USE OF
JOYSTICKS WITH
MEMOTECH MTX

The manual for the
Memotech MTX series
micro does not make clear
the method by which the
joystick ports may be
accessed within a user’s
program. Connecting
joysticks to the Memotech
quickly shows that the
joysticksmapintothe
keyboardasshownbelow.

This means that any game
requiring joysticks can be
played from the keyboard
instead (albeit more
clumsily). Also, it means
that to use joysticks within
your own programs, you
need only read the keyboard
(for example, with INKEY$
in Basic) to determine the
joystick status.

The problem with using
INKEY$ (or the CHARGET
routine in machine code) is
that multiple key closures
cannot be sensed in this
way, so one is confined to
the four primary directions
plus fire. Itis frequently
desirable in agame to
permit diagonal movement
on the screen or to allow
firing while moving, making
it necessary to sense a
number of key closures
simultaneously (right and
up, for example). To do this
on the Memotech, one first
needs to understand how

the keyboard may be read
directly.

The Memotech keyboard
is arranged on two of the
Z80’s ports, 5and 6. To
sense the status of the
keyboard, a byte has first to
be output on port5to
activate the appropriate
sense lines of the keyboard.
These lines are active low,
so are activated by the
presence of a zero in the
appropriate bit of this ‘sense
byte’. The status of the
keyboard read lines may
then be determined by
performing an input on port
5 (or 6) to yield a ‘read byte’.
Wherever aread line is
active (because akeyhas
been pressed),azerowill
appearinthecorresponding
bitoftheread byte. The
problemistodeterminethe
appropriate sense/read byte
combinations for the keys of
interest. (Normally, of
course, thisis all handled for
us by the CHARGET routine
in ROM).

The Basic routine in Fig 1
will cycle through the sense
bytes to set each sense line
in turn and display the
resulting read byte. By
running this routine while
holding down keys, one can
determine the combination
needed to examine specific
keys. The routine only
inputs from port 5 as the
majority of keys appear here
(note that the space baris
one exception).

It's a simple matter to
change the routine to
investigate port 6, too. Be

Right-hand joystick
LEFT, RIGHT, UP, DOWN
Left-hand joystick

: FIRE —LHOME key;

. FIRE —/SPACE BAR;

LEFT — Z key;
RIGHT — C key;
UP— B key;
DOWN|— M key.

orresponding cursor keys.

7

aware, however, that only
the bottom two bits of the
read byte from port 6 are
keyboard read lines.

Once the sense/read byte
combinations have been
determined, they can be
incorporatedintoa
user-writtenkeyboardread
routine. Machine code is
best for this as it's much
quicker than Basic, and
avoids the timing problems
which close examination of
the outputfromtheBasic
routinewillreveal.

Two machine code
routines for reading the
joysticks (or equivalent keys
of the keyboard) are given
here: one to look at the
right-hand joystick, the
other the left. Each is used
from Basic in exactly the
same way; the differences
between the two routines
merely reflect the different
sense/read byte
combinations required.
Ironically, the left-hand
joystick is the more
convenient to code for. Each
routine will scan the
appropriate joystick and set
bits of an internal byte
(called KEYS) to reflect the
joystick status. These bits
are set as follows:

KEYS: BIT 4 set if FIRE
pressed;
BIT 3 set if
DOWN
pressed;
BIT 2 set if UP
pressed;
BIT 1 set if

Orhshae ™

Ourmonthly pot-pourriofhardware and
softwaretipsforthe popularmicros. Ifyou have
afavouritetiptopasson,sendittoTJ’s
Workshop,PCW, 62 Oxford Street, London W1.
Please keep yourcontributions concise. We will pay £5-£30forany tips we publish. PCW can
acceptnoresponsibility fordamage caused by using these tips, andreaders should be
advised that any hardware modifications may render the maker’s guarantee invalid.

T

RIGHT
pressed;

(LSB) BIT O setif LEFT
pressed.

The final value of this byte
will, therefore, be
determined by the
combination of joystick
controls active. The value
may be retrieved in Basic
using a PEEK instruction.

The complete program
(Fig 2) shows the routines as
they may be used from
Basic (note that the
variables KEYR and KEYL
point to the KEYS bytes
within the routines). The
exact values of these
variables will depend upon
the memory size of your
Memotech (adjust the
variable MTX as indicated in
the program) and also upon
the degree of comment
included in the machine
code routines. Adjust the
values to equal those
indicated by the appropriate
assembler symbol table
(lines 20 and 30).

When the program is
RUN, a balloon will appear
which can be moved around
the screen with either
joystick (although the
right-hand one has priority)
and will change colour
whenever the fire key is
pressed. This program
shows how easy (and
convenient) it is to blend
machine code and Basic on
the Memotech to impressive
effect.

