts every 1/614th of a second. To

allow the user to use these interrupts there is an interrupt flag

(INTFFF) and a USERINT location. The interrupt flag determines

which of the available routines are called at each interrupt.

0 OFF, 1 ON.

Bit 0 — Sound
1 — Break key /
2 — Keyboard auto repeat

3 — Sprite movement and cursor flash

4 — USER
5 — USER
6 — USER
7 C_1 uj

If any of the user bits are set a call is made to the USERINT

location.

PRORPL If PRORPL = 1 , output is sent to the device specified by

IOPL
If PRORPL = 0, output is sent to the device specified by

lOPE

lOPE 0 z Screen
IOPL 1 Centronics

2 = R5232 A

KBDFLG (FA91 Hex 614145 Decimal)

Bit 7 — Alpha lock
5 — Page/Scroll
2 — Numeric keypad lock

CTYSLT (FBLI5 Hex 64325 Decimal)

This location selects a keyboard configuration and is initialised

by the switches at the rear of the PCB.

182

APPENDIX 6

FUNCTION KEYS
The Function Keypad can be used to customise the computer for aparticular application. There are eight keys marked Fl to F8.
Try this program:

10 PRINT ASC(INKEY$)
20 GOTO 10

If you press any key, you will see its ASCII code displayed andthe shifted value if the shift key is pressed simultaneously.
Fl 128 SHIFT and Fl 136F2 129

“ F2 137F3 130 IT F3 138F14 131
“ Ffl 139F5 132 0 “ F5 140F6 133 “ “ F6 141F7 134 “
“ F7 142F8 135 TI
“ F8 143

If required, character patterns can be assigned to the functionkeys using the GENPAT statement.

For example,

10 GENPAT 1,129,32,80,136,136,248,136,136,0
will make F2 produce a character ‘A’ .

- g< rj- %- c&J.

VG-LLj r”1
I VLJ

- HA. 1
ye_nt_c_I - Len, [-t<. eC ‘a

6 H n.jr—U
T H

- H i, 6 ,A.
,

rJS fek u.,, ye_ 11th f4tJ

7 * 7 ik 4 LLne9 &k,
,j h,rc L.4C, 43t4 - t-P h’

183

APPENDIX 7

COLOUR TABLE

a Transparent
1 Black
2 Medium Green

3 Light Green
4 Dark Blue
5 Light Blue
6 Dark Red

7 Cyan
B Medium Red

9 Light Red
10 Dark Yellow
11 Light Yellow
12 Dark Green
13 Magenta
14 Grey
is White

184

I

4

APPENDIX 8

SOUND TABLE 1

(Where n is the value)
DIRECT COMMAND

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
1 90
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390

SEUF

80
160
240
320
400
1480
560
640
720
800
880
960

1040
1120
1200
1280
1360
1440
1520
1600
1680
1760
1840
1920
2000
2080
2160
22140
2320
2400
2480
2560
2640
2720
2800
2880
2960
3040
3120

RESULT (Hz)

12500
6250
4166
3125
2500
2083
1785
1562
1388
1 250
1136
1041

961
892
833
781
735
694
657
625
595
568
543
520
500
480
462
446
431
416
403
390
378
367
357
347
337
328
320

FREQUENCY 4000000/32*n

185

DIRECT COMMAND SBUF RESULT (Hz)

400
420
440
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980

1000
1020

3200
3360
3520
3680
3840
4000
4160
4320
4480
4640
4800
4960
5120
5280
5440
5600
5760
5920
6080
6240
6400
6560
6720
6880
7040
7200
7360
7520
7680
7840
8000
8160

312
297
284
271
260
250
240
231
223
215
208
201
195
189
183
178
173
168
164
160
156
152
148
145
142
138
135
132
130
1 27
125
122

I

186

SOUND TABLE 2

NOISE

DC (periodic noise) SB R
0 0 Shift rate 7812.5 Hz1 8 Shift rate 3906.25 Hz2 16 Shift rate 260)1.17 Hz3 24 Shift rate = CHANNEL 2

Pink Noise

4 32 Shift rate 7812.5 Hz5 40 Shift rate z 3906.25 Hz6 48 Shift rate z 260I.17 Hz7 56 Shift rate CHANNEL 2

SOUND TABLE 3

VOLUME

Direct Corn. SBUF Result COB)
o 0 0FF1 16 —282 32 —263 48 —244 64 —225 80 —206 96 —187 112 —168 128 —149 144 —1210 160 —1011 176

— 812 192
— 613 208
— 414 224
— 215 240
— 0

187

APPENDIX 9

ABSOLUTE DIRECTIONS

Some graphics commands, including MVSPR, and VIEW, use a

direction parameter to specify one of seven directions. These are

illustrated in the diagram below.

5 /7

2

1

I
F
L

• 1
188

APPENDIX 10

FLOWCHART CONVENTIONS

o

_
_

Connector Manual Input

Communications
Link

V
Off Page

Manual Operation Input/Output Process

Terminal/Interrupt Preparation Decision

Merge Document Display

189

GLOSSARY OF TERMS

Absolute Address Information or data held in a computer is
found by the address of its location.
In machine code programs, the number
defining an address is called an absolute
address.

AC Alternating Current.

Access Time

Accumul ator

How long it takes to reference an item in
memory.

A type of register.

Analogue to digital converter. Converts
analogue signals into digital signals,
would you believe! There are also
digital to analogue converters, which
work in the opposite direction.

Address Each memory location has an address, used
to find data or a program instruction.

Algorithm

Alphanumeric

A set of steps for performing a task.

Numbers, letters and sometimes other
things.

Array An arranged set of values linked by some
kind of logical relationship. Each
element in an array has a unique
reference.

ASCII

Assembler

Backup

American Standard Code for Information
Interchange. Pronounced ‘Askey’, it’s
just a way of representing alphanumeric
characters in binary. Difficult to get
away fpm this one, it crops up all over
the place.

A programming language one step away from
the zeros and ones the computer
understands and uses. Assembly code is
the coding for a program written in
assembler.

When things go wrong, if you haven’t got

one, you’re in trouble.

AD C

I

1 90

BASIC
The Beginner’s All—Purpose SymbolicInstruction Code.

Baud Rate Number of bits per second transmittedalong a line.
BCD

Binary Coded Decimal. A way of expressingdecimal numbers using bits. Uses fourbinary bits for each decimal number.Benchmark A standard set of tests for seeing howfast a computer can perform. Used mainlyin comparing one computer with itsrivals.
Binary Number system using only two digits, 1and 0.
BIT

Binary digit. Either a zero or a one, itis the basic unit of information storage.Boolean Algebra Set of logical instructions written usingalgebra, with an answer either TRUE orFALSE.
Bootstrap A set of instructions held permanently inthe computer which have to be loadedbefore the computer can load programs.Branch In programming terms, a branch is a partof a program where a decision is madeand the program flow is transferreddepending on the result. This is aconditional branch. An unconditionalbranch is something like the GOTOstatement, where the program controljumps somewhere else without a decisionbeing made.

Buffer Somewhere data is stored temporarily,until the CPU is ready to process it.Also used to allow one part of thecomputer to work at a different speedfrom another part.
Bug

We all get these, so don’t worry. Asoftware error.
Bus

A set of connections which allow a routearound the computer for signals.
Byte

A set of bits, the smallest unit thatmeans anything. One byte is normallyrepresented by 8 bits, and represents acharacter or number.

191

Centronics A manufacturer of printers. Very popular.

Lucky you’ve got a centronics type

interface.

Character Set The set of characters (sorry)!

Chip This is what most people call an

integrated circuit. It’s a tiny piece of

silicon, and the bread and butter of

computers. (No jokes please.)

Command An instruction to the computer to tell it

to do something.

Compiler Translates source code into object code.

Constant Something (either a number, or a string)

which doesn’t change.

CP/M Stands for Control Program/Monitor. A

widely used and well recognised operating

system which makes available to you a

wealth of software packages. If you take

computing seriously it’s well worth the

investment, there are books around which

describe it fully, if you’re interested.

CPU The Central Processing Unit is a complex

chip where all the logical and arithmetic

operations are carried out. It’s your

computers ‘brain’.

Crash Something that happens to programs. When

a program crashes it’s because the

computer has encountered an instruction

which has totally confused it, so instead

of getting an error message you usually

get nothing, or lots of rubbish displayed

on the screen.

Cursor The cursor tells you where the character

you are about to type will appear. It’s

the blob on the screen that’s about the

size of an ordinary character.

Data Data is information which can be

processed, stored or produced by a

computer.

DC Stands for Direct Current. A constant

voltage.

Debug * The identification and removal of error5

from a program.

192

21

Disc
An L.P. shaped plate covered in magneticmaterial which can store information ordata on its concentric tracks. Discs havea fast access time, because theread/write head can position itselfquickly over the required data withouthaving to read all the preceding storagearea.

Dump
To make a backup of a section of memoryby printing it, or sending it to abacking store, to give a security copyusually.

Edit
To change data from what it was to whatyou want it to be.

Emulator Software which enables one computer toduplicate the instruction set of another.LOF
Stands for End Of File.

EPROM
Erasable, Programmable Read—Only Memory.Error Message We all see lots of these, a code ormessage to tell you that you have made amistake.

Execute The carrying—out of a program or singleinstruction.
Execution Time How long it takes.
File

A file is a block of data organised sothat it can be stored and retrieved asrequired. Files always have names.
Flag

An indicator used to indicate somethingabout data. For instance the Z8O CPU hasa flag which tells you whether the lastoperation performed resulted in zero ornon zero.
Floppy Disc Cheap, flexible store for data.
Flowchart A graphic way of representing the orderof a set of events.
Gate

A single logic function.
Gigo

Garbage in, garbage out! Antiquatedexpression, but I like it.

193

Glitch
A spike of electrical noise. You don’t

want any of these. Can destroy your

memory contents.

Hard Copy
A paper printout of your program or data

is called hard copy.

Hardware
Hardware is the physical bits and pieces

(chips etc.) that make up your computer.

Hertz (Hz.) Measure of frequency meaning dycles per

second.

Hex
In everyday mathematics we use decimal,

or base 10. Hexadecimal is a number

system in base 16 and uses the numbers 0

to 9 and letters A to F (representing 10

through 15).

Input
Information placed into the computer’s

memory is input data, and may originate

from, for example, the keyboard.

I/O
Abbreviation of Input/Output.

Integer
A whole number.

Interface
Software or hardware, or both, used to

enable the computer and a peripheral to

talk to each other.

Joystick
Used mainly to enable games to be played

on a computer. We all know what a

joystick is anyway, don’t we?

Kilo (K)
Generally means one thousand, except when

referring to memory size when it means

1024.

Line Number The number required at the beginning of a

line in BASIC is its line number. The

program is always executed in line number

order, unless you use something like a

GOTO or GOSUB statement.

LOAD
The placing of data in memory from a

backing store or program.

Location
Same as absolute address.

Machine Code Literally the language the computer

understands. Machine code is the language

all other languages have to be transiatedZi

into before the computer can execute a

program.

194

Memory Storage inside the computer for data andprograms, measured in bytes.
Menu

List of choices open to the user, usuallyencountered as the first page, or screenof a program.
Microcomputer A small computer using a microprocessorchip. In the MTX series computers, themicroprocessor is the Zilog z80.
Microprocessor The chip used in your computer as itsCPU. Microprocessors crop up everywherethese days, in ovens, Hi Fi equipment,they are even responsible for telling youto put your seatbelt on in a Maestro.Microsecond (us) One millionth of a second.

