el
.
]
I
[1

-1 [
e
| oy
L_-l
| il
| oy

- =

U
1

HISOFT
PASCAL

| I =
H=F

| E- - [1] i
I_T[—) ;_! 1 L
LS

l".f—l[L

W=

Rl

=
=

&t

MEMOTECH
HISOFT PASCAL

USER GUIDE

W

CONTENTS

PAGE

SECTION © PRELIMINARIES 1

C.1 Introduction 1

0.1 Scope of This Manual 1

0. Example of Editing, Compiling
and Running

w N

N

SECTION 1 SYNTAX and SEMANTICS

(4]

IDENTIFIER
UNSIGNED INTEGEFR
UNSIGNED NUMBEF:
UNSIGNED CONSTANT
CONSTANT

SIMFLE TYFE

TYPE

ARRAYs and SETs
FPOINTERS

RECORDs

FIELD LIST
VARIAEBLE

TERM

SIMPLE EXPRESSION
EXFRESSION
FARAMETER LIST
STATEMENT

BLOCK

FROGRAM

Strong TYFEing

Lo O

[
WCENNNNOWNLEWN =
o wooNNOULao

H
A
&
o
[
- T

F

J b

—
—

[€

—
[

-
SN N

L

.
-
a2}
-
[

[Y T ey
— -
~N [}
-
w

@
-
(Ul o

SECTION

N

PREDEF INED IDENTIFIERS 19

CONSTANTS
TYFES
FROCEDURES and FUNCTIONS
" Input and Output Fracedures
w b 1l WRITE
z WRITELN

.

3 FAGE
s 1.9 READ
e READLN
. 2 Input Functions
1 EOLN
v D2 INCH
.3 Transfer Functions
S TRUNC (X)
B 2 ROUND (X)
3.3 ENTIER(X)

« 8 e e

(6 ()WL L LWL EEEWWWHR
)

[USSR SN N I SR R S N S N O N S N R

@ Copyright Hisoft 1984.

All rights reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, including photocopying and
recording, without the written permission of the copyright holder. Such
written permission must also be obtained before any part of this publication
1s stored in a retrieval system of any nature.

It is an infringement of the copyright pertaining to Hisoft Pascal for the
MTX512 and associated documentation to copy, by any means whatsoever, any
part of Hisoft Pascal for the MTXS12 for any reason whatsocever.

ORD X)) e

CHFE (X0 =5
2 S Arithmetic Functions 26
2.3.4.1 ARG (X)) 7€
2.3.4.2 SRR (X)) Z6
o34 B SQRT(X) : =€
Z.3.4.4 FRAC (X ; 26
AT SINCX) : €
Z. 34 6 COS (X 26
iR S TANCX) 26
Z-3.4.6 ARCTANCX » =7
I L] EXF(X) 27
2.3-4.10 LNCXD K4
P) Further Fredefined Frocedures =7
A NEW(p) =7
EL S ST MARE (v1) =7
i = RELEASE (vl : =28
= T | INLINECC1,CZ,C3y ... iareiz) =8
TR S LS USER (V) =8
S HALT =8
R S T FORE (X, V) =8
2:.2:5.8 TOUT (NAME,START,SIZED)
2B T3 TIN C(NAME, START) 23
e85 10 QUT(F,C) =)
e ga 11 CRVS(nytyxyyswrhys) 30
=2:2:. 5. 1% VSino 30
22 518 FAFER (1) 30
el i INK () 30
2ase SilS FLOT(xyy2 30 £
2.359. 16 LINEC(x1,yl,%Z,y=) 21
2556 Further Fredefined Functions]
2:2. 601 RANDOMCX) 31
% S S SUCC (X 31
e s, FRED(X) 3
2.3.6.4 ODD (X a1
EIRE TR O ADDFR (V) =
= Siabi FEEK (X, T2 37
e Sl B SIZE(V) 3%
=. 26 INFCFD) S

SECTION 3 COMMENTS and COMPILER OPTIONS 33
-0 | Comments 32
= e Compiler ocptions o

i
q
g

THE EDITOR

0]
~N

4.1 Introducticon to the Editor &7
4.2 Screen Editor Commands : &
S e | Cursor Commands G
Jo20 2 Editing Commands a6

Bk by

>

>
WWWWe

AFPENDIX 4

[SRONO]

— A

[™S
. .

[Y N 5]

[N

Tape Commands
Compiling and Running
Other Commands

ERRORS

Error numbers generated by the
compl ler
Runtime Error Messages

RESERVED WORDS and FPREDEF INED
IDENTIF IERS

Feserved Words
Special Symbaols
Fredefined Identifiers

DATA ‘FRESENTATION and STORAGE

Data Representation

Integers

Characters, Booleans, and ather
Scalars

Feals

Fecords and Arrays

Sets

Fointers

Variable Storage at Funtime

SOME EXAMPLES OF HISOFT FASCAL
PROGRAMS

SOME RECOMMENDED READING

40
41
43

45
46
47

47
47
47

D

35

S9

SECTION O PRELIMINARIES.

0.1 Introduction.

Hisoft Pascal for the MTXS12 microcomputer is a fast, easy—to—use and powerful version
of the Pascal language as specified in the Pascal User Manual and Report (Jensen/Wirth
Second Edition). Omissions from this specification are as follows:

FILEs are not implemented although variables may be stored on tape.
A RECORD type may not have a VARIANT part.
PROCEDURESs and FUNCTIONs are not valid as parameters.

Many extra functions and procedures are included to reflect the changing environment
in which compilers are used; among these are POKE, PEEK, TIN, TOUT and ADDR.

The package consists of the compiler itself, a set of runtime routines (which reside in
RAM so that they may be saved to tape) and a program editor for creating and editing
your programs.

The physical package is a circuit board with Hisoft Pascal mounted in ROM/EPROM; the
board has two connectors so that it may be attached to the main MTX512 circuit board at
either the left or right hand side of the board. Please ensure that the power to the
MTXS12 is OFF before connecting the Hisoft Pascal * OM board.

To enter the package, once you have connected the board to your MTX 512, simply type
ROM 2 <RET> from within BASIC. If there are any other expansion ROMs in the system you
will be prompted with a menu, otherwise you will go straight into Hisoft Pascal. Please
read the rest of this section before attempting to use the Pascal package.

0.2 Scope of this manual.

This manual is not intended to teach you Pascal; you are referred to the excellent books
given in the BRibliography if you are a newcomer to programming in Pascal.

This manual is a reference document, detailing the particular features of Hisoft Pascal.
Section 1 gives the syntax and the semantics expected by the compiler.

Section 2 details the various predefined identifiers that are available within Hisoft
Fascal, from CONSTants to FUNCTIONs.)

Section I contains information on the various compiler options available and also on
the format of comments.

Section 4 shows how to use the program editor which is an integral part of Hisoft Pascal
and is a combination of a screen editor and the line editor used by MTX BASIC.

The above Sections shnuld be read carefully by all users.
fippendi: 1 det s1ls the »rror messages generated both by the compiler and the runtimes.
sippendis: T lists the predefined identifiers and reserved words.

Appendi. T gives details or the winternal representation of data within Hisoft Pascal —
.2] for programmers whe wish B get their hands dirty.

l‘lllllllllllllllllf
L -_—— @ ‘

PP p—

F—,

Apbendix 4 gives some example Pascal prbgrams — study this if you experience any
problems in writing Hisoft Pascal programs. ‘

Now let’'s get on with writing and running a few programs:

0.3 Example of Editing, Compiling and Running.

To enter Hisoft Pascal on the MTXS12 simply type ROM 2 <RET> from within BASIC — this
will either generate a menu, from which you should choose the number associated with
Hisoft Pascal, or directly enter the Hisoft Pascal package. s

Once entered, Pascal will present a startup message and then ask for Table? - you can
answer this question with a positive decimal number if you wish to set the compiler’s
symbol table size, otherwise simply hit <RET> and a default size of 2K bytes will be
assumed. If you try to specify too large a size then you will be prompted with Table?
again until you enter a valid size. Normally, just pressing <RET> will suffice.

Now the screen will clear, the bottom line will contain the letters F: and Rt and there
will be a flashing cursor at the top left of the screen. For editing purposes the actual
screen is split into 3 virtual screens, as in BASIC, a listing screen (the top 19 lines), an
edit screen (4 lines) and a message s reen (the bottom line). Normally the message
screen displays the current Find string (after the F:) and the current chlaceﬁstrinq

(after the R:) — refer to Section 4 for more details. Occasionally the message screen
will be used to prompt for various responses.

Let's get started.and type in a program:

Firstly, hit the <INS)> key to enter Insert mode; the message Insert will be displayed on
the message screen and the flashing cursor will be moved to the Edit screen - you can
Now type in a Pascal program. Try this:

PROGRAM HELLO; <RET>
BEGIN <RET>
WRITELNCHELLO); <RET>
END. <RET>

Now press <RET> by itself — this will take you out of Insert mode and back into Command
mode, the whole program is now displayed on the Listing screen. To compile the program
simply hit C (for Compile). A compiler listing will be generated (this consists of the
memory address at which object code is being placed, followed by the text of the line)
followed by the message Run?. Answer Y (or y) to this question and your program will be
executed producing the word HELLO on the screen and again you will be asked if you
want to Run? your program. You can continue to execute your program in this way until
You press a character other than Y (or Y?) in answer to the Run? question. You will then
be returned to the editor.

Now let’s change the program:

Press the cursor down key on the MTX keyboard so that the flashing cursor is positioned
at the start of the line with BEGIN in it, now press <INS> to enter Insert mode and type:

VAR I: INTEGER; <RET>

Hit <RET> again to escape from Insert mode, move the cursor down one line and press
<INS> again and then enter:

FORI:=17T0 20 DO <RET>
and then hit <RET)> again to return to Command mode. Now compile the new program (use C)

2

and run it (answer Y to Run?) as many times as you like and then return to the editor
(answer N to Run?).

