
THE ADVANCED
BASIC ROM
USER GUIDE
FOR THE BBC MICRO

Published by the Cambridge Microcomputer Centre

COLIN PHARO

&7FFF

&0000

&BFFF

&8000

The
Advanced

BASIC ROM
User Guide

for the BBC Microcomputer

Colin Pharo B.Sc.,MBCS

published by the Cambridge Microcomputer Centre

Published in the United Kingdom by:
The Cambridge Microcomputer Centre,
153–154 East Road,
Cambridge,
England

Telephone (0223) 355404
Tlx 817445
ISBN 0 946827 45 1

Copyright © 1984 The Cambridge Microcomputer Centre
First published 1984
First revision October 2017

The Author would like to thank Dan Nanayakkara, Alex Van Someren
and Peter Wederell for their assistance in the production of this book.

All right reserved. This book is copyright. No part of this book may be copied or
stored by any means whatsoever whether mechanical, photographical or electronic,
except for private or study use as defined in the Copyright Act. All enquiries should
be addressed to the publishers. While every precaution has been taken in the
preparation of this book, the publisher assumes no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use of
information contained herein.

Please note that within this text the terms Tube and Econet are registered
tradenames of Acorn Computers Limited. All references in this book to the BBC
Microcomputer refer to the computer produced for the British Broadcasting
Corporation by Acorn Computers Limited.

This book was computer typeset by Computerset (MFK) Ltd of Saffron Walden.
Book production by CPS of Saffron Walden.

Printed by the Burlington Press (Cambridge) Ltd., Foxton, Cambridge.

3

Contents

Introduction

1 Numbering Systems
1.1 The Binary System .. 9
1.2 The Hexadecimal System .. 13

2 Integers
2.1 Integer Work Areas .. 17
2.2 Defining Integer Constants 18
2.3 Integer Routines Summary 21
2.4 Integer Routines Description 22

3 Floating Point Numbers
3.1 Floating Point Variables .. 55
3.2 Integer versus Floating Point 58
3.3 Floating Point Work Areas 59
3.4 Defining Floating Point Constants 61
3.5 Floating Point Routines Summary 62
3.6 Floating Point Routines Description 63
3.7 Floating Point Interface Program 92
3.8 Floating Point Interface Program Tested 94

4 Conversions
4.1 Conversion Work Areas .. 95
4.2 Conversion Routines Summary 96
4.3 Conversion Routines Description 97
4.4 ASCII Conversion Demonstration 105

5 Mathematical Functions
5.1 Mathematical Functions Routines Summary 108
5.2 Mathematical Functions Routines Description 109
5.3 Mathematical Functions Demonstration 122

6 Random Numbers
6.1 Random Number Work Area 127
6.2 Random Numbers Routines Summary 128
6.3 Random Numbers Routines Description 129
6.4 Random Numbers Demonstration 134

4

7 Basic Memory Map
7.1 Zero Page Dedicated Locations 137
7.2 Zero Page Multiple Use Locations 139
7.3 Resident Integer Variables 140
7.4 Floating Point Temporary Areas 140
7.5 Variable Pointer Table ... 141
7.6 BASIC Stacks and Buffers 144
7.7 BASIC Token and Action Tables 144
7.8 BASIC Tables Summary .. 145

8 Timings
8.1 Units of Time ... 150
8.2 Computer Processor Speed 150
8.3 Program Speed ... 151
8.4 Microsecond Timer ... 151
8.5 BASIC Timings .. 154

9 Trigonometrical Manipulations
9.1 Fixed Shapes Method .. 156
9.2 Reduced Accuracy Method 158
9.3 Mathematical Transform Method 159
9.4 Symmetry Method ... 160
9.5 Hybrid Method .. 164

10 Large Machine Code Programs
10.1 BASIC 2 Relocation ... 167
10.2 Intra-Module Relocation Problems 169
10.3 Intra-Module General Case 171
10.4 Minimising Intra-Module Problems 175
10.5 Inter-Module Relocation Problems 175
10.6 Initial BASIC program ... 179

 Index

5

INTRODUCTION

Most people who program microcomputers in BASIC are soon
disheartened by its shortcomings. Firstly, there are some
applications which can only be sensibly written in assembly
language. Secondly, BASIC can be slow. This is not to say that BBC
BASIC is badly written. On the contrary, it runs faster than most
other dialects of the language. The slowness is simply inherent in
the language. Thirdly, programs written in BASIC consume a lot of
memory. For the BBC Micro, this problem becomes acute in the
graphics modes which leave precious little space for a program.
BASIC is an interpreter and not a compiler and many of its
shortcomings are attributable to that fact.

A compiler verifies the user program (source code) in a separate
compilation step, generating a machine code version (usually) of
that program known as the object code. The object code is stripped
of all comments. It is the object code which is executed at run time.

An interpreter, however, acts on the source code at run time. It
handles the code in a line-by-line fashion, checking syntax and
parsing each line every time it is executed. This increases the
execution time of the program. It is also wastes space, since the
source code has to be present in memory. Thus interpreters use
more memory and run more slowly than compiled object code.

The solution to the problem appears to be obvious — buy a
compiler! There are, however, problems associated with compilers
also. If the compiler is disk or tape based, then it must be loaded
into memory for the compilation step (though not for execution).
This limits the size of the source code that can be written. A ROM
based compiler gets round this problem. Be wary though! Most of
the compilers for the BBC micro do not generate machine code
object programs, but rather an intermediate code which can be
interpreted into machine code at run time. This means that the
object code will only run on micros equipped with the same
compiler. Another problem to be considered with compilers is their
efficiency. A compiler generates a number of machine code
instructions for each source language statement. The efficiency of a
compiler can be thought of as the ratio of the minimum number of
machine code instructions needed to perform a task, to the number
generated by the compiler from source code written to perform that
same task. As a general rule, the more friendly the language, the
less efficient the compiler.

6

There is a compiler that all BBC micro owners possess. It’s called
the assembler. The distinction between assemblers and compilers is
that the former have a one-to-one relationship with the machine
code that they generate; that is to say each assembly language
command generates a single machine code instruction. The
drawback is that assembly language programming can be difficult,
time-consuming and error prone. Moreover, assemblers do not have
in-built commands to handle sines, cosines, square roots, random
numbers etc.

On the face of it, the user appears to be caught in a cleft stick. The
user can either choose BASIC for its ease of use, tolerating speed
and size problems, or assembly language, foregoing floating-point
arithmetic, trigonometry and so forth.

Fortunately, the BBC BASIC interpreter consists of a large number
of small, machine code subroutines, many of which could usefully
be invoked from an assembly language program. In this book, 69
such subroutines are described covering 32-bit integer arithmetic,
floating-point arithmetic, trigonometry and so forth.

The approach has several advantages:

a) The subroutines are ROM based and occupy no valuable RAM.

b) The subroutines are tried and tested.

c) Functions such as sine, cosine, square root and random
numbers can be used in assembly language programs without
the need to write this code from scratch.

d) The subroutines frequently incorporate useful error reporting.

e) Object code will run faster and occupy less memory than the
equivalent BASIC code.

It is only fair to point out the disadvantages of this approach:

a) This book covers BASIC 1 and BASIC 2 and the technique
described will work only on these two ROMs. It will not work
with HI BASIC (6502 second processor) or with US BASIC (US
BBC micros). Neither will it work with any future releases of
BASIC that may be issued. Consequently, it would be most
unwise to use the technique directly in any program which is
destined for sale to the public, or where the user plans to
upgrade the BASIC ROM within the life time of the program.
Even in these cases, however, this book has distinct value.

7

 Many of the subroutines in the BASIC ROMs are written with
an elegance and tightness which is unlikely to be surpassed by
the user. A study of these subroutines will undoubtedly profit
the user who is forced to write similar code. There will be
many instances, however, when a user may wish to use the
technique directly. It would be a pity to deprive all users of an
effective and time-saving technique, simply because the
technique is not suitable for every occasion.

b) Because assembly language is used, the source code is often
more long-winded to write than the equivalent BASIC.

c) The technique is not a cure-all for all problems. Although the
user is offered an easy path to sines and cosines, not much
more than 10% of the execution time can be saved for these
complicated functions. Chapter 9 provides some useful tips in
this respect.

d) The user must have some acquaintance with assembly language
programming and such knowledge is assumed in this book.

This then is not a primer in assembler. The bulk of this book
contains descriptions of BASIC subroutines, their entry points,
timings and set-up conditions. This is supported by fully
documented and tested examples of code, making it possible for
relatively inexperienced assembly language programmers to use the
techniques to develop quite sophisticated applications.

The book also contains in places descriptions of the theory
necessary for a full understanding of the technique advocated. All
programmers inevitably make mistakes and this knowledge is
indispensable when debugging those mistakes.

Much of this book is to do with numbers and their representation
within the BBC micro. A feel for binary and hexadecimal
numbering systems is necessary to understand completely the text
presented here. In particular, floating point numbers require that
the concept of the binary point be grasped. Therefore, the next
chapter is devoted to numbering systems. Experienced
programmers will doubtless skip over this chapter. It is specifically
intended for the less experienced programmer and for this reason
emphasises the ‘why’ as well as the ‘how’ of numbering systems.

8

9

1 NUMBERING SYSTEMS

Since it is in every day use, the decimal numbering system is
widely understood. It is based on (has a radix of) ten. The radix of a
numbering system embodies several important concepts:

a) it is the number of possible values that a single digit can
contain. (decimal values are 0 to 9, ten values in all).

b) it is one more than the maximum value of a single digit.

c) each digit in the number will represent some power of the
radix. It is the position of the digit within the number which
determines the power of the radix by which the digit is
multiplied. For example, the decimal number 1932.74 =

10*10*10 10*10 10 1 1/10 1/100

 1 9 3 2 7 4

It will be shown that the decimal system is not ideally suited to
computers. Fortunately, the alternative numbering systems which
suit computers best use the same principles as the decimal system
and so they are not difficult to master.

1.1 The Binary System

A computer is an electronic machine. It knows nothing of numbers.
It consists of many components, each of which is designed to
respond to pulses of electricity, providing the pulses arrive in a
particular pattern and at a particular time. At the heart of the
computer lies a central processor unit (cpu) which not only
performs the arithmetic functions requested by a program, but also
exercises control over other component parts of the computer.

At any given instant in time, an electrical pulse in a circuit may
either be present or absent. In other words, a circuit can be in one of
two states. This is a binary (meaning based on two) system. It is
human beings that allocate numbers to these two states. The binary
system has only two numbers, 0 and 1. 0 is taken to mean that the
pulse is absent, whilst 1 denotes its presence.

10

As an example of these pulses, each cpu has a repertoire of
commands that it can perform, known as its instruction set. At
specific intervals of time, the cpu will interpret a pattern of pulses
as a command to perform a particular function. This function could
be to add or to store etc. The pulses arrive simultaneously down
eight wires which collectively are called the data bus. For example:

data bus pulse binary
-------- ------- ------
 wire 7 present 1 this
 wire 6 absent 0 pattern
 wire 5 absent 0 of
 wire 4 absent 0 pulses
 wire 3 present 1 is
 wire 2 absent 0 the
 wire 1 absent 0 DEY
 wire 0 absent 0 instruction

A computer program causes pulses just like this to move from one
part of the computer to another (albeit with a good deal of help
from both language software and the operating system). In the
example above, the individual pulses are known as bits (binary
digits) and the collection of 8 bits that were sent down the data bus
is called a byte.