Millisecond (ms) One thousandth of a second.
Monitor Think of it as a high definitiontelevision that can be used only as adisplay screen.
Nanosecond (ns) One billionth of a second. (One billionis 1,000,000,000 or 109.)
Nibble

Half a byte, i.e. usually four bits.Non—Volatile Most of the contents of memory are lostwhen the power is turned off. Nonvolatile memory doesn’t disappear. Forexample, the information in ROM is nonvolatile.
Null String An empty string. The string must exist,and it must have nothing in it for it tobe a null string.
Number—Crunching Performing complex calculations quickly.Object Code A form of code the computer understands.If you .write your program in a high levellanguage, (source code) it has to betranslated into object or machine codebefore the computer can act on it. Thisis a binary version of the source codeand is produced by the compiler.

On—Line Peripherals connected to andcommunicating with a computer are said tobe on—line.

195

Operand & Operator Machine code instructions can be divided

into these two parts. The operator is the

process which is carried out, e.g. add,

subtract, etc. and the operand is the

data the process is carried out on,

usually a number.

Operating System (OS) Software which supervises the running of

other programs. CP/M, developed by

Digital Research Inc. in 1976 is an

excellent operating system for use with

180 microprocessor computers like the MTX

series.

Output The results that the computer makes

available to the user (either on the

screen or as a printout, maybe).

Overflow When the space allowed for the answer of

an arithmetic expression is too small, an

overflow condition will occur. The Z8O

CPU has an overflow flag.

Pack A way of compacting information to

economise on storage space inside a

computer.

Page A block of data, as displayed by the

television set or monitor. Sometimes a

page is made up with several frames, or

screens, of data.

Paging Switching between blocks of computer

memory.

Peek A BASIC command which allows you to read

the contents of a specified memory

address.

Peripherals Devices linked to the computer to enable

it to gather and display information;

e.g. a printer, or a TV screen are

peripherals.

Pixel Picture element. It’s the smallest area

of display that the computer can control.

The more pixels you’ve got, the higher

the resolution of your computer.

Poke BASIC command which places integer value5

into a specified memory location.

Port A socket on the computer into which an

I/O device can be plugged.

196

A set of instructions which the computercarries out.

Programmable Read Only Memory.

Random Access Memory.

A grouped set of related data orinformation. A file is generally made upof lots of records.

A special storage location in the CPUwhich holds data on which calculationsare performed.

On the MTX series computers the two keyson either side of the space bar are theReset Keys. Reset means the same asInitialise, and once pressed, thecomputer returns to the state it was inwhen you first switched on.
Reserved Word A word that has a specific meaning to thecompiler, so it cannot be used as avariable name in a program.
RUM Permanent Read Only Memory.
R3232 A type of interface.
Run A command used to tell the computer toexecute a program.

The continuous movement of the display onthe screen. Usually scrolling means thatthe latest line entered is added at thebottom and all the other lines move upone, causing the top line to dissappearfrom view.

The program itself, i.e. as opposed toHardware.
Source Code What is actually written by theprogrammer before it is converted toobject or machine code.

A sequence of records; words, letters ornumbers.

Program

P RUM

RAM

Record

Register

Reset

Scroll

Software

String

1 97

Subroutine

as needed.

Syntax

Variable

Volatile

Computer languages are very precise.

Statements need to be in the correct

order in the program, or it will crash.

The rules which decide the grammar of the

language are its Syntax.

Opposite of non—volatile.

Zilog “The last word in integrated logic”. The

manufacturer of the Z80 micro chip used

in the MTX series computers.

Often a part of a program will need to be

repeated several times during the ‘run’.

Instead of writing the section each time

you need it, a subroutine means you can

write it just once, and ‘call’ or use it

An element of a program that can have

various values. It is a label used to

refer to an area of memory.

198

II

L

MTX SERIES TECHNICAL APPENDICES

1 Introduction
Overall Description

2 Technical Specification

3 System Bus

4 System Block Diagram

5 Electronic Circuit Schematic
6 Video Display Processor

7 Sound Generator

8 Memory Maps

9 Input/Output Port Summary
10 Parallel Printer Interface
11 Parallel Input/Output Port
12 Memotech DMX8O Printer Connector

201

1 INTRODUCTION

Overall Description

The MTX500 Series personal computer systems are high performance

8—bit computers uniquely designed to operate in memory intensive

RON—based or DISC—based environments. The choice of the Z80A

Microprocessor and the TMS 9918A series video processor as the

key components of the hardware architecture is consistent with a

low cost RON—based system with colour TV output plus the

capability to expand to accomodate a fully RAM—based Disc

operating system such as CP/M, utilising a high quality 80 column

colour monitor output.

The memory size can be either 32K or 64K Bytes as standard,

expandable to 512K Bytes. There is a separate 16K Byte dedicated

video memory. A 24K Byte ROM contains MTX — BASIC, the system

monitor, supplementary languages and utilities. The standard

interfaces included are tape cassette (Read/Write to 2400 baud),

Keyboard, Cartridge Port, Twin Joysticks, Parallel Centronics

type printer port, uncommitted Parallel Input/Output port, Colour

TV output with sound, composite video output — monochrome or

colour, and audio output. Optional interfaces include a

completely independent twin RS232C with buffered bus extension,

Colour 80 Column Board, Floppy Disc System, Silicon disc fast

access RAM boards, and a Winchester Disc System.

The Keyboard consists of 79 full travel typewriter style keys

mounted on a steel base plate which is fitted to the Aluminium

enclosure. Aluminium was chosen for good heat dissipation,

durability and EFI shielding.

202

2 TECHNICAL SPECIFICATION

Hardware

Chassis
Two front—hinged black anodised brushed aluminium extrusions are
separated at the rear by a black plastic moulding. The extrusionsact as heatsinks for the voltage regulation circuitry. Two matt
black powder coated stamped aluminium endplates, are secured by 3screws each.
Dimensions in millimetres: Width 488 Depth 202 Height 56Weight: 2.6 kilograms

Keyboard
A 1mm mild steel sheet is bolted to the upper chassis andsupports 79 keys which are interconnected by an independentp.c.b. The keys are arranged as:Standard U.K. QWERTY layout with 57 professional typewriter keys,standard pitch and spacing. Keys F and J are recessed for easyfingertip location wherever possible. Foreign language keyboardsare available.
Twelve dual function keys are arranged as a separate numerickeypad with cursor control and editing keys.Eight function keys (programmable in conjunction with shift toprovide 16 user definable functions).Two unmarked keys, which must be depressed simultaneously toreset the computer.
Auto repeat is standard on the alpha—numeric keys.

Fv1TX5I2____

eJL U

__

LLiALPHAI Efl

r

__

HVfJL!Ii I J LE!J

__

-
-
- 11

203

CPU Board
Mounted in the lower chassis, the CPU board accommodates:

Zilog Z8OA CPU operating at 11MHz.

24K of ROM which contains:

MTX BASIC — incorporating sophisticated MTX LOGO—type graphics

commands.
MTX NODDY — interactive screen manipulation routines.

FRONT PANEL DISPLAY — incorporating Z80 Assembler/Disassembler

plus Z80 Register, Memory and Program display and manipulation

routines.
VIDEO DISPLAY PROCESSOR — with 16K dedicated video—RAM.

USER—RAM — 32K on the MTX500 and 611K on the MTX512. User RAM size

is constant under all display formats.

VIDEO BOARD — for television and sound signal encoding.

REAL TIME CLOCK
CHARACTER SETS — Numeric, upper case, lower case, user—definable

characters and user—definable sprites. Resident international

character sets and appropriate keyboard layouts for UK, USA,

France, Germany, Spain and Sweden. Character sets for Denmark and

Italy are also available.

Expansions
Up to two expansion boards may be added internally. These may be

Memory (RAM) Boards or the Communications Board.

MEMORY BOARDS
RAM may be increased by the addition of boards which provide 32K,

611K, 128K or 256K of memory, up to a maximum of 512K.

COMMUNICATIONS BOARD

Available as an internal expansion, this board carries two

completely independent R5232 interfaces (running at up to 19 200

baud) with full handshaking and modem communication lines, and

also the disc drive bus. The Communications Board is required to

run the FDX and HDX disc based systems and the MTX Node/Ring

System.
NODE/RING SYSTEM — Communications software and interfacing

enabling construction of MTX Ring Systems. The system is

interrupt driven and runs in conjunction with the twin R3232

Communications Board.

Compatibility of the memory boards and Communications Board is

given below.

Compatibility table of internal expansion boards

RAM boards

32K 611K 128K 256K Comms. board

32K
* * * *

611K * * * * *

128K * * * * *

256K * * * * *

Comms. * * * *

Board

*_compatjble

2011

ROM Expansions
Via the cartridge port or disc drive bus these provide:MTX PASCAL
MTX FORTH
NODE SYSTEM software
Business, Education and Games software
Display
Colour TV and/or Video Monitor40 column x 24 line display as standard, with optional Colour 8o
column board. (FDX or HDX disc based system required).Display Facilities:
FULL SCREEN HANDLING
EIGHT USER DEFINABLE VIRTUAL SCREENSSCREEN FORMATS
Text: 40 x 24 charactersText with graphics: 32 x 24 text with 256 x 192 pixels in 16

Graphics Facilities
Up to 32 independently controllable user definable sprites, plus
pattern plane and backdrop plane. High level sprite—orientated
graphics commands.

Input/Output
Provided as standard:
CASSETTE PORT (variable rate, up to 2 400 baud)UNCOMMITTED PARALLEL INPUT/OUTPUT PORTTWO JOYSTICK FORTS with industry standard pin—outsFOUR CHANNEL SOUND UNDER SOFTWARE CONTROL — three independentvoices plus pink noise output through TV speaker, or throughseparate Hi—Fi outputMONITOR OUTPUT — composite video signal (lv peak to peak)CARTRIAGE PORT

PARALLEL PRINTER PORT (compatible with Centronics—type printers)Available as an expansion:COMMUNICATIONS BOARD WITH TWO RS232 INTERFACES and disc drive bus
Suitable Printers
Centronics—type parallel printersRS232 serial printers (requires Communications Board)
Power Supply Unit
Input: 220/240 VAC 50/60 Hz. or 110/115 VAC 50/60 Hz.Output: 22.5 VAC, lÀ tapped at 18V and 9V.Dimensions in millimetres: Width 92 Depth 110 Height 70Weight: 1.0 kilogram
The PSU is double insulated and has a side mounted rocker switchwhich is internally illuminated when the unit is on. The mains
transformer is located between two groups of four anti—vibration,
noise absorbing rubber mounts. Extensive strain relief mouldings
are incorporated in the PSU casing to support the input andoutput cables. The output cable terminates in a 240 degree, six
pin DIN connector. The PSU is supplied as a sealed unit.

colours

205

MTX Series Disc Based Systems

These are the:

FOX Floppy Disc System

and the
HDX Winchester Disc System

Both of these systems require the Communications Board expansion

within the MTX computer, and a minimum of 64K RAM. Both systems

have the following feature5:

A 19 inch wide chassis comprising four black anodised brushed

aluminium extrusions. Black powder coated end plates are each

secured by six screws. The chassis contains a card cage which can

accommodate:

One computer expansion board

One Colour 80 column board

Four silicon disc memory boards

One floppy disc controller board

An integral power supply which also powers the MTX computer.