Now another program:

Firstly, delete the whole program already there; do this by pressing M when the cursor
is at the top of the screen, to set a marker on this line. Now move the cursor to the end
of the program by pressing W . Now press O ; you will be prompted with Block? on the
message screen, hit Y and the block of text between the marker and the cursor will be
deleted. Now press <INS> and type the following:

PROGRAM DEMO; <RET>
PROCEDURE SCREEN (SCR,COL : INTEGER); <RET>
BEGIN <RET> ’
VS(SCR); <RET>
PAPER(COL); <RET>
PAGE; <RET>
WRITE(CHR(3),CHR(2),CHR(3)); <RET>
END; <RET>
BEGIN <RET>
CRVS(2,1,1,0,10,8,32); <RET>
CRVS(3,1,11,8,10,8,32); <RET>
CRVS(6,1,21,16,10,8,32); <RET>
SCREEN(2,11); WRITE(HISOFT'); <RET>
SCREEN(3,3); WRITE(MTXS12); <RET>
SCREEN(6,9); WRITECPASCAL); <RET>
READLN; <RET>
END. <RET>

Hit <RET> by itself to take you out of Insert mode and then hit C to compile the
program. Run the program by answering Y to the Run? message.

Finally, to show you how to edit a line, let’'s modify this program to go on forever
(almast!). Get back to Command mode by hitting the <RET> key and then answer N to Run?
and then move the cursor down the List screen until it is positioned on the line that
begins SCREEN(2.11) Now press <INS> and type in:

REPEAT <CR>

hit <CR> by itself to exit from Insert mode and now hit E to edit the line pointed to by
the cursor, move the cursor right (using the cursor right key on the keyboard) until the
cursor is positioned over the first 1 in the number 11, press twice to delete the
11. Now press <INS> and type:

RANDOM(Q) MOD 14 + 2 <RET>

This will take you out of the Edit mode back into Command mode and replace the old line
with the new, edited line that you have just created (note that only 40 characters of
the line are displayed — you can always see the whole line by pressing E to edit the
line). Now move the cursor down one line and press E to edit the line beginning
SCREEN(3, 3)..... move the cursor right until it is over the second 3 in this line (the one
before the right parenthesis) and press to delete it, press <INS> and type:

RANDOM(O) MOD 14 + 2 <RET>

A

Now edit the line starting SCREEN(&, 9).... by moving the cursor down one line and pressing
€, on the Edit screen move tha cursor right until it is positioned over the number 9,
press then <INS> and type:

RANDOM(O) MOD 14 + 2 <RET)>

Finally, within Command mode, move the cursor down one line (s0 it is on the READLN;
line), press <INS> and type:

UNTIL FALSE; <RET>
followed by <RET> on its own to get out of Insert mode.

Right, now compile the pragram (C) and run it (Y to Run?). It will go on inde-finitely tc
break out hit any key to pause the program and then hit <CTRL>C followed bv any otiier-
key toreturn to the editor.

To save this program to tape, go to the beginning of the program (press Q), set a jnarker
“here (press M), go to the end of the program (press W), press P to Put to tape and then,
‘nresponse to the message Name?, type in the name that you want the program to have

on the tape, start your recorder in Record mode and then press <RET> to start the
dump,

We tope that the above has given you a good idea of how to write, edit, compile, run and
save Hisoft Pascal programs on the MTXS12. Please refer carefully to the other
sections of this manual for more details of using the package.

SECTION 1 SYNTAX AND SEMANTICS.

This section details the syntax and the semantics of Hisoft Pascal MTXS12 - unless
otherwise stated the implementation is as specified in the Pascal User Manual and
Report Second Edition (Jensen/Wirth).

Only the first 10 characters of an identifier are treated as significant.

1.1 IDENTIFIER.

letter

]

Identifiers may contain lower or upper case letters. Lower case is generally not
converted to upper case so that the identifiers HELLO, HELlo and hello are all
different. Reserved Words and predefined identifiers may be entered in upper or lower
case, Reserved Words will be converted to and displayed in upper case.

1.2 UNSIGNED INTEGER.

o aigit)

C

1.3 UNSIGNED NUMBER.

unsigned integer »i . @ é E unsigned integer
| - ‘
t hex digit . I

Integers have an absolute value less than or equal to 32767 in Hisoft Pascal. Larger
whole numbers are treated as reals.

The mantissa of reals is 23 bits in length. The accuracy attained using reals is

S

therefore about 7 significant figures. Note that accuracy is lost if the result of a
calculation is much less than the absolute values of its arguments e.g. 2.00002 - 2 does
not yield 0.00002. This is due to the inaccuracy involved in representing decimal
fractions as binary fractions. It does not occur when integers of moderate size are
represented as reals e.g. 200002 — 200000 = 2 exactly.

The largest real available is 3.4E38 while the smallest is S.9e-39.

There is no point in using more than 7 digits in the mantissa when specifying reals since
extra digits are ignored except for their place value.

When accuracy is important avoid leading zeroes since these count as one of the diqgits.
Thus 0.000123456 is represented less accurately than 1.23454E-4.

Hexadecimal numbers are available for programmers to specify memory addresses for

assembly language linkage inter alia. Note that there must be at least one hexadecimal
digit present after the ‘£, otherwise an error (#*ERROR#* 51) will be generated.

1.4 UNSIGNED CONSTANT.

— constant identifier

Y

1 unsigned number o

e
v

Note that strings may not contain more than 235 characters. String types are ARRAY
(1.N] OF CHAR where N is an integer between 1 and 255 inclusive. Literal strings
should not contain end-of-line characters (CHRU3)) — if they do then an “#ERROR+* &8° is
Qenerated.

The characters available are the full expanded set of ASCII values with 256 elements. To
maintain compatibility with Standard Pascal the null character is not represented as ~;
instead CHR(O) should be used.

1.5 CONSTANT.

constant identifier

L@_’ unsigned number

e
Y

‘ constant —h@——

The non—-standard CHR construct is provided here so that constants
may be used for control characters. In this case the constant
in parentheses must be of type integer.

E.g. CONST bs=CHR(10)%
cr=CHR(13);

1.6 SIMPLE TYPE.

type identifier =

identifier

. . constant --@._,J constant

Scalar enumerated types (identifier, identifier,) may not have more than 256
element x.

1.7 TYPE.

Y

simple type

;@n type identifier

simple type

type -

] SET —® simple type =
_/

RECORD field list END

The reserved word PACKED is accepted but ignored since packing already takes place for
arrays of characters etc. The only case in which the packing of arrays would be
advantageous is with an array of Booleans — but this is more naturally expressed as a
set when packing is required.

1.7.1 ARRAYs and SETs.

The base type of a set may have up to 256 elements. This enables SETs of CHAR to be
declared together with SETs of any user enumerated type. Note, however, that only
subranges of integers can be used as base types. All subsets of integers are treated
as sets of 0..255. ’

Full arrays of arrays, arrays of sets, records of sets etc. are supported.

Two ARRAY types are only treated as equivalent if their definition stems from the same
use of the reserved word ARRAY. Thus the following types are not equivalent:

TYPE
tablea
tableb

ARRAY(1..100] OF INTEGER;
ARRAY(1..100] OF INTEGER;

So a variable of type tablea may not be assigned to a variable of type tableb. This
enables mistakes to be detected such as assigning two tables representing different
data. The above restriction does not hold for the special case of arrays of a string
type, since arrays of this type are always used to represent similar data.

1.7.2 Pointers.

Hisoft Pascal allows the creation of dynamic variables through the use of the Standard
Procedure NEW (see Section 2). A dynamic variable, unlike a static variable which has
memory space allocated for it throughout the block in which it is declared, cannot be
referenced directly through an identifier since it does not have an identifierj instead a
pointer variable is used. This pointer variable, which is a static variable, contains the
address of the dynamic variable and the dynamic variable itself is accessed by including
a '~ after the pointer variable. Examples of the use of pointer types can be studied in
Appendix 7.

There are some restrictions on the use of pointers within Hisoft Pascal MTX512. These
are as follows:

Pointers to types that have not been declared are not allowed. This does not prevent
the construction of linked list structures since type definitions may contain pointers
to themselves e.g.

TYPE
item = RECORD
value : INTEGER;
next : “item
END;

link = ~item;
Pointers to pointers are not allowed.

Pointers to the same type are regarded as equivalent e.g.

VAR
first : link;
current : “item;

The variables first and current are equivalent (i.e. structural equivalence is used)
and may be assigned to each other or compared.

The predefined constant NIL is supported and when this is assigned to a pointer
variable then the pointer variable is deemed to contain no address.

1.7.4 RECORDs.

The implementation of RECORDs, structured variables composed of a fixed number of
constituents called fields, within Hisoft Pascal MTX512 is as Standard Pascal except
that the variant part of the field list is not supported.

Two RECORD types are only treated as equivalent if their declaration stems from the
same occurrence of the reserved word RECORD see Section 1.7.1 above.

The WITH statement may be used to access the different fields within a record in a more
compact form. You should note that WITH statements cannot be called recursively and
that WITH does not open a new scope.

See Appendix 7 for an example of the use of WITH and RECORDs in general.

Q

1.8 FIELD LIST.

Y

-, ; identifier @" type]

Used in conjunction with RECORDs see Section 1.7.4 above and Appendix 7 for an example.

1.9 VARIABLE.

| variable identifier e

field identifier }‘.@lV expression =<]) :

field identifier

)
N

Two kinds of variables are supported within Hisoft Pascal; static and dynamic variables.
Static variables are explicitly declared through VAR and memory is allocated for them
during the entire execution of the block in which they were declared.)

Dynamic variables, however, are created dynamically during program execution by the
procedure NEW. They are not declared explicitly and cannot be referenced by an
identifier. They are referenced indirectly by a static variable of type pointer, which
contains the address of the dynamic variable.

See Section 1.7.2 and Section 2 for more details of the use of dynamic variables and
Appendix 7 for an example.

wWwhen specifying elements of multi-dimensional arrays the programmer is not forced to
use the same form of index specification in the reference as was used in the
declaration.

e.g. if variable a is declared as ARRAY(1..10] OF ARRAY(1..10] OF INTEGER then either
al1J1] or all,1] may be used to access element (1,1) of the array.

FACTOR.

Y

unsigned constant

variable

P

function identifier

() -)
u expression [

expression r——{ ’————————’

factor

expression

=@. expression f@-—-
Y
AN

See EXPRESSION in Section 1.13 and FUNCTIONs in Section 3 for more details.

1.11 TERM.

-——’

factor

factor

BEAEE

The lowerbound of a set is always zero and the set size is always the maximum of the
base type of the set. Thus a SET OF CHAR always occupies 32 bytes (a possible 256
elements — one bit for each element). Similarly a SET OF 0..10 is equivalent to SET OF
0..258,

1.12 SIMPLE EXPRESSION.

term

term

11

The same comments made in Section 1.11 concerning sets apply to simple expressions.