Thus a computer, its design constrained by the laws of physics,
operates in a binary fashion. It follows that it will be easier to work
with computers if the programmer achieves some expertise with the
binary system also.

In the binary system, each digit represents some power of two, such
that the binary number 01101000, for example, is equivalent to:

(0x128) +

(1x64) +

(1x32) +

(0x16) +

(1x8) +

(0x4) +

(0x2) +

(0x1)

= 104 in decimal.

11

1.1.1 Binary Addition

Binary addition follows rules analogous to decimal addition. Each
time the sum of a column is two or more (rather than ten or more)
there is a carry to the next column. Since there are only two digits
in the binary system, it is possible to define very simple rules for
binary addition:

0+0 = 0

0+1 = 1

1+1 = 0 (carry 1)

1+1+1 = 1 (carry 1)

These simple rules can be applied to much larger binary numbers.
For example:

128 64 32 16 8 4 2 1 decimal
--- -- -- -- - - - - -------
 0 1 1 0 1 0 0 0 104
 0 1 0 1 1 1 0 1 93 +
-------------------- -------
 1 1 0 0 0 1 0 1 197
-------------------- -------

1.1.2 Binary Subtraction

Simple rules can also be defined for binary subtraction:

0-0 = 0

1-0 = 1

0-1 = 1 (borrow 1)

1-1 = 0

Likewise these simple rules can be applied to the subtraction of
larger binary numbers. For example:

128 64 32 16 8 4 2 1 decimal
--- -- -- -- - - - - -------
 0 1 1 0 1 0 0 0 104
 0 1 0 1 1 1 0 1 93 -
-------------------- -------
 0 0 0 0 1 0 1 1 11
-------------------- -------

12

1.1.3 Negative Binary Numbers

So far only positive, binary integers have been considered. Negative
binary integers are held in twos complement form, for reasons
which will soon become apparent. To convert a binary number to
twos complement form, it is only necessary to change all zeroes to
ones and all ones to zeroes, adding 1 to the result. In the example
above, the binary for decimal 93 was seen to be 01011101.

To obtain the binary for −93:

01011101 = +93

10100010 = change 0 to 1 and vice-versa
00000001 add 1

10100011 = −93

1.1.4 Binary Subtraction By Addition

The twos complement form for negative numbers makes
unnecessary any subtraction circuitry in the cpu. Instead,
subtraction can be achieved via the cpu’s adder. In the example
used for subtraction, 104 − 93 is the same as 104 + (−93). Therefore
by converting 93 to its twos complement form, addition can be used
to achieve subtraction providing any final carry is ignored:

 01101000 104
 10100011 -93 +
 -------- ---
ignore carry 1 00001011 11
 -------- ---

1.1.5 Binary Fractions

Binary fractions follow concepts analogous to decimal fractions. In
decimal fractions each digit position represents some power of
1/10. Thus the decimal fraction 0.875 =

8 7 5
-- + --- + ----
10 100 1000

With binary fractions, each digit position represents some power of
1/2 and the point is known as the binary point (rather than decimal
point) to emphasise this fact. Thus the binary equivalent of 0.875 is
0.111 =

1 1 1
- + - + -
2 4 8

13

1.2 The Hexadecimal System

Binary numbers have an obvious disadvantage. It takes a large
number of zeroes and ones to represent even comparatively small
decimal numbers. But computers work in a binary fashion and
conversion between the two radices is a laborious process. What is
required is some shorthand version of binary.

For a numbering system to relate directly to binary, it must be based
on some power of two. The choice of numbering system is mainly
determined by the number of bits in a byte. In practice the radix
chosen fulfils the following conditions:

a) it is a power of 2
b) it is as close to 10 as possible
c) it subdivides a byte into equal proportions (usually halves but

not always).

A BBC micro has 8 bits in a byte. Therefore, a byte subdivides into
two equal size quartets. This fixes the numbering system as
hexadecimal with a radix of 16 (one more than the maximum
decimal number that can be stored in four bits). Had there been 6
bits in a byte, the byte would have been regarded as two triplets and
the numbering system would have been octal (based on eight).

There are sixteen digits in the hexadecimal system and a symbol is
required to represent each digit. Clearly for the digits 0 to 9, the
same symbols (0 to 9) can be used. The single hexadecimal digits
that represent decimal numbers 10 to 15 are a bit more of a
problem. In fact the symbols A to F are allocated to these numbers.
When used in this way, these symbols should not be confused with
the ASCII letters ‘A’ to ‘F’. The meaning is always understood
because in both BASIC and assembly language, hexadecimal
numbers are preceded by an ampersand (&).

Thus in a single byte, the range of hexadecimal numbers that can be
stored is from &00 to &FF (0 to 255), with each quartet holding from
&0 to &F (0 to 15) as shown below:

binary hex dec binary hex dec
------ --- --- ------ --- ---
 0000 &0 0 1000 &8 8
 0001 &1 1 1001 &9 9
 0010 &2 2 1010 &A 10
 0011 &3 3 1011 &B 11
 0100 &4 4 1100 &C 12
 0101 &5 5 1101 &D 13
 0110 &6 6 1110 &E 14
 0111 &7 7 1111 &F 15

14

1.2.1 Binary/Hexadecimal Conversion

The most important property of a hexadecimal number is that it
can be derived instantly from a binary number. To do this, the
binary number is subdivided into quartets starting at the least
significant end. If the most significant bit(s) are not a quartet, they
should be padded with leading zeroes to make an exact quartet.
Hexadecimal can then be substituted for each quartet individually.
For example, consider the binary number 11101011010010011.
Splitting into quartets gives:

 0001 1101 0110 1001 0011

hex = 1 D 6 9 3

 = &1D693

The converse operation from hexadecimal to binary is equally
simple. It is impossible to do anything so simple with decimal
numbers.

1.2.2 The Roundness of Hexadecimal

There is another bonus obtained by using hexadecimal. Because the
design of the computer is based on the number 2, hexadecimal
frequently results in an easily remembered, round number where
the decimal equivalent does not. One example of this is found in
memory addressing:

 hex dec
 ----- -----
total BBC model B memory 10000 65536
1K of memory 400 1024
one page of memory 100 256
PAGE (no disks/Econet) E00 3584
start of BASIC 8000 32768
start of MOS C000 49152

Another example can be found in the ASCII character set:

From &00 to &1F = control characters (VDU 0 to VDU 31)
From &30 to &39 = 0 to 9
From &41 to &5A = A to Z
From &61 to &8A = a to z

It will be seen that an ASCII number is the number plus &30. The
upper-case letters are the number of the letter in the alphabet plus
&40, whilst lower-case letters are the number of the letter in the
alphabet plus &60. The control characters, representing VDU 0 to
VDU 31, can be entered from the keyboard by using CTRL and
another key. The action of the CTRL key is to subtract &40 from
that other key. Thus VDU 1 = CTRL A, VDU 2 = CTRL B etc.

15

1.2.3 Hexadecimal Addition

In hexadecimal addition there is a carry to the next more
significant digit whenever the sum exceeds decimal 16. Thus the
highest number that can exist in any digit is &F (15). Consider the
addition of &A and &B, for example. Since &A is equivalent to
decimal 10 and &B is equivalent to decimal 11, the decimal sum is
21. As this is greater than decimal 16, 16 must be subtracted and a
carry must be generated to the next more significant digit. Thus the
hexadecimal sum is &15. The right hand digit (5) is obtained from
21 − 16, whilst the left hand digit is the carry.

1.2.4 Negative Hexadecimal Numbers

The hexadecimal complement form is derived by subtracting the
number from a string of &F’s and then adding 1. The number of
&F’s in the string depends on the precision of arithmetic in
question. Thus in 16 bit arithmetic, &FFFF would be used, whilst
in 32 bit arithmetic &FFFFFFFF would be used. As an example, the
16 bit hexadecimal complement of &ABC is derived as follows:

&FFFF
& ABC -

&F543
& 1 +

&F544 result

1.2.5 Hexadecimal Fractions

In hexadecimal fractions, each digit position represents some
power of 1/16. The point is known as the hexadecimal point (rather
than decimal point) to emphasise this fact. Thus the decimal
fraction 0.875, which is 14/16, has a hexadecimal equivalent of 0.E.

16

17

2 INTEGERS

In BASIC all integer fields occupy four bytes (32 bits). This allows
for positive integers from &00000000 to &7FFFFFFF (0 to
2,147,483,647). Negative numbers range from &FFFFFFFF to
&80000000 (−1 to −2,147,483,648).

BASIC recognises an integer variable by the % at the end of its
name. Some of these variables, known as the resident integer
variables, @% and A% to Z%, occupy fixed locations in RAM.
Other integer variables are located as referenced in an area of RAM
following the program text. The assembler programmer is free to
use the resident integer variables. As with BASIC, these memory
areas can be used to pass parameters from one program to another.
However, O% and P% have special significance as location
counters in assembly language and must not be used (O% can
safely be used by BASIC 1 users). It is also inadvisable to use @%
which controls BASIC print formatting. The assembler program
accesses the resident integer variables by address rather than by
name. A list of these addresses may be found in Chapter 7.

2.1 Integer Work Areas

Integer numbers are always stored with the least significant byte
first and the most significant byte last. Thus the number &12345678
would be held as:

byte 0 = &78

byte 1 = &56

byte 2 = &34

byte 3 = &12

The BASIC interpreter performs all of its integer arithmetic in four
bytes of working storage in Page Zero. The four bytes are &2A, &2B,
&2C and &2D. From henceforth, these four bytes will be referred to
as the Integer Working Area or IWA. These four bytes are also used
by the interpreter for other purposes. When used as the IWA, the
normal rules for integer variables are obeyed. &2A contains the
least significant byte, whilst &2D contains the most significant byte.

BASIC has its own stack located immediately below HIMEM. Like
the processor stack, it runs downwards in memory. The stack is
maintained by a set of subroutines within the BASIC ROM. A stack
pointer is held in &4 and &5 (lo,hi). Generally, whenever BASIC
has two integer fields to process, one will be located in the IWA
while the other is in the stack, pointed to by &4 and &5. When

18

using BASIC routines we shall usually load one integer into the
IWA and point &4,&5 at the other.

BASIC also has to keep track of whether it is processing integers,
floating points or strings. It achieves this in two ways. Firstly
subroutines return a value in the A register as follows:

A = 0 processing a string
A = &40 processing an integer
A = &FF processing floating point

It also stores the type of variable in &27 as follows:

&27 = 0 byte
&27 = 4 4 byte integer
&27 = 5 5 byte floating point
&27 = &81 string
&27 = &A4 function
&27 = &F2 procedure

From time to time, when using the 32-bit integer subroutines,it
will be necessary to set either registers or memory areas to
conform with the above.

2.2 Defining Integer Constants

For BASIC 2 owners, defining a 32-bit integer constant to the
assembler is a matter of the utmost simplicity. The assembler
directive EQUD is provided for this purpose. For example:

 10 DIM mc% 100
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [
 50 OPT pass%
 60 .constant EQUD 5000
 70]
 80 NEXT pass%
 90 STOP

EQUD is an assembler directive. This means that it instructs the
assembler to perform a task at assembly time. This is quite different
from an instruction mnemonic. Mnemonics are translated into
machine code for execution at run time.

The EQUD directive instructs the assembler to reserve four bytes of
memory at the current value of the location counter (P%). It
automatically reverses the storage of data such that the least
significant byte is stored first. Thus, since 5000 is &1388, the
directive stores &88 at the current value of the location counter,
&13 at the next address, and &00 at the next two addresses. It also
steps the location counter by 4.