Inputs can be 240/220 VAC 50/60 Hz or 110/115 VAC 50/60 Hz.

Parallel port for bus expansion

Two slots are provided on the front face for horizontally mounted

five and a quarter inch disc drives.

External battery backup facilities are optionally available

A license to use the Digital Research Inc. CP/M 2.2 operating

system is provided with the FOX and BOX systems, as is CP/M

itself.

Colour 80 column board

Mounted in the FOX or HOX systems the board permits the use of

colour programs requiring an 80 column screen running under CF/N

2.2, such as Colour Wordstar. Also available is the wide range of

existing CF/K based software.

80 Column board—Input and Output

RGB monitor output with selectable positive/negative sync.

Monochrome composite video output, 1V peak to peak, negative

sync.
Light pen input

Single channel sound

Screen display formats:

80 columns x 24 lines text (max)

160 x 96 graphics mode

Two alternate 96 element character sets with true lower case

descenders.

4K RON based graphics characters

Teletext compatibility

High speed glitch free screen update (average 25 000 baud)

The Colour 80 column board provides a complete emulation of a

CF/N terminal via RON software, and features:

Full cursor control

Vector plot, point plot

Powerful editing facilities with screen dump

Complete attribute control for colour and monochrome displays

206

Silicon Discs
These are a quarter or one megabyte fast access RAM boards whichare full emulators of CF/M drives U to 13. Four silicon discs maybe mounted within the HDX or FDX chassis, providing from one tofour megabytes per card frame. However, the silicon disccontrollers can supervise four logical drives, of up to eightmegabytes each giving a maximum silicon storage of 32 megabytes.This is in addition to the four five and a quarter and/or eightinch donventional floppy disc drives handled by the floppy disccontroller board. Numerous advantages include:
Speed — up to five times faster than a Winchester disc, and fiftytimes faster than a floppy disc.
A dramatic increase in efficiency of proven eight bit CF/Nsoftware to 16/32 bit software levels, obviating the need forcomplex and costly memory management techniques
Permits single floppy disc CF/H system which is ideal fordatabase manipulation, word processing and compilation.
Greatly reduces disc wear and prolongs life of mechanical discdrives, enhancing reliability especially in disc intensivetransactions.

Floppy Disc Controller Board
This board uses the full Western Digital 1791 chip set andsupports most CP/M floppy drives, types 0 to 13, which range fromsingle sided single density five and a quarter inch floppies todouble sided double density eight inch floppies, using SASI(Shugart) standard interfaces. Any combination of four SASIcompatible drives can be controlled. The WD 1791 controller settogether with a bipolar DMA controller provides a high speedprocessor interface minimising latency and facilitating rapiddata transfer especially on high capacity discs. Variable and
fixed write precompensation is software selectable. Bus extenders
permit the connection of external floppy drives.

207

3 MTX SERIES SYSTEM BUS

COMPONENT SIDE

—30
> 30

J1O
JO

ni >1’

J The system Bus comprises the full Z8OA bus, power supply rails,

ROMpak enable (GRaM), ROM page ports RO to R2, RAM page ports P0

to P3 and serial clock lines 01 and 02.

All lines are externally available on JiG, which is a 60 way (30

+ 30) 0.1” card edge plug, or internally on JO which is also a

0.10 60 way card edge plug.

NOTE.- J1O ALSO HAS REYWAY BETWEEN 26 AND 27 0

--hg
• a a - 4 • a a S a a a a a a • a a a a

A j 45 jef ju cj
fDf..f2f3f4fs6f7f8f9ot422t3t4i?sf6f2712sf2s.o;

a 3 f IXDin w

Note: (1) J10 is a mirror image of JO

(2) Component side A
Solder side = B

208

A

209

4 SYSTEM BLOCK DIAGRAM

II
On

On
-“S

- -I

-9
a”

$4

0JT

II

two 00

LCOI 04

tCOz
Q2 •2

to’
‘ ‘

as n
to’ 0’ •C

LOS
L %LSZfl05

to’
‘ O. I

L07 0?
CL

‘flu

‘OlE- JO ALSO ‘MS iITW*Y 5(7W(EN 71 UC 27 0

4”

Wa

a

1111.
fofif

+P ‘l’s,n.Jm

till’
I

• S 2 Z 1;

210

I,

20

C
I,

C
30

L14c
C

mit

5 ELECTRONIC CIRCUIT SCHEMATICS

14*

Q7’u’.

nt”—1
—00

—0l
PQO2

-0—-s

p.o.—’

p.0I—’
PC—,

its

Pt 0--s

4*

0’

a

IL 40

it S

I.,

it
7
I

it

P070

3

‘liz
‘C’,
‘00
7.,

10
FS1

a’
TIP3

K.
.7—J

ç34-—7

All

am‘Az—i
—j

‘I’—’,

on,

ii.

‘S

‘0 r —-

V pa
ta iL

WI. °‘T Fdh_T tin
T i - 14:’

00’

t± 550 —
W4A52 ,, ‘O MO

a.

also— — 3-v

M
P

A
II

M
PA

£

M
P

A
S

4
A

Io
4
—

2
A

M
P

A
4
t—

J1
A

:3
_
_
f
l

B A
G

D
M

P
4
2
t—

B
M

PA
I

A
M

P
A

0
t—

A
74

15
15

1

B
R

E
A

D
4
—

SE
L

ST
O

o
v

M
F

I

A
L

p

A
5

7
4
1
5
0
4

14
15

23
7
4
1
5
0
6

6

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

A
3

4

W
D

—

01
V

7

on
ye

0T
h

V
S

IC
V

4

74
15

13
8

V3

C
V

2

o
VI

A
10

A
lP

A
ll

A
04

7
.I

N
I

•I
N

G
10

b
IN

S
II

•
IN

’

u
N

)
II

C

7
4
1
5
0
6

IS
b
IN

O

S
I

17

on 0T
h

v
s

10
‘4

74
15

13
8

13

C
12

o
y
l

A
VU

4
2

4

A
l

A
U

’

•W
1
7

bO
U

T
S

bO
U

T
S

•O
U

T
4

b
O

U
T

)

L
S

O
6

15
b
O

U
T

S

.S
V

F’
.)

-
1

N
A

IS 1K
6

—
-

A
l)

A
LL

A
S

P
—

f
l

A
ll

A
ll

In
A

L
P

N
P

A
?

IL
_

_
_

4
M

P
A

6

t_
_
_
_
M

P
A

6

A B

6C

14
1

S
I

51
A B A B A U

S
E

L
S

T
B

M
FX

L
L

i
LJIG

1
6
1
1
6

1 T
L.t€

L L
L i

•N
P

A
2

—
N

PA
I

I?
eM

P
A

D

A
l

A
S

4
5

•
SC

2
0

JO
4
0

4C
SO

2C
A

,

A
?

A
l

A
c

41
64

61
6%

(.
16

4
‘.

16
4

41
64

41
64

41
66

6
1
6
4

L
A

S

H
A

S

w
P G

o
a
c

Q
o

s
o

O
P

..
_
9
p

0
0
1
0
0

P
P

P
P

F2
P

P

L_

_
_
_
_

—

O
O

IA
lV

d

—
E

L
E

l
-
—

o0
0

0
0

0
0

0
0

1111 iI11

I

I
n

c,’J

0g
a

a

•4/

CaJ-I4

lit?

7LS17L7IS1L
71S171

S.!’z
‘Q3ti0v3i0

Hsp7

•1

S.

H01

OCSP7L

øtI

CwotiS__u
993)

9140U

)WOtIs_j

-9o

c-SC

4LI
•LC

Li
‘La

LI
•OY

£
9

‘Lv

p
S

‘97

c-LW
SITLC

‘ivsa

SO

Y092

CIV10

67IC

9700

5,
‘V

Lv

cv

LV

OW
VSn9

S‘ZLN1C,°N0LLISOdSW

C3tlIM•OtIVHJtvwatt

SO0007

•
Qilil

;Jfld

ILV

047

97*

LC
9W

SV-

ty-
LVg

OW.

El
91

QpLa

O3Ht61

SL

SI

Li

La.&
op

Clv.

La
6W’71
PT.

91

51
I

—S.—-.

LJ9II
ThI__1..

LZ

9

p
ED’
704

LI

SI
owiwotu6Iu

“II?

AS

Cu
ouo’

Q3t

IW

£11

VHCU

4Cliii

—0—3—0-—.’ZLV

-G-’CIV

cii,

a—_

liv

Ill40-0--—-——

nfl

tIv4—c-7-O-
I

Dl
ow’

!fl’
Li

674

51

4c-ac

c-a0

c-I7
c
c-tv

c-SW

2

Ii

Si

rA5

‘—wdtSst...a-p$9‘in’-

1
0

lo
t

Il

I
n

0
3
I
t
_
r
i

H
3S

I$
H

S
a

,c
s
1

z
t

LV

w
—

o
V•11193d

,‘019LL
3

1
)

IN
?

—
=

-
-
-
-
-
—

—
.

A
c

C
l

‘((‘I)

“
t/J

tIN
).

IH
d

IH
d

ft

Z
r

9010?

e
a
rn

G
ill

s
.

IIr

U
-’

c’J

C
r

W
0

u
f
li

0
9

3

to
IS

)

90
053

so

1W
f
l

V
o

n
—

tO10
0
0

PH
d

0
]I

4!!!
131

1)1
011)
iL

l)

131
II!)

0
)1

11?)
t

In
n

‘1

6 VIDEO DISPLAY PROCESSOR TMS9918 SERIES

The Video Display Processor (VDP) used in the MTX Series is the
TMS991S Series. The TMS9929A is used in computers for the
European market, and the TM59928A is used for North America. The
VOP is I/O mapped at ports 1 and 2. (MODE 0 for port 1, and
MODE = 1 for port 2.) The colour difference signals are encoded,
mixed with sound and fed to the appropriate RF modulator,
dependent upon the country for which the machine is intended.

216

FIGURE 1

SPRITE
ATTRIBUTE

NAME BASE
REGISTER

r COLOR BASE

I_ REGISTERj

[P

I. I

I DO II II I
I

I —O I

ririri
LHWLI

REGISTER
SELECT

DECODER

CPU
rnNTROL

t I

- TMS 9918 VDP BLOCK DIAGRAM

0

s_A 6

0

I D I
I II I
I I

0

fli
1EEZZfl ol 1L

I II0I In.z I III>Ur_____, I 01 II
U

— 0— —
004oc •z.

4

TMS9918A
H

_

9929A

p
I r

______________________________ ________

Ill

—
— ill

I I
III

III
II

Iii
III
III

II
III
illIII

COMMAND
RE GISTE R

IA.

It wj

ATTRIBUTE
COUNTER

4

4O SPRITE
COUNTER

0a
4

-

CHARACTER•
COUNTER

00

COMMANO
REGISTER

U

L COLOR — PRIORITY — MULTIPLEXER
AND COLLISION DETECT

-Ps-v

-t\-v

I

-J
0

0
U

2

00 I
4 I
C

j
“0 I
oI I oI

•
“0— -I
£0

5U

-It-
-I”-v

-p.’-vPATTERN BASE
REGISTER

SPRITE

DESCRIPTOR
-p.’