1.13 EXPRESSION.

1 simple expression

eelclollelc .

wWhen using IN, the set attributes are the full range of the type of the simple expression
with the exception of integer arguments for which the attributes are taken as if (0..253]

had been encountered.

gs of the same length, pointers and all

| The above syntax applies when comparing strin
, <> or =.Pointers may only be compared

scalar types. Sets may be compared using >=, <=
using = and <>.

1.14 PARAMETER LIST.

([[identifier %Q—D- type identifier)

VAR L_——Qﬁ———'

||
{ A type identifier must be used following the colon — otherwise *ERROR# 44 will result.

Variable parameters as well as value parameters are fully suppor ted.

Procedures and functions are not valid as parameters.

1.15 STATEMENT.

Refer to the syntax diagram on page 14,
Assignment statements:

See Section 1.7 for information on which assignment statements are illegal.

CASE statements:

An entirely null case list is not allowed i.e. CASE OF END; will generate an error
(#*ERROR®* 13).

The ELSE clause, which 1s an alternative to END, is executed if the selector
(expression’ overleaf) is not found in one of the case lists (‘constant’ overleaf).

If the END terminator is used and the selector is not found then control is passed to
the statement following the END.

FOR statements:

The contrcl variable of a FOR statement may only be an unstructured variable, not a

parameter. This is half way between the Jensen/Wirth and draft ISO standard
definitions.

GOTO statements:

It 1s only possible to GOTO a label which is present in the same block as the GOTO
statement and at the same level. GOTO should not be used to transfer execution out of a
FOR..DO loop nor out of a Procedure or Function.

Labels must be declared (using the Reserved Word LABEL) in the block in which they are
used; a label consists of at least one and up to four digits. When a label is used to mark
a statement it must appear at the beginning of the statement and be followed Ly a colon

13

STATEMENT.

unsigned integer

variable identifier

function identifier

¥ expression

— O

procedure identifier]

5

5

a0

expression

O

BEGIN

expression

expression

statement

 }

[statement END
vb@-b statement statement
OF constant statement
’
@
statement
expression DO statement

expression

variable identifier] <)

expression

]

expression

mCal

‘

statement

WITH

variable

DO

unsigned integer

H

statement

B B BN B BN BN BN S BN BN BN Gy By By B v W §

1.16 BLOCK.

unsigned integer

G identifier -—@—» constant
= O
identifier _.O_’. type
VAR identifier =<>—. type

N
FORWARD

block

identifier parameter list >
identifier 3 parameter list —a@..; type identifier

statement END

Y

)
NS

\
f
|
]
|
|
\\‘

Forward References.

As 1n the Pascal User Manual and Report (Section 11.C.1) procedures and functions may be
referenced before they declared through use of the Reserved Word FORWARD e.g.

FROCEDURE a(y:t) ; FORWARD; {procedure a declared to be)
FROCEDURE b(x:t); {forward of this statement}

EEGIN

alpl; {procedure a referenced.)

END;

PROCEDURE a; : {actual declaration of procedure a.}
BEGIN

bl{q);

END;

Note that the parameters and result type of the procedure a are declared along with
FORWARD and are not repeated in the main declaration of the procedure. Remember,
FORWARD is a Reserved Word.

1.17 PROGRAM.

identifier ; block END ;

Since files are not implemented there are no formal parameters of the program i.e. you
should NOT write PROGRAM A (INPUT,OUTPUT); but simply PROGRAM A; .

(

1.18 Strong TYPEing.

Different languages have different ways of ensuring that the user does not use an
element of data in a manner which is inconsistent with its definition. .
At one end of the scale there is machine code where no checks whatever are made on the
TYPE of variable being referenced. Next we have a language like the Byte ‘Tiny Pascal’ in
which character, integer and Boolean data may be freely mixed without generating
errors. Further up the scale comes BASIC which distinguishes between numbers and
strings and, sometimes, between integers and reals (perhaps using the ‘%X’ sign to denote
integers). Then comes Pascal which goes as far as allowing distinct user—enumerated
types. At the top of the scale (at present) is a language like ADA in which one can define
different, incompatible numeric types.

There are basically two approaches used by Pascal implementations to strength of
typing; structural equivalence or name equivalence. Hisoft Pascal uses name
equivalence for RECORDs and ARRAYs. The consequences of this are clarified in Section 1
-~ let it suffice to give an example here; say two variables are defined as follows:

VAR A : ARRAY['A’..'C’] OF INTEGER;
B : ARRAY['A’..'C'] OF INTEGER;

then one might be tempted to think that one could write A:=B; but this would generate an

16

error (*ERROR# 10) under Hisoft Pascal since two separate ‘TYPE records’ have been
created by the above definitions. In other words, the user has not taken the decision
that A and B should represent the same type of data. She/He could do this by:

VAR A,B : ARRAY['A’..C’] OF INTEGER;

and now the user can freely assign A to B and vice versa since only one ‘TYPE record’
has been created.

Although on the surface this name equivalence approach may seem a little complicated,
in general it leads to fewer programming errors since it requires more initial thought
from the programmer.

{
|

17

f

SECTION 2 PREDEFINED IDENTIFIERS.

2.1 CONSTANTS.

MAXINT The largest integer available i.e. 32747.

TRUE, FALSE The constants of type Boolean.

2.2 TYPES.

INTEGER See Section 1.3.

REAL See Section 1.3.

CHAR The full extended ASCII character set of 256 elements.
BOOLEAN (TRUE,FALSE). This type is used in logical operations including

the results of comparisons.

2.3 PROCEDURES AND FUNCTIONS.

2.3.1 Input and OQutput Procedures.

2.3.1.1 WRITE

The procedure WRITE is used to output data to the screen or
printer.

When the expression to be written is simply of type character
then WRITE(e) passes the B bit value represented by the value of
the expression e to the screen or printer as appropriate.

Note:

CHR(B) (CTRL H) gives a destructive backspace on the screen.
CHR(12) (CTRL L) clears the screen or gives a new page on the
printer.

CHR(13) (CTRL M) performs a carriage return and line feed.

CHR16) (CTRL P) will normally direct output to the printer

1f the screen is in use or vice versa.

19

|
|
|
|
\
j

Generally though:
WRITE(P1,P2,....... Pn); is equivalent to:
BEGIN WRITE(P1); WRITE(P2); ceeeeee; WRITE(PN) END;

The write parameters P1,P2,......Pn can have one of the following
forms:

<e> or <emm> or <e:m:n> or <e:m:H>

where e, m and n are expressions and H is a literal constant.
We have S cases to examine:
1l e is of type integer: and either <e)> or <e:m> is used.

The value of the integer expression e is converted to a
character string with a trailing space. The length of the string
can be increased (with leading spaces) by the use of m which
specifies the total number of characters to be output. If m is
not sufficient for e to be written or m is not present then e is
written out in full, with a trailing space, and m is ignored. Note
that, if m is specified to be the length of e without the trailing
space then no trailing space will be output.

2] e is of type integer and the form <e:m:H> is used.

In this case e is output in hexadecimal. If m=1 or m=2 then the
value (e MOD 16™m) is output in a width of exactly m characters.
If m=2 or m=4 then the full value of e is output in hexadecimal
in a width of 4 characters. If m>4 then leading spaces are
inserted before the full hexadecimal value of e as necessary.
Leading zeroes will be inserted where applicable. Examples:

WRITE(102S:m:H);

3
I

outputs: 1
outputs: 01
outputs: 0401
outputs: 0401
outputs: 0401

3
]

233
A B4 r) =

Xl e is of type real. The forms <e>, <e:mm> or <e:m:n> may
be used.

The value of e is converted to a character string representing a
real number. The format of the representation is determined by n.

If n is not present then the number is output in scientific
notation, with a mantissa and an exponent. If the number is
negative then a minus sign is output prior to the mantissa,
otherwise a space is output. The number is always output to at
least one decimal place up to a maximum of S decimal places and the
exponent is always signed (either with a plus or minus sign). This
means that the minimum width of the scientific representation is 8
characters; if the field width m is less than 8 then the full width
of 12 characters will always be output. If m>=8

then one or more decimal places will be output up to a maximum of
S decimal places (m=12). For m>12 leading spaces are inserted
before the number. Examples:

WRITE(—-1.23E 10:m);

m=7 gives: —1.230Q00E+10
m=8 gives: —-1.2E+10
m=9 gives: -1.23E+10

10 gives: —-1.230E+10
m=11 gives: —1.2300E+10
m=12 gives: —1.2300Q0E+10
m=13 gives: -1.23000E+10

If the form <e:m:n> is used then a fixed—point representation of
the number e will be written with n specifying the number of
decimal places to be output. No leading spaces will be output
unless the field width m is sufficiently large. If n is zero then
e is output as an integer. If e is too large to be output in the
specified field width then it is output in scientific format with a
field width of m (see above). Examples:

WRITE(1IE2:6:2) gives: 100.00
WRITE(1E2:8:2) gives: _100.00
WRITE(23.455:6:1) gives: _23.5
WRITE(23.455:4:2) gives: _2.34550E+01
WRITE(23.455:4:0) gives: 23

4] e is of type character or type string.

Either <e> or <e:m> may be used and the character aor string of
characters will be output in a minimum field width of 1 (for
characters) or the length of the string (for string types). Leading
spaces are inserted if m is sufficiently large.

Sl e is of type Boolean.

Either <e> or <e:m> may be used and ‘TRUE' or FALSE’ will be
output depending on the Boolean value of e , using a minimum field
width of 4 or S respectively.

21

iscaitt

2.3.1.2 WRITELN

WRITELN outputs gives a newline. This 1is equivalent to
WRITE(CHR(13)). Note that a linefeed i1s included.

WRITELN(PL,P2,........ P3); is equivalent to:

BEGIN WRITE(P1,P2,....... P3X); WRITELN END;

2.3.1.3 PAGE

The procedure PAGE is equivalent to WRITE(CHR(12)3 and causes the
video screen to be cleared or the printer to advance to the top of
a new page.

2.3.1.4 READ

;
|
1
5

The procedure READ is used to access data from the keyboard. It
does this through a buffer held within the runtimes — this buffer
is initially empty (except for an end-of-line marker). We can
consider that any accesses to this buffer take place through a
text window over the buffer through which we can see one
character at a time. If this text window is positioned over an
end-of-line marker then before the read operation is terminated
a new line of text will be read into the buffer from the keyboard.

READ(V1,V2,........Vn); is equivalent to:
BEGIN READ(V1); READ(V2);; READ(VN) END;

where V1, V2 etc. may be of type character, string, integer or
real.

