
For the

MEMOTECH MTX Series

MTX Tape to Disc Conversion Booklet

by

AFW Software

 AFWDOC 01

 MTX Tape to Disc Conversion Booklet

 The Memotech computer range is gifted with a variety of disc
 systems,ie 250k,500k,1000k capacities,on 5.25" or 3.5" (1000k
 only) and three disc operating systems,MTX SDX Basic,MTX FDXB &
 SDXB3,and CP/M. As you can see this causes problems for
 small buisnesses as it is too expensive to cater for everyone.
 The tape medium is a no-go area as this suffers from loading
 problems,brought about by the great number of tape recorders on
 the market. This is why I settled for the paper medium,as it is
 accessible to everyone. It also has the advantage of teaching
 users about the system,unlike programs which do most of the work.

 This booklet ,not only gives a sample of the tape to disc
 conversions but also trains you the user ,to convert other games
 not included in this booklet. I also have included a PANEL
 utility extension for Z80 users,however,since I wrote this
 booklet,I have greatly improved the PANEL utility,see Popular
 Computing Weekly,issue 25 & 26 (correction) vol 6.

 This booklet shows you how to autosave/run 9 commercial tape
 games. I tried to select a wide range of the more popular
 software houses,as hopefully,other programs in there range will
 also be easily converted to disc.

 I have also included a third Appendix,which deals with CP/M tape
 to disc conversion. And for those people starved of reading
 material for the Memotech,then appendix 4 is for you.

 For FDX owners,who in FDXB disc basic want the full 64k to play
 with, should contact , UK Home Computers ,as they sell a small
 board,called a V-ROM. This V-ROM,contains an eprom with the SDX
 Disc Basic Operating System. This means that FDX Disc users can
 access SDX programs like Memosketch (graphics program) and EDASM
 (macro assembler). It also means that FDX users can run MTX 512
 games from disc.

 Hisoft (the old school,Greenfield,Bedford,MK45 5DE) sell a
 number of excellent language programs and utilities,like,PASCAL
 ,C,DEVPAC80,Microsoft BASIC,Fortran,etc on Memotech CPM 2.2
 disc format. They also provide a disc conversion facility,which
 costs #10+vat.

 At present Amstrad PCW programs are by far the cheapest available.
 A great number of the more popular CPM 2.2 programs like DBASE II
 are available on PCW 3" format for #100.The equivalent Memotech
 version costs #300. It should be possible to get Hisoft to convert
 this to Memotech format. To do this check to see the program to be
 converted is CPM 2.2 compatible and that it can run on a Televideo
 computer system. The software dealer will be able to tell you this
 from the program manual. If the program meets these conditions send
 the original disc plus #10+VAT and your disc type to Hisoft for
 conversion. The disc type is C:03 for 500k 5.25",C:07 for 1MB
 5.25",and D:03 for 3.5" 1MB,all CPM.

 AFWDOC 02

 The Index

 Chapter one : MTX TOKENS pages 03 - 08

 Chapter two : MTX DISGUISE pages 09 - 14

 Chapter three : MTX RECOVER pages 15 - 18

 Appendix 1.0 : PANEL UTILITY pages 19 - 21

 Appendix 2.0 : WORKED EXAMPLES for SDX and pages 22 - 27
 FDX (with V-ROM) Users

 Appendix 3.0 : WORKED EXAMPLES for CP/M Users pages 28 - 35

 Appendix 4.0 : References and User Groups pages 36 - 37

Copyright Notice

 Information enclosed within is free from the authors claim.

Disclaimer

 Every effort has been made to guard against errors and the author
 cannot be held responsible for any errors or omissions or damage
 resulting from the use of the information within this reference
 manual. Every effort has been made to avoid infringing copyright
 holders from any source material the author may have read. Please
 advise the author of any unintentional infringements or issues as
 soon as possible for correction &/or acknowledgement.

 You MUST own a legal copy of the MTX tape software to convert to
 disc for your own personal use.

Trademarks

 The following references &/or trademarks are acknowledge:

 MTX - Memotech Computers Ltd
 CPM - Digital Research
 ASCII - American Standard Code for Information Interchange
 ZX Spectrum - Sinclair Research
 Commodore 64 - Commodore Business Machines
 BBC 'B' - British Broadcast Corporation and Acorn

 AFWDOC 03

 CHAPTER ONE: MTX TOKENS

 Have you have wondered how the Memotech stores a line of BASIC in
 memory? or how it keeps track of this and other lines in BASIC?

 1.0 Introduction

 Memotech BASIC,like most other forms of BASIC dialects,is made up
 of a series of commands or keywords,like PRINT,CLEAR,etc. The
 Memotech,like the ZX Spectrum,the Commodore 64 and BBC 'B'
 microcomputers,assign each BASIC keyword,a specific number or
 Token ,usually between 128 (#80) and 255 (#FF),see Table 1,see
 last page of this chapter. For example the token for keyword REM
 is 128. Note that,not all BASIC dialects use the same numbers or
 even the same keywords.

 Long before,the high level language ,BASIC,was invented,another
 token type system was adopted. This is still one of the rare
 occasions, whereby,virtually all computer manufactures have
 adopted,the ASCII (American Standard Code for Information
 Interchange) system. See appendix 1 ,page 174 of the Memotech
 Manual,for the tokens and there meanings. As you will soon
 realise,ASCII,uses codes 0 to 127,and therefore it was logical to
 start the BASIC keyword token system from 128 to 255. The reason
 for the 0 to 255 range,is that most computers in those days,were
 based on 8-bit technology,and still are today.

 BASIC like the majority of high level languages,is greedy on
 memory and in the early days when,memory was
 expensive,programmers developed the Token system,to alleviate
 these memory constraints. I will give worked examples,in order
 to demonstrate,how the token system works and ways of pinching a
 few extra bytes from the BASIC interpreter.

 Please note,it would be advantageous to read up on PANEL and its
 commands. For more information,refer to references below and see
 Appendix 1.0 of this booklet.

 1.1 Tokenising

 The Memotech Operating System,MTXOS,lies between you and the
 BASIC Interpreter. When data is inputted via the keyboard,the
 information is collected together by an IN/OUT handler in the
 MTXOS,which distributes the information to:

 a) the Visual Display Unit,VDU,or the Printer.

 b) the Command Handler and/or Statement Handler, have to
 decide whether to insert the data into the BASIC program or
 to execute the line of BASIC immediately.

 (1) MTX Manual,by B.Pritchard,pages 133 & 161.
 (2) Memopad,vol 1,issue 4.
 (3) Popular Computing Weekly,vol 6,issues 25 & 26

 AFWDOC 04

 Distribution a) is basically a simple relay device,as it is
 echoing what is typed at the keyboard (input device) to the
 screen or printer (both output devices).

 However, distribution b) has to check the incoming data against a
 set of guidelines. These guidelines or rules help to break down
 the data into components more easily recognisable by the BASIC
 Interpreter. There are a number of rules governing "TOKENISING".

 When a line of text is typed at the keyboard,the MTXOS,checks
 address #FA83/4 (or 64131),in the system variables to see where
 to store it. This memory location tells the MTXOS that the
 keyboard buffer is located in RAM,starting at 64331. See
 reference (4) for more information on System Variables. From here
 ,the command handler sends the line to the tokeniser,so that any
 commands can be changed to the correct TOKEN. This involves
 looking through the line and replacing occurrences of keywords or
 their abbreviations,ie P. for PRINT,in the line by a single byte
 "TOKEN",with a value between 128 and 255,see table 1. Tokenising
 keywords has a two-fold effect:

 1) it saves memory,ie GENPAT would require 6 bytes of memory but
 when tokenised, only uses up one byte,a saving of 5.

 2) it speeds up programs considerable,because the BASIC
 Interpreter easily recognises the keywords and can therefore
 execute the command faster.

 1.2 Tokenising & Benchmarks

 A number of computer magazines,in particular PCW and BYTE,use a
 series of benchmarks to test the performance of the BASIC
 Interpreter provided in microcomputers. These benchmarks,test
 things like maths,FOR-NEXT loop,etc. Each test is repeated about
 1000 times,so that a stopwatch can be used to time them. This
 repetition involves:

 10 count=0
 20 REM start
 30 REM benchmark inserted here
 40 let count=count+1
 50 IF count<1000 then GOTO 30
 60 PRINT "END,stop timing"

 For example,BBC BASIC has an average time of ca. 14 secs over 8
 benchmarks,whilst the Memotech is timed at 18 secs,which is
 pretty good (note that the Spectrum takes about 50 secs). The BBC
 BASIC Interpreter,has a more extensive TOKEN system. Not only
 does it tokenise keywords,but it tokenises the line numbers after
 GOTOs and GOSUBs. This speeds up interpretation,and can account
 for a few seconds over a repetition cycle of 1000 GOTOs. The
 Memotech Interpreter on the otherhand stores the line numbers of

 (4) New Memotech Operators Manual by S.Bateson,pages 204-213.
 (5) Z80 Assembly Language Programming by M.C.Moore,chapter 1.
 (6) Acorn/BBC BASIC ROM user guide by M.Plumbley.