C: DATA BU.’

—U, AM DATA BUS /

p

I CPU DATAPORT 0 71] RAM DATA INPUTS 18 71

217

I

CPU Interface Control Signals
The type and direction of data transfers are controlled by the

csw, CSR and MODE inputs. CSW is the CPU—to—VDP write select.

When it is active (low), the 8 bits on D7—DO are strobed into the

VDP. CSR is the CPU—from—VDP read select. When it is active

(low),the VDP outputs 8 bits on D7—DO to the CPU. CSW and CSR

should never be simultaneously low. If both are low, the VDP

outputs data on Dy—DO and latches in invalid data.

MODE determines the source or destination of a read or write data

transfer. MODE is normally tied to a CPU low order address line.

CPU WRITE TO VDP REGISTER
The VDP has eight write—only registers and one read—only status

register. The write—only registers control the VDP operation and

determine the way in which VRAM is allocated. The status

register contains interrupt, sprite coincidence and fifth sprite

status flags.

Each of the eight VOP write—only registers can be loaded using

two 8—bit data transfers from the CPU. Table 1 describes the

required format for the two bytes. The first byte transferred is

the data byte, and the second byte transferred controls the

destination. The most—significant bit of the second byte must be

a ‘l’. The next four bits are ‘0’s, and the lowest three bits

make up the destination register number. The MODE input is high

for both byte transfers.

To rewrite the data for an internal register after a byte of data

has been loaded, the status register must be read so that

internal logic will accept the next byte as data and not as a

register destination. This situation may be encountered in

interrupt—driven program environments. Whenever the status of

VDP write parameters is in question, this procedure should be

used. Note that the CPU address is destroyed by writing to the

VDP register.

CPU WRITE TO VRAM
The CPU transfers data to the VRAM through the VDP using a 14—bit

autoincrementing address register. Two—byte transfers are

required to set up the address register. A one—byte transfer is

then required to write the data to the addressed VRAM byte. The

address register is then autoincremented. Sequential VRAM writes

require only one byte transfer since the address register is I
already set up. During setup of the address register, the two

most significant bits of the second address byte must be ‘0’ and

11t respectively. MODE is high for both address transfers and

low for the data transfer. CSW is used in all transfers to

strobe the 8 bits into the VDP. See Table 1

I

218

TABLE 1 — CPU/VDP DATA TRANSFERS

MSB BIT
7 6 5 4 3 2 1 0

WRITE TO VDP REGISTER
Byte 1 Data Write D7 D6 D5 D.l D3 D2 Dl DO 0 1
Byte 2 Register Select 1 0 0 0 0 R52 RS1 RS0 0 1

o i
o i
o i a

A7 A6 A5 AU A3 A2 Al 0 1
0 0 A13 Al2 All AlO A9 0 1
DY D6 D5 WI D3 D2 Dl 1 0 0

CPU READ FROM VRAM
The CPU reads data from VRAM through the VDP using the
autoincrementing address register. A one—byte transfer is then
required to read the data from the addressed VRAM byte. The
address register is then autoincremented. Sequential VRAM data
reads require only a one—byte transfer since the address register
is already set up. During setup of the address register, the two
most significant bits of the second address byte must be 0’s. By
setting up the address this way, a read cycle to VRAM is
initiated and read data will be available for the first data
transfer to the CPU. (See Table 1.) MODE is high for the
address byte transfers and low for the data transfers. The VDP
requires approximately 8 microseconds to fetch the VRAM byte
following a data transfer and 3 microseconds following address
setup.

VOP INTERRUPT
The VDP INT output pin is used to generate an interrupt at the
end of each active display scan, which is about every 1/50 second
(1/60 North America). The INT output is active when the interrupt
Enable bit CIE) in VDP register 1 is a ‘1’ and the F bit of the
status register is a ‘1’. Interrupts are cleared when the status
register is read.

OPERATION LSB CSW CSR MODE

WRITE TO VRAM
Byte 1 Address set up
Byte 2 Address set up
Byte 3 Data Write

A7 A6 AS AU A3 A2 Al AO
0 1 A13A12A11A1OA9 A8
D7 D6 D5 DB D3 D2 Dl DO

D7 D6 D5 WI D3 D2 Dl DO
READ FROM VDP REGISTER
Byte 1 Data Read

READ FROM VRAM
Byte 1 Address set up
Byte 2 Address set up
Byte 3 Data Read

CPU READ FROM VDP STATUS REGISTER
The CPU can read the contents of

0 1

AO
A8
DO

single—byte transfer. MODE is high for the transfer.
used to signal the VOP that a read operation is required.

the status register with
CSR

a
is

219

VDP/VRAM INTERFACE

The VOP can access up to 16,384 bytes of VRAM using a 14—bit VRAM

address. The VDP fetches data from the VRAM in order to process

the video image as described later. The VDP also stores data in

or reads in data from the VRAM during a CPU—VRAM data transfer.

The VDP automatically refreshes the VRAM.

VRAM INTERFACE CONTROL SIGNALS

The VDP—VRAM interface consists of two unidirectional 8—bit data

buses and three control lines. The VRAM outputs data to the VDP

on the VRAM read data bus (RDO—R07). The VDP outputs both the

address and data to the VRAM over the VRAM address/data bus (ADO—

AD7). The VRAM row address is output when RAS is active (low).

The column address is output when CAS is active (low). Data is

output to the VRAM when R/W is active (low).

WRITE—ONLY REGISTERS

The eight VOP write—only registers are shown in Table 2.

Registers 0 and 1 contain flags to enable or disable various VDP

features and modes. Registers 2 through 6 contain values that

specify starting locations of various sub—blocks of VRAM.

Register 7 is used to define backdrop and text colours.

VDP INITIALISATION

The VDP is externally initialised whenever the RESET input is

active (low) and must be held low for a minimum of 3

microseconds. The external reset synchronises all clocks with

its falling edge, sets the horizontal and vertical counters to

known states, and clears VOP registers 0 and 1. The video

display is automatically blanked since the BLANK bit in VDP

register 1 becomes a ‘0’. The VDP, however, continues to refresh

the VRAM even though the display is blanked. While the RESET

line is active, the VDP does not refresh VRAM.

220

PATTERN GENERATOR (c.n f. fl-uBASE ADDRESS

rc 4 = SLe cZ 4tr id, (kJ, CJ tJ4 rb4-1 tn,iL.)

Tj4 (aca,z’ 6,L,)
,c cj T.S{€ (bi t

,1-

crC Cr,4L -t01.- 1J-& (jycPd tnyL)

S I-4 9C N-c 1rJ,tC

z Vcck Nc—n< \SU (&tC4t’,L)
PJt

MSB< Bit —>LSBREGISTER 0 1 2 3 4 5 6
0 0 0 0 0 0 0 M3 EXJ
1 4/16K BLANK IE Ml M2 0 SIZE MAG
2 0 0 0 0 NAME TABLE BASE ADDRESS
3 < COLOUR TABLE BASE ADDRESS >
4 0 0 0 0 0

5 0 < SPRITE ATTRIBUTE TABLE BASE ADDRESS—>
6 0 0 0 0 0 SPRITE PATTERN

GENERATOR BASE
ADDRESS

7 <—TEXT COLOUR 1—> TEXT COLOUR 0/BACKDROP
COLOUR

STATUS F 55 C < FIFTH SPRITE NUMBER >READ ONLY

TABLE 2. VDP REGISTERS

MTX LA,

:C’ d’
ad’ ch 4’

c 4 a
(4,4)

In

(4’ cJ-&

221

The following is a description of each register:

REGISTER 0 contains two VDP option control bits. All other bits

are reserved for future use and must be ‘0’s.

BIT 6 M3 (mode bit 3).
BIT 7 External Video enable/disable

‘l’ enables external video input

‘0’ disables external video input

REGISTER 1 contains 8 VOP option control bits.

BIT 0 4/16k selection
‘0’ selects 4K RAM operation
‘l’ selects 16K RAM operation (MTX operation)

BIT 1 BLANK enable/disable
‘0’ causes the active display area to blank

‘l’ enables the active display
Blanking causes the display to show border colour only

BIT 2 IE (Interrupt Enable)
‘0’ disable VOP interrupt
‘1’ enable VOP interrupt

BIT 3,14 Ml, M2 (mode bits 1 and 2)
Ml, M2 and M3 determine the operating mode of the VDP:

Ml M2 M3
o o 0 Graphics I mode

0 0 1 Graphics II mode

0 1 0 Multicolour mode

1 0 0 Text mode

BIT 5 Reserved

BIT 6 Size (sprite size select)
‘0’ selects Size 0 sprites (8 x 8 bits)

‘1’ selects Size 1 sprites (16 x 16 bits)

BIT 7 MAG (Magnification option for sprites)

‘0’ selects MACC sprites (lx)
‘1’ selects MACi sprites (2x)

REGISTER 2 defines the base address of the Name Table sub—block.

The range on its contents is from 0 to 15. The contents of the

register form the upper U bits of the 14—bit Name Table

addresses; thus the Name Table base address is equal to

(register 2) * 400h.

222

REGISTER 3 defines the base address of the Colour Table sub—block. The range on its contents is from 0 to 255. The contentsof the register form the upper 8 bits of the 14—bit Colour Tableaddresses; thus the Colour Table base address is equal to(register 3) * 40h.

REGISTER 4 defines the base address of the Pattern, Text orMulticolour Generator sub—block. The range of its contents is 0through 7. The contents of the register form the upper 3 bits ofthe 14—bit Generator addresses; thus the Generator base addressis equal to (register 4) * 800h.

REGISTER 5 defines the base address of the Sprite Attribute Tablesub—block. The range of its contents is from 0 through 127. Thecontents of the register form the upper 7 bits of the 14—bitSprite Attribute Table addresses; thus the base address is equalto (register 5) * 80h.

REGISTER 6 defines the base address of the Sprite PatternGenerator sub—block. The range of its contents is 0 through 7.The contents of the register form the upper 3 bits of the 14—bitSprite Pattern Generator addresses thus the Sprite PatternGenerator base address is equal to (register 6) * 800h.

REGISTER 7 The upper 4 bits contain the colour code of colour 1in the Text mode. The lower 4 bits contain the colour code forcolour 0 in the Text mode and the backdrop colour in all modes.See Table 3 for colour codes.

STATUS REGISTER
The VOP has a single 8—bit status register that can be accessedby the CPU. The status register contains the interrupt pendingflag, the sprite coincidence flag, the fifth sprite flag, and thefifth sprite number, if one exists. The format of the statusregister is shown in Table 2. A discussion of the contentsfollows.
The status register may be read at any time to test the F, C, and55 status bits. Reading the status register will clear theinterrupt flag, F. Asynchronous reads will, however, cause theframe flag (F) bit to be reset and therefore missed.Consequently, the status register should be read only when theVOP interrupt is pending.

The F status flag in the status register is set to iT at the endof the raster scan of the last line of the active display. It isreset to a TO? after the status register is read or when the VDPis externally reset. If the Interrupt Enable bit in VDP register1 is active (Ti?), the VDP interrupt output (INT) will be active(low) whenever the F status flag is a ‘1’.