The statement READ(V); has different effects depending on the
type of V. There are 4 cases to consider:

11V is of type character.

In this case READ(V) simply reads a character from the input
buffer and assigns it to V. If the text window on the buffer is
positioned on a line marker (a CHR(13) character) then the function
EOLN will return the value TRUE and a new line of text is read in
from the keyboard. When a read operation is subsequently
performed then the text window will be positioned at the start of

5 i
L

the new line.

Important note: Note that EOLN is TRUE at the start of the
program. This means that if the first READ is of type character
then a CHR(13) value will be returned followed by the reading in of
a new line from the keyboard; a subsequent read of type character
will return the first character from this new line, assuming it is
not blank. See also the procedure READLN below.

21V is of type string.

A string of characters may be read using READ and in this case a
series of characters will be read until the number of characters
defined by the string has been read or EOLN = TRUE. If the string
is not filled by the read (i.e. if end—of-line is reached before the
whole string has been assigned) then the end of the string is
filled with null (CHR(O)) characters — this enables the programmer
to evaluate the length of the string that was read.

The note concerning in 1] above also applies here.

31V is of type integer.

In this case a series of characters which represent an integer as
defined in Section 1.3 is read. All preceding blanks and
end—of-line markers are skipped (this means that integers may be
read immediately cf. the nate in 11 abave).

If the integer read has an absolute value greater than MAXINT
(32767) then the runtime error ‘Number too large’ will be issued
and execution terminated.

If the first character read, after spaces and end-of-line
characters have been skipped, is not a digit or a sign '+ or =)

then the runtime error ‘Number expected’ will be reported and the
program aborted.

41V is of type real.

Here, a series of characters representing a real number
according to the syntax of Section 1.3 will be read.

All leading spaces and end—of-line markers are skipped and, as for
integers above, the first character afterwards must be a digit or
a sign. If the number read is too large or too small (see Section
1.3) then an ‘Overflow’ error will be reported, if ‘E’ is present
without a following sign or digit then ‘Exponent expected’ error
will be generated and if a decimal point is present without a
subsequent digit then a ‘Number expected’ error will be given.

Reals, like integers, may be read immediately; see 1] and 31 above.

23

2.3.1.5 READLN

READLN(V1,V2,.......Vn); is equivalent to: BEGIN
READ(VL,V2,.......Vn); READLN ENDj;

READLN simply reads in a new buffer from the keyboard; while
typing in the buffer you may use the various control functions
detailed in Section 0.0. Thus EOLN becomes FALSE after the
execution of READLN unless the next line is blank.

READLN may be used to skip the blank line which is present at the
beginning of the execution of the object code i.e. it has the effect
of reading in a new buffer. This will be useful if you wish to read a
component of type character at the beginning of a program but it
is not necessary if you are reading an integer or a real (since
end-of-line markers are skipped) or if you are reading characters
from subsequent lines.

2.2.2 Input Functions.

2.7.2.1 EOLN

The function EOLN is a Boolean function which returns the value
TRUE if the next char to be read would be an end—of—line character
(CHR(13)). Otherwise the function returns the value FALSE.

2.8.2.

N

INCH

The function INCH causes the keyboard of the computer to be
scanned and, if a key has been pressed, returns the character
represented by the key pressed. If no key has been pressed then
CHR(O) is returned. The function therefore returns a result of
type character.

2.3.3 Transfer Functions.

2.3.3.1 TRUNCX)

The parameter X must be of type real or integer and the value
returned by TRUNC is the greatest integer less than or equal to X
1f X 1s positive or the least integer greater than or equal to X
1f X is negative. Examples:

TRUNC(-1.5) returns -1 TRUNC(1.9) returns 1

2.3.3.2 ROUNDX)

X must be of type real or integer and the function returns the
‘nearest’ integer to X (according to standard rounding rules).
Examples:

ROUND(-6.9) returns —6 ROUND(11.7) returns 12
ROUND(—-6.51) returns -7 ROUND(23.5) returns 24

2.3.3.3 ENTIER(X)
X must be of type real or integer — ENTIER returns the greatest
integer less than or equal to X, for all X. Examples:
ENTIER(-6.5) returns -7 ENTIER(11.7) returns 11
Note: ENTIER is not a Standard Pascal function but is the

equivalent of BASIC's INT. It is useful when writing fast routines
for many mathematical applications.

2.3.2.4 ORD(X)

X may be of any scalar type except real. The value returned is an
integer representing the ordinal number of the value of X within
the set defining the type of X.

If X is of type integer then ORD(X) = X ; this should normally be
avoided.

Examples:

ORD(‘a’) returns 97 ORD('@") returns 64

2.3.3.5 CHR(X)

X must be of type integer. CHR returns a character value
corresponding to the ASCII value of X. Examples:

CHR(49) returns '1° CHR(?1) returns ‘T’

2.3.4 Arithmetic Functions.

In all the functions within this sub—section the parameter X must be of type real or
integer.

2.3.4.1 ABS(X)

Returns the absolute value of X (e.g. ABS(—-4.5) gives 4.3). The
result is of the same type as X.

2.3.4.2 SQR(X)

Returns the value X#X i.e. the square of X. The result is of the
same type as X.

2.3.4.3 SQRTX)

Returns the square root of X — the returned value is always of
type real. A ‘Maths Call Error’ is generated if the argument X is
negative.

2.3.4.4 FRAC(X)

Returns the fractional part of X: FRAC(X) = X — ENTIER(X).

As with ENTIER this function is useful for writing many fast
mathematical routines. Examples:
FRAC(1.9) returns 0.5 FRAC(—12.56) returns 0.44

2.3.4.5 SIN(X)

Returns the sine of X where X is in radians. The result is always
of type real.

2.3.4.6 COSX)

Returns the cosine of X where X is in radians. The result is of
type real.

2.3.4.7 TANX)

Returns the tangent of X where X is in radians. The result is
always of type real.

26

4 8 N S S SsssEsEEEsEaas

2.3.4.8 ARCTANX)

Returns the angle, in radians, whose tangent is equal to the
number X. The result is of type real.

2.3.4.9 EXP(X)

Returns the value e”X where e = 2.71828. The result is always of
type real.

2.3.4.10 LNWX)

Returns the natural logarithm (i.e. to the base @) of X. The result

is of type real. If X <= O then a ‘Maths Call Error’ will be
generated.

2.3.5 Further Predefined Procedures.

2.3.5.1 NEW(p)

The procedure NEW(p) allocates space for a dynamic variable. The
variable p is a pointer variable and after NEW(p) has been
executed p contains the address of the newly allocated dynamic
variable. The type of the dynamic variable is the same as the type
of the pointer variable p and this can be of any type.

To access the dynamic variable p”~ is used — see Appendix 4 for an
example of the use of pointers to reference dynamic variables.

To re-allocate space used for dynamic variables use the
procedures MARK and RELEASE (see belaw).

2.3.5.2 MARK(V1)

This procedure saves the state of the dynamic variable heap to be
saved in the pointer variable vi. The ste'e of the heap may be
restored to that when the procedure MARK was executed by using
the procedure RELEASE (see below).

The type of variable to which vi points is irrelevant, since vi
should only be used with MARK and RELEASE never NEW.

For an example program using MARK and RELEASE see Appendix 4.

{

2.3.5.3. RELEASE(v])

This procedure frees space on the heap for use of dynamic
variables. The state of the heap is restored to its state when
MARK(v]) was executed - thus effectively destroying all dynamic
variables created since the execution of the MARK procedure. As
such it should be used with gre t care.

See abave and Appendix 4 for more details.

2.3.5.4 INLINE(C1,C2,C3,..c.c..cul)

This procedure allows Z80 machine code to be inserted within the
Pascal program; the values (C1 MOD 256, C2 MOD 256, C3 MOD 256,
weeeee) are inserted in the object program at the current location
counter address held by the compiler. C1, C2, C3 etc. are integer
constants of which there can be any number. Refer to Appendix 4
for an example of the use of INLINE.

2.3.5.5 USER(\)

USER is a procedure with one integer argument V. The procedure
causes a call to be made to the memory address given by V. Since
Hisoft Pascal holds integers in two’'s complement form (see
Appendix 3) then in order to refer to addresses greater than
£7FFF (32767) negative values of V must be used. For example
£CO000 is —-16384 and so USER(-16384); would invoke a a call to the
memory address £C000. However, when using a constant to refer to
a memory address, it is more convenient to use hexadecimal.

The routine called should finish with a Z80 RET instruction (£C9)
and must preserve the IX register.

2.3.5.6 HALT

This procedure causes program execution to stop with the -
message ‘Halt at PC=XXXX" where YXXX is the hexadecimal memory
address of the location where the HALT was issued. Together with
a compilation listing, HALT may be used to determine which of two
or more paths through a program are taken. This will normally be
used during de—bugging.

2.3.5.7 POKE(X,V)

FOKE stores the expression V in the computer’s memary starting
from the memory address X. X 1s of type integer and V can be of
any type except SET. See Section 2.2.5.5 above for a discussion

28

of the use of integers to represent memory addresses. Examples:

POKE(£6000,°A") places f£41 at location £6000.
POKE(~-16384,3.6E3) places 00 OB 8(70 (in hex) at £C000.

2.3.5.8 TOUT (NAME,START,SIZE)

TOUT is the procedure which is used to save variables on tape.
The first parameter is of type ARRAY(1..8]1 OF CHAR and is the name
of the file to be saved. SIZE bytes of memory are dumped starting
at the address START. Both these parameters are of type INTEGER.
E.g. to save the variable V to tape under the name VAR ‘uses

TOUTCVAR ‘yADDR(V),SIZE(V))

The use of actual memory addresses gives the user far more
\ flexiblity than just the ability to save arrays. For example if a
[system has a memory mapped screen, entire screenfuls may be
i saved directly. See Appendix 4 for an example of the use of TOUT.

2.3.5.9 TIN (NAME,START)

This procedure is used to load, from tape, variables etc. that
have been. saved using TOUT. NAME is of type ARRAY[1..8] of CHAR
and START is of type INTEGER. The tape is searched for a file
called NAME which is then loaded at memory address START. The
number of bytes to load is taken from the tape (saved on the tape

. by TOUT).

E.g. to load the variable saved in the example in Section 2.3.5.8
above use:

TINCVAR ‘yADDR(V))

Because source files are recorded by the editor using the same
format as that used by TIN and TOUT, TIN may be used to load text
files into ARRAYs of CHAR for processing.