Steve Benner

290 REM *** %% X% % ¥ %% %%
295 LET PORT=5

310 NEXT

292 REM ** Routine to strobe keyboard

300 FORS=0to 7: LET SS=255-2"S: OUT (5),SS

305 LET R=INP(PORT): PRINT "Sense ”;SS,“Read ";R
315 PAUSE 1000: PRINT : PRINT : GOTO 300

Fig 1 Sense: read byte routine

198PCW

1 GOTO 100

20 CODE

4010 GETRTJ: XORA :Clear A

4011 LD HL,KEYS

4014 LD (HL),A ;Clear KEYS
4015 FIRE: LD A,£DF ;Strobe for HOME
4017 CALL STROBE

401A JR, NZ,LEFT

401C SET 4,(HL)

401E LEFT: . LD AEF7 ;Strobe for left
4020 CALL STROBE

4023 JRNZRIGHT

4025 SET 0,(HL)

4027 RIGHT: LD A£EF ;Strobe for right
4029 CALL STROBE

402C JRNZ,UP

402E SET 1,(HL)

4030 UP: LD A,£FB ;Strobe for up
4032 CALL STROBE

4035 JR NZ,DOWN

4037 SET 2,(HL)

4039 DOWN: LD A,£BF ;Strobe for down
403B CALL STROBE

403E JR NZ,DONE

4040 SET 3,(HL)

4042 DONE: RET

4043 KEYS DBO

4044 STROBE: OUT (5),A ;Do joystick strobe
4046 IN A,(5)

4048 GP 127

404A RET

Symbols

GETRTJ 4010 KEYS 4043
STROBE 4044 LEET 401E
RIGHT 4027 UP 4030
DOWN 4039 DONE 4042
FIRE 4015

21 RETURN

30 CODE

41A6GETLTJ: XORA ;Clear A

41A7 LD HL,KEYS

41AA LD (HL),A ;Clear KEYS

41AB FIRE: LD A,127 ;Strobe SPACE-BAR
41AD OuT (5),A

41AF IN A,(6)

41B1 BITO,A

41B3 JR NZ,STROBE

41B5 SET 4,(HL)

41B7 STROBE: LD A,127 ;Strobe left joystick
41B9 OUT (5),A

41BB IN A,(5)

41BD LDD,A

41BE AND £FO0 ;Check bottom row keys
41C0 CP £F0

41C2 JR, NZ,DONE ;lgnore if not
41C4 LD A,D ;Restore A

41C5 CPL ;Set all bits in one go!
41C6 ADD A,(HL) ;Add in FIRE bit
41C7 LD (HL),A

41C8 DONE: RET
41C9 KEYS: DBO

41CA RET

Symbols

FIRE 41AB STROBE 41B7
DONE 41C8 GETLTJ 41A6
KEYS 41C9

31 RETURN
98 REM **

SCREEN FIRST

126 REM

’

190 REM
191 REM

193 REM **

1,1,RND*14+1
Y=Y+SPEED* (Y>10)
Y=Y—-SPEED* (Y<180)
X=X—-SPEED* (X<250)
X=X+SPEED* (X>10)

250 REM

Fig 2 Complete program

97 REM XK NRRRR

99 REM ** MAIN CODE STARTS HERE — SET UP

100 GENPAT 3,0,24,60,60,24,00,24,24,00
110 VS 4: CLS : COLOUR0,1: COLOUR 4,1
120 CTLSPR 2,1: CTLSPR 6,1

125 LET X=10: LET Y=8: SPRITE 1,0,X,Y,0,0,10

127 REM ¥ %% %% % %% % % ¥ X % ¥ ¥ XX ¥ %

128 REM ** Set up SPEED; & PEEK locations (MTX=8
for 500); See M/C for values

130 LET SPEED=4: LET MTX=4

150 LET KEYL=MTX*4096+256*1+12*16+09: LET
KEYR=MTX*4096+4*16+3

192 REM FEEEKXEEKEE RN HHHH

194 REM ** Poll keyboard and recalculate coordinates

200 GOSUB20: LETJOYS=PEEK (KEYR): IF
JOYS=0 THEN GOSUB 30: LET JOYS=PEEK (KEYL)

210 IFJOYS=0 THEN GOTO 200

215 IFJOYS>15 THEN LET JOYS=JOYS—16: ADJSPR

220 IFJOYS>7 THEN LET JOYS=JOYS—-8: LET

225 IFJOYS>3 THEN LET JOYS=JOYS-4: LET

230 IFJOYS>1THEN LET JOYS=JOYS-2: LET

235 IFJOYS>0THEN LET JOYS=JOYS—1: LET

240 ADJSPR 2,1,X: ADJSPR 3,1,Y: GOTO 200

257 REM ¥ ¥ ¥ ¥ XXX XXX XK RRKK KRR AKX XK KK KK KKK KR XK
FARRRR AR AR AR AR AR R RN RN

SORDTIPS

Ifyouevergetfedupwaiting
forlongprogramstoload,
thenperhapsyouhaven't
foundthesecretofchanging
therateatwhich programs
aresaved.

Type POKE &7019,&12
beforeyousaveaprogram,
andthecassette baudrate
willbealmostdoubled.(This
workson BASIC-land
BASIC-G).Ifyourcassette
recordercannotcopewith

‘| thegivenvalueof &12,try

othersuntilyoufindthe
fastestyoucansafelyuse.
Thehigherthevalue POKEd,
theslowerthe baudrate.
Note: Youdonotneedto
changethe POKEdvalueto
loadinfilesrecordedat
differentspeeds—the
computerworksoutwhat

speeditwassavedat.

The manual forBASIC-G
givestheimpressionthatyou
mustsave Basicprogramsby
using LIST“name”. Thisisn't
necessary— SAVEwilldothe
jobjustaswell,and much
faster.

Theadvantagesofusing
LIST, however, arethatonly
certainlinesneedtobe
saved,ifrequiredand, more
importantly, programscan
bemerged. Forinstance, you
couldsaveafrequentlyused
subroutinewith LIST,and
thenOLDitwheneveryou
needit. Themerged program
lineswillreplaceanything
withthesamenumberin
memory,soitisbesttohave
yoursubroutinerenumbered
to,say, 10000 onwards.

Anotheradvantage offiles
savedwith LISTisthatthey

PCW199