 AFWDOC 05

 GOTOs and GOSUBs in the ASCII format. For example,GOTO 1000. The
 number 1000 is stored as 4 ASCII bytes rather than the tokenised
 form of two bytes (LSB/MSB) for any number. When the Memotech
 program is run,the interpreter has to decode these ASCII bytes
 into machine code,and this takes time.

 1.3 Memory Reset

 Before,working through a number of examples of how the Memotech
 stores BASIC,in memory,using techniques like tokens,the problem
 of clearing memory has to be discussed. The Memotech,can be RESET
 in three ways:

 1) Switch off computer and switch on again,or the on/off
 approach.

 2) Press the two keys either side of the space bar,or Warm Reset

 3) Finally,type NEW <RET>.

 Approach 1), wips RAM (Random Access Memory) totally clear,and
 on switch on, performs a RST #00. This resets all the system
 variables and loads either #4000 to #4007 or #8000 to #8007,
 depending on the memory configuration with the numbers 8 to 1.

 Approach 2),performs the RST #00,except that none of the actual
 user RAM is affected apart from the first 8 bytes. This has the
 effect of overwriting the first line of BASIC in the program you
 have just reset,see later for more on this. But,the rest of the
 program is still resident in memory,although invisible to
 BASIC,because the system variables were reset.

 Approach 3),only resets part of the system variables,ie the part
 which stores details about BASIC,and overwrites the first 8 bytes
 of user RAM as well.See references (4),(5) and (6) for programs
 which allow you to recover NEWed or RESET programs. Remember
 these approaches for subsequent sections.

 1.4 Single Statement Lines

 A single statement line is simply,one line of BASIC with one
 command or keyword. The simplest,command is probably REM,as this
 is the easiest to demonstrate. Note that ,the keyboard,has been
 configured as an input device with each character on the keyboard
 translated into the appropriate,ASCII code. However,the Function
 keys,are not catered for by the ASCII system. Memotech have
 mapped,codes 128 to 143,as the Function keys. As you can see from
 Table 1,these codes have also been assigned to keywords REM to
 DATA. Therefore,if you press <F1> followed by <RET>,the keyword
 REM should be displayed and it is.

 (7) Memopad,vol 1,issues 7 & 8.
 (8) Popular Computing Weekly,vol 6,issue 21,pages 22 & 23.
 (9) M.O.C.,vol 3,issue 7

 AFWDOC 06

 Now type in the BASIC listing below:

 listing 1 :

 10 REM

 To see how the BASIC Interpreter stores this in RAM,invoke the
 built-in monitor/disassembler with PANEL <RET>. Now press D for
 display and enter 4000 <RET>. Note that if you have a MTX
 500,then change all references of `4' to `8'. You are interested
 only in the memory or HEX block at the bottom of the screen. This
 block should now have updated from 0000 to 4000 (or 8000). The
 memory location and its contents should also be shown at the
 bottom of the screen,see figure 1.

 Figure 1 : Screen dump of the HEX block of PANEL.

 3FF0: not of interest
 3FF8: not of interest
 4000: 06 00 0A 00 80 FF 08 01
 4008: FF FF FF FF FF FF FF FF
 4010: FF FF FF FF FF FF FF FF
 4018: FF FF FF FF FF FF FF FF

 4000 06

 To avoid changing the contents of location 4000,as PANEL is in
 EDIT mode,press the <BRK> key. Instead of 4000 to
 4007,containing the numbers 08 to 01 at switch on,the BASIC
 interpreter has used these to store line 10. As you can see,7
 bytes have been used by the interpreter to store line 10. In
 actual fact the seventh byte,tells the interpreter where to store
 the next line of BASIC and isn't really part of line 10. Note
 that the eighth byte,01 is left over from the RST #00. The 6
 bytes used to represent line 10 mean:

 0600 = The number of bytes used to describe line 10 in HEX.
 0A00 = These two bytes are the line number in HEXADECIMAL. The
 line number is stored in the LSB/MSB format,see ref (5).
 Therefore,on the Memotech,line numbers can be in the
 range 0 to 65535.
 80 = This is 128 in decimal and represents the token for the
 keyword REM.
 FF = This is a marker used by the BASIC interpreter. It is used
 to indicate the end of the BASIC line.

 If you now increase the size of the example program to listing 2:

 10 REM
 20 GOTO 1

 The BASIC interpreter updates RAM to accommodate the new line. As
 you can see from figure 2,line 20 has been inserted into RAM at

 AFWDOC 07

 #4006,after the line 10 end of line marker. As before,the first 5
 bytes of the new code represents the line length,number and
 keyword token. This is the standard format of all new lines.

 Figure 2: The HEX dump of listing 2.

 4000: 06 00 0A 00 80 FF 07 00
 4008: 14 00 96 31 FF 08 FF FF
 4010: FF FF FF FF FF FF FF FF
 4018: FF FF FF FF FF FF FF FF

 But what is #31 ? If you look up page 174 of your Manual,and goto
 #31 or 49 decimal,you will see this represents the number ONE. If
 you were to change line 20,using EDIT 20 <RET>,to GOTO 100,then
 the new memory dump for line 20 would change

 FROM : 07 00 14 00 96 31 FF = GOTO 1
 TO : 09 00 14 00 96 31 30 30 FF = GOTO 100

 As mentioned earlier in section 1.2,the Memotech BASIC
 interpreter doesn't tokenise the line numbers after GOTOs and
 GOSUBs. But rather stores them as ASCII bytes. Apart from the
 increased memory usuage,the program speed is reduced because of
 ASCII decoding to machine code,which is longer the than line
 number token decoding to machine code. Therefore to speed up
 programs and save a few extra bytes,store subroutines at low line
 numbers,ie GOSUB 10 instead of 40000.

 1.5 Multistatement Lines

 Take the example given in listing 3,and its resulting memory
 data. This is a special case whereby the Memotech BASIC
 interpreter,only tokenises the REM keyword. The other keywords
 are stored as ASCII bytes. However,all other keyword combinations
 are stored in the tokenised format. For Example try the following:

 10 VS 5:PAPER 4:INK 1

 Note that reference (11),shows you how to speed up
 programs by at least 30%,which is a big increase.

 listing 3:

 10 REM:GOTO 1

 memory data : 0D 00 0A 00 80 3A 47 4F 47 4F 20 31 FF => 13 bytes
 13 10 REM : G O T O sp 1 end

 where sp=space.

 Note that if you are interested in writing your own BASIC
 interpreter or compiler, then reference (10) is essential reading.

 (10) Writing Interactive Compilers & Interpreters,P.J.Brown
 (11) Faster Basic,Popular Computing Weekly,v6,issue 30,page 23.

 AFWDOC 08

 Table 1: This is a list of the main keywords as used by MTX BASIC
 and their corresponding token numbers and ROM addresses.
 Note that MTX BASIC,is stored on ROM C,on page 1. This
 means you have to copy ROM C to RAM,then disassemble
 with PANEL,see reference (12 & 13).

 TOKEN KEYWORD ROM Address (in decimal)

 128 (#80) REM 10154
 129 (#81) CLS 05525
 130 (#82) ASSEM 10116
 131 (#83) AUTO 02567
 132 (#84) BAUD 03384
 133 (#85) VS 05622
 134 (#86) CONT 10119
 135 (#87) USER 64137
 136 (#88) CRVS 05610
 137 (#89) CLEAR 10235
 138 (#8A) CLOCK 10996
 139 (#8B) ATTR 05602
 140 (#8C) COLOUR 05555
 141 (#8D) INK 05507
 142 (#8E) CSR 05507
 143 (#8F) DATA 10154
 144 (#90) PRINT 11144
 145 (#91) DIM 10295
 146 (#92) ADJSPR 05563
 148 (#94) NEXT 10865
 149 (#95) FOR 10343
 150 (#96) GOTO 10383
 151 (#97) GOSUB 10396
 152 (#98) INPUT 10460
 153 (#99) IF 10593
 156 (#9C) LET 10714
 158 (#9E) LOAD 10990
 159 (#9F) LPRINT 10870
 163 (#A3) NEW 00517
 164 (#A4) PAPER 05514
 165 (#A5) NODDY 11076
 166 (#A6) ON 11087
 167 (#A7) OUT 02557
 169 (#A9) PANEL 11256
 170 (#AA) GENPAT 05539
 172 (#AC) PHI 05642
 173 (#AD) POKE 11266
 174 (#AE) RAND 11273
 175 (#AF) RETURN 11281
 176 (#B0) READ 11380
 177 (#B1) VIEW 05594
 178 (#B2) RESTORE 11404
 180 (#B4) RUN 11439
 181 (#B5) SAVE 11011
 194 (#C2) CODE

 (12) Memotech Memory,YOUR COMPUTER,March 1984,page 99.
 (13) Memory Map,Memopad,vol 1,issue 1,page 20.