INTERRUPT FLAG (F)

223

‘I

COINCIDENCE FLAG (C)
The C status flag in the status register is set to a T if two

or more sprites “coincide”. Coincidence occurs if any two

sprites on the screen have one or more overlapping pixels.

Transparent coloured sprites, as well as those that are partially

or completely off the screen, are also considered. Sprites

beyond the Sprite Attribute Table terminator (D016) are not

considered. The ‘C’ flag is cleared to a ‘0’ after the status

register is read or the VDP is externally reset.

FIFTH SPRITE FLAG (53) AND NUMBER

The 53 status Flag in the status register is set to a ‘1’

whenever there are five or more sprites on a horizontal line

(lines 0 to 192) and the frame flag is equal to a ‘0’. The 53

status flag is cleared to a ‘0’ after the status register is read

or the VDP is externally reset. The number of the fifth sprite

is placed into the lower 5 bits of the status register when the

53 flag is set and is valid whenever the 55 flag is ‘1’. The

setting of the fifth sprite flag will not cause an interrupt.

The VDP operates at 262 lines per frame and approximately 60

frames per second in a non—interlaced mode of operation.

TABLE 3 — SCREEN DISPLAY PARAMETERS

PARAMETER PIXEL CLOCK CYCLES

HORIZONTAL PATTERN/MULTI COLOUR TEXT

Horizontal Active Display 256 240

Right Border 15 25

Right Blanking 8 8

Horizontal Sync 26 26

Left Blanking 2 2

Colour Burst lB 14

Left Blanking 8 8

Left Border 13 19

342 342

VERTICAL LINE

Vertical Active Display 192

Bottom Border 24

Bottom Blanking 3
Vertical Sync 3
Top Blanking 13

Top Border 27

262

224

Video Display Modes
The VDP displays an image on the screen that can best be
envisaged as a set of display planes sandwiched together. Figure
2 shows the definition of each of the planes. Objects on planes
closest to the viewer have higher priority. In cases where two
entities on two different planes are occupying the same spot on
the screen, the entity on the higher priority plane will show at
that point. For an entity on a specific plane to show through,
all planes in front of that plane must be transparent at that
point. The first 32 planes each may contain a single sprite.
(Sprites are pattern objects whose positions on the screen are
defined by horizontal and vertical co—ordinates in VRAM.) The
areas of the Sprite Planes, outside the sprite itself, are
transparent. Since the co—ordinates of the sprite are in terms
of pixels, the sprite can be positioned and moved about very
accurately. Sprites are available in three sizes: 8 X 8 pixels,
16 X 16 pixels, and 32 X 32 pixels. Behind the Sprite Plane is
the Pattern Plane. The Pattern Plane is used for textual and
graphics images generated by the Text, Graphics I, Graphics II,
or Multicolour modes. Behind the Pattern Plane is the backdrop,
which is larger in area than the other planes so that it forms a
border around them. The last and lowest priority plane is the
External Video Plane. Its image is defined by the external video
input pin. The backdrop consists of a single colour used for the
display borders and as the default colour for the active display
area. The default colour is stored in the VDP register 7. When
the backdrop colour register contains the transparent code, the
backdrop automatically defaults to black if the external video
mode is not selected.
The 32 Sprite Planes are used for the 32 sprites in the
Multicolour and Graphics modes. They are not used in the Text
mode and are automatically transparent. Each of the sprites can
cover an 8 X 8, 16 X 16, or 32 X 32 pixel area on its plane. Any
part of the plane not covered by the sprite is transparent. All
or part of each sprite may also be transparent. Sprite 0 is on
the outside or highest plane, and sprite 31 is on the plane
immediately adjacent to the Pattern Plane. Whenever a pixel in a
Sprite Plane is transparent, the colour of the next plane can be
seen through that plane. If, however, the sprite pixel is non
transparent, the colours of the lower planes are automatically
replaced by the sprite colour. There is also a restriction on
the number of sprites on a line. Only four sprites can be active
on any horizontal line. Additional sprites on a line will be
automatically made transparent for that line. Only those sprites
that are active on the display will cause the coincidence flag to
set. The VOP status register provides a flag bit and the number
of the fifth sprite whenever this occurs. The Pattern Plane is
used in the Text, Multicolour, and Graphics modes for display of
the graphic patterns of characters. Whenever a pixel on the
Pattern Plane is non—transparent, the backdrop colour is
automatically replaced by the Pattern Plane colour. When a pixel
in the Pattern Plane is transparent, the backdrop colour can be
seen through the Pattern Plane.

225

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_
_
_
_

E
X

T
E

R
N

A
L

V
ID

E
O

_

F
B

A
C

K
D

R
O

P
P

L
A

N
E

_
_
_
_
_
_
_
_
_
_
_

E

_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_

_
_
_
_

SP
R

IT
E

31

_
_
_
_
_
_
_
_
_
_
_
_
_
_

-J
S

P
R

IT
E

8

r
I

S
P

R
T

E
7

I—
I

JS
P

H
IT

E
6

I
j

_
_

_
_

_
_

_
_

_
_

_
_

_

J

SP
R

IT
E

SP
R

IT
E

4

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_

_
_

_
_

_
_

SP
R

IT
E

2

_
_
_
_
_
_
_
_
_

SP
R

IT
E

I

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

SP
R

IT
E

0

cE
N

I\
)

0•
’

P
T

,

IH 0 C r’) 0 0 1-
4

CD r ‘-
4

-C r p1

The VDP has four video colour display modes that appear on thePattern Plane: Graphics I mode, Graphics II mode, Text mode, andMulticolour mode. Graphics I and Graphics II modes cause thePattern Plane-to be broken up into groups of 8 X 8 pixels, calledpattern positions. Since the full image is 256 X 192 pixels,there are 32 X 214 pattern positions on the screen in the graphicsmodes. In Graphics I mode, 256 possible patterns may be definedfor the 768 pattern positions with two unique colours allowed foreach pattern definition. Graphics II mode provides, through aunique mapping scheme, 768 pattern definitions for the 768pattern positions. Graphics II mode also allows the selection oftwo unique colours for each line of a pattern definition. Thus,all 15 colours plus transparent may be used in a single patternposition. In Text mode, the Pattern Plane is broken into groupsof 6 X 8 pixels, called text positions. There are 110 X 24 textpositions on the screen in this mode. In Text mode, sprites donot appear on the screen and two colours are defined for theentire screen. In Multicolour mode, the screen is broken into agrid of 64 X ‘18 positions, each of which is a 4 X 4 pixel.Within each position, one unique colour is allowed.The VDP registers define the base addresses for several sub—blocks within VRAM. These sub—blocks form tables which are usedto produce the desired image on the TV screen. The Pattern NameTable, the Pattern Generator Table and the Sprite Generator Tableare used to form the sprites. The contents of these tables mustall be provided by the microprocessor. Animation is achieved byaltering the contents of VRAM in real time.
The VDP can display the 15 colours, plus transparent shown inTable 3. The VDP colours also provide eight different greylevels for displays on monochrome televisions; the luminancevalues in the table indicate these levels, 0.00 being black and1.00 being white. Whenever all planes are of the transparentcolour at a given point, the colour shown at that point will beblack.

227

TABLE 4. Colour Assignments

COLOUR COLOUR LUMINANCE CHROMINANCE

(HEX) (DC VALUE) (AC VALUE)

0 Transparent 0.00 —

1 Black 0.00 —

2 Medium Green .60 .60

3 Light Green .80 .53

4 Dark Blue .47 ,73

5 Light Blue .67 .60

5 Dark Red .53 .53

7 Cyan .80 .73

8 Medium Red .57 .73

9 Light Red .80 .73

A Dark Yellow .87 .53

B Light Yellow 1 .00 .40

C Dark Green .47 .60

D Magenta .60 .47

E Grey —
—

F White 1.00

Graphics 1 Mode

The VDP is in Graphics 1 mode when Ml, M2, and M3 bits in VDP

registers 1 and 0 are zero. In Graphics 1 mode the Pattern Plane

is divided into a grid of 32 columns by 24 rows of pattern

positions. Each of the pattern positions contains 8 x 8 pixels.

The table in VRAM is used to generate the Pattern Plane. A total

of 2848 VRAM bytes are required for the Pattern Name, Colour and

Generator tables. Less memory is required if all 256 possible

pattef-n definitions are not required. The tables can be

overlapped to reduce the amount of VRAM needed for pattern

generation.

The Pattern Generator Table contains a library of patterns that

can be displayed in the pattern positions. It is 2048 bytes

long, and is arranged into 256 patterns, each of which is eight

bytes long, yielding 8 x 8 bits. All of the ‘l’s in the eight

byte pattern can de3ignate one colour (colour 1), while all the

‘0’s can designate another colour (colour 0).

228

The full 8—bit pattern name is used to select one of the 256
pattern definitions in the Pattern Generator Table. The table is
a 20118—byte block in VRAM beginning on a 2 kilobyte boundary.
The starting address of the table is determined by the generator
base address in VDP register 4. The base address forms the three
most significant bits of the 14—bit VRAM address for each Pattern
Generator Table entry. The next 8 bits indicate the B—bit name
of the selected pattern definition. The lowest 3 bits of the
VRAM address indicate the row number within the pattern
definition.

Eight bytes are required for each of the 256 possible unique 8 x
8 pattern definitions. The first byte defines the first row of
the pattern, and the second byte defines the second row. The
first bit of each of the eight bytes define the first column of
the pattern. The remaining rows and columns are similarly
defined. Each bit entry in the pattern definition selects one of
the two colours for that pattern. A ‘1 ‘ bit selects the colour
code (colour 1) contained in the most significant four bits of
the corresponding colour table byte. A ‘0’ bit selects the other
colour code (colour 0). An example of pattern definition mapping
is provided below.

Row/byte Column Bit

012345 012311567

0 * * * * * 01111100

1 * 00000100

2 * * * * 00111100

3 * 00000100

4 * 00000100

5 * 00000100

6 * * * * * 01111100

7 00000000
I PATTERN I I—PATTERN DEFINITION

The colour of the ‘l’s and ‘0’s is defined by the Pattern Colour
Table that contains 32 entries each of which is one byte long.
Each entry defines two colours: the most significant 4 bits of
each entry define the colour of the ‘l’s, and the least
significant 11 bits define the colour of the ‘0’s. The first
entry in the colour table defines the colours for patterns 0 to
7; the next entry for patterns 8 to 15, and so on. (See Table 4
for assignments.) Thus, 32 different pairs of colours may be
displayed simultaneously.

229

The Pattern Name Table is located in a contiguous 768—byte block

in VRAM beginning on a 1 kilobyte boundary. The starting address

of the Name Table is determined by the 4—bit Name Tablebase

address field in VDP register 2. The base address forms the

upper four bits of the 14—bit VRAM address. The lower 10 bits of

the VRAM address are formed from the row and column counters.

Each byte entry in the Name Table is the name of or the pointer

to a pattern definition in the Pattern Generator Table. The

upper five bits of the eight—bit name identify the colour group

of the pattern. There are 32 groups of eight patterns. The same

two colours are used for all eight patterns in a group; the

colour codes are stored in the VDP Colour Table. The Colour

Table is located in a 32—byte block in VRAM beginning on a 64—

byte boundary. The table starting address is determined by the

8—bit Colour Tablebase address in VDP register 3. The base

address forms the upper eight bits of the 14—bit Colour Table

entry VRAM address. The next bit is a ‘0’ and the lowest 5 bits

are equal to the upper 5 bits of the corresponding Name Table

entries.