19

BASIC 1 users have to improvise to achieve the same effect. Since
in BASIC 1 there is only one directive available, namely OPT, this
must be pressed into service to provide an equivalent mechanism.
Consider the following:

 10 DIM mc% 100
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [
 50 OPT pass%
 60 .constant \ label
 70 OPT FNEQUD(5000) \ pseudo-directive call
 80]
 90 NEXT pass%
100 STOP
110 DEF FNEQUD(A%)
120 !P% = A%
130 P% = P% + 4
140 = pass%

At line 70, OPT is made to call a BASIC function. The value of OPT
must not be changed, so the function must return the current value
of OPT and indeed line 140 does this. The OPT directive ensures
that the call to the function EQUD is performed at assembly time
(not execution time). This is not a hybrid program. Once
assembled, the BASIC function is no longer required. Within the
function itself, statements may be included as required. In the
EQUD function, the required constant is stored at the current value
of the location counter. Because an integer variable, A%, is used to
hold the argument (in this example 5000) passed by the assembler,
the constant is automatically aligned with the least significant byte
first. The counter is then stepped by 4. The constant thus set up
may be referenced by the label on line 60.

The function, FNEQUD, is an example of a pseudo-directive, a
technique extensively used in this book. BASIC 2 also has the
following assembler directives:

EQUB for 1 byte
EQUW for 2 bytes (least significant byte first)
EQUS for strings

BASIC 1 users can use the equivalent pseudo-directive functions
below. Note that if the constant supplied to the function is too big,
it will be truncated at the most significant end.

Both BASIC 1 and BASIC 2 users will benefit from the RESB
pseudo directive which reserves a specified number of bytes (1st
argument) and fills them with a specified character (2nd argument).

 10 DIM mc% 100
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%

20

 40 [
 50 OPT pass%
 60 .constant1
 70 OPT FNEQUB(50)
 80 .constant2
 90 OPT FNEQUW(500)
100 .string1
110 OPT FNEQUS("Example of a string")
120 .reserve
130 OPT FNRESB(20,0) \ reserve 20 bytes of zero
140]
150 NEXT pass%
160 STOP
170 DEF FNEQUB(A%)
180 ?P% = A%
190 P% = P% + 1
200 = pass%
210 DEF FNEQUW(A%)
220 ?P% = A% MOD 256
230 ?(P%+1) = A% DIV 256
240 P% = P% + 2
250 = pass%
260 DEF FNEQUS(A$)
270 $P% = A$
280 P% = P% + LEN(A$)
290 = pass%
300 DEF FNRESB(A%,B%)
310 FOR I% = 1 TO A%
320 ?P% = B%
330 P% = P% + 1
340 NEXT
350 = pass%

21

2.3 Integer Routines Summary

The following table summarises 32-bit integer routines available
within the BASIC ROM. Conversion routines, e.g. integer to ASCII,
are the subject of a later chapter. Unlike the floating point routines
covered in the next chapter, the integer routines do not amount to a
great deal of code. Moreover, set up procedures are sometimes
more laborious than for floating point. In some applications, it may
well be preferable to include the integer code within the user
program, at the same time changing it slightly to make it more
specific to the application. In this event, the user is advised to
study the code available within the BASIC ROM, rather than
re-invent it.

--
Name BASIC 1 BASIC 2 Function
 address address
--
icomp &ADB5 &AD93 IWA = -IWA
idiv &9DE7 &9E0A IWA = IWA DIV integer variable
iin &B365 &B336 Copy integer variable to IWA
iminus &9C9D &9CC2 IWA = integer variable - IWA
imod &9DDE &9E01 IWA = IWA MOD integer variable
imult &9D4A &9D6D IWA = IWA * integer variable
ineg1 &ACEA &ACC4 IWA = -1
iout &B4F2 &B4C6 Copy IWA to integer variable
iplus &9C36 &9C5B IWA = IWA + integer variable
ipos &AD94 &AD71 Make IWA positive
ismall &AF19 &AEEA IWA = 256*Y + A
itest &9A85 &9AAD test integer variable = < > IWA
izero &AEF9 &AECA IWA = zero
izpin &AF85 &AF56 Copy integer variable in zero page
 to IWA
izpout &BE5C &BE44 Copy IWA to integer variable in
 zero page
--

22

2.4 Integer Routines Description

The following pages show how to use each integer routine. Each of
the routines handles signs correctly. For example, (−3)*(−9) gives
the answer +27.

This assumes that the set up procedures specified for each routine
are followed carefully. To ensure that there is no ambiguity, each
routine is illustrated by a program. These programs are for
demonstration purposes only and are not meaningful applications.
They all use BASIC to print results partly because the material
necessary to avoid this comes later in the book, and partly to
present the technique in a way that is most simple to understand.
All of the programs are written in BASIC 2, but conversion to
BASIC 1 involves only:

a) replacing all routine addresses by their BASIC 1 equivalents.

b) using pseudo-directives instead of directives.

The use of most of the BASIC ROM’s integer routines is natural,
since the routines are structured in a way ideally suited to this
purpose. However, DIV and MOD are exceptions and the method of
using them has had to be contrived.

An important point arises from the interpreter’s habit of re-using
zero page locations for different purposes. This can cause
difficulties in hybrid BASIC/assembly language programs. The
following rules should be observed:

a) do not attempt to call these routines from BASIC language.

b) in hybrid programs, make sure that the results of any
calculations are safely stored in memory areas within the
domain of the program. Do not leave data in BASIC’s zero page
areas, if this data will be required later.

The following short program illustrates the sort of difficulties
which can arise:

10 !&2A = 1000
20 PRINT !&2A
30 END

>RUN
 262186

These routine addresses, therefore, are provided specifically to
assist assembly language programming and this is the
recommended way of using them.

23

24

subroutine name : icomp

function : IWA = −IWA

BASIC 1 address : &ADB5

BASIC 2 address : &AD93

entry conditions : IWA contains a 32-bit integer

exit status : IWA complemented

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 31 microseconds

25

icomp demonstration (BASIC 2)

 0 icomp = &AD93
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .constant EQUD -1234 \ set up value
 60 .result EQUD 0 \ result
 70 .start
 80 LDX #0 \ zeroise loop counter
100 .loop1
110 LDA constant,X \ get next byte of constant
120 STA &2A,X \ save in IWA
130 INX \ bump loop counter
140 CPX #4 \ end of loop ?
150 BCC loop1 \ no - back
160 JSR icomp \ complement IWA
170 LDX #0 \ zeroise loop counter
180 .loop2
190 LDA &2A,X \ get next byte of IWA
200 STA result,X \ save in result
210 INX \ bump loop counter
220 CPX #4 \ end of loop ?
230 BCC loop2 \ no - back
240 RTS
250]
260 NEXT pass%
270 CALL start
280 PRINT !result
290 END

>RUN
 1234

26

subroutine name : idiv

function : IWA = IWA DIV integer variable

BASIC 1 address : &9DE7

BASIC 2 address : &9E0A

entry conditions : IWA contains dividend

 : A% contains divisor

 : &19,&1A (lo,hi) point to a string,
‘ A%’+RETURN

 : &1B = 0

 : &04,&05 (lo,hi) = HIMEM

 : A = #&40

comments : DIV and MOD are not easy to extricate from the
BASIC ROM and the set up procedures are
necessarily somewhat contrived

exit status : IWA = quotient

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : division by zero

typical timing : 794 microseconds

27

idiv demonstration (BASIC 2)

 10 idiv = &9E0A : DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc% : [OPT pass%
 40 .dividend EQUD 26
 50 .divisor EQUD 3
 60 .fudge EQUD &0D254120 \ " A%" + RETURN
 70 .result EQUD 0
 80 .start LDA &6 \ get HIMEM lo
 90 STA &4 \ set &4
100 LDA &7 \ get HIMEM hi
110 STA &5 \ set &5
120 LDA #fudge MOD 256 \ point &19
130 STA &19 \ at fudge lo
140 LDA #fudge DIV 256 \ point &1A
150 STA &1A \ at fudge hi
160 LDX #0 \ zeroise loop counter
170 STX &1B \ clear &1B
180 .loop1 LDA dividend,X \ next byte of dividend
190 STA &2A,X \ save in IWA
200 LDA divisor,X \ next byte of divisor
210 STA &404,X \ save in A%
220 INX \ bump loop counter
230 CPX #4 \ end of loop ?
240 BCC loop1 \ no - back
250 LDA #&40 \ set integer
260 JSR idiv \ call idiv
270 LDX #0 \ zeroise loop counter
280 .loop2 LDA &2A,X \ next byte of IWA
290 STA result,X \ save in result
300 INX \ bump loop counter
310 CPX #4 \ end of loop ?
320 BCC loop2 \ no - back
330 RTS:]
340 NEXT pass% : CALL start : PRINT !result : END

>RUN
 8

28

subroutine name : iin

function : IWA = integer variable

BASIC 1 address : &B365

BASIC 2 address : &B336

entry conditions : &2A,&2B (lo,hi) points to integer variable

exit status : IWA set up

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 34 microseconds

special note : Note that iin is shown for completeness only.
The code represented by iin is trivial. The
following code can be substituted:

 80 \ CODE TO COPY A 32-BIT INTEGER,
 90 \ intvar, INTO THE IWA.
100 .intvar EQUD 12345678
110 LDX #0 \ zeroise loop count
120 .loop
130 LDA intvar,X \ next byte of intvar
140 STA &2A,X \ save in IWA
150 INX \ bump loop count
160 CPX #4 \ end of loop ?
170 BCC loop \ no - back

29

iin demonstration (BASIC 2)

 0 iin = &B336
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .constant EQUD 1234 \ set up value
 60 .result EQUD 0 \ result
 70 .start
 80 LDA #constant MOD 256 \ LSB of address of constant
 90 STA &2A \ set up &2A
100 LDA #constant DIV 256 \ MSB of address of constant
110 STA &2B \ set up &2B
120 JSR iin \ call iin
130 LDX #0 \ zeroise loop counter
140 .loop
150 LDA &2A,X \ get next byte of IWA
160 STA result,X \ save in result
170 INX \ bump loop counter
180 CPX #4 \ end of loop ?
190 BCC loop \ no - back
200 RTS
210]
220 NEXT pass%
230 CALL start
240 PRINT !result
250 END

>RUN
 1234

30

subroutine name : iminus

function : IWA = integer variable − IWA

BASIC 1 address : &9C9D

BASIC 2 address : &9CC2

entry conditions : IWA contains a 32 bit integer

 : &04,&05 point to integer variable

 : X = #4

exit status : IWA set up

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 52 microseconds

31

iminus demonstration (BASIC 2)

 0 iminus = &9CC2
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .constant EQUD 26 \ set up value
 60 .subtrahend EQUD 3 \ subtrahend
 70 .result EQUD 0 \ result
 80 .start
 90 LDX #0 \ zeroise loop counter
100 .loop1
110 LDA subtrahend,X \ get next byte of subtrahend
120 STA &2A,X \ save in IWA
130 INX \ bump loop counter
140 CPX #4 \ end of loop ?
150 BCC loop1 \ no - back
160 LDA #constant MOD 256 \ LSB of address of constant
170 STA &4 \ set up &4
180 LDA #constant DIV 256 \ MSB of address of constant
190 STA &5 \ set up &5
200 LDX #4 \ set up X
210 JSR iminus \ call iminus
220 LDX #0 \ zeroise loop counter
230 .loop2
240 LDA &2A,X \ get next byte of IWA
250 STA result,X \ save in result
260 INX \ bump loop counter
270 CPX #4 \ end of loop ?
280 BCC loop2 \ no - back
290 RTS
300]
310 NEXT pass%
320 CALL start
330 PRINT !result
340 END