 AFWDOC 09

 CHAPTER TWO: MTX DISGUISE

 In this chapter,the discussion centres on the four criteria for
 copy protection.

 2.0 Disable the Break Key

 This can easily be done from BASIC: POKE 64862,13

 Disabling the break key is just as
 simple in Z80 assembly language: LD A,13
 LD (INTFFF),A

 Note that INTFFF is a system variable,used by the MTXOS,to keep
 track of a number of specific tasks. INTFFF is an one byte memory
 location at #FD5E or 64862. Every 125th of a second,the Z80
 interrupts the BASIC Interpreter,checks memory location #FD5E,to
 see if any routine or USER specified routines are to be executed
 before returning to the BASIC interpreter. The INTFFF byte is
 responsible for the following checks:

 BIT 0: Routine for continuous sound.
 1: Break key enabled/disabled.
 2: Keyboard auto-repeat enabled/disabled.
 3: Cursor flash & Sprite movement enabled/disabled.
 4: bits 4-6,are used to indicate that the keyword USER has
 5: been enabled/disabled.
 6:
 7: The clock bit is toggled every 125th of a second.

 The only bit of interest to you at the moment is bit 1,but for a
 fuller description refer to references (4,5,14). On the
 Memotech,the break key,<BRK>,is disabled by resetting bit 1 to
 zero. Note that,the other 3 lower bits are enabled,and bits 4-6
 are disabled as you haven't defined a USER command yet.
 Remember,bit 7,toggles on and off every 125th of a second on the
 Memotech.

 BIT : 0 1 2 3 4 5 6 7
 VALUE : 1 0 1 1 0 0 0 0/1 = 13 or 141

 When disabling the <BRK> key,it is easier to remember 13. When
 writing programs,it is more convenient to include the <BRK> key
 disable at the start of the program code or to include it in a
 BASIC header,as used by Continental Software.

 (14) Memopad,vol 1,issue 2,page 40.

 AFWDOC 10

 2.1 Invisible BASIC

 2.1.0 Introduction

 On the ZX Spectrum,some companies used the following one liner
 to try and disguise the BASIC loader,which contained details of
 where the machine code was loaded and where it auto-ran from:

 10 INK 7:PAPER 7:BORDER 7

 This had the effect of producing a blank white screen when
 listed,as the INK and PAPER colours were the same,simple and
 sometimes effective. Nowadays,most up and coming HACKERS,pounch
 on protection techniques like these. However,the approach used by
 some Memotech software houses is much more igneous. Listing 4
 below,demonstrates this approach.

 Listing 4:-

 1 CODE

 LD HL,#FAA4 ;point to TOP of NODDY,system varaible.
 LD DE,#FAA5 ;where to start copying to.
 LD BC,#000C ;11 bytes to be cleared.
 XOR A ;clear register A.
 LD (HL),A ;reset system variable.
 LDIR ;reset the next 11 variables as well.
 LD HL,#FA9E ;point HL,to start of FEXPAND.
 LD (HL),#C7 ;jump to #0000,before defaulting to PANEL.
 RET ;Return to BASIC.

 Switch the computer off then on again,then type in listing 4.
 Once this has been typed in successfully,enter PANEL <RET>. Press
 D 4000 <RET> (or 8000 on a MTX 500),followed by <BRK>,to avoid
 overwritting the code at #4000. If you now list the code just
 entered,ie press L 4007 <RET>,the listing above should be
 displayed at the top left hand side of the PANEL screen. Note
 that the code between #4000 and #4006 is the TOKEN,line number
 and length,see chapter 0ne.

 To understand how this short routine works requires a brief
 understanding of how the BASIC Interpreter keeps track of the
 BASIC program in memory and a brief description of the Memory
 Map.

 2.1.1 The Memotech Memory Map

 The Memotech memory is mapped as follows:

 ROM-A or the Monitor ROM contains the operating system and the
 default system variables,and all RST commands are held in ROM-A.
 The RST #10,is used to access the extensive graphics commands.

 AFWDOC 11

 RST #28,handles number crunching,etc. At startup,ROM-A is loaded
 into RAM at #0000-#1FFF.

 ROM-B,or the Front PANEL ROM contains all the code for the built-
 in Z80 assembler,disassembler,monitor and handles all the
 graphic/RST 10 commands which start at #2E71 in RAM. This is
 loaded into RAM at #2000-#3FFF.

 ROM-C,or the BASIC ROM contains the code to check program
 syntax,BASIC,etc. The Memotech,uses a ROM paging system. This
 system,reserves RAM,#0000-#1FFF for the Monitor ROM-A,on
 all available 8 pages,see references (12,15 & 16). However,RAM
 #2000-#3FFF,is used for other ROMs,like BASIC,PASCAL,SDX
 BASIC,etc. What happens is that you invoke the ROM you want with
 the ROM n command,where n=0 to 7. This initialises the ROM and
 loads it into RAM at #2000. Whenever,BASIC,is run,ROM-C and ROM-
 B,are interchanging where necessary,to run the program.

 RAM is also paged. Of which BASIC grabs RAM at #C000-#FA51 as
 workspace for calculations,arrays,variables,etc,see reference
 (11). Please note that any code stored here will be
 overwritten,only when you are using BASIC . RAM at #FA52 through
 to #FFFF is used to store all the system variables. The default
 system variables are stored on ROM-A,and relocated in high RAM,at
 startup.

 RAM from #4000 to #BFFF,is reserved for the user. This part of
 RAM is paged like #2000-#3FFF,except that 16 pages of 32k are
 available to the user or 512k of RAM. The MTXOS and the BASIC
 Interpreter,don't invade this part of RAM as it is reserved for
 BASIC or Assembly language programs.See references (12,15 & 16)
 for a graphical approach to memory.

 2.1.2 Keeping Track of BASIC

 Returning to the example in listing 4;enter PANEL <RET> and press
 D FAA4 <RET>,followed by <BRK>. The information located between
 #FAA4 and #FAAF,12 bytes in all,are used by the BASIC Interpreter
 to keep track of the current BASIC program. Figure 3,gives a
 brief description of the 12 program status variables.

 Figure 3: Twelve program status variables for keeping track of
 BASIC within RAM. Note that the highlighted memory
 locations are stored in LSB/MSB format.

 FAA4 & FAA5 : 1B 40 : Keeps track of the TOP of NODDY.
 FAA6 : 00 : Number of NODDY pages used in program.
 FAA7 & FAA8 : 1B 40 : Keeps track of the TOP of BASIC.
 FAA9 : 00 : Number of BASIC pages used in program.
 FAAA & FAAB : 00 40 : Start of User RAM on MTX 512. On a
 MTX 500,User RAM starts at #8000.
 FAAC to FAAF :1B 40 00 00:Stores other information about BASIC,

 (15) Memotech Manual by B.Pritchard,pages 245-247.
 (16) New Memotech Manual by S.Bateson,page 244.

 AFWDOC 12

 References (7,8 & 9),show you how to use this information to
 RECOVER accidentally erased BASIC listings,very useful.

 Whenever you enter a line of BASIC,the MTXOS stores this in the
 keyboard buffer. The BASIC interpreter,takes this text,tokenises
 it and if it has a line number,it inserts the BASIC text into
 memory at the desired location. The BASIC line can be inserted at
 one of three locations:

 1) START of memory.
 2) TOP of BASIC.
 3) Somewhere between 1) and 2).

 If you are just starting a BASIC program,then the TOP of BASIC
 and the start of User RAM (Bottom of BASIC) will be the same. If
 this is the case,the BASIC interpreter will load the details of
 the BASIC line (see chapter one) from #4000 onwards and update
 the 12 memory locations above.

 If the line number of the BASIC listing is higher than the line
 number of the code at the TOP of BASIC,then the new line will be
 stored there and the TOP of BASIC will be increased accordingly.