See Appendix 4 for an example of the use of TIN.
2.3.5.10 OUT(P,0)

This procedure is used to directly access the Z80's output ports
without using the procedure INLINE. The value of the integer
parameter P is loaded in to the BC register, the character
parameter C is loaded in to the A register and the assembly
instruction OUT (C),A is executed.

E.g. OUT(1,°A) outputs the character ‘A’ to the Z80 port 1.

29

¥ (

2.3.5.11 CRVS(n, tx,y,w,h,s)

CRVS is used to set up the definition of a new virtual screen — the
new screen may then be selected using the procedure VS (see
below). The parameters (all INTEGER) of CRVS are exactly the same
as are used within MTX BASIC i.e.

is the VS identification number (0-7)

is the screen type (O for text, 1 for graphics)

is the x co—ordinate of the top left hand corner of the screen
is the y co—ordinate of the top left hand corner of the screen
is the width (in characters) of the screen

is the height (in characters) of the screen

should be 40 for a text screen or 32 for a graphics screen

¥ TEXX XD

e.g.
CRVS(2,1,11,8,10,8,32);

sets up a graphics screen (B0x64 pixels) in the middle of the
screen.

2.3.5.12 VS(n)

Select the virtual screen n for subsequent output. Remember
that screens O, 1, 4, S and 7 are set up and used by MTX BASIC. n is
of type INTEGER.

2.3.5.13 PAPERN)

This sets the paper colour for the current screen to the colour
corresponding to the number (INTECER) n — see page 184 of the MTX
Operator’'s Manual for the list of colours available. Equivalent to
BASIC’s PAPER caommand.

2.3.5.14 INK(n)

INK sets the ink colour for the current screen to the colour
corresponding to the number n which is of type INTEGER.
Equivalent to BASIC's INK command.

2.3.5.15 PLOT(x,y)

This procedure will only produce valid results when used after a
graphics screen has been selected (using VS). It takes two INTEGER
parameters x and y and simply plots the point (x,y) on the
current graphics screen, in the current ink colour and relative to
the origin of the current screen. If an attempt is made to PLOT to
a text screen then an MTX BASIC error will occur — type ROM 2
<RET> toreturn to Pascal.

30

& E E B EaEEEES=

(
\

4 2 28

(
{

!. {. ‘. \.

2.3.9.16 LINE(x1,yl,x2,y2)

LINE takes 4 INTEGER parameters and draws a straight line
between points (x1,yl) and (x2,y2) on the current graphics screen
and in the current ink colour. If an attempt is made to draw a line
on a text screen then an MTX BASIC error will accur - type ROM 2
<RET> to recover Pascal.

2.3.6 Further Predefined Functions.

2.3.6.1 RANDOM(X)

RANDOM generates a pseudo—-random number in the range O — MAXINT
i.e. a positive INTEGER. RANDOM takes one parameter, if this
parameter is zero then RANDOMO) returns the next random number
in the sequence otherwise the parameter is taken as the seed for
a new random number sequence.

2.3.6.2 SUCC(X)
X may be of any scalar type except real and SUCC(X) returns the
successor of X. Examples:
SUCC(CA’) returns ‘B’ SUCC('5S") returns ‘6’
2.3.6.3 PRED(X)
X may be of any scalar type except real; the result of the function
is the predecessor of X. Examples:
PRED('j)) returns ‘i’ PREIXTRUE) returns FALSE

2.3.6.4 ODDOXO

X must be of type integer. ODD returns a Boolean result which is
TRUE if X is odd and FALSE if X is even.

2.3.6.6 ADDR(V)
This function takes a variable identifier of any type as a

parameter and returns an integer result which is the memory

31

e S—

address of the variable identifier V. For information on how
variables are held, at runtime, within Hisoft Pascal see Appendix
I. For an example of the use of ADDR see Appendix 4.

2.3.6.7 PEEK(X,T)

The first parameter of this function is of type integer and is
used to specify a memory address (see Section 2.3.5.5). The second
argument is a type; this is the result type of the function.

PEEK is used to retrieve data from the memory of the computer
and the result may be of any type.

In all PEEK and POKE (the opposite of PEEK) aoperations data is
moved in Hisoft Pascal's own internal representation detailed in
Appendix 3. For example: if the memory from £5000 onwards
contains the values: S0 61 73 63 61 6C (in hexadecimal) then:

WRITE(PEEK(£5000,ARRAYL1..6] OF CHAR)) gives ‘Pascal’
WRITE(PEEK(E£S000,CHAR)) gives P’
WRITE(PEEK(£5000,INTEGER)) gives 24912
WRITE(PEEK(£S000,REAL)) gives 2.46227E+29

see Appendix 3 for more details on the representation of types
within Hisoft Pascal MTXS512.

2.7.6.8 SIZE(\V)

The parameter of this function is a variable. The integer result
is the amount of storage taken up by that variable, in bytes.

2.3.6.9 INP(P)

INP is used to access the Z80°'s ports directly without using the
procedure INLINE. The value of the integer parameter P is loaded
into be BC register and the character result of the function is
obtained by executing the assembly language instruction IN A,(C).

SECTION 3 COMMENTS AND COMPILER OPTIONS.

3.1 Comments.

A comment may occur between any two reserved words, numbers, identifiers or special
symbols — see Appendix 2. A comment starts with a ‘(C character or the ‘(# ° character
pair. Unless the next character is a ‘$" all characters are ignored until the next ‘)’
character or ‘#)° character pair. If a ‘$’ was found then the compiler looks for a series
of compiler options (see below) after which characters are skipped until a) or ‘%) is
found.

3.2 Campiler Options.

Compiler options can only occur within a Pascal program and then only within
a comment i.e. between { or (# and) or #).

The syntax for specifying compiler options within a comment is:

-O-

letter >

MNe
N/

The following options are available:

Option L:
Controls the listing of the program text and object code address by the compiler.

If L+ then a full listing is given.
If L— then lines are only listed when an error is detected.

DEFAULT: L+

Option O:

Controls whether certain overflow checks are made. Integer multiply and divide and all
real arithmetic operations are always checked for overflow.

If O+ then checks are made on integer addition and subtraction.
If O- then the above checks are not made.

DEFAULT: O+

|

Option C:

During execution of the object code, and assuming you have not used option
$C- (see Section 3), you may pause execution by pressing the ERK key;
subsequently press <CTRL> X to terminate the run (then press any key) or’
press another key to continue the execution of the program.

This check is made at the beginning of all loops, procedures and functions. Thus the user
may use this facility to detect which loop etc. is not terminating correctly during the
debugging process. It should certainly be disabled if you wish the object program to run
quickly. It should also be turned off if you are using the INCH function.

If C- then the above check is not made.

DEFAULT: C+

Option S:
Controls whether or not stack checks are made.

If S+ then, at the beginning of each procedure and function call, a check is made to see
if the stack will probably overflow in this block. If the runtime stack overflows the
dynamic variable heap or the program then the message ‘Out of RAM at PC=XXXX' is
displayed and execution aborted. Naturally this is not foolproof; if a procedure has a
large amount of stack usage within itself then the program may ‘crash’. Alternatively, if
a function contains very little stack usage while utilising recursion then it is possihle
for the function to be halted unnecessarily.

If S— then no stack checks are performed.

DEFAULT: S+

Option A:

Controls whether checks are made to ensure that array indices are within the bounds
specified in the array’s declaration.

If A+ and an array index is too high or too low then the message ‘Index too high’ or
‘Index too low’ will be displayed and the praogram execution halted.

If A— then no such checks are made.

DEFAULT: A+

Option I:

When using 16 bit 2's complement integer arithmetic, overflow occurs when performing a
>y & >=, or <= operation if the arguments differ by more than MAXINT (32767). If this
occurs then the result of the comparison will be incorrect. This will not normally
present any difficulties; however, should the user wish to compare such numbers, the
use af I+ ensures that the results of the comparison will be correct. The equivalent
situation may arise with real arithmetic in which case an overflow error will be issued
if the arguments differ by more than approximately 3.4E38; this cannot be avoided.

34

If I- then no check for the result of the above comparisons is made.

DEFAULT: I-

tion P

o

If the P option is used the device to which the compilation listing is sent is changed i.e.
if the video screen was being used the printer is used and vice versa. Note that this
option is not followed by a ‘+' or ‘—.

DEFAULT: The video screen is used.

Option F:

This option letter must be followed by a space and then an eight character filename. If
the filename has less than eight characters it should be padded with spaces.

The presence of this option causes inclusion of Pascal source text from the specified
file from the end of the current line — useful if the programmer wishes to build up a
‘library’ of much—used procedures and functions on tape and then include them in
particular programs.

The program should be saved using the built—in editor's ‘P’ command.

The list option L—- is forced while including in this manner — otherwise the compiler will
not compile fast enough.
Example: ($F MATRIX__ include the text from a tape file MATRIX};

When writing very large programs there may not be enough room in the computer’s memory
for the source and object code to be present at the same time. It is however possible to
compile such programs by saving them to tape and using the ‘F’ option — then only 256
bytes of the source are in RAM at any one time, leaving much more room for the object
code.

This option may not be nested.

The compiler options may be used selectively. Thus debugged sections of code may be
speeded up and compacted by turning the relevant checks off whilst retaining checks on
untested pieces of code.

A
w

S ——— ———

.5 -. .‘ -‘ .‘ - - .‘ .1" .

[~

SECTION 4 THE EDITOR

4.1 Introduction to the Editor.

The editor supplied with Hisoft Pascal for the MTX512 is a combination of the line editor
used by MTX BASIC and a screen editor specific to Hisoft Pascal.

The interaction of these two editors is as follows: whenever you are inserting or
editing a line of text then the MTX BASIC editor has total control, text is typed on the
Edit screen (lines 20—-23 inclusive) and all the control keys specified on page 7 of the
MTX Operator’'s Manual may be used. Once you have terminated the insertion or edit (you
do this by pressing <RET>) the line of text is transferred to the Listing screen (lines
1—-19 inclusive) with the first 40 characters of the line displayed. When you are not
inserting or editing text you are in the Command mode of the screen editor i.e. text is
displayed on the Listing screen and you may enter various one character commands to do
things like save text to tape, delete a block of tape, go to the end of the textfile etc.
Often, after entering a command, you will be prompted on the Message screen (line 24)
with a relevant message before the command is executed: enter Y or y if you wish the
command to continue or any other character to abort execution of the command.