>RUN
 23

32

subroutine name : imod

function : IWA = IWA MOD integer variable

BASIC 1 address : &9DDE

BASIC 2 address : &9E01

entry conditions : IWA contains dividend

 : A% contains divisor

 : &19,&1A (lo,hi) point to a string,
‘ A%' + RETURN

 : &1B = 0

 : &04,&05 (lo,hi) = HIMEM

 : A = #&40

comments : DIV and MOD are not easy to extricate from the
BASIC ROM and the set up procedures are
necessarily somewhat contrived

exit status : IWA = remainder

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : division by zero

typical timing : 782 microseconds

33

imod demonstration (BASIC 2)

 10 imod = &9E01 : DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc% : [OPT pass%
 40 .dividend EQUD 26
 50 .divisor EQUD 3
 60 .fudge EQUD &0D254120 \ " A%" + RETURN
 70 .result EQUD 0
 80 .start LDA &6 \ get HIMEM lo
 90 STA &4 \ set &4
100 LDA &7 \ get HIMEM hi
110 STA &5 \ set &5
120 LDA #fudge MOD 256 \ point &19
130 STA &19 \ at fudge lo
140 LDA #fudge DIV 256 \ point &1A
150 STA &1A \ at fudge hi
160 LDX #0 \ zeroise loop count
170 STX &1B \ clear &1B
180 .loop1 LDA dividend,X \ next of dividend
190 STA &2A,X \ save in IWA
200 LDA divisor,X \ next of divisor
210 STA &404,X \ save in A%
220 INX \ bump loop counter
230 CPX #4 \ end of loop ?
240 BCC loop1 \ no - back
250 LDA #&40 \ set integer
260 JSR imod \ call imod
270 LDX #0 \ zeroise loop count
280 .loop2 LDA &2A,X \ next byte of IWA
290 STA result,X \ save in result
300 INX \ bump loop count
310 CPX #4 \ end of loop ?
320 BCC loop2 \ no - back
330 RTS:]
340 NEXT pass% : CALL start : PRINT !result : END

>RUN
 2

34

subroutine name : imult

function : IWA = integer variable * IWA

BASIC 1 address : &9D4A

BASIC 2 address : &9D6D

entry conditions : IWA contains a 32 bit integer

 : &04,&05 point to integer variable

 : &27 = #4

Comments : if the IWA contains an integer larger than
&FFFF, it is truncated to 16 significant bits.

exit status : IWA set up

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 164 microseconds

35

imult demonstration (BASIC 2)

 10 imult = &9D6D : DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .multiplicand EQUD 26 \ set up value
 60 .multiplier EQUD 3 \ multiplier
 70 .result EQUD 0 \ result
 80 .start
 90 LDX #0 \ zeroise loop counter
100 .loop1
110 LDA multiplier,X \ get next byte of multiplier
120 STA &2A,X \ save in IWA
130 INX \ bump loop counter
140 CPX #4 \ end of loop ?
150 BCC loop1 \ no - back
160 LDA #multiplicand MOD 256 \ LSB of address
170 STA &4 \ set up &4
180 LDA #multiplicand DIV 256 \ MSB of address
190 STA &5 \ set up &5
200 LDX #4 \ set up
210 STX &27 \ &27
220 JSR imult \ call imult
230 LDX #0 \ zeroise loop counter
240 .loop2
250 LDA &2A,X \ get next byte of IWA
260 STA result,X \ save in result
270 INX \ bump loop counter
280 CPX #4 \ end of loop ?
290 BCC loop2 \ no - back
300 RTS
310]
320 NEXT pass%
330 CALL start
340 PRINT !result
350 END

>RUN
 78

36

subroutine name : ineg1

function : IWA = −1

BASIC 1 address : &ACEA

BASIC 2 address : &ACC4

entry conditions : none

exit status : IWA = −1

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 20 microseconds

37

ineg1 demonstration (BASIC 2)

 0 ineg1 = &ACC4
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .result EQUD 0 \ result
 60 .start
 70 JSR ineg1 \ call ineg1
 80 LDX #0 \ zeroise loop counter
 90 .loop
100 LDA &2A,X \ get next byte of IWA
110 STA result,X \ save in result
120 INX \ bump loop counter
130 CPX #4 \ end of loop ?
140 BCC loop \ no - back
150 RTS
160]
170 NEXT pass%
180 CALL start
190 PRINT !result
200 END

>RUN
 -1

38

subroutine name : iout

function : integer variable = IWA

BASIC 1 address : &B4F2

BASIC 2 address : &B4C6

entry conditions : &37,&38 (lo,hi) points to integer variable

 : &39 must be non-zero

exit status : IWA set up

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 37 microseconds

special note : Note that iout is shown for completeness only.
The code represented by iout is trivial. The
following code can be substituted:

 80 \ CODE TO COPY THE IWA INTO A
 90 \ 32-BIT INTEGER VARIABLE, intvar.
100 .intvar EQUD 0
110 LDX #0 \ zeroise loop count
120 .loop
130 LDA &2A,X \ next byte of IWA
140 STA intvar,X \ save in intvar
150 INX \ bump loop count
160 CPX #4 \ end of loop ?
170 BCC loop \ no - back

39

iout demonstration (BASIC 2)

 0 iout = &B4C6
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .constant EQUD 1234 \ set up value
 60 .result EQUD 0 \ result
 70 .start
 80 LDX #0 \ zeroise loop counter
 90 .loop
100 LDA constant,X \ next byte of constant
110 STA &2A,X \ set up IWA
120 INX \ bump loop counter
130 CPX #4 \ end of loop
140 BCC loop \ no - back
150 LDA #result MOD 256 \ set up
160 STA &37 \ &37
170 LDA #result DIV 256 \ set up
180 STA &38 \ &38
190 LDA #1 \ set up
200 STA &39 \ &39
210 JSR iout \ call iout
220 RTS
230]
240 NEXT pass%
250 CALL start
260 PRINT !result
270 END

>RUN
 1234

40

subroutine name : iplus

function : IWA = IWA + integer variable

BASIC 1 address : &9C36

BASIC 2 address : &9C5B

entry conditions : IWA contains a 32 bit integer

 : &04,&05 lo,hi point to integer variable

 : X = #&4

exit status : IWA added

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 50 microseconds

41

iplus demonstration (BASIC 2)

 0 iplus = &9C5B
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .constant EQUD 26 \ set up value
 60 .adder EQUD 3 \
 70 .result EQUD 0 \ result
 80 .start
 90 LDX #0 \ zeroise loop counter
100 .loop1
110 LDA constant,X \ get next byte of constant
120 STA &2A,X \ save in IWA
130 INX \ bump loop counter
140 CPX #4 \ end of loop ?
150 BCC loop1 \ no - back
160 LDA #adder MOD 256 \ get lo address of adder
170 STA &4 \ save in &4
180 LDA #adder DIV 256 \ get hi address of adder
190 STA &5 \ save in &5
200 LDX #4 \ set X
210 JSR iplus \ call iplus
220 LDX #0 \ zeroise loop counter
230 .loop2
240 LDA &2A,X \ get next byte of IWA
250 STA result,X \ save in result
260 INX \ bump loop counter
270 CPX #4 \ end of loop ?
280 BCC loop2 \ no - back
290 RTS
300]
310 NEXT pass%
320 CALL start
330 PRINT !result
340 END

>RUN
 29

42

subroutine name : ipos

function : Make IWA positive

BASIC 1 address : &AD94

BASIC 2 address : &AD71

entry conditions : IWA contains a 32 bit integer

comments : If the IWA contains a negative integer, it is
complemented. Else it is unchanged.

exit status : IWA always positive

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 17 or 27 microseconds (17 if already +ve)

43

ipos demonstration (BASIC 2)

 0 ipos = &AD71
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .constant EQUD -1234 \ set up value
 60 .result EQUD 0 \ result
 70 .start
 80 LDX #0 \ zeroise loop counter
 90 .loop1
100 LDA constant,X \ get next byte of constant
110 STA &2A,X \ save in IWA
120 INX \ bump loop counter
130 CPX #4 \ end of loop ?
140 BCC loop1 \ no - back
150 JSR ipos \ call ipos
160 LDX #0 \ zeroise loop counter
170 .loop2
180 LDA &2A,X \ get next byte of IWA
190 STA result,X \ save in result
200 INX \ bump loop counter
210 CPX #4 \ end of loop ?
220 BCC loop2 \ no - back
230 RTS
240]
250 NEXT pass%
260 CALL start
270 PRINT !result
280 END

>RUN
 1234

44

subroutine name : ismall

function : IWA = 256*Y + A

BASIC 1 address : &AF19

BASIC 2 address : &AEEA

entry conditions : Y and A set up appropriately

comments : This is a handy way of initialising the IWA with
small numbers up to 16 bits in length

exit status : IWA set up

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 20 microseconds

45

ismall demonstration (BASIC 2)

 0 ismall = &AEEA
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .result EQUD 0 \ result
 60 .start
 70 LDY #&13 \ set up constant = #&1388
 80 LDA #&88 \ = 5000
 90 JSR ismall \ ismall to put 256*Y + A in IWA
100 LDX #0 \ zeroise loop counter
110 .loop
120 LDA &2A,X \ get next byte of IWA
130 STA result,X \ save in result
140 INX \ bump loop counter
150 CPX #4 \ end of loop ?
160 BCC loop \ no - back
170 RTS
180]
190 NEXT pass%
200 CALL start
210 PRINT !result
220 END

>RUN
 5000

46

subroutine name : itest

function : Test integer variable = > or < IWA

BASIC 1 address : &9A85

BASIC 2 address : &9AAD

entry conditions : IWA contains a 32 bit integer

 : &04,&05 (lo,hi) point to integer variable

 : &27 must be #4

Comments : On exit, the status register is set so that

 : BEQ will work if variable = IWA

 : BCC will work if variable < IWA

 : BCS will work if variable > or = IWA

 : These tests must be performed immediately, or
alternatively PHP can be used to stack the status
register for testing later in the program

exit status : IWA destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P see comments above

 : &4,5 stepped by 4

typical timing : 58 microseconds

47

itest demonstration (BASIC 2)

 10 itest = &9AAD : DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc% : [OPT pass%
 40 .con1 EQUD 1234 \ set up value 1
 50 .con2 EQUD 2345 \ set up value 2
 60 .start LDX #0 \ zeroise loop counter
 70 .loop1 LDA con2,X \ get next byte of con2
 80 STA &2A,X \ save in IWA
 90 INX \ bump loop counter
100 CPX #4 \ end of loop ?
110 BCC loop1 \ no - back
120 LDA #con1 MOD 256 \ get LSB of con1
130 STA &4 \ save in &4
140 LDA #con1 DIV 256 \ get MSB of con1
150 STA &5 \ save in &5
160 LDX #4 \ set for
170 STX &27 \ integer variable type
180 JSR itest \ call itest
190 BEQ equals \ if =
200 BCS more \ if >
210 LDA #3 \ if <
220 JMP set70 \ set &70
230 .equals LDA #1 \ if =
240 JMP set70 \ set &70
250 .more LDA #2 \ if >
260 .set70 STA &70 \ &70 set
270 RTS:]
280 NEXT pass% : DIM test$(3)
290 test$(1) = " is equal to "
300 test$(2) = " is greater than "
310 test$(3) = " is less than "
320 CALL start
330 PRINT !con1;test$(?&70);!con2
340 END