 If the line lies somewhere in the middle of the program,then
 using a special algorithm,the Interpreter will find the correct
 location in memory. Once this has been located,the code above
 this address is moved up by the length of the new line,then the
 new line is inserted between the old position and the moved
 position and the TOP of BASIC is updated.

 Note that if you decided to include a couple of pages of
 NODDY,then the variables used to keep track of NODDY,would be
 updated accordingly.

 2.1.3 The Example

 Returning to the example in listing 4. Listing 4,does two
 things:it fools and Blinds the BASIC Interpreter. It does this by
 resetting all twelve program status variables at #FAA4. This
 resetting has the effect of redefining the new start of User
 RAM,at #0000. So when the code performs the RST #00,the program
 in memory isn't lost as expected by performing a normal RESET
 but hides itself before auto-saving and runing. This makes the
 program unlistable and unrecoverable as it is invisible to the
 BASIC Interpreter. Rather cunning eh!

 2.2 Auto-Run Programs

 This is very easy to perform as shown in listing 5:

 10 SAVE "PROG" or USER SAVE "PROG.BAS" or DISC SAVE "PROG.BAS"
 20 the rest of the program.

 AFWDOC 13

 When this program is RUN <RET>,the BASIC at line 10 saves the
 code to TAPE,or SDX DISC BASIC or Memotech CP/M DISC BASIC. Once
 the whole program has been saved to TAPE or DISC,the program
 status variables are already pointing at line 20,which is
 executed by the BASIC Interpreter. The same happens when you
 reload the program. When the program has loaded,the status
 variables are already pointing at line 20,which is executed by
 the BASIC Interpreter immediately. Thus line 10 has completely
 been bypassed and the actual program has AUTO-RAN. Simple.

 2.3 MTX 500 or MTX 512

 The MTXOS loads the system variable at #FA7A or 64122,with the
 RAM configuration. For a MTX500,this location is ZERO and on a
 MTX512 system it is ONE. Therefore to fool the MTXOS into
 thinking it is a MTX500,enter:

 POKE 64122,0 <RET>
 NEW <RET>

 This resets the RAM configuration to MTX 500 mode. Note that if
 you press the RESET keys,the MTXOS will reload the real
 configuration at #FA7A,so you'll have to change it again,only
 after switch on and RESET.

 The reason this works is simply because of the common RAM layout
 of both the MTX 512 and 500 between #8000 and #FFFF,see
 section 2.1.1,memory map earlier. One of the more commonly used
 techniques for deciding which machine is in use is to check the
 system variable at #FA7A,and move up or down according. Note that
 most code is loaded at #8000 first and then moved down,if test
 says MTX 512 in use. Listing 6,shows how this is done:

 Listing 6:-

 100 CODE

 DI ;disable BASIC interrupts.
 * LD SP,(#FA96) ;save the start of machine stack.
 * LD HL,#FD4F ;this is the USRRST variable which is
 ;called everytime there is an interrupt.
 ;If the variable is occupied,the code at
 ;location pointed to by the variable USRRST
 ;is automatically executed.
 * LD DE,START ;this is pointing to the start of the code.
 * LD (HL),E ;now store the start of the program code
 * INC HL ;at the USRRST variable. In other words
 * LD (HL),D ;after every interrupt call program.
 LD A,(#FA7A) ;test RAM configuration.
 OR A ;this tests if MTX 500 or MTX 512.
 JR Z,START ;if zero,then MTX 500,don't move code.

 AFWDOC 14

 LD DE,END ;else move the code
 LD HL,#4000 ;to start of MTX 512 User RAM.
 LD BC,LENGTH ;length of the code to move.
 LDDR ;move the code down now.
 JP START ;goto code start at #4000 START.
 START: start of program like TOADO.

 Note that the * lines are not always used.

 2.4 Summary

 Therefore to copy protect a program,just follow this simply
 procedure:-

 1 CODE ;basic invisible code
 10 SAVE "PROG" ;save program to TAPE or DISC.
 100 CODE ;check MTX 500 or 512 then program start.

 If you now type RUN <RET>,then the above program will hide
 itself,save to TAPE or DISC (if you insert USER or DISC in front
 of SAVE),and auto-run when reload.

 AFWDOC 15

 CHAPTER THREE: MTX RECOVER

 The concepts introduced in the previous chapters will now be used
 to deprotect a number of commercially available tape games to run
 from disc.

 3.0 Introduction

 This section has been written for users with a SDX Disc Basic
 Controller and any disc drive type. It is also applicable to FDX
 and FDX CP/M owners with a V-ROM attached to the cartridge port.
 The V-ROM runs the SDX Disc Basic Rom on a FDX unit. This will
 cover a great many Memotech users. However,owners of FDX units
 without the V-ROM and SDX CP/M owners will require to read
 appendix 3.0.

 Where possible,all conversions were carried out in MTX 500 mode.
 To mimic a MTX 500,type POKE 64122,0:NEW <RET>. This chapter
 will use TOADO as a worked example as this comes free with the
 Memotech range.

 3.1 System Setup

 Switch on computer system. MTX 512 and RS 128 owners change to
 MTX 500 mode. Initialise the disc system using ROM 3 <RET>. Now
 load in TOADO, LOAD "" <RET>.

 The program should have loaded successfully by now,if not,rewind
 tape and try a different volume setting or try the copy on side 2
 of the tape. Once TOADO has loaded and run successfully,press the
 RESET keys,either side of the space bar,thus presumably erasing
 the program. At this stage load in the PANEL extension into the
 area usually reserved for BASIC workspace.

 USER READ "PANEL.COD",54524 <RET>
 RAND USR(54524) <RET>
 CLEAR <RET>

 This will load the PANEL dump utility from disc,and relocate
 itself in high RAM. Now,swap this diskette with a blank formatted
 diskette,and press <CTRL> C together to initialise the new disc.

 3.2 What to Look for

 At this stage,enter PANEL <RET> and press D 8000 <RET>,then
 press <BRK>,so as not to alter the contents of memory. Then type
 L 8007 <RET>.,see figure 4 for screen dump.

 Note that MTX 500 owners only will find that 8000 to 8007 isn't
 as below but 08 07 06 05 04 03 02 01. This is due to RESET,see
 MTX Tokens chapter.

 AFWDOC 16

 Figure 4: PANEL Screen Dump of TOADO from #8000 to #8028.

 8007 LD HL,#FAA4
 800A LD DE,#FAA5 AF 0000 F3
 800D LD BC,#000C BC 0000 F3
 8010 XOR A DE 0000 F3
 8011 LD (HL),A HL 0000 F3
 8012 LDIR IX 0000 F3
 8015 LD HL,#FA9E IY 0000 F3
 8018 LD (HL),#C7 SP 0000 F3
 801A RET PC 0000 F3
 801B
 801?

 DI

 8000: 1B 00 01 00 C2 13 00 21
 8008: A4 FA 11 A5 FA 01 0C 00
 8010: AF 77 ED 80 21 9F FA 36
 8018: C7 C9 FF 0D 00 0A 00 B5
 8020: 22 54 4F 41 44 4F 22 FF
 8028: 10 20 64 00 C2 08 20 F3

 #8000 to #8006,gives all the necessary information about the
 first line of BASIC in TOADO,ie it requires 27 bytes,its line 1
 and the keyword is CODE. This piece of code is the invisible
 code,see page 10,listing 4. Line 1 ends at #801B as signified to
 the BASIC interpreter by the use of the end marker,FF.

 At this stage toggle the I key. Memory loactions #8020 to
 #8026,will show the program name " T O A D O ". The keyword and
 line number for this section of code is SAVE and line 10. Thus
 the following line structure can be built up: 10 SAVE "TOADO".

 Now comes the important part. The first two bytes of the next
 section of memory are crucial for disc conversion. As this
 contains the length of the actual program code. The next 5 bytes
 tell you that its BASIC line 100 and the keyword is CODE.

 Now list #802F,see listing 6,page 13. This is the start of TOADO.
 TOADO checks #FA7A,to see what machine configuration is in use.
 This part of the code has to be disabled,so that the disc version
 loads TOADO at #8000,no matter the RAM configuration.