While in the Command mode of the screen editor, and not waiting for a command to be
executed, the Message screen will contain the current Find and Replace strings — these
are the strings of characters used by the F, R and <CTRL>R commands which allow you
to search for particular words, inter alia, and optionally replace them with other words.
The Find string is displayed after the letters F: while the Replace string is shown
after R:.

Initially, both Find and Replace strings are empty, the textfile is empty and the cursor
is placed at the top left hand corner of the screen — you are in the Command mode of the
screen editor waiting for a command to be entered. There are 24 commands and these are
described below.

4.2 Screen Editor Commands.

All screen editor commands are either one letter commands (such as I for Insert) or
<CTRL> key commands such as <CTRL>R - <CTRL> key commands require the <CTRL> key
to be held down while you press the relevant command letter e.g. hold <CTRL> and R
down to reach the <CTRL>R command.

Commands generally take effect immediately (there is no need to press <RET>) although
many prompt you on the Message screen first to make sure that you want to continue
with the command — usually answer Y or y to continue the command or any other letter
to abort it. The commands you may enter are given belaw.

If at any time there is no room to insert any more text in the textfile then the message
Space! will appear on the message screen — hit any key to return to Command mode. You

will now have to delete some of your program to make space for any new text.

4.2.1 Cursor Commands.

Command 4

Cursor up. This simply moves the cursor up one line in the textfile. The cursor cannot be
moved before the start of the textfile. When the cursor is at the top of the page and not
at the beginning of the file then the cursor up command will bring in the previous line

37

and the current page will be scraolled down one line.

Command ¢
Cursor down. The cursor is moved down one line in the textfile. It cannot be moved past
the end of the file. If the cursor is a the bottom of the page and not at the end of the

file then the cursor down command will bring in the next line of text and the current page
will be scrolled up one line.

Command Q@

Go to the beginning of the textfile.

Command W

6o to the end of the textfile i.e. position the cursor at the start of the last line in the
textfile.

Command A

Display the previous page (17 lines) of text to the current page. If the first page of the
file is the current page then no action is taken. The cursor position within the page is
maintained.

Command S

Display the next page of text. If the last page of text is already displayed then no
action is taken. The curosr position within the page is maintained.

Command 7

Take the cursor to the top of the current page.

Command X

Position the cursor at the start of the last line of text on the current page.

Note that the last &6 commarids @Q, W, A, S, Z and X) are positioned on a block of keys at the
left of the keyboard - this should facilitate their use.

4.2.2 Editing Commands.

Command <INS>

Insert a line before the current cursor position. This takes you into Insert mode,
allowing you to continually insert lines of text. While in this mode the word Insert is
displayed on the Message screen. To type the line that you wish to insert Just type
normally on the keyboard, optionally using the various control keys given on page 7 of
the MTX Operator’'s Manual. To finish a line type <RET> and the line will be transferred
to the Listing screen - you will remain in Insert mode and can keep typing lines,

38

- am aa A a B B

terminated by <RET>.

To get out of Insert mode and back to Command mode simply type <RET> as the first
character of a line - if you want to insert blank lines into the text then type a space
followed by <RET> . In fact any key whose ASCII value is less than 32, when typed as the
first character on a line, will take you back to Command mode.

Note that you can type lines of up to 160 characters on the Edit screen,
all these characters will be inserted into the textfile but only the first
40 characters of the line will be displayed on the Listing screen.

Command E

Edit the line at the cursor position. The line on which the cursor is positioned is
transferred to the Edit screen and you may now use all the commands given on page 7 of
the MTX Operator's Manual to edit this line of text. To finish the edit and copy the line
back into the textfile simply press <RET) .

Important Note: whenever You are using the Edit screen you should never press <ESC)>
because this will normally cause an MTX BASIC error which will give BASIC control of the
machine again. If you should accidentally press <ESC> while using the Edit screen and

find yourself back in BASIC then enter ROM 2 <RET> - this should take you back into
Pascal with your text intact.

Command D

Delete the current line. This command first prompts you with Line? on the Message
screen. If you wish to delete the line at the cursor then type Y or Y , otherwise type
any aother character and the command will be aborted.

Command O

Obliterate (delete!) a block of text. You should first set a marker (using the M command)
on the first line that you wish to delete and then move the cursor to the start of the
line up to which yYou want to delete. Now press 0 - the message Block? will appear on
the Message screen, hit Y or y to delete the marked block of text or any other
character to abort the command and return to Cammand mode. Text will be deleted from

and including the line in which the marker is set up to but not including the line on which
the cursor is positioned.

Command Vv

Set the Values of the Find and Replace strings. This command allows you to define the
Find and Replace strings that will be used by subsequent F, R and <CTRL>R commands.
Firstly you are prompted on the Message screen for Find? - enter, on the Edit screen,
the string of characters, up to 17 characters, for which You want to search and
terminate the string with <RET> . Now you will be prompted to enter the Replace? string
~ again enter up to 17 characters on the Edit screen finishing with <RET> . You may
define a null Replace string, simply press <RET> by itself. The strings that you have

defined will now appear on the message screen (after F: and Rt) in Command mode until
You redefine them.

While entering the Find string you may use the ™ character (<SHIFT> 1) as a wild
character e.g. if you enter RYN as the Find string then, whenever you subsequently

39

e e ———————— m—

search for that string, the second character will be matched against any character in
the text so that words like RUN, RAN, R;N etc. will all be matched with the Find string.
Note that end—-of-line characters will not be matched.

Command F

Find a string. Starting from the current cursor position + 1, search the textfile for the
first occurrence of the Find string and then update the Listing screen so that the
cursor is positioned at the start of the found occurrence.

Command R

Replace a string. This command first searches, starting from the current cursor
position, for the first occurrence of the Find string — if an occurrence is found then it
replaces the string with the current Replace string and then searches for the next

occurrence of the Find string.

If no occurrence of the Find string is found then no action is taken.

Command <CTRL>R

Global replace. Starting from the current cursor position search the rest of the
textfile for all occurrences of the Find string, replacing them with the current Replace
string. While the search and replace is in progress the Message screen will contain
simply the Replace string as an indication that the command is in progress.

Use this command carefully.

4.2.3 Tape Commands.

Command P

Put to tape. This command saves the text starting from and including the line with a
marker set in it up to but not including the line currently containing the cursor. Use M
to set the marker. The P command first prompts you to enter the Name? of the file
that you are going to save to tape. You should enter a name of up to 8 characters
terminated by <RET> . Remember to start your tape recorder in RECORD mode before
typing in the name since the dump to tape will start as soon as you have pressed <RET>.

Command G

Get a file from tape. You are first prompted to enter the Name? of the file that you
wish loaded. Type up to 8 characters terminated with <RET>, or simply type <RET> by
itself if you wish to load the first file on the tape. Now press PLAY on your tape
recorder. The tape will be searched for the relevant file and, when found, the file will be
loaded into memory starting from the line beéfore the line in which the marker is
currently set. Thus you can load up text at any position within the textfile by
specifying a marker (use M) at the desired position. Remember that the marker is set by
default to the beginning of the file.

You can abort a tape load by pressing <CTRL> X and holding it down while the tape load is
in progress.

Data is stored on tape in blocks and each block has a checksum associated with it — if a

40

- R R R R R

- - -

|N—— | | — —— LU (N—

- 4 -

checksum error should be encountered on loading back the data then CS ERR will be
displayed on the screen; hit any key to return to Command mode. You will now have to
rewind the tape and try to load the file again from the beginning.

Command <CTRL>G

Verify a tape file. You are first prompted (as in the G command) to enter
the file-name of up to B characters, enter <RET> by itself if you want to
verify the first file on the tape. Now press PLAY on your tape recorder and
the command will search for the requested file. When found, the file on the
tape will be compared with textfile in memory, starting from the line with
the marker in it. If the comparison is good then, at the end of the file,
you will simply be returned to Command mode; if the comparison fails the
message ERR will appear on the message screen, hit any key to return to
Command mode. You may now want to dump the textfile again, preferably onto
a new tape.

You may abort a verify command by pressing <CTRL>X and holding it down while the tape
is being searched.)

As in the G command a checksum error may occur.

4.2.4 Compiling and Running.

Command C

Compile. The text will be compiled starting from the line with the marker in it; remember
that the marker is, by default, normally at the beginning of the file.

Once it has been invoked, and assuming the $L—- option (see Section 3) has not been
specified, then the compiler will generate a compiler listing on the screen consisting of
the approximate memory address at which object code is being generated followed by the
text of the line. This listing may be directed to your printer by use of the compiler
option $P , see Section 3.

You may pause the listing at the end of a line by hitting the BRK key; then
hit <CTRL> X to halt the compilation (then hit any key) or any other key to
continue the compilation.

If an error is detected while compilation is in progress, then the offending line will be
displayed and underneath it the word *ERR#* will be displayed followed by an up—arrow (
~) symbol, which points after the symbol that generated the error, and an error number
(see Appendix 1 for a list of error numbers). The listing will now pause; hit E to return
into Edit mode and edit the line in which the error was detected or P to edit the
previous line (often useful when the error is *ERR#* 2 - missing semi—colon).

If the program terminates incorrectly (.e. without END.) then the message Text? will
be shown on the Message screen and control will return to the screen editor.

If the compiler runs out of symbol table space while compiling then the word Space' will
appear on the screen - hit any key to return to the editor. If you run out of symbol

table space then you can cut down on the number of global variables use. decrease the

length of identifiers or, most easily, save your program to tape, hit RESET, reload the
Fascal package (ROM 2 <RET>) and specify a larger Table? size - the default is 2048
bytes.

I[f the compilation terminates correctly then the End: address of the object code will
be displayed and you will be prompted to Run® the code - answer Y or y to runor any
other character toreturn to the editor.

41

During execution of the object code, and assuming you have not used option
$C- (see Section 3I), you may pause execution by pressing the BRK keys;
subsequently press <CTRL> X to terminate the run (then press any key) or
Press another key to continue the execution of the program.

During the running of a program various runtime error messages may be display=d (e.g.
0V at PC=xxxx), refer to Appendix 1 for an explanation of these messages. Runtime errors
cause control to be returned to the editor or BASIC. It is also possible that you will
run out of runtime stack, if this happens the message Space! at PC=xxxx will be
displayed, hit any key to return to the editor (or BASIC).

Cammand <CTRL>0

Object code to tape. When you have finished debugging your Pascal program and would
like to save the object code to tape, then you should use the <CTRL>0 caommand. You

should only do this when the program is fully working, at previous stages it makes more
sense to save the textfile of the program.