Since the tables in VRAM have their base addresses defined by the

VDF registers, a complete switch of the values in the tables can

be made by simply changing the values in the VDP registers. This

is especially useful when one wishes to time slice between two or

more screens of graphics.

When the Pattern Generator Table is loaded with a pattern set,

manipulation of the Pattern Name Table contents can change the

appearance of the screen. Alternatively, a dynamically changing

set of patterns throughout the course of a graphics session is

easily accomplished since all tables are in VRAM.

For textual applications, the desired character set is typically

loaded into the Pattern Generator first. The official US ASCII

character set might be loaded into the Pattern Generator in such

a way that the pattern numbers correspond to the 8—bit ASCII

codes for that pattern; e.g., the pattern for the letter “A”

would be loaded into pattern number 4116 in the Pattern

Generator. Next the Pattern Colour Table would be loaded up with

the proper colour set. To print a textual message on the screen,

write the proper ASCII codes out to the Pattern Name Table.

Images can be formed using the Pattern Plane. To display an

object of size 8 x 8 pixels or smaller, only one pattern would

need to be defined. To display a larger figure, the figure

should be broken up into smaller B x 8 squares. Then multiple

patterns can be defined, and the Pattern Generator and Pattern

Name Table set up appropriately. Note that rough motion of

objects requires merely updating entries in the Pattern Name

Table.

Ii

230

TABLE 5 Pattern colour table

BYTE No. PATTERN No.
0 0..7
1 8..15
2 16. .23
3 24. .31
4 32..39
5 40..47
6 48..55
7 56..63
8 64. .71
9 72. .79
10 80. .87
11 88. .95
12 96..103
13 104..111
14 112..119
15 120..127
16 128. .135
17 136. .143
18 144. .151
19 152..159
20 160..167
21 168..175
22 176. .183
23 184. .191
24 192..199
25 200. .207
26 208. .215
27 216. .223
28 224. .231
29 232. .239
30 240..247
31 248. .255

2848 VRAM bytes are required for the Pattern, Name,
Generator tables. Less memory is needed if all 256

ttern definitions are not required; the tables can be
to reduce the amount of VRAM needed for pattern

Graphics II Mode
The VDP is in the Graphics II mode when mode bits Ml = 0, M2 z 0,
and M3 = 1. The Graphics II mode is similar to Graphics I made
except it allows a larger library of patterns so that a unique
pattern generator entry may be made for each of the 768 (32 x 24)
pattern positions on the video screen. Additionally, more colour
information is included in each 8 x 8 graphics pattern. Thus two
unique colours may be specified for each byte of the 8 x 8
pattern. A larger amount of VRAM (12 kilobytes) is required to
implement the full usage of the Graphics II mode.

A total of
Colour and
possible pa
overlapped
generation.

231

Like Graphics I mode, the Graphics II mode Pattern Name Table

contains 768 entries which correspond to the 768 pattern

positions on the display screen. Because the Graphics 1 mode

pattern names are only 8 bits in length, a maximum of 256 pattern

definitions may be addressed using the addressing scheme

discussed in the previous section. Graphics II mode, however,

segments the display screen into three equal parts of 256 pattern

positions each, and also segments the Pattern Generator Table

into three equal blocks of 2048 bytes each. Pattern definitions

in the first third correspond to pattern positions in the upper

third of the display screen. Likewise pattern definitions in the

second and third blocks of the Pattern Generator Table correspond

to the second and third areas of the Pattern Plane. The Pattern

Name Table is also segmented into three blocks of 256 names each

so that names found in the upper third, reference pattern

definitions found in the upper 2048 bytes in the Pattern

Generator Table. Likewise the second and third blocks reference

pattern definitions in the second 20118 byte block and third 20118

byte block respectively. Thus, if 768 patterns are uniquely

specified an 8—bit pattern name will be used three times, once in

each segment of the Pattern Name Table. The Pattern Generator

Table falls on eight kilobyte boundaries and may be located in

the upper or lower half of 16K memory based on the MSB of the

pattern generator base in VDP register 4. The LSB’s must be set

to all ‘l’s.

The Colour Table is also 6144 bytes long and is segmented into

three equal blocks of 20118 bytes. Each entry in the Pattern

Colour Table is eight bytes which provides the capability to

uniquely specify colour 1 and colour 0 for each of the eight

bytes of the corresponding pattern definition. The addressing

scheme is exactly like that of the Pattern Generator Table except

for the location of the table in VRAM. This is controlled by the

loading of the MSB of the colour base in VOP register 3. The

LSBTs must be set to all ‘l’s.

Multicolour Mode
The VDP is in Multicolour mode when mode bits Ml = 0, M2 = 1 , and

M3 = 0. Multicolour mode provides an unrestricted 64 x 48 colour

square display. Each colour square contains a 4 x 4 block of

pixels. The colour of each of the colour squares can be any one

of the 15 video display colours plus transparent. Consequently,

all 15 colours can be used simultaneously in the Multicolour

mode. The Backdrop and Sprite Planes are still active in the

Multicolour mode.

The Multicolour Name Table is the same as that for the graphics

modes, consisting of 768 name entries. The name no longer points

to a colour list; rather colour is now derived from the Pattern

Generator Table. The name points to an eight—byte segment Of

VRAM in the Pattern •Generator Table.

232

Only two bytes of the eight—byte segment are used to specify thescreen image. These two bytes specify four colours, each colour
occupying a LI x LI pixel area. The four MSB’s of the first bytedefine the colour of the upper left quarter of the multicolourpattern; the LSB’s define the colour of the upper right quarter.The second byte similarly defines the lower left and rightquarters of the multicolour pattern. The two bytes thus map intoa 8 x 8 pixel multicolour pattern.

The location of the two bytes within the eight—byte segmentpointed to by the name is dependent upon the screen position
where the name is mapped. For names in the top row (names 0—31),the two bytes are the firt two within the groups of eight—byte
segments pointed to by the names. The next row of names (32—63)
uses the third and fourth bytes within the eight—byte segments.The next row of names uses the fifth and sixth bytes while thelast row of names uses the seventh and eighth. This seriesrepeats for the remainder of the screen.

The mapping of VRAM contents to screen image is simplified byusing duplicate names in the Name Table. Since the series ofbytes used within the eight—byte segment repeats every four rows,
the four rows in the same column can use the same name. Then the
eight—byte segment specifies a 2 x 8 colour square pattern on the
screen as a straightforward translation from the eight—byte
segment in VRAM pointed to by the common name.

When used in this manner, 768 bytes are still used for the Name
Table and 1536 bytes are used for the colour information in the
Pattern Generator Table (24 rows x 32 columns x 8 bytes/patternposition). Thus a total of 1728 bytes in VRAM are required. It
should be noted that the tables begin on even 1K and 2K
boundaries and are therefore not contiguous.

Text Mode
The VOP is in Text mode when mode bits Ml 1, M2 0, and 113 =
0. In the Text mode, the screen is divided into a grid of 40
text positions across and 211 down. Each of the text positions
contains six pixels across and eight pixels down. The tables
used to generate the Pattern Plane are the Pattern Name Table and
the Pattern Generator Table. There can be up to 256 uniquepatterns defined at any time. The pattern definitions are stored
in the Pattern Generator Table in VRAM and can be dynamically
changed. The VRAM contains a Pattern Name Table which maps the
pattern definitions into each of the 960 pattern cells on the
Pattern Plane. Sprites are not available in Text mode.

233

TEXT MODE NAME TABLE PATTERN POSITIONS
—- ——

/__

0 1 3839

40 41 78 79

ACTIVE DISPLAY AREA

880 881 918 gig

920 921 958 959
/

//

As in the case of the Graphics modes, the Pattern Generator Table

contains a library of text patterns that can be displayed in the

text positions. It is 2048 bytes long, and is arranged in 256

text patterns, each of which is eight bytes long. Since each

text position on the screen is only six pixels across, the least

significant 2 bits of each text pattern are ignored, yielding 6 x

8 bits in each text pattern. Each block of eight bytes defines a

text pattern in which all the ‘l’s in the text pattern take on

one colour when displayed on the screen, while all the loTs take

on another colour. These colours are chosen by loading VDP

register 7 with the colour 1 and colour 0 in the left and right

nibbles respectively.

In the Text mode, the Pattern Name Table determines the position

of the text pattern on the screen. There are 960 entries in the

Pattern Name Table, each one byte long. There is a one—to—one

correspondence between text pattern positions on the screen and

entries in the Pattern Name Table (40*24 960). The first 40

entries correspond to the top row of text pattern positions on

the screen, the next forty to the second row, and so on. The

value of an entry in the Pattern Name Table indicates which of

the 256 text patterns is to be placed at that spot on the Pattern

Plane. The Pattern Name Table is located in a contiguous 960—

byte block in VRAM beginning on a 1 kilobyte boundary. The

starting address of the name table is determined by the 4—bit

Name Table base address field in VDP register 2. The base

address forms the upper 4 bits of the 14—bit VRAM address. The

lower 10 bits of the VRAM address point to one of 960 pattern

cells. The name table is organised by rows. Each byte entry in

the name table is the pointer to a pattern definition in the

Pattern Generator Table. The same two colours are used for all

256 patterns; the colour codes are stored in VDP register 7.

As its name implies, the Text mode is intended mainly for textual

applications, especially those in which the 32 patterns per line I

in Graphics modes is insufficient. The advantage is that eight

more patterns can be fitted onto one line; the disadvantages are

that sprites cannot be used, and only two colours are available

for the entire screen. With care, the same text pattern set that

234 .4

is used in Text mode can be also used in Graphics I mode. This isdone by ensuring that the least significant 2 bits of all thecharacter patterns are ‘0’. A switch from Text mode to Patternmode, then, results in a stretching of the space betweencharacters, and a reduction of the number of characters per linefrom 40 to 32. As with the Graphics Modes, once a character sethas been defined and placed into the Pattern Generator, updatingthe Pattern Name Table will produce and manipulate textualmaterial on the screen.

The full 8—bit pattern name is used to select one of the 256pattern definitions in the pattern generator table. The table isa 2048—byte block in VRAM beginning on a 2 kilobyte boundary. Thestarting address of the table is determined by the generator baseaddress in VDP register 4. The base address forms the 3 mostsignificant bits of the 14—bit VRAM address for each PatternGenerator Table entry. The next 8 bits are equal to the 8—bitname of the selected pattern definition. The lowest 3 bits of theVRAM address are equal to the row number within the patterndefinition.

Eight bytes are required for each of the 256 possible unique 6 x8 pattern definitions. The first byte defines the first row ofthe pattern, and the second byte defines the second row. The twoleast significant bits in each byte are not used. It is, however,strongly recommended that these bits be ‘D’s. Each bit entry inthe pattern definition selects one of the two colours for thatpattern. A ‘1 ‘ bit selects the colour code (colour 1) containedin the most significant 4 bits of VOP register 7. A ‘0’ bitselects the other colour code (colour 0) which is in the leastsignificant 4 bits of the same VDP Register.

A total of 3005 VRAM bytes are required for the Pattern Name andGenerator Tables. Less memory is required if all 256 possiblepattern definitions are not required; the tables can beoverlapped to reduce the amount of VRAM needed for patterngeneration.