 This is done by changing two memory locations only. What is
 needed is to replace the OR A,with NOP and set the program start
 to #8000+ and not #4000+. The OR A command,test the RAM
 configuration and if ZERO;then a flag is set. Depending on the
 condition of the flag (ie SET or NOT SET) depends on where the
 program is loaded. The NOP or no operation command erases the
 RAM test. This is changed as follows:

 AFWDOC 17

 PANEL <RET>
 D 8040 <RET>
 00 <RET> ;select NOP.
 18 <RET> ;this changes a JR Z,Start to a JR Start.
 . <RET> ;thus avoiding the zero flag test.
 B
 Y

 3.3 Disc Conversion

 At last,you are able to transfer TOADO to disc. This is a simple
 task. Find the length of the actual TOADO code,ie #2010 or
 8208,and convert this and where it is found in memory (#8028 or
 32808) to decimal,see highlighted values above. Now save this to
 disc as a byte file:

 USER WRITE "TOADO.COD",32808,8208 <RET>

 You can reload this byte file using USER READ "TOADO.COD",32808
 <RET> followed by RAND USR(32815) <RET>. However,you will soon
 find as the number of conversions increase the more likely you
 are to mix up the starting addresses or even lose them. A better
 way is to use a BASIC loader to do all this for you and make life
 a lot simpler.

 The main drawback of a BASIC loader is that it requires some
 memory at #8000. This is okay for programs which don't start at
 #8000 but can cause problems for programs which do,ie MANIC
 MINER,where you will have to remember the starting address. The
 BASIC loader,used herein,reloads the byte file 1k higher up in
 memory and using a 18 byte machine code routine,moves this code
 back to its original position, thus overwriting the disc load
 commands and auto-starting it. This method is very effective,see
 listing 7.

 Listing 7: TOADO BASIC header for auto-run Disc program.

 0 CODE

 #8007 LD HL,#8410 ;load TOADO 1k higher up in memory.
 LD DE,#8028 ;then move it to its right place.
 LD BC,#2010 ;8208 bytes to be moved.
 LDIR ;move it.
 JP #802F ;Auto-Run it.

 10 USER SAVE "TOADO.BAS"
 20 USER READ "TOADO.COD",33808,8208
 30 RUN

 AFWDOC 18

 Once you have checked the program thoroughly,insert the same
 diskette that holds the TOADO.COD. Now type GOTO 10 <RET>. This
 will save the BASIC header to disc as TOADO.BAS. Once this has
 saved to disc,the header reloads the byte file at 33808,and
 executes the RUN command. This clears all variables and moves the
 memory pointer back to line 0. This moves the code at 33808 down
 to 32808 thus overwriting lines 10 to 30. It then jumps to the
 start of TOADO and executes it. If TOADO runs successfully,then
 you have followed the method okay,else redo.

 Turn to Appendix 2.0 for other worked examples.

 3.4 Finally - Other Tecniques

 Other programs use other techniques but they are in the same
 theme. A common practice is to load in a BASIC header like:

 BASIC program for screen header,followed by:-

 100 CODE

 LD HL,start of program code in RAM.
 LD DE,length of this code.
 LD A,1 ;this sets the built-in tape functions to LOAD.
 LD (#FD68),A
 CALL #0AAE
 JP START ;run the program.

 200 SAVE "prog"
 210 RUN

 Some programmers use JP #0AAE instead of CALL #0AAE,in order to
 try and diguise where the program code starts from,eg MANIC MINER.

 Other programmers use HOOKS to catch out hackers. A hook is
 an address which has been preloaded,via a header or at the start
 of the program,with a particular value. This location is accessed
 by the program to see if a LEGAL copy,else it crashes. This HOOK
 is usually located somewhere in the system variables which is
 erased after a every RESET,so as to hide its true identity to a
 hacker. This is an effective deterrent,because you are unable to
 recover this flag or hook which is necessary for disc conversion.

 However,if someone could devise a MAGIC button as on the
 ZX Spectrum then disc conversion would be easy. This button has
 the effect of freezing the program. The area of RAM not used to
 store the ROM is then dumped to the disc drive. The program is
 saved at the current stage of play and when reloaded is already up
 and running.

 There are many other variations on the above and its upto you
 to investigate. But before I finish,I'll give you one more
 tip. All continental s/ware programs with the screen display
 header,can be rerun after a RESET using RAND USR(33014).

 AFWDOC 19

 Appendix 1.0: PANEL UTILITY

 This short assembly language program allows the front PANEL
 monitor screen to be dumped to any EPSON compatible printer.
 PANEL can be used to disassemble the Memotech ROM or to HACK into
 commercially available programs or aid in the development of your
 own assembly language programs. The value of a hardcopy of the
 PANEL screen is unlimitedless and also makes the code portable.
 Portability means that you can work on the disassembly at lunch
 time or on the bus,train,etc. I have used this utility,to obtain
 hardcopy of the key addresses and lengths of commercially
 available code. For more advanced Z80 programmers,a customised
 PANEL COPY utility can be found in reference (3).

 The following PANEL utility,should be typed in as written and
 saved to disc as USER SAVE "PANELCOD.INF" (for SDX users) and
 DISC SAVE "PANELCOD.INF" (for any CP/M disc users).

 Listing 8:- PANEL utility

 0 CODE

 #8007 JPANEL: LD A,#C3 ;SET FEXPAND TO JP
 LD (#FA9E),A ;AND SAVE JP CODE AT THIS ADDRESS.
 LD HL,#D507 ;START OF PANEL CODE IN HIGH RAM.
 LD (#FA9F),HL ;SAVE THIS START AT FEXPAND+1 & +2.
 PSTART: CP "P" ;IS PANEL DUMP SELECTED.
 RET NZ ;RETURN TO BASIC INTERPRETER.
 PSCRN: LD HL,(#D53A) ;START OF SCREEN AT THIS LOCATION.
 PUSH AF ;SAVE AF
 LD A,L ;SEND POSITION ON THE SCREEN.
 OUT (2),A ;TO THE VDP GRAPHICS CONTROLLER.
 LD A,H ;THIS INCREMENTS AUTOMATICALLY.
 AND #3F ;THIS SELECTS READ SCREEN.NB: OR #40
 OUT (2),A ;SELECTS WRITE TO SCREEN.
 POP AF ;RESTORE AF
 LD HL,#D534 ;POINT TO LINEFEED DATA.
 LD C,6 ;SET IT AND SET THE COL WIDTH AS
 POUT: LD B,(HL) ;WELL. SEND THIS DATA VIA REGISTER B
 CALL #0CE3 ;TO THE BUILT IN PRINT ASCII DUMP.
 INC HL ;MOVE THROUGH THE LF AND CW CONTROL
 DEC C ;CODES AND KEEP TRACK OF THE DATA
 JR NZ,POUT ;LEFT TO SEND.
 LD DE,(#D53C) ;NUMBER OF SCREEN POSITIONS TO SEND
 PSEND: IN A,(1) ;TO THE PRINTER. START READING THE
 LD B,A ;SCREEN AND SEND IT AS AN ASCII
 CALL #0CE3 ;CODE TO THE PRINTER.
 DEC DE ;DECREASE POSITION COUNTER
 LD A,D ;UNTIL ZERO.
 OR E ;
 JR NZ,PSEND ;
 RET ;FINISH PRINTING,RETURN TO PANEL.
 LF: DB 27,"A",12 ;LINEFEED DATA.(#D534)
 SCRNST: DW 7168 ;START OF PANEL SCREEN IN
 ;VRAM.(#D53A)
 LENPAN: DW 960 ;LENGTH OF THIS SCREEN.(#D53C)

 AFWDOC 20

 10 CODE

 MOVECODE:LD HL,#8007 ;START OF PANEL PROGRAM ABOVE.
 LD DE,#D4FC ;NEW START OF PROGRAM IN HIGH RAM.
 LD BC,66 ;ONLY 66 BYTES TO MOVE.
 LDIR ;MOVE THEM
 RET ;RETURN TO BASIC.

 20 RETURN
 100 GOSUB 10
 110 USER WRITE "PANEL.COD",54524,66 or DISC WRITE "PANEL.COD",ETC
 120 REM RAND USR(54524) TO INITIALISE PROGRAM IN HIGH RAM
 130 REM ONCE INITIALISED,PRESS P WHILST IN PANEL FOR A SCREEN
 140 REM DUMP.

 INSTRUCTIONS:-

 You should now have a BASIC information file on disc as
 "PANEL.INF". This type of file is useful for editing mistakes or
 adding extensions or improvements to the original program. Reload
 the PANEL.INF file and type GOTO 100 <RET>. This initialises the
 PANEL expansion system variable at FEXPAND. It then moves the
 whole of the line 0 code to high RAM. This code is then saved to
 disc as a byte file.

 The advantage of a byte file over a normal BASIC file is that it
 doesn't reset any system variables or erase the program in use at
 present; unless you load the byte file in a part of RAM used by
 BASIC or another assembly language routine. It is therefore
 transparent to the BASIC interpreter. It can be accessed at any
 time using RAND USR(program start).