<CTRL>0 compiles the program and then returns to MTX BASIC. You can now save the
object to tape from within BASIC by the following method:

First type A.10 <RET>
Now type <CLS> <RET>
and now SAVE “NAME"

where NAME is the filename that you wish the code to have on tape. The abject code will
now be saved as a BASIC program and may be loaded into an MTXS12 computer subsequently
by typing LOAD “* from within BASIC, whether or not Hisoft Pascal ROMs are present
within the system. Then simply RUN the program from within BASIC. Any runtime errors
that occur within the Pascal program will now cause a return to BASIC - you must then
RUN the praogram again.

Hisoft has no objection to your selling programs developed using Hisoft Pascal for the
MTX512 and indeed would encourage you to da so but we would ask you to acknawledge our
copyright on the runtime routines that you will be selling along with your compiled code.
Thus we would be grateful if you could include the following within the startup message
of your program and also within the documentation for the product:

Produced using Hisoft Pascal
Pascal runtime routines Copyright Hisoft 1983,4

You should note that the <CTRL>0 command destroys a part of the compiler and you must
hit RESET and then ROM 2 <RET> to do any more work with the compiler. Thus <CTRL>O

destroys your textfile and should only be used at the very end of the development
process.

4.2.5 Other Commands.

Command B

Back to BASIC. This command prompts you to Exit? . Type Y or y to return to BASIC or
any other character to return to the editor. Once you are back in MTX BASIC you may
re—enter the Pascal, assuming you have not corrupted the runtimes (by entering a BASIC

program for example!), by typing ROM 2 <RET>, normally this will recover the compiler and
your textfile. '

Comeand M

Set the Marker. Set the marker to the start of the line currently addressed by the
cursor. This marker is used by various other commands to define one end of a block of
text, the other end of the block is defined by the cursor position.

On entry to the compiler the marker is set to the beginning of the file and any commands
that cause text to be inserted or deleted from the textfile (including R) will reset the
marker to the beginning of the textfile.

Command L

Print text. The block of text defined by the current Marker position and the current
cursor position is written out to the printer. This command first prompts with Print?
on the message screen. Answer Y or y to print out the block of text, but make sure

your printer is on-line first, or tpye any other character to abort the command and
return to the screen editor Command mode.

APFENDIX 1 ERRORS.

A.l1.1 Error numbers generated by the campiler.

1. Number too large.

2. Semi—-colon expected.

3. Undeclared identifier.

4. ldentifier expected.

S. Use ‘=" not :="in a constant declaration.

6. = expected.

7. This identifier cannot begin a statement.

8. ":=" expected.

9.)Y expected.

10. Wrong type.

11. ." expected.

12. Factor expected.

13. Constant expected.

14. This identifier is not a constant.

1S. "THEN' expected.

16. ‘DO" expected.

17. 'TO or ‘DOWNTO’ expected.

18. (" expected.

19. Cannot write this type of expression.

20. ‘OF expected.

21. 'y expected.

22. I expected.

23. 'PROGRAM expected.

24. Variable expected since parameter is a variable parameter.
25. ‘BEGIN’ expected.

26. Variable expected in call to READ.

27. Cannot compare expressions of this type.
28. Should be either type INTEGER or type REAL.
29. Cannot read this type of variable.

30. This identifier is not a type.

31. Exponent expected in real number.

32. Scalar expression (not numeric) expected.
33. Null strings not allowed (use CHR(O)).

34. ‘U" expected.

35. T expected.

36. Arrcay index type must be scalar.

37. ‘.. expected.

3I8. ‘T or °,’ expected in ARRAY declaration.

39. Lowerbound greater than upperbound.

40. Set too large (more than 256 possible elements).
41. Function result must be type identifier.

42. 'y or ‘T expected in set.

43. ‘.. or 'y or ‘'Y expected in set.

44. Type of parameter must be a ty;- identifier.
45. Null set cannot be the first factor in a non—assignment statement.
46. Scalar (including real) expected.

47. Scalar (not including real) expected.

48. Sets incompatible.

49. <" and >’ cannot be used to compare sets.
50. 'FORWARD’, ‘LABEL’, ‘CONST’, ‘"VAR’, ‘'TYPE' or ‘BEGIN’ expected.

45

S1. Hexadecimal digit expected.

52. Cannot POKE sets.

53. Array too large > 64K).

S4. 'END’ or ‘;’ expected in RECORD definition.

SS. Field identifier expected.

S6. Variable expected after ‘WITH-.

57. Variable in WITH must be of RECORD type.

S58. Field identifier has not had asociated WITH statement.

59. Unsigned integer expected after ‘LABEL".

60. Unsigned integer expected after ‘GOTO".

61. This label is at the wrong level.

62. Undeclared label.

63. The parameter of SIZE should be a variable.

64. Can only use equality tests for pointers.

67. The only write parameter for integers with two “:'s is e:m:H.
68. Strings may not contain end of line characters.

69. The parameter of NEW, MARK or RELEASE should be a variable of pointer type.
70. The parameter of ADDR should be a variable.

A.1.2 Runtime Error Messages.

When a runtime error is detected then one of the following messages will be displayed,
followed by * at PC=XXXX" where XXXX is the memory location at which the error occurred.
Often the source of the error will be obvious; if not, consult the compilation listing to
see where in the program the error occurred, using XXXX to cross reference.
Occasionally this does not give the correct result.

1. Halt

2. ov Overflow

3. Space! No Stack or Heap space
4. /0 Division by zero

S. IL Array index too low

6. IH Array index too high

Ze MC Maths call error

8. NU Number too large

9. NE Number expected

10. EE Exponent expected

Runtime errors result in the program execution being halted.

APPENDIX 2 RESERVED WORDS AND PREDEFINED IDENTIFIERS.

A 2.1 Reserved Words.

AND ARRAY BEGIN CASE CONST D1V DO
DOWNTO ELSE END FORWARD FUNCTION GOTO0 IF
IN LAEEL MOD NIL NOT OF OR
PACKED FROCEDURE PROGRAM RECORD REFEAT SET THEN
TO TYFE UNTIL VAR WHILE WITH

A 2.2 Special Symbols.

The following symbols are used by Hisoft Pascal and have a reserved meaning:

]
v
"

A~ R +
™
% NN

A 2.3 Predefined ldentifiers.

i The following entities may be thought of a declared in a block surrounding the whole
program and they are therefore available throughout the program unless re—defined by
the programmer within an inner block.

~ For further information see Section 2.

CONST
MAXINT = 32767;

TYPE

BOOLEAN = (FALSE, TRUE)

CHAR (The expanded ASCII character setd;

INTEGER = —MAXINT..MAXINT;

REAL (A subset of the real numbers. See Section 1.3.)

PROCEDURE

WRITE; WRITELN; READ; READLN; PAGE; HAL T3 USER; POKE; INLINES;
OUT; NEW; MARK; RELLEASE; TIN; TOUT;

PAPER; INK; CRVS; VS; PLOT; LINE;

FUNCTION

ABS§ SQR; ODD; RANDOM; ORDs SUCC; PRED; INCH; EOLN;
PEEK; CHR; SGRT; ENTIER; ROUND; TRUNC; FRAC; SIN; COS;
TAN; ARCTAN; EXP; LN; ADDR; SIZE; INP;

47

APPENDIX 3 DATA REPRESENTATION AND STORAGE.

A 3.1 Data Representation.

The following discussion details how data is represented internally by Hisoft Pascal
MTXS12.

The information on the amount of storage required in each case should be of use to most

programmers (the SIZE function may be used see Section 2.3.6.7); other details may be
needed by those attempting to merge Pascal and machine code programs.

A 3.1.1 Integers.

Integers occupy 2 bytes of storage each, in 2's complement form.

Examples:
1 = £0001
296 = £0100
-25¢ =3 £FFOOQ

The standard 780 register used by the compiler to hold integers is HL.

A 3.1.2 Characters, Booleans and other Scalars.

These occupy 1 byte of storage each, in pure, unsigned binary.
Characters: 8 bit, extended ASCII is used.

E
-

£45
£5B

m n

" Booleans:
ORD(TRUE) =1 " so TRUE is represented by 1.
ORD(FALSE) = O so FALSE is representd by O.

The standard Z80 register used by the compiler for the above is A.

A 3.1.3 Reals.

The (mantissa, exponent) form is used similar to that used in standard scientific
notation ~ only using binary instead of denary. Examples:

2=2%100 or 1.0 # 2'

ity e
1 =1%#10 or 1.0 » 2

a9

-t
-12.5 £ -1.25x10 or —25%2

0.1 £ 1.0#10" or

-11001 *2~"
-1.1001 *27% when normalised.

npu

' 1 By
E ——

= *
1010, 101,

-~

-
olm

SO NOw we need to do some binary long division..

0.0001100
101 [0.1000000000000G0
101
110
101
1000
101 at this point
we see that the
fraction recurs
= 0.1, = 0.0001100,
101
oz ' -&
1.1001100 = 2 answer .

S50 how do we use the above results to represent these numbers in the computer? Well,
firstly we reserve 4 bytes of storage for each real in the following format:

[nor‘mal ised manti ss:I

23 22 Q 7 O bit
N N
H 7 L E Y D register
sign: the sign of the mantissa;1 = negative, O = positive.
normalised mantissa: the mantissa normalised to the form Loxxxxxx
with the top bit (bit 22) always 1 except when
representing zero (
HL=0, DE=0).
exponent: the exponent in binary 2's complement form.
Thus:
2 = Q0 1000000 00000000 0QOO0OOQ OOQQO001 (£40,£00, £00 yE£01)
1 =z 0 1000000 00000000 OOO0O000 [aleTalalulnlale] (£40,£00,£00,£00)
-12.5= 1 1100100 000QOO0O QO0OOON0 QAGO0001 1 (£E4,£00,£00,£03)
0.1 0 1100110 01100110 Q1100110 11111100 (£66,£66,£66,£FC)

2 < LD
LD

1 z LD

l LD
-12.5 LD

LD

I‘ 0.1 = LD
LD

places.

N.B. Reals are stored in memory in the order ED LH.

A 3.1.4 Records and Arrays.

HL, £4000
DE,£0100

HL , £4000
DE, £0000

HL , £E400
DE, £0300

HL, £6666
DE, £EFCé46

So, remembering that HL and DE are used to hold real numbers, then we would have to load
the registers in the following way to represent each of the above numbers:

The last example shows why calculations involving binary fractions can be inaccurate;
0.1 cannot be accurately represented as a binary fraction, to a finite number of decimal

Records use the same amount of storage as the total of their components.