>RUN
 1234 is less than 2345

48

subroutine name : izero

function : Make IWA zero

BASIC 1 address : &AEF9

BASIC 2 address : &AECA

entry conditions : none

exit status : IWA = 0

 : A destroyed

 : X unchanged

 : Y destroyed

 : P unchanged

typical timing : 25 microseconds

49

izero demonstration (BASIC 2)

 0 izero = &AECA
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .result EQUD 0 \ result
 60 .start
 70 JSR izero \ call izero
 80 LDX #0 \ zeroise loop counter
 90 .loop
100 LDA &2A,X \ get next byte of IWA
110 STA result,X \ save in result
120 INX \ bump loop counter
130 CPX #4 \ end of loop ?
140 BCC loop \ no - back
150 RTS
160]
170 NEXT pass%
180 CALL start
190 PRINT !result
200 END

>RUN
 0

50

subroutine name : izpin

function : Copy integer variable in zero page to IWA

BASIC 1 address : &AF85

BASIC 2 address : &AF56

entry conditions : X points to zero page integer variable

Comments : &00,X to &03,X copied into IWA

exit status : IWA set up

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 27 microseconds

51

izpin demonstration (BASIC 2)

 0 izpin = &AF56
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .result EQUD 0 \ result
 60 .start
 70 LDX #&70 \ point X to &70
 75 \ (contains 5000)
 80 JSR izpin \ call izpin
 90 LDX #0 \ zeroise loop counter
100 .loop
110 LDA &2A,X \ get next byte of IWA
120 STA result,X \ save in result
130 INX \ bump loop counter
140 CPX #4 \ end of loop ?
150 BCC loop \ no - back
160 RTS
170]
180 NEXT pass%
190 !&70 = 5000
200 CALL start
210 PRINT !result
220 END

>RUN
 5000

52

subroutine name : izpout

function : Copy IWA to integer variable in zero page

BASIC 1 address : &BE5C

BASIC 2 address : &BE44

entry conditions : X points to zero page integer variable

comments : IWA copied to &00,X to &03,X

exit status : IWA unchanged

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

 : &00,X to &03,X set up

typical timing : 26 microseconds

53

izpout demonstration (BASIC 2)

 0 izpout = &BE44
 10 DIM mc% 200
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .constant EQUD 5000 \ set up value
 60 .start
 70 LDX #0 \ zeroise loop counter
 80 .loop
 90 LDA constant,X \ get next byte of constant
100 STA &2A,X \ save in IWA
110 INX \ bump loop counter
120 CPX #4 \ end of loop ?
130 BCC loop \ no - back
140 LDX #&70 \ point izpout to &70
150 JSR izpout \ call izpout
160 RTS
170]
180 NEXT pass%
190 CALL start
210 PRINT !&70
220 END

>RUN
 5000

54

55

3 FLOATING POINT
NUMBERS

Although floating point format can be used to store integers,
especially large integers outside of the range of 32-bit integer
format, it is essentially designed to handle fractions.

3.1 Floating Point Variables

The BBC BASIC interpreter recognises a floating point variable by
the absence of either a ‘%’ or a ‘$’ at the end of its name. Each
floating point variable occupies five bytes (40 bits). The number
itself is held in the last four bytes (called the mantissa). The first
byte (called the exponent) defines the position of the binary point.
In other words, it defines the end of the integral part of the number
and the start of the fractional part.

Consider the decimal number 7.125. The binary equivalent of this
number is 0111.0010 = (0*8) + (1*4) + (1*2) + (1*1) + (0*1/2) +
(0*1/4) + (1*1/8) + (0*1/16). To obtain its floating point
representation, the mantissa is simply written down as a string of
32 bits, aligned at the most significant end, with the binary point
omitted.

mantissa

0111 0010 0000 0000 0000 0000 0000 0000
 &72 &00 &00 &00

Had the binary point been included, it would have been positioned
after the fourth bit in the mantissa. Thus the exponent is 4 in this
case.

 exponent mantissa
 -------- --------
0000 0100 0111 0010 0000 0000 0000 0000 0000 0000
 &4 &72 &00 &00 &00

It will be seen that the exponent and mantissa above are not the
only ones that represent the number 7.125. Consider the following:

 exponent mantissa
 -------- --------
0000 0101 0011 1001 0000 0000 0000 0000 0000 0000
 &5 &39 &00 &00 &00

0000 0110 0001 1100 1000 0000 0000 0000 0000 0000
 &6 &1C &80 &00 &00

56

When a zero is shifted into the most significant bit of the mantissa,
the mantissa is effectively divided by 2. To compensate for this, the
exponent is incremented by one, effectively multiplying the
number by 2. The decimal analogy is that 7.125 could equally well
be expressed as 71.25 tenths or 712.5 hundredths. Clearly it would
be difficult to work with floating point numbers if each number
could have so many different representations.

Fortunately there is a rule which standardises the format of floating
point numbers. The rule is called ‘Normalisation’. In a normalised
floating point number, the most significant bit of the mantissa is
always a 1. This is achieved by shifting the mantissa left, bit-by-bit,
until all leading zeroes have disappeared. Since each leftward shift
multiplies the mantissa by 2, the exponent must be reduced by one
each time. Thus in its normalised form, the floating point
representation of 7.125 is:

 exponent mantissa
 -------- --------
0000 0011 1110 0100 0000 0000 0000 0000 0000 0000
 &3 &E4 &00 &00 &00

BBC BASIC expects all floating point numbers to be normalised. It
makes use of this fact to handle the sign of a floating point number.
If the sign of the number is positive, it changes the most significant
bit of the mantissa to 0. This is simply a ruse to avoid holding the
sign separately and hence to minimise the amount of memory
needed to store a floating point number. In fact the number above
represents −7.125 and +7.125 is:

 exponent mantissa
 -------- --------
0000 0011 0110 0100 0000 0000 0000 0000 0000 0000
 &3 &64 &00 &00 &00

BBC BASIC adds &80 to the exponent. This is purely a device to
assist in processing floating point numbers. Thus in BBC BASIC, a
floating point variable set to +7.125 actually contains:

 exponent mantissa
 -------- --------
 10000011 0110 0100 0000 0000 0000 0000 0000 0000
 &83 &64 &00 &00 &00

It will be seen that, to convert a positive number to negative, it is
only necessary to add &80 to the most significant byte of the
mantissa.

57

Thus there are four stages in the process of converting a number to
floating point format:

a) Write down the mantissa in binary and set the exponent to the
value which fixes the position of the implied binary point.

b) Normalise the number, ensuring that the exponent is adjusted
appropriately for each bit shifted.

c) If the sign of the original number was positive, change the most
significant bit of the mantissa to zero.

d) Add &80 to the exponent.

It remains now to demonstrate that this process works for purely
fractional numbers. Consider the decimal number −0.375. As this
represents −3/8 which is the same as −(1/4 + 1/8), the binary
equivalent of this number is −.0110. It is easy to write down the
mantissa in its unnormalised binary form:

mantissa

0110 0000 0000 0000 0000 0000 0000 0000
 &60 &00 &00 &00

The exponent of this unnormalised number is zero, since the
implied binary point comes immediately in front of the most
significant bit of the mantissa. To normalise the mantissa, it must
be shifted to the left until all leading zeroes have been removed,
reducing the exponent by one each time. Consequently, the
exponent is −1, to which must be added &80 as before. In
hexadecimal terms:

-0.375 = &7F &C0 &00 &00 &00

One last contrivance is employed in BBC BASIC. The floating point
representation of 0.0 does not follow the rules. It is simply stored as
five bytes of zeroes.

Some floating point numbers are tabulated below:

 0 = &00 &00 &00 &00 &00
 +1 = &81 &00 &00 &00 &00 -1 = &81 &80 &00 &00 &00
 +2 = &82 &00 &00 &00 &00 -2 = &82 &80 &00 &00 &00
 +3 = &82 &40 &00 &00 &00 -3 = &82 &C0 &00 &00 &00
 +4 = &83 &00 &00 &00 &00 -4 = &83 &80 &00 &00 &00
 +5 = &83 &20 &00 &00 &00 -5 = &83 &A0 &00 &00 &00
 +6 = &83 &40 &00 &00 &00 -6 = &83 &C0 &00 &00 &00
 +7 = &83 &60 &00 &00 &00 -7 = &83 &E0 &00 &00 &00
 +8 = &84 &00 &00 &00 &00 -8 = &84 &80 &00 &00 &00
 +9 = &84 &10 &00 &00 &00 -9 = &84 &90 &00 &00 &00
+10 = &84 &20 &00 &00 &00 -10 = &84 &A0 &00 &00 &00

58

3.2 Integer versus Floating Point

Integer numbers have two big advantages over their floating point
counterparts: accuracy and speed.

In all the floating point examples so far presented in this book, the
fractional part of the number has always translated into an exact
number of halves, quarters, eighths, sixteenths and so on. Numbers
like this are referred to as ‘machine numbers’ because they can be
held exactly within a computer. By no means can this be said of all
numbers. For example, the fraction 1/5 cannot be held exactly.
However many fractional bits are included, the resulting floating
point number remains an approximation, albeit a good one, to the
original fraction. Numbers that have a large integral part have less
bits available for the fractional part and tend to suffer more from
fractional inaccuracy. An example of floating point inaccuracy is
shown in the following BASIC code:

10 J=0
20 FOR I% = 1 TO 40
30 J = J + 0.2
40 NEXT
50 PRINT J
60 END

>RUN
7.99999999

Integer arithmetic is not only accurate, it is faster than floating
point. This simply means that it is less complicated and requires
less code in the BASIC interpreter.

However, integer numbers have two disadvantages compared to
floating point numbers. The first is obvious; they cannot be used to
represent fractions. The second is that they cannot handle such a
wide range of numbers as floating point (from 1.7*10 to the power
−39 up to 1.7*10 to the power 38).

Overall the advantages of using integers are so great, that providing
the numbers to be used fall within the range of integer numbers,
they should be used if at all possible. This is especially true for
financial applications, where loss of accuracy in floating point can
render a program useless. Except for very large sums of money,
financial data should be held in pence. There is then no fraction to
consider (assuming the demise of the halfpenny). The decimal
point can always be inserted into an ASCII field when printing
reports.

59

This is an example of a technique known as scaling. Because
financial data has only two digits following the decimal point, all
numbers are scaled up by a factor of 100 to remove the fractional
part altogether. The technique can be applied to other situations.

Floating point comes into its own in mathematical programs where
total accuracy is neither expected nor required, such as when
drawing curves.

3.3 Floating Point Work Areas

BBC BASIC does all its floating point arithmetic in two working
areas in zero page. As with the IWA, these memory areas are not
dedicated to floating point and may be re-used for quite different
purposes.

Each of the working areas is eight bytes long (not five as might have
been expected). The extra 3 bytes are for the following purposes:

a) a sign byte. In the five byte variable format, the sign is
contrived by zeroising the most significant bit of the mantissa
for positive numbers. In eight byte format, the most significant
byte of the mantissa is copied into a sign byte, and the most
significant bit of the mantissa is restored to 1.

b) a rounding byte. An extra byte is tacked onto the end to extend
the precision of arithmetic. This extra byte is used to round the
preceding mantissa when required.

c) an overflow byte. This byte exists to trap errors, such as those
which might occur when the result of a multiplication is a
number too big to handle.