 This PANEL dump utility is loaded from disc as follows:

 USER (or DISC) READ "PANEL.COD",54524 <RET>
 RAND USR(54524) <RET>

 This will load the byte file at #D4FC or 54524 and will
 initialise it. Once initialised this program is added to the
 list of PANEL commands,like D for Display. You access the printer
 dump routine by switching the printer on and pressing P.

 USES:

 The byte file is loaded below the SDX disc rom,which is found at
 #D700. This means you can use this utility to print the
 disassembly of anything in RAM or ROM. However,as the utility is
 loaded into an area of RAM normally reserved for BASIC
 workspace,it is likely to be overwritten by any BASIC you type as
 a program. But for HACKING,this utility is situated high up in
 RAM to avoid commercial program code.

 AFWDOC 21

 Load the program to be hacked in the usual way,ie LOAD "". Then
 press the RESET keys and reload PANEL.COD from disc. Note that
 this is only applicable to owners of SDX disc Basic and FDX with
 V-ROM systems. Once loaded,and initialised using RAND USR(54524)
 ,it will remain there until switched off. Remember that if you
 RESET the machine:- to restart the utility. Now its up to you to
 browse through the program at your leisure,copying the key
 sections to the printer.

 AFWDOC 22

 Appendix 2.0: WORKED EXAMPLES for SDX & FDX (with V-ROM) Users

 Please note that some of the continental software titles,like
 TOADO are being redistributed by OXFORD Data. You can tell the
 newer versions as the opening screen or title screen has the
 Oxford data logo. If this is the case,you will have to change the
 length ofthe program code to be saved. I found with the TOADO
 version that the newer version is longer,ie increases from #2010
 (8208) to #2039. So beware.

 a) TOADO

 POKE 64122,0 <RET>
 NEW <RET>
 LOAD "" <RET>
 press the RESET keys,when loaded <RET>
 PANEL <RET>
 D 8040 <RET>
 00 <RET>
 18 <RET>
 .
 B
 Y

 USER WRITE "TOADO.COD",32808,8208 <RET>

 Now type in the following BASIC header to auto-run the program
 code:

 0 CODE

 LD HL,#8410
 LD DE,#8028
 LD BC.#2010
 LDIR
 JP #802F

 10 USER SAVE "TOADO.BAS"
 20 USER READ "TOADO.COD",33808,8208
 30 RUN

 Now type GOTO 10 <RET>. This will save the BASIC header to disc
 and then it will reload and run TOADO.COD. Therefore,everytime
 you type USER LOAD "TOADO.BAS" <RET>,the program code of TOADO
 is loaded from disc and automatically run.

 b) KILOPEDE

 POKE 64122,0 <RET>
 NEW <RET>
 LOAD "" <RET>

 AFWDOC 23

 press the RESET keys,when loaded <RET>
 PANEL <RET>
 D 8043 <RET>
 00 <RET>
 C3 <RET>
 .
 B
 Y

 USER WRITE "KILOPEDE.COD",32811,5392 <RET>

 Now type in the following BASIC header to auto-run the program
 code:

 0 CODE

 LD HL,#8413
 LD DE,#802B
 LD BC.#1510
 LDIR
 JP #8032

 10 USER SAVE "KILOPEDE.BAS"
 20 USER READ "KILOPEDE.COD",33811,5392
 30 RUN

 Now type GOTO 10 <RET>. This will save the BASIC header to disc
 and then it will reload and run KILOPEDE.COD. Therefore,everytime
 you type USER LOAD "KILOPEDE.BAS" <RET>,the program code of
 KILOPEDE is loaded from disc and automatically run.

 c) QOGO

 POKE 64122,0 <RET>
 NEW <RET>
 LOAD "" <RET>
 press the RESET keys,when loaded <RET>
 PANEL <RET>
 D 806F <RET>
 00 <RET>
 C3 <RET>
 .
 B
 Y

 USER WRITE "QOGO.COD",32864,5754 <RET>

 Now type in the following BASIC header to auto-run the program
 code. NOTE THAT: there is enough room below the start of the QOGO
 code without having to resort to moving code about.

 10 USER READ "QOGO.COD",32864
 20 RAND USR(32893)
 30 USER SAVE "QOGO.BAS"
 40 RUN

 AFWDOC 24

 Now type GOTO 10 <RET>. This will save the BASIC header to disc
 and then it will reload and run QOGO.COD. Therefore,everytime
 you type USER LOAD "QOGO.BAS" <RET>,the program code of
 QOGO is loaded from disc and automatically run.

 d) DRAUGHTS

 POKE 64122,0 <RET>
 NEW <RET>
 LOAD "" <RET>
 press the RESET keys,when loaded <RET>
 PANEL <RET>
 D 802C <RET>
 00 <RET>
 18 <RET>
 .
 B
 Y

 USER WRITE "DRAUGHTS.COD",32788,9614 <RET>

 Now type in the following BASIC header to auto-run the program
 code:

 0 CODE

 LD HL,#8403
 LD DE,#801B
 LD BC.#2587
 LDIR
 JP #801B

 10 USER SAVE "DRAUGHTS.BAS"
 20 USER READ "DRAUGHTS.COD",33788,9614
 30 RUN

 Now type GOTO 10 <RET>. This will save the BASIC header to disc
 and then it will reload and run DRAUGHTS.COD. Therefore,everytime
 you type USER LOAD "DRAUGHTS.BAS" <RET>,the program code of
 DRAUGHTS is loaded from disc and automatically run.

 e) QUAZZIA

 POKE 64122,0 <RET>
 NEW <RET>
 LOAD "" <RET>
 press the RESET keys,when loaded <RET>
 PANEL <RET>
 D 807D <RET>
 00 <RET>
 18 <RET>

 AFWDOC 25

 .
 B
 Y

 USER WRITE "QUAZZIA.COD",32878,20370 <RET>

 Now type in the following BASIC header to auto-run the program
 code:

 0 CODE

 JP 32885

 10 USER SAVE "QUAZZIA.BAS"
 20 USER READ "QUAZZIA.COD",32878
 30 RUN

 Now type GOTO 10 <RET>. This will save the BASIC header to disc
 and then it will reload and run QUAZZIA.COD. Therefore,everytime
 you type USER LOAD "QUAZZIA.BAS" <RET>,the program code of
 QUAZZIA is loaded from disc and automatically run.

 f) FIREHOUSE FREDDIE

 In this example,BASIC is used as part of the program. It is
 therefore possible to reload FIREHOUSE FREDDIE and break into the
 program without losing it with RESET. SET your computer to MTX
 500 mode and start the LOAD procedure,ie LOAD "FRANTIC.500"
 <RET>. You will have to be alert here,as you are required to
 press the <BRK> key just as the program stops loading,ie at the
 instance the load sound stops. If you have done this properly
 then the whole program should still be intact,ie you should be
 able to list it,without lots of ????? or @@@@@@@.

 If you have been successful,type CLEAR <RET>. The edit line 498
 with EDIT 498 <RET>,and insert USER infront of SAVE.

 Now type CLEAR:GOTO 495 <RET> to save the program to disc.

 Note MTX 512 owners are required to select MTX 500 mode before
 reloading as:

 USER LOAD "FRANTIC.500" <RET>

 AFWDOC 26

 FOR MTX512 OWNERS ONLY

 g) SEPULCRI

 LOAD "" <RET>
 press the RESET keys,when loaded <RET>

 USER WRITE "SEPULCRI.COD",16477,23291 <RET>

 Now type in the following BASIC header to auto-run the program
 code:

 0 CODE

 JP 16484

 10 USER SAVE "SEPULCRI.BAS"
 20 USER READ "SEPULCRI.COD",16477,23291
 30 RUN

 Now type GOTO 10 <RET>. This will save the BASIC header to disc
 and then it will reload and run SEPULCRI.COD. Therefore,everytime
 you type USER LOAD "SEPULCRI.BAS" <RET>,the program code of
 SEPULCRI is loaded from disc and automatically run.

 h) AGROVATOR

 LOAD "" <RET>
 press the RESET keys

 USER WRITE "AGRO.COD",16401,32332 <RET>

 Now type in the following BASIC header to auto-run the program
 code:

 0 CODE

 LD HL,#40E0
 LD DE,#4018
 LD BC.#7E45
 LDIR
 JP #4018

 10 USER SAVE "AGRO.BAS"
 20 USER READ "AGRO.COD",16601,32332
 30 RUN

 Now type GOTO 10 <RET>. This will save the BASIC header to disc
 and then it will reload and run AGRO.COD. Therefore,everytime
 you type USER LOAD "AGRO.BAS" <RET>,the program code of
 AGRO is loaded from disc and automatically run.