Arrays: if n=number of elements in the array and

s=size of each element then

the number of bytes occupied by the array is n#*s.

®.g. an ARRAY(1..10] OF INTEGER requires 10#2 =
an ARRAY(2..12,1..10] OF CHAR has 11#10=110 elements and so requires 110 bytes.

A 3.1.5 Sets.

Sets are stored as bit strings and so if the base t

of bytes used is: (n-1) DIV B + 1. Examples:

a SET OF CHAR requires (256-1)DIVE8 +1 = 32 bytes.
a SET OF (blue, green, yellow) requires (3—1) DIV 8+1 = 1} byte.

A 3.1.6 Painters.

Pointers occupy 2 bytes which conta

of the variable to which they point.

in the address (in Intel format i.e. low byte first)

ype has n elements then the number

A 3.2 Variable Storage at Runtime.

There are 3 cases where the user needs information on how variables are stored at
runtime:

a. Global variables — declared in the main program block.

b. Local variables — declared in an inner block.

c. Parameters and ~— passed to and from procedures and
returned values. functions.

These individual cases are discussed below and an example of how to use this
information may be found in Appendix 4.

Global variables

VAR i : INTEGER;
ch : CHAR;
x : REAL;

then:

1 (which Occupies 2 bytes - see the previous section) will be stored at locations
£B000-2 and £B000-1 i.e. at £AFFE and £AFFF.

ch (1 byte) will be stored at location £AFFE-1 j.e. at £AFFD.

%X (4 bytes) will be placed at £AFF9, £AFFA, fFAFFB and £AFFC.

Local variables
—=<c- Yarliables

Local variables cannot be accessed via the stack very easily sq, instead, the IX
register is get up at the beginning of each inner block so that (IX-4) points to the
start of the block’s local variables e.qg.

PROCEDURE test;
VAR i,j : INTEGER;

then:

i (integer - g0 2 bytes) will be placed at IX—4-2 and IX-4-1 j.e. IX-6 and IX-5,
J will be placed at IX-8 and 1x-7.

52

Parameters and returned values

Value parameters are treated like local variables and, like these variables, the earlier
a parameter is declared the higher address it has in memory. However, unlike variables,
the lowest (not the highest) address is fixed and this is fixed at (IX+2) e.qg.

PROCEDURE test(i : REAL; j: INTEGER);

then:

J (allocated first) is at IX+2 and IX+3.
i is at IX+4, IX+5S, IX+6, and IX+7.

Variable parameters are treated just like value parameters except that they are
always allocated 2 bytes and these 2 bytes contain the address of the variable e.g.

PROCEDURE test(i : INTEGER; VAR x : REAL);

then:

the reference to x is placed at IX+2 and IX+3; these locations contain the address
where x is stored. The value of i is at IX+4 and IX+5.

Returned values of functions are placed above the first parameter in memory e.g.

FUNCTION test(: INTEGER) & REAL;

then i is at IX+2 and IX+3 and space is reserved for the returned value at IX+4, IX+S5,
IX+6 and Ix+7.

33

APPENDIX 4 SOME EXAMPLE HISOFT PASCAL PROGRAMS.

The following programs should be studied carefully if you are in any doubt as to how to
program in Hisoft Pascal.

{Frogram to illustrate the use of TIN and TOUT.
The program constructs a very simple telephone
directory on tape and then reads it back. You
should write any searching required. }

FROGRAM TAFE;

CONST
MAX=10;

TYPE
Entry = RECORD
Name : ARRAY (1..10] OF CHAR;
Number : ARRAY [1..10] OF CHAR
END;

VAR
Directory 3§ ARRAY [1..MAX] OF Entry;
I : INTEGER;

BEGIN
{Set up the directory..>

FOR I:= 1 TO MAX DO
BEGIN
WITH Directory(1] DO
BEGIN
WRITE(°Name please‘);
READULN;
READ (Name) §
WRITELN;
WRITE (‘Number please’);
READULN;
READ (Number) ;
WRITELN
END
END;

{To dump the directory to tape use..)
TOUT(‘Director',ADDR(Directory),SIZE(Directory))

{Now to read the eray back do the following..?
TIN('Director'.ADDR(Directory))

{And now you can process the directory as you wish.....>}

END.

55

{frogram to list lines of a file in reverse order.
Shows use of pointers, records, MARK and RELEASE.}

FROGRAM ReverselLine;

TYFE elem=RECORD {(Create linked-list structure}
next: “elem;
ch: CHAR
END;
link="elem;
VAR prev,cur .heap: link; {(all pointers to ‘elem’)
BEGIN
REFEAT {do this many times)
MARK (heap) ; {assign top of heap to ‘heap .}
prev:=NIL; {points to no varaible yet.:?}
WHILE NOT EOLN DO
BEGIN
NEW (cur) ; {create a new dynamic record)
READ (cur~.ch); {and assign its field to one
character from file.)
cur.next:=prev; {this field’'s pointer adresses)
prev:=cur {previous record.)
END;

{Write out the line backwards by scanning the records
set up backwards.?

Cur:=prev;

WHILE cur <> NIL DO {(NIL is first)
BEGIN
WRITE (cur~.ch); {(WRITE this field i.e. character)
cur:=cur”~.next {Address previous field.)
END;
WRITELN;
RELEASE (heap) ; {Release dynamic variable space.)
READLN {Wait for another line)
UNTIL FALSE {(Use <CTRL>C to exit)

END.

{Frogram to show the use of recursion}

PROGRAM FACTOR;

{This program calculates the factorial of a number input from the
keyboard 1) using recursion and 2) using an iterative method.)

TYPE
POSINT = O..MAXINT;
VAR
METHOD : CHAR;

NUMBER : FOSINT;
{Recursive algorithm.>

FUNCTION RFAC(N : POSINT) : INTEGER;

VAR F : POSINT;

BEGIN
IF N>1 THEN F:= N # RFAC(N-1) {(RFAC invoked N times)
ELSE F:= 1;
RFAC := F
END;

{Iterative solution?
FUNCTION IFAC(N : POSINT) INTEGER;

VAR I,F: POSINT;

BEGIN
F o= 13
FOR I := 2 TO N DO F 3= F*]: {Simple Loop? ¢
IFAC: =F
END;
BEGIN
REFEAT
WRITE('Give method (I or R) and number s
READLN;
READ (METHOD NUMEER) ;
IF METHOD = ‘R ,
THEN WRITELN(NUMEBER, "' = ° RFAC (NUMBER))
ELSE WRITELN(NUMBER, ' = ‘,IFAC (NUMEER))
UNTIL NUMRER=O0 -
ENL.
57

{Program to show how to ‘get your hands dirty !
i.e. how to modify Fascal variables using machine code.
Demonstrates FEEK, POKE, ADDR and INLINE.}

PROGRAM diwvmul t2;
VAR r:REAL;
FUNCTION divby2(x:REAL) :REAL; {Function to divide by 2 ..

e Quickly>
VAR 1i: INTEGER;

BEGIN
i:=ADDR (x)'+1; {Foint to the exponent of x}
POKE (i ,PRED (PEEK (i ,CHAR))) ; {Decrement the exponent of x.
see Appendix 3.1.3X.)
divby2:=x
END;
FUNCTION multby2(x:REAL) : REAL » {Function to multiply by 2..
- qQuickly)
BEGIN
INLINE(E£DD,£34,3) {INC (IX+3) - the exponent of x

— see Appendix 3.2.
mul tby2: =x
END;

BEGIN
REFEAT
WRITE('Enter the number r 7+ 5
READ (r) ; {No need for READLN - see
Section 2.3.1.4}

WRITELN('r divided by two is’,divby2(r):7:2);

WRITELN('r multiplied by two is’ ' ,multby2(r):7:2)
UNTIL r=0
END.

W

SOME RECOMMENDED READING

The first two books below are useful for reference purposes whereas the third and
fourth books are introductions to the Pascal language and are aimed towards beginners.

K. Jensen PASCAL USER MANUAL AND REPORT.

N. Wirth Springer-Verlag 1975.
J. Tiberghien ~ THE PASCAL HANDBOOK.

SYBEX 1981.

W. Findlay PASCAL. AN INTRODUCTION TO SYSTEMATIC PROGRAMMING.
D.A. Watt Pitman Publx'lhing. 1978, 1982.
J. Welsh INTRODUCTION TO PASCAL. |
J. Elder |
|
!
1
i
|
r e
i
!
!
|
i
it
|
l
I
59

@

MEMOTECH LTD STATION LANE WITNEY OXON OX8 6BX TEL-0993-2977 TLX- 83372 MEMTEC 6
MEMOTECH CORP 99 CABOT STREET NEEDHAM MA 02194 TEL- 617-449-6614 TLX- 7103212035 MEMOTECH NEDM
HISOFT 180 HIGH STREET NORTH DUNSTABLE BEDFORDSHIRE LUG 1AT TEL-0582 696421

MEMOTECH ROM BOARD LINKS

1+ several ROM boards are installed inside the MTX, one‘of them
must provide a menu to allow the user to choose which board he

wants to use.

In order to do this., there are six links on each ROM board. some
of which can be changed manually to be either high or Yow. These
links must be set up in the following manner. ey

1. The links on one of the boards must all be set to low. This
board will provide a menu if several boards are present.

. All boards titted must have different link set-ups.

e, £ I+ the PASCAL board is fitted with other boards, the)inks
on one of the other boards must all be set to low, ie the PASCAL
board cannot provide the menu.

q, I+ only one board is installed, all links must be low and the
"MTX will automatically select this board.

INSTALLING THE PASCAL ROM BOARD

The PASCAL PCE. which fits inside the MTX Computer, should be
~ installed as follows: . e S e T

Rempbve the MTX side Plates with a 2 mm Allen Key. and raise the
top of the MTX -- it is hinqed along its front edge. Insert the
PCB into the MTX base sp that the two edges of the PCB slide into
the channels in the aluminium. The new PCB lies flat and in the
Same plane as the main computer PCB. and the plastic edge socket
on the PASCAL PCB clips over the tin PCB tracks on the existing
board. As you slide the new board in, gently move any wires to
one side so they do not get Pinched or bent. I+ the "existing
board* is the main computer board, it is the Hi-Fi and Monitor
wires that wmust be safequarded -- if your MTX has been fitted
with an RS232. you must remove the RS232 board., install the éUm
board., then replace the RS232.

Once the PASCAL PCB has been firmly pluqqed.into the existing
board, the metal side plates can be screwed back on.)