The five byte format unpacks into the eight byte format as follows:

 5 byte 8 byte
 ------ ------
exponent byte 0 ------> byte 2 exponent
mantissa-1 byte 1 ------> byte 0 sign
mantissa-1 byte 1 OR #&80 byte 3 mantissa-1
mantissa-2 byte 2 ------> byte 4 mantissa-2
mantissa-3 byte 3 ------> byte 5 mantissa-3
mantissa-4 byte 4 ------> byte 6 mantissa-4
 zero byte 1 overflow
 zero byte 7 rounding

60

For example, +1.0 in the two formats is:

 5 byte 8 byte
 ------ ------
exponent &81 &00 sign
mantissa-1 &00 &00 overflow
mantissa-2 &00 &81 exponent
mantissa-3 &00 &80 mantissa-1
mantissa-4 &00 &00 mantissa-2
 &00 mantissa-3
 &00 mantissa-4
 &00 rounding

The two floating point areas used by BASIC are &2E to &35, and
&3B to &42 inclusive. These will be referred to as Floating Point
Work Area A or FWA, and Floating Point Work Area B or FWB,
respectively. They consist of:

 FWA FWB
 --- ---
sign &2E &3B
overflow &2F &3C
exponent &30 &3D
mantissa-1 &31 &3E
mantissa-2 &32 &3F
mantissa-3 &33 &40
mantissa-4 &34 &41
rounding &35 &42

61

3.4 Defining Floating Point Constants

Neither BASIC 1 nor BASIC 2 has a directive to allow definition of
a floating point constant to the assembler. Once again it is
necessary to invent a pseudo-directive. This one is called EQUF. It
relies on two facts. Firstly it uses a BASIC variable, Z, and the
address of the look-up table for variables starting with the letter ‘Z’
is held in &4B4,&4B5 (lo,hi). Secondly, the pseudo-directive
assumes that the actual data in Z will be found 3 bytes into this
look-up table. This will be true so long as Z is the first variable
which has an entry in this look-up table. To ensure this, make
certain that no other BASIC variables start with the letter ‘Z’. This
caution should be unnecessary, because the techniques advocated
discourage hybrid assembly language/BASIC programs.

 10 DIM mc% 100 : FOR pass% = 0 TO 2 STEP 2
 20 P% = mc% : [OPT pass%
 30 .constant
 40 OPT FNEQUF(1.0)
 50]
 60 NEXT pass%
 70 END
 80 DEF FNEQUF(Z)
 90 I% = 3 + ?&4B4 + 256*?&4B5
100 FOR J% = 1 TO 5
110 ?P% = ?I%
120 P% = P% + 1
130 I% = I% + 1
140 NEXT
150 = pass%

A particularly useful feature of these pseudo-directives, is that they
can be used to evaluate expressions, providing the terms are also
literals. For example:

30 .constant
40 OPT FNEQUF(3*SIN(PI/4))

62

3.5 Floating Point Routines Summary

The following tables summarise floating point routines available
within the BASIC ROM. Conversion routines, e.g. floating point to
ASCII, are the subject of a later chapter. So too are routines
handling trigonometric functions, square roots, logarithms etc.

--
Name BASIC 1 BASIC 2 Function
 address address
--
aclear &A691 &A686 FWA = 0
acomp &AD99 &AD7E FWA = -FWA
acopyb &A4E4 &A4DC FWA = FWB
adiv &A68B &A6AD FWA = fp var / FWA normalised
 and rounded
adiv10 &A23E &A24D FWA = FWA / 10 unnormalised
 and unrounded
aminus &A50B &A4FD FWA = fp var - FWA normalised
 and rounded
amult &A661 &A656 FWA = FWA * fp var normalised
 and rounded
amult1 &A611 &A606 FWA = FWA * fp var
 unnormalised and unrounded
amult10 &A1E5 &A1F4 FWA = FWA * 10 unnormalised
 and unrounded
anorm &A2F4 &A303 normalise FWA
aone &A6A4 &A699 FWA = 1
apack &A37E &A38D pack FWA into fp var
apack1 &A376 &A385 pack FWA into &46C to &470
apack2 &A36E &A37D pack FWA into &471 to &475
apack3 &A372 &A381 pack FWA into &476 to &47A
aplus &A50E &A500 FWA = FWA + fp var normalised
 and rounded
aplusb &A513 &A505 FWA = FWA + FWB normalised
 and rounded
aplus1 ----- &A50B FWA = FWA + FWB normalised
 and unrounded
arecip &A6B0 &A6A5 FWA = 1 / FWA normalised
 and rounded
around &A667 &A65C round FWA
asign &A1CB &A1DA get sign of FWA
aswap &A4DE &A4D6 swap fp var and FWA
atest &9A37 &9A5F test fp var against FWA
aunp &A3A6 &A3B5 unpack fp var into FWA
aunp1 &A3A3 &A3B2 unpack &46C to &470 into FWA
bclear &A463 &A453 FWB = 0
bcopya &A20F &A21E FWB = FWA
bunp &A33F &A34E unpack fp var into FWB
--

63

3.6 Floating Point Routines Description

The following pages show how to use each of the floating point
routines in the table. Set up procedures are very simple. Routines
involving only FWA and/or FWB need no setting up, other than to
load FWA/FWB prior to the call. Routines which reference a
floating point variable should point &4B,&4C (lo,hi) to that variable.

For this reason, demonstration programs are not supplied for each
routine. In place of these, there is a single program which can be
incorporated into a user program, which:

a) provides a standard interface for all floating point arithmetic.

b) can be assembled under BASIC 1 or BASIC 2.

c) the machine code derived will run under either BASIC 1 or
BASIC 2.

64

subroutine name : aclear

function : FWA = zero

BASIC 1 address : &A691

BASIC 2 address : &A686

entry conditions : none

exit status : FWA = zero

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 25 microseconds

65

subroutine name : acomp

function : FWA = −FWA

BASIC 1 address : &AD99

BASIC 2 address : &AD7E

entry conditions : none

exit status : FWA = −FWA

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 34 microseconds

66

subroutine name : acopyb

function : FWA = FWB

BASIC 1 address : &A4E4

BASIC 2 address : &A4DC

entry conditions : none

exit status : FWA = FWB

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 36 microseconds

67

subroutine name : adiv

function : FWA = fp var / FWA normalised, rounded

BASIC 1 address : &A68B

BASIC 2 address : &A6AD

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA = quotient

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : division by zero

typical timing : 1545 microseconds

68

subroutine name : adiv10

function : FWA = FWA / 10 normalised, rounded

BASIC 1 address : &A23E

BASIC 2 address : &A24D

entry conditions : none

exit status : FWA = FWA / 10

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 360 microseconds

69

subroutine name : aminus

function : FWA = fp var − FWA normalised and rounded

BASIC 1 address : &A50B

BASIC 2 address : &A4FD

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 254 microseconds

70

subroutine name : amult

function : FWA = fp var * FWA normalised and rounded

BASIC 1 address : &A661

BASIC 2 address : &A656

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : too big

typical timing : 1581 microseconds

71

subroutine name : amult1

function : FWA = fp var * FWA unnormalised and
unrounded

BASIC 1 address : &A611

BASIC 2 address : &A606

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : too big

typical timing : 1508 microseconds

72

subroutine name : amult10

function : FWA = 10 * FWA unnormalised and
unrounded

BASIC 1 address : &A1E5

BASIC 2 address : &A1F4

entry conditions : none

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 171 microseconds

73

subroutine name : anorm

function : FWA = FWA normalised

BASIC 1 address : &A2F4

BASIC 2 address : &A303

entry conditions : none

exit status : FWA = result

 : FWB unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 27 microseconds

74

subroutine name : aone

function : FWA = 1

BASIC 1 address : &A6A4

BASIC 2 address : &A699

entry conditions : none

exit status : FWA = 1

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 37 microseconds

75

subroutine name : apack

function : fp var = FWA

BASIC 1 address : &A37E

BASIC 2 address : &A38D

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA unchanged

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 46 microseconds

76

subroutine name : apack1

function : &46C to &470 = FWA

BASIC 1 address : &A376

BASIC 2 address : &A385

entry conditions : none

exit status : FWA unchanged

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

 : &4B,&4C destroyed

typical timing : 51 microseconds

77

subroutine name : apack2

function : &471 to &475 = FWA

BASIC 1 address : &A36E

BASIC 2 address : &A37D

entry conditions : none

exit status : FWA unchanged

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

 : &4B,&4C destroyed

typical timing : 53 microseconds

78

subroutine name : apack3

function : &476 to &47A = FWA

BASIC 1 address : &A372

BASIC 2 address : &A381

entry conditions : none

exit status : FWA unchanged

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

 : &4B,&4C destroyed

typical timing : 53 microseconds

79

subroutine name : aplus

function : FWA = fp var + FWA normalised and rounded

BASIC 1 address : &A50E

BASIC 2 address : &A500

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : too big

typical timing : 246 microseconds

80

subroutine name : aplusb

function : FWA = FWA + FWB normalised and rounded

BASIC 1 address : &A513

BASIC 2 address : &A505

entry conditions : none

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : too big

typical timing : 58 microseconds

81

subroutine name : aplus1

function : FWA = FWA + FWB normalised and
unrounded

BASIC 1 address : ---------

BASIC 2 address : &A50B

entry conditions : none

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : too big

typical timing : 41 microseconds

82

subroutine name : arecip

function : FWA = 1 / FWA normalised and rounded

BASIC 1 address : &A6B0

BASIC 2 address : &A6A5

entry conditions : none

exit status : FWA = result

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

 : &476 to &47A destroyed

typical timing : 1619 microseconds

83

subroutine name : around

function : FWA = FWA rounded

BASIC 1 address : &A667

BASIC 2 address : &A65C

entry conditions : none

exit status : FWA = result

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 22 microseconds

84

subroutine name : asign

function : A register denotes sign of FWA

BASIC 1 address : &A1CB

BASIC 2 address : &A1DA

entry conditions : none

comments : A register set as follows:

 : = 0 if FWA is zero

 : = 1 if FWA is +ve

 : = −ve if FWA is −ve otherwise

exit status : FWA unchanged

 : FWB unchanged

 : A see above

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 24 microseconds

85

subroutine name : aswap

function : FWA = fp var and fp var = FWA

BASIC 1 address : &A4DE

BASIC 2 address : &A4D6

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA = fp var

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 121 microseconds

86

subroutine name : atest

function : test fp var against FWA

BASIC 1 address : &9A37

BASIC 2 address : &9A5F

entry conditions : &4B,&4C (lo,hi) point to fp var

comments : on exit, the P register is set up such that:

 : BEQ works if fp var = FWA

 : BCC works if fp var < FWA

 : BCS works if fp var > or = FWA

exit status : FWA destroyed

 : FWB destroyed

 : A destroyed

 : X destroyed

 : Y destroyed

 : P see above

typical timing : 78 microseconds

87

subroutine name : aunp

function : FWA = fp var

BASIC 1 address : &A3A6

BASIC 2 address : &A3B5

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA = fp var

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 49 microseconds

88

subroutine name : aunp1

function : FWA = &46C to &470

BASIC 1 address : &A3A3

BASIC 2 address : &A3B2

entry conditions : none

exit status : FWA = result

 : FWB unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

typical timing : 62 microseconds

89

subroutine name : bclear

function : FWB = 0

BASIC 1 address : &A463

BASIC 2 address : &A453

entry conditions : none

exit status : FWA unchanged

 : FWB = 0

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 25 microseconds

90

subroutine name : bcopya

function : FWB = FWA

BASIC 1 address : &A20F

BASIC 2 address : &A21E

entry conditions : none

exit status : FWA unchanged

 : FWB = FWA

 : A destroyed

 : X unchanged

 : Y unchanged

 : P destroyed

typical timing : 36 microseconds

91

subroutine name : bunp

function : FWB = fp var

BASIC 1 address : &A33F

BASIC 2 address : &A34E

entry conditions : &4B,&4C (lo,hi) point to fp var

exit status : FWA unchanged

 : FWB = result

 : A destroyed

 : X destroyed

 : Y unchanged

 : P destroyed

typical timing : 51 microseconds

92

3.7 Floating Point Interface Program

This program will perform addition, subtraction, multiplication or
division in floating point. It is intended that this code is
incorporated into a user program. It may be assembled under either
BASIC 1 or BASIC 2. When executed it will detect which BASIC is
present and operate accordingly.