 AFWDOC 27

 i) MURDER AT THE MANOR

 LOAD "" <RET>
 press the RESET keys,when loaded <RET>

 Now type in the following BASIC header to auto-run the program
 code:

 10 USER READ "MURDER.COD",32768
 20 RAND USR(32775)
 30 POKE 64853,0:POKE 64854,0
 40 USER WRITE "MURDER.COD",32768,16759
 50 USER SAVE "MURDER,BAS"
 60 RUN

 Now type GOTO 30 <RET>. This will save the BASIC header to disc
 and then it will reload and run MURDER.COD. Therefore,everytime
 you type USER LOAD "MURDER.BAS" <RET>,the program code of
 MURDER is loaded from disc and automatically run.

 Note that this program is loaded at #8000,and doesn't allow you
 to insert a BASIC header before the program code.

 AFWDOC 28

 Appendix 3.0: WORKED EXAMPLES for CP/M Users

 The Utility Programs

 First of all type in listings A & B,save both to tape.

 Listing A: Enter CP/M,then A>MTX,to return to MTX mode. Now enter
 the following listing:

 10 REM **SAVECODE utility**
 20 CODE

 8022 LD HL,32768 ;Insert start of code.
 8025 LD DE,00000 ;Insert length of code.
 8028 LD A,0
 802A LD (#FD67),A
 802D LD A,0
 802F LD (#FD68),A ;select SAVE.
 8032 CALL #0AAE.
 8035 RET ;return to BASIC

 The above listing,should be saved to tape as a BASIC file,using
 SAVE "SAVECODE". Remember to Verify the program. When you use
 this program for tape to disc conversion,remember to edit the
 start and length of code in the above to that of the program to
 be converted. The same should be applied when reloading with
 listing B.

 Listing B: Enter CP/M,then A>MTX,to return you to MTX mode.
 Now enter the following:

 10 REM **LOADCODE utility**
 20 CODE

 8022 LD HL,32768 ;Insert start of code.
 8025 LD DE,00000 ;Insert length of code.
 8028 LD A,0
 802A LD (#FD67),A
 802D LD A,1
 802F LD (#FD68),A ;select LOAD.
 8032 CALL #0AAE.
 8035 RET ;return to BASIC.

 Now save this to tape: SAVE "LOADCODE" <RET>. You can
 use this for other conversions.

 Introduction to Disc BASIC on CP/M systems.

 The Memotech series can be broken down to three types of system:

 1) MTX mode or tape mode.
 2) SDX mode or single disc system.
 3) SDX and FDX CP/M modes.

 AFWDOC 29

 Type 1) is the mode which everyone should be familar with. If you
 have a MTX 500,free ram starts at 32768 or #8000,and if you have
 a MTX 512,free ram starts at 16384 or #4000. Most commercial
 games software,are written so that it will work on either ram
 system,but a few do require the full complement of 64k ram,like
 Agrovator.

 The MTX Tape to Disc Booklet,was originally written for type 2)
 systems who have just upgraded from the standard type 1) system.
 However,as a number of CP/M users,were complaining about
 conversion difficulties and as I upgraded,my own system to full
 FDX CP/M,1 Mb drives,I decided to write this Appendix to help
 CP/M owners. The following description,is for CP/M owners who
 have disc BASICs,FDXB,SDXB3 or FDXB07.

 FDXB07,is only for FDX CP/M,1mb disc drive systems and is
 equivalent to FDXB,which is found on FDX CP/M 500k systems and
 SDX CP/M 3.5",1mb systems. SDXB3,is found on 56 column CP/M disc
 operating systems. Unlike type 2)s disc BASIC which is loaded
 from ROM to high memory,at #D700,all other disc BASICs are loaded
 from DISC and are loaded at #4000. This means that,CP/M owners
 require a minimum of 64k. After the disc BASIC has loaded,you are
 left with only 32k to play with,from #8000. This means that on
 CP/M systems we are limited to MTX 500 game conversions. But as
 most games programs are less than 24k,(remember the MTXOS needs
 some memory as does the BASIC Interpreter,for storing
 variables;ie if BASIC is used in part,as used in Firehouse
 Freddie).

 The Next problem,we encounter is after every RESET,we have to
 boot back into CP/M,then into the appropriate disc system,which
 is time consuming. It also means that any code from #8000 to
 #88FF,is automatically overwritten,by the system at start up. As
 is any game code that we might have stored there. However,I have
 devised a method around this it may be a bit long but it is worth
 it in the end.

 The Procedure

 Before preceding,please disconnect your disc system. This is
 because my FDX system interfered with the conversion. Also,the
 time consuming rebooting of CP/M after every RESET,and re-
 entering of MTX mode is removed. To disconnect your disc
 system,please ensure the power is off. Now remove the SDX
 interface from the MTX computer or remove the 60-way cable from
 the bottom of the FDX unit.

 As already stated,only programs that run on the 32k MTX 500
 computer will run on a CP/M disc system. This is because the disc
 BASIC is stored in RAM at 16384 (#4000) to 32676 (#7FFF).

 We will use the famous TOADO as a worked example to demonstrate
 the techniques used.

 AFWDOC 30

 POKE 64122,0:NEW <RET>
 LOAD "TOADO" <RET>

 Once loaded,press the RESET keys and:

 PANEL <RET>
 D 8040 <RET>
 00 <RET>
 18 <RET>
 .
 B
 Y ;you should now be back in BASIC.

 Rewind tape to start of SAVECODE and load this in,note that the
 MTXOS will load this utility at the start of free RAM which is
 reset to #4000. Now enter the assembler to make a few changes to
 the SAVECODE at #4022:

 AS.10 <RET>
 e <RET>

 4022 LD HL,32808 <RET>
 4025 LD DE,#2010 <RET>

 <CLS> <RET> <CLS> <RET> to return to BASIC. The start and length
 of TOADO has been inserted into the SAVECODE utility. Please
 note,people who have a version of TOADO with Oxford data on the
 title screen should change the length to #2039.Move the tape
 forward to a clear bit of tape. Press the record keys on the tape
 recorder and type:

 RUN <RET>

 This will save the TOADO code as a byte file on tape. Once
 saved,we must perform two checks to see if the code is
 uncorrupted. These two checks will be used throughout:

 i) To check the code in memory is uncorrupted type:

 RAND USR(32815) <RET>

 If the TOADO program reruns successfully then code in memory
 is okay.

 ii) To check the code on tape is okay,type:

 LOAD "LOADCODE" <RET>

 Now edit the code at line 20,and insert the start and length
 of the program code. In the case of TOADO,start=32808 and
 length=#2010 or #2039. Now rewind tape to start of byte file
 press play and type: RUN <RET>

 AFWDOC 31

 This will reload the TOADO code. To check it is okay,use
 check i). If this runs then okay,else repeat again.

 Once loaded successfully,switch off the power and reconnect the
 disc system.Boot up CP/M,in the usual way then install your disc
 BASIC,ie:

 A>FDXB07 40 or FDXB 40 or SDXB3 40. <RET>

 Once in 40 column mode disc system,retrieve:

 LOAD "LOADCODE" <RET>

 Enter the assembler at line 20 and edit lines #8022 & #8025,to LD
 HL,32808 & LD DE,#2010 or #2039. Now return to BASIC and enter
 PANEL and select M for MOVE and follow the prompts:

 Move>8022
 End >8035
 To >DF22

 This will move the save LOADCODE to high RAM. Rewind the tape to
 the start of the TOADO byte file. Now type RAND USR(57122) <RET>
 and press play when the byte file has loaded in,save it to disc
 as:

 DISC WRITE "TOADO.COD",32808,8208 <RET>

 As a further check of the code saved to disc:Switch the computer
 off then on,reboot CP/M,select disc BASIC and type:

 DISC READ "TOADO.COD",32808 <RET>
 RAND USR(32815) <RET>

 This should restart the TOADO program okay,if not try again.

 Now that we have a working TOADO byte file on disc,all that is
 left is the BASIC header.

 1 DISC READ "TOADO.COD",32808
 2 RAND USR(32815)
 3 DISC SAVE "TOADO.BAS"
 4 RUN

 Type:GOTO 3 <RET>. This will save the header to disc as
 TOADO.BAS. This should run the TOADO program successfully.

 Thus to reload the TOADO game use:

 DISC LOAD "TOADO.BAS" <RET>

 when in disc BASIC mode.