Sprites
The video display can have up to 32 sprites on the highestpriority video planes. The sprites are special animation patternswhich provide smooth motion and multilevel pattern overlaying.The location of a sprite is defined by the top left hand cornerof the sprite pattern. The sprite can be easily moved pixel bypixel by redefining the sprite origin. This provides a simple butpowerful method of quickly and smoothly moving special patterns.The sprites are not active in the Text mode. The 32 Sprite Planes
are fully transparent outside of the sprite itself.

The sub—blocks in VRAM that define sprites are the SpriteAttribute Table and the Sprite Generator Table. These tables aresimilar to their equivalents in the pattern realm in that theSprite Attribute Table specifies where the sprite appears on thescreen, while the Sprite Generator Table describes what thesprite looks like, Sprite Pattern formats are given in Table 5.

235

Since there are 32 sprites available for display, there are 32

entries in the Sprite Attribute Table. Each entry consists of

four bytes. The entries are ordered so that the first entry

corresponds to the sprite on the sprite 0 plane, the next to the

sprite on the sprite 1 plane, and so on. The Sprite Attribute

Table is 4*32 128 bytes long. The Sprite Attribute Table is

located in a contiguous 128—byte block in VRAM beginning on a

128—byte boundary. The starting address of the Attribute Table is

determined by the Sprite Attribute Table base address in VDP

register 5. The base address forms the upper seven bits of the 14

bit VRAM address. The next 5 bits of the VRAM address are equal

to the sprite number. The lowest 2 bits select one of the four

bytes in the Attribute Table entry for each sprite. Each Sprite

Attribute Table entry contains four bytes which specify the

sprite position, sprite pattern name, and colour.

TABLE 6 Sprite pattern formats

SIZE MAG AREA RESOLUTION BYTES/PATTERN

o o 8x8 single pixel 8

1 0 16x16 single pixel 32

o 1 16x16 2x2 pixels 8

1 1 32x32 2x2 pixels 32

The first two bytes of each entry of

determine the position of the sprite

byte indicates the vertical distance of the sprite from the top

of the screen, in pixels. It is defined such that a value of —1

puts the sprite butted up at the top of the screen, touching the

backdrop area. The second bytes describes the horizontal

displacement of the sprite from the left edge of the display. A

value of 0 butts the sprite up against the left edge of the

backdrop. Note that it is from the upper left pixel of the sprite

that all measurements are taken.

When the first two bytes of an entry position of a sprite are

overlapping the backdrop, the part of the sprite that is within

the backdrop is displayed normally. The part of the sprite that

overlaps the backdrop is hidden from view by the backdrop. This

allows the animator to move a sprite into the display from behind

the backdrop. The displacement in the first byte is partially

signed, in that values for vertical displacement between —31 and

o (E116 to 0) allow a sprite to “bleed in” from the top edge &f

the backdrop. Likewise, values in the range of 207 to 191 allow

the sprite to bleed in from the bottom edge of the backdrop.

Similarly, horizontal displacement values in the vicinity of 255

allow a sprite to bleed in from the right side of the screen. To

allow sprites to bleed in from the left edge of the backdrop, a

special bit in the third byte of the Sprite Attribute Table entry

is used, as described in a later paragraph.

the Sprite Attribute Table

on the display. The first

236

Byte 3 of the Sprite Attribute Table entry contains the pointer
to the Sprite Generator Table that specifies what the sprite
should look like. This is an B—bit pointer to the sprite patterns
definition, the Sprite Generator Table. The sprite name is
similar to that in the Patterns Graphic mode.

Byte 4 ot the Sprite Attribute Table entry contains the colour of
the sprite in its lower 4 bits (see Table 2 for colour codes).
The most significant bit is the Early Clock bit (EC). This bit,
when set to a ‘0’, does nothing. When set to ‘l’, the horizontal
position of the sprite is shifted to the left by 32 pixels. This
allows a sprite to bleed in from the left edge of the backdrop.
Values for horizontal displacement (byte 2 in the entry) in the
range 0 to 32 cause the sprite to overlap with the left hand
border of the backdrop.

The Sprite Generator Table is a maximum of 2048 bytes long
beginning on the 2 kilobyte boundaries. It is arranged into 256
blocks of 8 bytes each. The third byte of the Sprite Attribute
Table entry, then, specifies which eight byte block to use to
specify a sprite’s shape. The ‘1’s in the Sprite Generator cause
the sprite to be defined at that point;’O’s cause the transparent
colour to be used. The starting address of the table is
determined by the sprite generator base address in the VDP
register 6. The base address forms the 3 most significant bits
of the 14—bit VRAM address. The next B bits of the address are
equal to sprite name, and the last 3 bits are equal to the row
number within the sprite pattern. The address formation is
slightly modified for SIZE I sprites.

There is a maximum limit of four sprites that can be displayed on
one horizontal line. If this rule is violated, the four highest—
priority sprites on the line are displayed normally. The fifth
and subsequent sprites are not displayed on that line.
Furthermore, the fifth sprite bit in the VDP status register is
set to a ‘1’, and the number of the violating fifth sprite is
loaded into the status register.

Larger sprites than 8x8 pixels can be used if desired. The MAG
and SIZE bits in VDP register 1 are used to select the various
options. The options are described here:

MAGzO,SIZEtO: No options chosen
MAGz1,SIZEO: Eight bytes are still used in the Sprite Generator

Table to describe the sprite; however, each bit in the
Sprite Generator maps into 2 x 2 pixels on the TV
screen, effectively doubling the size of the sprite to
16 x 16.

MAGzO,SIZEr1: 31 bytes are used in the Sprite Generator Table to
define the sprite shape; the result is a 16 x 16 pixe)
sprite. Mapping is still one—bit—to—one pixel.
Same as MAG=0,SIZE=1 except each bit now maps into a
2 x 2 pixel area, yielding a 32 x 32 sprite.

MAG=1 ,SIZE=I

237

The VDP provides sprite coincidence checking. The coincidence

status flag in the VDP status register is set to a Ti? whenever

two active sprites have Ti? bits at the same screen location.

Sprite processing is terminated if the VDP finds a value of 208

(D016) in the vertical position field of any entry in the Sprite

Attribute Table. This permits the Sprite Attribute Table to be

shortened to the minimum size required; it also permits the user

to blank out part or all of the sprites by simply changing one

byte in VRAM.

A total of 2176 VRAM bytes are required for the Sprite Name and

Pattern Generator Tables. Significantly less memory is required

if all 256 possible sprite pattern definitions are not required.

The Sprite Attribute Table can also be shortened as described

above. The tables can be overlapped to reduce the amount of VRAM

required for sprite generation.

3’
238

7 SOUND GENERATOR

The Sound processor used in the MTX500 Series computers is theTexas Instruments SN76489A sound generator IC. This device is I/Omapped as follows:
Data is mapped to output port 6Strobe line is mapped to input port 3To write data to the device send valid data to output port 6 andthen strobe the data into the device by performing a dummy readfrom input port 3. The time interval between successive readsmust be at least 32 clock cycles (32 T—states).

SN76489A Pin—Out (Top view)

D5
06
07
READY
WE
OE
AUDIO
GND

DESCRIPTION

1—
2—
3—
4—
5—
6—

OUT 7
8—

H’6
n-is14
— 13
— 12
—11

— 10
—g

VCC
04
CLOCK
03
02
Dl
DO
N.C.

The SN76489A digital complex sound generator is an I2 L/BipolarIC designed to provide low cost torte/noise generationcapability in microprocessor systems. The SN76489A is a data busbased I/O peripheral.

RECOMMENDED OPERATING CONDITIONS

PARAMETER
MIN TYP MAX UNITS

Supply Voltage, VCC 4.5 5.0 5.5 VHigh Level Output Voltage, VOH (pin 4) 5.5 VLow Level Output Current, IOL (pin 4) 2 mAOperating Free—Air Temperature,TA 0 70 oC

•1

239

OPERATION

1 Tone Generators
Each tone generator consists of a frequency synthesis and an

attenuation section. The frequency synthesis section requires 10

bits of information (F9—FO) to define half the period of the

desired frequency (n). F9 is the most significant bit and FO is

the least significant bit. This information is loaded into a 10

stage tone counter, which is decremented at a N/16 rate where N

is the input clock frequency. When the tone counter decrements

to zero, a borrow signal is produced. This borrow signal toggles

the frequency flip—flop and also reloads the tone counter. Thus,

the period of the desired frequency is twice the value

of the period register.

The frequency can be calculated by the following:

N
f

32n

where N z ref clock in Hz
n 10 bit binary number

The output of the frequency flip—flop feeds into a four stage

attenuator. The attenuator values, along with their bit position

in the data word, are shown in Table 1. Multiple attentuation

control bits may be true simultaneously. Thus, the maximum

attenuation is 28 db.

TABLE 1 Attenuation Control

BIT POSITION

A3 A2 Al A0 WEIGHT

0 0 0 1 2 db
0 0 1 0 db
0 1 0 0 8 db
1 0 0 0 16 db
1 1 1 1 OFF

2 Noise Generator

The Noise Generator consists of a noise source and an attenuator.

The noise source is a shift register with an exclusive OH

feedback network. The feedback network has provisions to protect

the shift register from being locked in the zero state.

240

TABLE 2 Noise Feedback Control

FB CONFIGURATION

0 “Periodic” Noise
1 TTWhiteIT Noise

Whenever the noise control register is changed, the shiftregister is cleared. The shift register will shift at one offour rates as determined by the two NF bits. The fixed shiftrates are derived from the input clock.

TABLE 3 Noise Generator Frequency Control

BITS

NFl NFO SHIFT RATE

0 0 N/512
0 1 N/1O2
1 0 N/20148
1 1 Tone Generator 113 Output

The output of the noise source is connected to a programmableattenator as shown in figure II.

3 Output Buffer/Amplifier
The output buffer is a conventional operational amplifier summingcircuit. It sums the three tone generator outputs, and the noisegenerator output. The output buffer will generate up to l0mA.
LI CPU to SN76’IBgA Interface
The microprocessor interfaces with the SN76189A by means of the 8data lines and 3 control lines (WE, CE and READY). Each tonegenerator requires 10 bits of information to select the frequencyand 1 bits or information to select the attenuation. A frequencyupdate requires a double byte transfer, while an attenuatorupdate requires a single byte transfer.

If no other control registers on the chip are accessed, a tonegenerator may be rapidly updated by initially sending both bytesof frequency and register data, followed by just the second byteof data for succeeding values. The register address is latched onthe chip, so the data will continue going into the same register.This allows the 6 most significant bits to be quickly modifiedfor frequency sweeps.

5 Control Registers
The SN76LI89A has 8 internal registers which are used to controlthe 3 tone generators and the noise source. During all datatransfers to the SN76U89A, the first byte contains a three bitfield which determines the destination control register. Theregister address codes are shown in Table 4.

241

TABLE 4 Register Address Field

6 Data Formats
The formats required to transfer data are shown below.

Update Frequency (Two Byte Transfer)

7
< DATA >

0 X F9 F8 F7 F6 F5 F4

< SECOND BYTE >

Update Noise Source (Single Byte Transfer)

7 0
f <REG ADDR> <SHIFT—>

1 112 Ri RO X FB NFl NFO

Update Attenuator (Single Byte Transfer)

7 0
F <REG ADDR> < DATA >

P 112 Ri 110 A3 A2 Al

7 Data Formats
The microprocessor selects the SN76489A by placing CE into the
true state (low voltage). Unless CE is true, no data can occur.
When CE is true, the WE signal strobes the contents of the data
bus to the appropriate control register. The data bus contents
must be valid at this time.