On entry to floatsub, the following fields must be set up:

&70,&71 (lo,hi) point to argument 1
&72,&73 (lo,hi) point to argument 2
&74,&75 (lo,hi) point to argument 3
&76 = function required

if &76 = 0 argument 3 = argument 1 + argument 2
if &76 = 1 argument 3 = argument 1 - argument 2
if &76 = 2 argument 3 = argument 1 * argument 2
if &76 = 3 argument 3 = argument 1 / argument 2

All mathematical functions return results into argument 3. All
results are fully normalised and rounded. Signs are handled
correctly throughout. All registers are returned uncorrupted.

Standard Floating Point Interface

 10 DIM mc% 500
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .basic2 \ BASIC 2
 60 .aplus JMP &A500
 70 .aminus JMP &A4FD
 80 .amult JMP &A656
 90 .adiv JMP &A6AD
100 .apack JMP &A38D
110 .aunp JMP &A3B5
120 .basic1 \ BASIC 1
130 JMP &A50E
140 JMP &A50B
150 JMP &A661
160 JMP &A68B
170 JMP &A37E
180 JMP &A3A6
190 .floatsub
200 PHP \ save P reg
210 PHA \ save A reg
220 TXA \ save X reg
230 PHA
240 TYA \ save Y reg
250 PHA
260 LDA &8015 \ get BASIC year
270 CMP #&32 \ is it 1982 ?
280 BEQ skipmove \ yes - skipmove

93

290 LDX #0 \ zeroise loop counter
300 .move
310 LDA basic1,X \ next byte of BASIC 1 addresses
320 STA basic2,X \ overwrite BASIC 2 counterpart
330 INX \ bump loop counter
340 CPX #18 \ end of loop ?
350 BCC move \ no - move
360 .skipmove
370 LDA &72 \ get LSB of argument 2
380 STA &4B \ save in &4B
390 LDA &73 \ get MSB of argument 2
400 STA &4C \ save in &4C
410 JSR aunp \ unpack argument 2 into FWA
420 LDA &70 \ get LSB of argument 1
430 STA &4B \ save in &4B
440 LDA &71 \ get MSB of argument 1
450 STA &4C \ save in &4C
460 LDA &76 \ get function
470 BEQ add \ if add
480 CMP #1 \ test subtract
490 BEQ subtract \ if subtract
500 CMP #2 \ test multiply
510 BEQ multiply \ if multiply
520 CMP #3 \ test divide
530 BEQ divide \ if divide
540 BRK \ invalid
550 .add
560 JSR aplus \ do add
570 JMP result \ output result
580 .subtract
590 JSR aminus \ do subtract
600 JMP result \ output result
610 .multiply
620 JSR amult \ do multiply
630 JMP result \ output result
640 .divide
650 JSR adiv \ do divide
660 .result
670 LDA &74 \ get LSB of result
680 STA &4B \ save in &4B
690 LDA &75 \ get MSB of result
700 STA &4C \ save in &4C
710 JSR apack \ output result
720 .restore
730 PLA \ restore
740 TAY \ Y reg.
750 PLA \ restore
760 TAX \ X reg.
770 PLA \ restore A reg
780 PLP \ restore P reg
790 RTS:]
800 NEXT pass%:STOP

94

3.8 Floating Point Interface Program Tested

The previous program can be tested by changing the BASIC
statements. In the changes below, data values are entered into A
and B (lines 900 and 910) and the program performs all the
calculations.

 800 REM test all functions
 810 NEXT pass%
 820 DIM func$(4)
 830 func$(1) = " + "
 840 func$(2) = " - "
 850 func$(3) = " * "
 860 func$(4) = " / "
 870 ?&76 = -1
 880 REPEAT
 890 ?&76 = ?&76 + 1
 900 A = -20.3
 910 B = -7.258
 920 C = 0
 930 I% = 3 + ?&482 + 256*?&483
 940 ?&70 = I% MOD 256
 950 ?&71 = I% DIV 256
 960 I% = 3 + ?&484 + 256*?&485
 970 ?&72 = I% MOD 256
 980 ?&73 = I% DIV 256
 990 I% = 3 + ?&486 + 256*?&487
1000 ?&74 = I% MOD 256
1010 ?&75 = I% DIV 256
1020 CALL floatsub
1030 PRINT A;func$(1+?&76);B;" = ";C
1040 UNTIL ?&76 = 3
1050 END

>RUN
 -20.3 + -7.258 = -27.558
 -20.3 - -7.258 = -13.042
 -20.3 * -7.258 = 147.3374
 -20.3 / -7.258 = 2.79691375

95

4 CONVERSIONS

Inevitably, assembly language programs have to deal with the
problem of data conversion, particularly from binary to ASCII and
vice-versa. The BASIC ROM contains a set of accessible conversion
routines which are among the handiest of all the routines in the
ROM.

4.1 Conversion Work Areas

The BASIC ROM does all its work with ASCII strings in an area of
memory starting at &600. This will be called the String Work Area
or SWA. There is another memory area, &36, which contains the
length of the current string in the SWA. Another way of looking at
this field is that the contents of &36, when added to #&600, point to
the next available space in the SWA.

The usual caution is necessary at this point. The area starting at
&600 is not reserved for a dedicated purpose. It is also used as a
variable parameter block. As for &36, its uses are legion.

Another zero page location which plays an active role in some of
these routines is &15. &15 controls the radix when converting a
number to an ASCII string. If set to zero, the ASCII string represents
a decimal number. If set to −1, it is hexadecimal. BASIC itself sets
this field for the PRINT command. The latter setting is used if a
tilde (~) appears in the PRINT statement.

During conversions to ASCII, parts of the print format field, @%,
are important. Located from &400 to &403, this field controls print
formatting as follows:

&403 not applicable (STR$ flag)

&402 format number

format 0 = general
format 1 = exponential
format 2 = fixed decimal

&401 number of digits (exact meaning depends on format)

format 0 = maximum number of digits which can be
printed before exponential format is used
instead

format 1 = number of digits + 1 that follows the ‘E’
format 2 = number of decimal places

&400 width of print field

96

&400 does not affect string conversion, but rather is used by the
BASIC PRINT command to work further on the converted string.
&401 and &402 do affect string conversion. Format 0 is the default,
representing typical BASIC formatting. Format 1 specifies that
numbers are to be converted to exponential format e.g. 1000 would
be converted to 1E3. Format 2 specifies that the number is to be
converted to ASCII with a fixed number (to be found in &401) of
decimal places. The maximum number of decimal places that can
be specified is ten. If a number greater than 10 is placed in &401,
the conversion routines default to ten. Similarly, if a format greater
than 2 is specified, a default of zero is used. After BREAK, or at
power up, BASIC initialises @% to format zero and a width of 10.

4.2 Conversion Routines Summary

Many of the routines below share common entry points. As the set
up parameters are quite different in each case, it is easier to present
them separately. Integer to floating point conversions (and vice-
versa) are so straightforward that no further explanation is required.
A demonstration program is supplied in the next section to show
the use of ASCII conversion routines.

--
Name BASIC 1 BASIC 2 Function
 address address
--
ascnum &AC5A &AC34 ASCII to integer or
 floating point
fpascdec &9ED0 &9EDF floating point to decimal ASCII
fpaschex &9ED0 &9EDF floating point to hex ASCII
fpi1 &A3F2 &A3E4 floating point to integer 1
fpi2 &A40C &A3FE floating point to integer 2
iascdec &9ED0 &9EDF integer to decimal ASCII
iaschex &9ED0 &9EDF integer to hex ASCII
ifpa &A2AF &A2BE integer to floating point
--

97

4.3 Conversion Routines Description

subroutine name : ascnum

function : the ASCII string in SWA is converted to either
an integer placed in IWA or to a floating point
number placed in FWA

BASIC 1 address : &AC5A

BASIC 2 address : &AC34

entry conditions : &36 contains length of string in SWA

 : SWA contains ASCII number

comments : the routine places a binary zero at the end of
SWA and steps &36 by 1

 : on exit A and &27 both reflect the type of
conversion:

 : = #&40 for integer

 : = #&FF for floating point

exit status : IWA = result (integer)

 : FWA = result (floating point)

 : FWB destroyed

 : SWA has zero appended

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

 : &19,&1A,&1B destroyed

 : &45,&48,&49 destroyed

 : &27 see above

typical timing : 1748 microseconds

98

subroutine name : fpascdec

function : the floating point number in FWA is converted
to ASCII decimal and placed in SWA

BASIC 1 address : &9ED0

BASIC 2 address : &9EDF

entry conditions : &15 must be zero

 : Y must be #&FF

 : @% must be set as appropriate

comments : the routine returns with &36 set to the length of
the string

exit status : IWA destroyed

 : FWA destroyed

 : FWB destroyed

 : SWA = result

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

 : &36 = length of string

typical timing : 4878 microseconds

99

subroutine name : fpaschex

function : the floating point number in FWA is converted
to ASCII hexadecimal and placed in SWA

BASIC 1 address : &9ED0

BASIC 2 address : &9EDF

entry conditions : &15 must be #&FF

 : Y must be #&FF

 : @% must be set as appropriate

comments : only the integer part of the number is converted

 : the routine returns with &36 set to the length of
the string

exit status : IWA destroyed

 : FWA destroyed

 : FWB destroyed

 : SWA = result

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

 : &36 = length of string

typical timing : 582 microseconds

100

subroutine name : fpi1

function : the floating point number in FWA is converted
to integer and placed in IWA

BASIC 1 address : &A3F2

BASIC 2 address : &A3E4

entry conditions : none

comments : only the integer part of the number is converted

exit status : IWA = result

 : FWA destroyed

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 405 microseconds

101

subroutine name : fpi2

function : the floating point number in FWA is converted
to integer and placed in &31 to &34

BASIC 1 address : &A40C

BASIC 2 address : &A3FE

entry conditions : none

comments : only the integer part of the number is converted

 : this routine can be used instead of fpi1 when it
is required to preserve IWA

exit status : IWA unchanged

 : FWA destroyed

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

 : &31 to &34 = result

typical timing : 387 microseconds

102

subroutine name : iascdec

function : the integer number in IWA is converted to
ASCII decimal and placed in SWA

BASIC 1 address : &9ED0

BASIC 2 address : &9EDF

entry conditions : &15 must be zero

 : Y must be #&40

 : @% must be set as appropriate

comments : the routine returns with &36 set to the length of
the string

exit status : IWA destroyed

 : FWA destroyed

 : FWB destroyed

 : SWA = result

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

 : &36 = length of string

typical timing : 5369 microseconds

103

subroutine name : iaschex

function : the integer number in IWA is converted to
ASCII hexadecimal and placed in SWA

BASIC 1 address : &9ED0

BASIC 2 address : &9EDF

entry conditions : &15 must be #&FF

 : Y must be #&40

 : @% must be set as appropriate

comments : the routine returns with &36 set to the length of
the string

exit status : IWA destroyed

 : FWA destroyed

 : FWB destroyed

 : SWA = result

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

 : &36 = length of string

typical timing : 216 microseconds

104

subroutine name : ifpa

function : the integer number in IWA is converted to
floating point and placed in FWA

BASIC 1 address : &A2AF

BASIC 2 address : &A2BE

entry conditions : none

exit status : IWA destroyed

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 149 microseconds

105

4.4 ASCII Conversion Demonstration

The following program is written in BASIC 2. It performs the
following tasks:

a) It asks the user to supply a number. This can be either integer
or decimal, with or without a sign.

b) It uses OSWORD 0 to read the user’s number into the SWA.

c) It converts this number to either binary integer or floating point
using ‘ascnum’

d) It then converts the number back into fixed format ASCII
decimal with 5 decimal places, overwriting the SWA. This
result is then printed.

e) note that the conversion process in d) references a routine
called ‘numasc’ which represents either fpascdec or iascdec,
this being controlled by the value in Y prior to the call.