 AFWDOC 32

 The Worked Examples

 Switch on your computer disc system and boot up CP/M. Take a
 blank disc and FORMAT it and copy the system tracks onto it.
 Refer to your disc operating manual for details on this. Now copy
 the following CP/M utilities onto it:

 CONFIG.COM ,PIP.COM ,STARTUP.COM ,STAT.COM ,FDXB07.COM or
 FDXB.COM or SDXB3.COM

 To do this refer to your disc operating manual. Once you have
 copied the above utilities,insert this disc into drive A (or
 default drive) and initialise by pressing <CTRL> C. Now follow
 this procedure carefully:

 either for 1000k (1mb) disc systems:

 A>STARTUP CONFIG B:07\FDXB07 40 <RET>
 A>STARTUP <RET>

 or for 500k disc systems:

 A>STARTUP CONFIG B:03\FDXB 40 or SDXB3 40 <RET>
 A>STARTUP <RET>

 The above program is added to the CP/M startup utility. Now when
 you insert the games disk into drive A after a RESET,the system
 will auto-boot into the 40 column disc BASIC. Please note
 that,the games will only be displayed on a T.V. or via the
 computer monitor port next to the Hi-Fi socket.

 Also,all games converted whether by the CP/M method or by the
 easier SDX disc BASIC method,are interchangeable. Therefore,if
 you upgrade from SDX to SDX/FDX CP/M,then all the <32k disc
 conversion will run automatically,even though they use different
 commands,ie USER or DISC

 AFWDOC 33

 DESCRIPTION : TOADO : KILOPEDE : QOGO : QUAZZIA

 01. Disconnect disc system :
 when the power is off. :
 02. Switch computer on and :
 switch to TV mode. :
 03. POKE 64122,0 :
 04. LOAD"" :
 05. press the RESET keys. :
 06. PANEL :
 07. D : 8040 : 8043 : 806F : 807D
 08. 00 :
 09 : 18 : C3 : C3 : 18
 10. . :
 11. B then Y to goto BASIC :
 12. LOAD "SAVECODE" :
 13. AS.20 then E to edit :
 14. 4022 LD HL, : 32808 : 32811 : 32864 : 32878
 15. 4025 LD DE, ** : 8208 : 5392 : 5754 : 20370
 16. <CLS> <RET> <CLS> <RET> :
 now in BASIC again. :
 17. Move the tape to a clear :
 blank area of tape.Press :
 the record keys & type :
 18. RUN ,this will save the :
 code in memory to tape as:
 a byte file. :
 19. Once saved,perform the :
 following two checks :
 20. RAND USR : (32815): (32818) : (32893) : (32885)
 This should restart the :
 game.Else goto step 3 :
 21. Switch the computer off. :
 then on again and :
 22. LOAD "LOADCODE" :
 23. AS.20 and e ,to edit code:
 24. 4022 LD HL, : 32808 : 32811 : 32864 : 32878
 25. 4025 LD DE, ** : 8208 : 5392 : 5754 : 20370
 26. <CLS> <RET> <CLS> <RET> :
 now in BASIC again. :
 27. Rewind tape to start of :
 the program byte file. :
 28. RUN and press play. :
 29. This loads the program :
 into RAM. To check its OK:
 30. RAND USR : (32815): (32818) : (32893) : (32885)
 31. If the program restarts :
 then okay.Else step 3. :
 32. Switch system off and :
 connect your disc system :

 AFWDOC 34

 DESCRIPTION : TOADO : KILOPEDE : QOGO : QUAZZIA

 33. Switch power on & insert :
 the autoboot games disc :
 You should now switch to :
 TV mode as 40 column disc:
 has been autobooted. :
 34. LOAD "LOADCODE" :
 35. AS.20 and e ,to edit code:
 36. 4022 LD HL, : 32808 : 32811 : 32864 : 32878
 37. 4025 LD DE, ** : 8208 : 5392 : 5754 : 20370
 38. <CLS> <RET> <CLS> <RET> :
 now in BASIC again. :
 39. Rewind tape to start of :
 the program byte file. :
 40. RUN and press play. :
 41. This loads the program :
 into RAM.Now save to disc:
 42. DISC WRITE "TOADO.COD",32808,8208 or
 43. DISC WRITE "KILOPEDE.COD",32811,9614 or
 44. DISC WRITE "QOGO.COD",32864,5754 or
 45. DISC WRITE "QUAZZIA.COD",32878,20370 .
 46. Once saved to disc check :
 the code on disc is okay :
 47. Repeat step 33. :
 48. To reload the disc files :
 above,use steps 42-45, :
 except change WRITE to :
 READ.Once the program has:
 reload,test it thus :
 49. RAND USR : (32815): (32818) : (32893) : (32885)
 This should restart the :
 game.Else goto step 33 :
 50. The program codes have :
 been saved to disc :
 successfully. Now we will:
 use a samll BASIC header :
 to call up the code and :
 autorun the game for us. :

 **,Note that some of the Continental games have been
 redistributed with Oxford Data on the tiltle screen. In these
 instances it is worth checking the length of the source code. I
 have found with TOADO that the length of the code has increased
 from #2010 (8208) to #2039. So beware.

 AFWDOC 35

 The BASIC Headers

 Now that we have working byte files of the above programs on
 disc,all that is left is the BASIC header. Once you have typed in
 the HEADER,to save it to disc ,type: GOTO 3 <RET>.To reload
 the autorun programs use:

 DISC LOAD "PROGRAM.BAS" <RET>

 This will load the code into RAM and autorun it for you.

 TOADO.BAS

 1 DISC READ "TOADO.COD",32808
 2 RAND USR(32815)
 3 DISC SAVE "TOADO.BAS"
 4 RUN

 KILOPEDE.BAS

 1 DISC READ "KILOPEDE.COD",32811
 2 RAND USR(32818)
 3 DISC SAVE "KILOPEDE.BAS"
 4 RUN

 QOGO.BAS

 1 DISC READ "QOGO.COD",32864
 2 RAND USR(32893)
 3 DISC SAVE "QOGO.BAS"
 4 RUN

 QUAZZIA.BAS

 1 DISC READ "QUAZZIA.COD",32878
 2 RAND USR(32885)
 3 DISC SAVE "QUAZZIA.BAS"
 4 RUN

 Please note that because DRAUGHTS starts at 32788,there isn't
 enough room for this type of BASIC header. However,you can
 still save and load the byte file using DISC WRITE
 "DRAUGHTS.COD",32788,9614 to save and use DISC READ
 "DRAUGHTS.COD",32788 to load and run it from RAND USR(32795).

 AFWDOC 36

 Appendix 4.0: References and User Groups

 User Groups

 MEMOPAD published by ORION s/ware.

 The Northbridge Centre,Elm Street,Burnley.

 12 issues at #18 (UK price).

 Memotech Owners Club

 c/o Phil Eyres,13 Copse Road,TownHill Park,Southampton.

 10 issues at #7 (UK price),send SAE for more details.

 Note that Popular Computing Weekly also support Memotech material.
 They pay #25 per page published. Send all those useful short
 utilities to:

 Duncan Evans,Popular Computing Weekly,Focus Magazines,Greencoat
 House,Francis street,London SW1P 1DG,telephone 01-834-1717.

 Hardware & Software Suppliers

 Memotech Computers Ltd

 Unit 24,Station Lane Indusrtrial Estate,Witney,Oxon,OX8 6BX.

 UK Home Computers

 82 Churchward Ave,Swindon,Wilts,SN2 1NH. Tel 0793 695034.

 Memopad

 address as user group.

 M.O.C.

 address as user group.

 AFWDOC 37

 References

 (01) MTX Manual by B.Pritchard,pages 133 & 161.

 (02) Using the MTX Front PANEL,Memopad,vol 1,issue 4,pages 7-10.

 (03) Popular Computing Weekly,vol 6,issues 25 & 26.

 (04) New Memotech Operators Manual by S.Bateson,pages 204-213.

 (05) Z80 Assembly Language Programming by M.C.Moore,chapter 1.

 (06) Acorn/BBC BASIC ROM user guide by M.Plumbley.

 (07) Utilities,Memopad,vol 1,issues 7 & 8.

 (08) Popular Computing Weekly,vol 6,issue 21,pages 22 & 23.

 (09) M.O.C.,vol 3,issue 7.

 (10) Writing Interactive Compilers & Interpreters by P.J.Brown.

 (11) Faster BASIC,Popular Computing Weekly,vol 6,issue 20,page 23.

 [also,Memopad,vol 3,issue 9,pages 15-18]

 (12) Memotech Memory,Your Computer,March 1984,page 99.

 (13) Memory Map,Memopad,vol 1,issue 1,page 20.

 (14) Memopad,vol 1,issue 2,page 40.

 (15) Memotech Manual by B.Pritchard,pages 245-247.

 (16) New Memotech Operators manual by S.Bateson,page 244.

 Note that an excellent BOOK guide is given in MEMOPAD,vol
 3,issue 7/8,pages 47-50.