The SN76489A requires approximately 32 clock cycles to load the
data into the control register. The open collector READY output
is used to synchronize the microprocessor to this transfer and 15

pulled to the false state (low voltage) immediately following the
leading edge of CE. It is released to go to the true statement
(external pullup) when the data transfer is completed.
The data transfer timing is shown below.

TONE 1 FREQUENCY
TONE 1 ATTENUATION
TONE 2 FREQUENCY
TONE 2 ATTENUATION
TONE 3 FREQUENCY
TONE 3 ATTENUATION
NOISE CONTROL
NOISE ATTENUATION

F <REC ADDR>

P 112 Ri

07
DATA—>

F3 F2 Fl P0

FIRST BYTE >

1

1

.1

242

CE-N

tpLL;

READY

tsu Ui .1

I I
I P

1

TABLE 5 Function Table

INPUTS OUTPUT

CE WE BEADY
L L L
L H L
H L H
H H H

*Thjs table is valid when the
device is:
Cl) not being clocked,
(2) is initialized by pulling

WE and CE high.

2113

FIGURE 1 . DATA TRANSFER TIMING

DO-fl? EEDK
FIRST BYTE SECOND BYTE

C

/

ID 07

II 06

12 05

13 04

IS 03

I 02

2 DI

3 00

5 WE

6 CE

READY

BLOCK DIAGRAM DESCRIPTION
This device consists of three programmable tone generators, a
programmable noise generator, a clock scaler, individual
generator attentuators and an audio summer output buffer. The
3N76’189A has a parallel 8 bit interface through which the
microprocessor transfers the data which controls the audio
output.

SN76489A BLOCK DIAGRAM

CI oc
flat

Atao,a
I gut

a
VCC Gna

241

L

8 MTX 500 SERIES MEMORY MAP

The paged memory map structure of the MTX Series computers hasbeen designed to operate in two modes.

1 ROM BASED (RELCPMH = 0)

ROMs are mapped from 0 to 3FFFh. The BK (2000h bytes) monitor ROMis always available in area 0 to 1FFFh and the paged ROMs of BK(2000h bytes) each are mapped from 2000h to 3FFFh as eight pages0 to 7 set by R2,R1,RO in the page port write only register. Upto 512K of RAM is mapped on 16 pages (0 to F) set up by P3,P2,P1and P0 in the page port write only register. The area C000h toFFFFh is a 16K (fl000h bytes) block common to all RAM pages. The32K (8000h bytes) block from 4000h to BFFFh is mapped as 16pages. The 32K bytes of RAM for an MTX500 is mapped from 8000h toFFFFh (page 0). The 64K bytes of RAM for an MTX512 is mapped fromLl000h to FFFFh (page 0). The additional 16K is mapped from 8000hto C000h on page 1

2 RAM BASED (RELCPMH 1)

All ROMs are switched out in this mode, and up to 16 pages of 48K(C000h bytes) are mapped from 0 to BFFFh. These pages are set byP3,P2,P1 and P0 in the write only page port register. In the areaC000h to FFFFh is a 16K block (U000h bytes) of RAM common to all

245

pages.

Write only page port register, output port 0.

0 2000 4000 8000 C000 FFFF

SYS—B0

1

2

3

4

5

6

MONITOR

A

SYS—C (128a) 512

(128c) (128b)

(128e) (128d)

DISC (128g) (128±’)

DISC (128h)

512 500/512 500/512

4000h

BYTES

COMMON

BLOCK

CART

0

1

2

3

4

5

6

7

8

g

A

B

C

D

E

[P3,P2,P1 ,P0

R2,R1 ,R0

(128K Add—on to
64K MTX512 shown
in brackets (a—h))

ROM BASED MEMORY MAP. BELCPMH 0

4

1

246

I

RAM BASED MEMORY
(128K Add—on to

MAP. RELCPMH =
64K MTX512 shown in

247

brackets (a—h)

0 4000

512 512

8000 C000 FFFF

512 512

400Th

BYTES

COMMON

BLOCK

(128a) (128b) (128c)

C128d) (128e) (1281’)

(128g) (128h)

0

1

2

3

4

5

6

7

8

9

A

B

C

0

E

33
I

,P2,P1 ,PO

9 INPUT/OUTPUT PORT SUMMARY

This section describes the MTX Series Port Map

OOh
INPUT
INCO) is used to set the printer STROBE (active low) to LOW. The
STROBE line is reset HIGH either on CPU RESET or by IN(4). In the
event of interrupt while STROBE is low it would be good practice
to reset STROBE within an interrupt routine extending over a
period of more than a few microseconds.

OUTPUT
OUT(O),d defines memory page. address. The bit map is as follows:

DO z P0
Dl P1
02 z P2
03 P3
04 z RO
D5 z Hi
06 R2
D7 z RELCPMH

Where the nibble P(i) defines the RAM page address, the 3 bit
R(i) defines the ROM page address and bit 1 defines a ROM based
system (D7 0) or a RAM based system (Dl z 1). The latch is
reset to 0 on CPU reset.

Oih
INPUT
IN(1),d VDP read (mode = 0) together with port 02 provide two
contiguous read/write ports for the VDP. See documentation on the
TMS9918 Series. Note z80 CPU address line Al is connected to mode
input.

OUTPUT
OUT(1),d VDP write (mode 0).

02h
INPUT
IN(2),d VDP read (mode = 1)

OUTPUT
OUT(2),d VOP write (mode = 1)

03h
INPUT
IN(3) This line is used as an output strobe into the sound
generator. After data has been latched into the output port (6)
data may be immediately strobed in using this line. A total of at
least 32 clock cycles must have elapsed before additional data
may be strobed in using IN(3).

248

OUTPUT
OUT(3),d This is the cassette output serial line. Valid data isplaced on DO. This data bit is latched and appears on thecassette output (MIC) after attenuation (_2OdB*VCC) and low passfiltering.

O4h
INPUT
IN(4),d This is a nibble port for monitoring the status of theCentronics type parallel printer port.

DO = BUSY active high handshake line
Dl ERROR active low
02 = FE paper empty active high
D3 = SLCT printer in selected state active high

OUTPUT
OUT(U),d Parallel 8 bit printer data. Valid data should belatched into this port. When status on IN(4) reads not BUSY andselected, then data should be strobed after a delay ofapproximately 1 microsecond using INCO) to force STROBE low.After a further delay of approximately 1 microsecond STROBEshould be forced high using INUO.

O5h
INPUT
IN(5),d This port is used to read the least significant 8 bitsfrom the ten bit sense line of the 8x10 keyboard matrix.

• 1n.Jc. , kk,
OUTPUT
OUT(5),d This latched port provides the 8 drive lines of the 8xlOkeyboard matrix. In,crLi9 S.* rtj,ttLJ O’ ki Lz d, ,4L. LL, L, I

r-.L,t

06h
INPUT
IN(6),d This port is used to read in the two most significant
sense lines (DO and Dl) of the 8xlO keyboard matrix. The two bitcountry code switch is read on 02 and D3. iJj 2J-

OUTPUT
OUT(6),d This port is used to provide latched data for the soundgenerator which is subsequently strobed using IN(3).

07h
INPUT
IN(7),d This is the input port for the uncommitted parallel input
output port (PlO). Data may be latched in for reading with an
active low pulse on the enable line, designated INSTB.

OUTPUT
OUT(7),d This is the output port of the PlO. It is a latched
output with tn—state output control using OTSTB.

2l9

08,09 ,OA, OBh
These are four contiguous read/write ports for the four channels
of the Z80A CTC.

08 chO input—VOPINT out—no connect
09 chi input—MHz/13 out—DART ser clock 0
OA ch2 input—11MHz/13 out—DART ser clock 1
08 ch3 input—CSTTE edge out—none

OC,OD,OE,OFh
These are four contiguous read/write ports for the DART.

OC chA data
OD chB data
OE chA control
OF chE control

Ports lOh to lEh are currently unused with lFh reserved for
cassette remote control.
Port addresses 20h upwards will be available as off—board 1—0

ports in the disc expansion units.

I.,

6

L___

.01 I -
I 5 1 —

---t--- -

2 4- 7 0

__ __—____

ft N 1 F
-

C’

r I

C 4 LOCK r I 1%

C1

\ Psc- 5,2k

&OL r

a
L
a
t
a
C

I_I a
C.
C
C

C
a

C
C
C

U
C

a

c

---4

Hi

_

&

Vx

C-— Q&i. Fl

F,

C 9

-..--

) {tHIFt? j_
— I

• J

1NS :cLs cencsl r4
-i-_i

A

e- ndLj
F

250

10 PARALLEL PRINTER INTERFACE

STROBE 1 19 OV
DATA12 200V
DATA23 21 OV
DATA34 220V
DATA45 230V
DATA56 240V
DATA67 J6 250V
DATA78 260V
DATA89 270V
NC 10 28 DV
BUSY 11 29 OV
PE 12 300V
SLCT 13 31 NC r-Ct
NC 14 32 ERROR
NC 15 33 OV
OV 16 34 NC
OV 17 35 NC
(NC 18 36 NC)

C
U

t
C

C

U
C
a
I

C
C
U
a
C

a,
a,

a

MTXSOO Series Centronics Type Parallel Printer I/F Connector
34—Way (17+17) Right Angle Header Plug

C

C
I-

a
a
C

a,a’

a

251

11 PARALLEL INPUT/OUTPUT PORT

This is an uncommitted TTL compatible PlO and uses port 7, and is
available on an internal 20 pin DIL socket. The port is normally
transparent but input data may be latched by taking INSTB to a
logic low. The output port is normally tn—state but may be made
active by taking OTSB to a logic low. Only TTL compatible signals
may be used. The 5V current drain must not exceed 2OmA.

POT 0 <————1 20————> POT 1
POT 2 <————2 19————> POT 3
POT 14 <————3 18————> POT 5
POT 6 <————4 J7 17————> POT 7
OTSTB <————5 16————> OV
PIN 0 <————6 8C 15————> PIN 1
PIN 2 <————1 14————> PIN 3
PIN 4 <————8 13————> PIN 5
PIN 6 <————9 12————> PIN 7
INSTB <———10 11————> +5V

252

12 MEMOTECH DMX8O PARALLEL PRINTER CONNECTOR

19
20
21
22
23
24
25
26
27
28
29
30

SIGNAL

STROBE
DATA 1
DATA 2
DATA 3
DATA 4
DATA 5
DATA 6
DATA 7
DATA 8
ACKNLG
BUSY
PE
SL CT
AUTO FEED
NC
CHASSIS—GND
NC
GND
INIT
ERROR
GND
NC

SLCT—IN

DIRECTION

IN
IN
IN
IN
IN
IN
IN
IN
IN
OUT
OUT
OUT
OUT
IN

Printed in Great Britain by Butler and Tanner Ltd, Frome and London

RETU RN
PIN No.

SIGNAL
PIN No.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
18
1 9—30
31
32
33
34
35
36

XT

IN
OUT

IN

253

MEMOTECH
Memotech Limited, Witney, Oxon 0X8 6BX