 0 ascnum = &AC34:numasc = &9EDF
 10 osword = &FFF1:osbyte = &FFF4
 20 osnewl = &FFE7:oswrch = &FFEE
 30 DIM mc% 500
 40 FOR pass% = 0 TO 2 STEP 2
 50 P% = mc%
 60 [OPT pass%
 70 .msg EQUB 12 \ clear screen
 80 EQUB 31 \ cursor
 90 EQUB 1 \ x = 1
100 EQUB 12 \ y = 12
110 EQUS "enter your number >" \ message
120 .msgl EQUB msgl - msg \ msg length
130 .osbuff EQUW &600 \ point to SWA
140 EQUB 20 \ max size
150 EQUB &2A \ min value
160 EQUB &39 \ max value
170 .osbuffadd EQUW osbuff \ pointer to osbuff
180 .start
190 LDX #0 \ zeroise loop counter
200 .loopmsg
210 LDA msg,X \ get next byte of msg
220 JSR oswrch \ print it
230 INX \ bump X
240 CPX msgl \ end of msg ?
250 BNE loopmsg \ no - back
260 \ get a number from keyboard
270 .reply
280 LDX osbuffadd \ X = to
290 LDY osbuffadd+1 \ Y = hi
300 LDA #0 \ OSWORD 0
310 JSR osword \ to read reply

106

320 BCC notesc \ not ESCAPE
330 LDA #&7E \ acknowledge
340 JSR osbyte \ ESCAPE
350 JMP reply \ try again
360 .notesc
370 STY &36 \ set up reply length
380 JSR ascnum \ convert to binary
390 TAY \ save variable type
400 LDA #0 \ set decimal
410 STA &15 \ print
420 LDA #2 \ set format
430 STA &402 \ = 2
440 LDA #5 \ set decimal places
450 STA &401 \ = 5
460 JSR numasc \ convert it back
470 JSR osnewl \ new line
480 LDX #0 \ zeroise loop counter
490 .ploop
500 LDA &600,X \ get next byte of ASCII
510 JSR oswrch \ print it
520 INX \ bump X
530 CPX &36 \ end of print
540 BCC ploop \ no - back
550 JSR osnewl \ new line
560 RTS
570]
580 NEXT pass%
590 CALL start
600 END

>RUN
enter your number >1234.567

1234.56700

107

5 MATHEMATICAL
FUNCTIONS

The mathematical functions are surprisingly simple to use. No new
ground has to be covered to explain their use. However, the way in
which many of them work may be of some interest. It certainly has
a bearing on the time they take to run.

It might be expected that the BASIC ROM would contain tables of
sines, cosines etc. This is not true. Tables would use up far too
much memory. Most of the mathematical functions can be
expressed as series. For example:

 a a*a a*a*a a*a*a*a
exp(a)=1 + - + --- + ----- + ------- + etc.
 1 2*1 3*2*1 4*3*2*1

This is an example of a convergent series. Each successive term in
the series provides a value smaller than the previous term. Thus if
enough terms are taken a good approximation results. The more
terms that are taken, the longer it takes to execute; fewer terms
reduce the accuracy of the final answer. In practice, therefore, the
number of terms considered is a compromise between accuracy and
execution time.

In any event, these routines can never be fast to execute. It follows
that if they are used in a loop with a large number of iterations, the
effect on execution time is significant. The demonstration program
in this chapter, which is only intended to show how to use the
mathematics routines, is an example of slow circle drawing. The
slowness is due to the fact that both sine and cosine functions are
used within a loop.

108

5.1 Mathematical Functions Routines Summary

All of the functions summarised below, bar pi, work in the same
way. The floating point number on which the function is to operate
is placed in FWA. After the routine has been executed, the required
result is to be found in FWA. Note that acs requires two subroutine
calls, one immediately after the other. Note also that each function
is equivalent to the BASIC function with the same name (but in
upper case letters).

--
Name BASIC 1 BASIC 2 Function
 address address
--
acs 1) &A8CF &A8DD FWA = acs (FWA)
 2) &A929 &A927
asn &A8CF &A8DD FWA = asn (FWA)
atn &A90A &A90A FWA = atn (FWA)
cos &A98C &A990 FWA = cos (FWA)
deg &ABEA &ABC5 FWA = deg (FWA)
exp &AAB7 &AA94 FWA = exp (FWA)
ln &A807 &A801 FWA = ln (FWA)
log &ABD0 &ABAB FWA = log (FWA)
pi &ABF0 &ABCB FWA = PI
rad &ABD9 &ABB4 FWA = rad (FWA)
sin &A997 &A99B FWA = sin (FWA)
sqr &A7B7 &A7B7 FWA = sqr (FWA)
tan &A6CC &A6C1 FWA = tan (FWA)
--

109

5.2 Mathematical Functions Routines Description

subroutine name : acs

function : FWA = acs (FWA)

BASIC 1 address : &A8CF then &A929

BASIC 2 address : &A8DD then &A927

entry conditions : FWA contains a floating point number between
−1 and +1

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 32567 microseconds

110

subroutine name : asn

function : FWA = asn (FWA)

BASIC 1 address : &A8CF

BASIC 2 address : &A8DD

entry conditions : FWA contains a floating point number between
−1 and +1

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 31970 microseconds

111

subroutine name : atn

function : FWA = atn (FWA)

BASIC 1 address : &A90A

BASIC 2 address : &A90A

entry conditions : FWA contains a floating point number between
−1E38 and +1E38

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 19110 microseconds

112

subroutine name : cos

function : FWA = cos (FWA)

BASIC 1 address : &A98C

BASIC 2 address : &A990

entry conditions : FWA contains number of radians in floating
point

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : accuracy lost

typical timing : 26787 microseconds

113

subroutine name : deg

function : FWA = deg (FWA)

BASIC 1 address : &ABEA

BASIC 2 address : &ABC5

entry conditions : FWA contains number of radians in floating
point

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 1711 microseconds

114

subroutine name : exp

function : FWA = exp (FWA)

BASIC 1 address : &AAB7

BASIC 2 address : &AA94

entry conditions : FWA contains a valid floating point argument

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : exp range

typical timing : 14997 microseconds

115

subroutine name : ln

function : FWA = ln (FWA)

BASIC 1 address : &A807

BASIC 2 address : &A801

entry conditions : FWA contains a valid floating point argument

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : log range

typical timing : 17192 microseconds

116

subroutine name : log

function : FWA = log (FWA)

BASIC 1 address : &ABD0

BASIC 2 address : &ABAB

entry conditions : FWA contains a valid floating point argument

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : log range

typical timing : 1551 microseconds

117

subroutine name : pi

function : FWA = PI

BASIC 1 address : &ABF0

BASIC 2 address : &ABCB

entry conditions : none

comments : FWA set to 3.14159265

exit status : IWA unchanged

 : FWA = result

 : FWB unchanged

 : SWA unchanged

 : A destroyed

 : X unchanged

 : Y destroyed

 : P destroyed

 : &4B,&4C destroyed

typical timing : 87 microseconds

118

subroutine name : rad

function : FWA = rad (FWA)

BASIC 1 address : &ABD9

BASIC 2 address : &ABB4

entry conditions : FWA contains number of degrees in floating
point

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 1566 microseconds

119

subroutine name : sin

function : FWA = sin (FWA)

BASIC 1 address : &A997

BASIC 2 address : &A99B

entry conditions : FWA contains number of radians in floating
point

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : accuracy lost

typical timing : 15483 microseconds

120

subroutine name : sqr

function : FWA = sqr (FWA)

BASIC 1 address : &A7B7

BASIC 2 address : &A7B7

entry conditions : FWA contains a valid floating point argument

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : −ve root

typical timing : 8783 microseconds

121

subroutine name : tan

function : FWA = tan (FWA)

BASIC 1 address : &A6CC

BASIC 2 address : &A6C1

entry conditions : FWA contains number of radians in floating
point

exit status : IWA unchanged

 : FWA = result

 : FWB destroyed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

error reports : accuracy lost

typical timing : 41770 microseconds

122

5.3 Mathematical Functions Demonstration

The following program draws a circle in mode 0, centred at 600,500
and with a radius of 400. It uses the polygon method, with 100
sides in the figure. In BASIC, the program could be written as:

 10 MODE 0
 20 xcentre = 600
 30 ycentre = 500
 40 increment = 2*PI/100
 50 stop = 2*PI
 60 radius = 400
 70 MOVE xcentre+radius,ycentre
 80 FOR angle = 0 TO stop STEP increment
 90 DRAW xcentre + radius * COS(angle) ,
 ycentre + radius * SIN(angle)
100 NEXT
110 END

It will be seen that the equivalent BASIC 2 assembly language code
is somewhat more long-winded to write. Paradoxically, the
machine code generated occupies less memory and runs a bit faster
than the BASIC code above, in spite of the fact that it was written
with clarity as the main objective rather than efficiency.

Perhaps the most striking feature of the assembly language code is
that it is all so simple, the clever code being all within the BASIC
subroutines called.

 10 aunp = &A3B5:aplus = &A500
 20 apack = &A38D:atest = &9A5F
 30 amult = &A656:fpi1 = &A3E4
 40 cos = &A990:sin = &A99B
 50 oswrch = &FFEE
 60 DIM mc% 500
 70 FOR pass% = 0 TO 2 STEP 2
 80 P% = mc%
 90 [OPT pass%
 100 .xcentre
 110 OPT FNEQUF(600)
 120 .xadd EQUW xcentre
 130 .ycentre
 140 OPT FNEQUF(500)
 150 .yadd EQUW ycentre
 160 .radius
 170 OPT FNEQUF(400)
 180 .radadd EQUW radius
 190 .angle
 200 OPT FNEQUF(0)
 210 .angadd EQUW angle
 220 .increment
 230 OPT FNEQUF(2*PI/100)

123

 240 .incadd EQUW increment
 250 .stop
 260 OPT FNEQUF(2*PI)
 270 .stopadd EQUW stop
 280 .plot EQUB 25
 290 .parm1 EQUB 4
 300 .xcoord EQUW 1000
 310 .ycoord EQUW 500
 320 .mode0 EQUW &16
 330 \
 340 .start
 350 LDA mode0 \ MODE 0
 360 JSR oswrch \
 370 LDA mode0+1 \
 380 JSR oswrch \
 390 JSR doplot \ MOVE
 400 LDA #5 \ reset for
 410 STA parm1 \ PLOT
 420 .mainloop
 430 JSR pointincr \ point &4B,&4C at increment
 440 JSR aunp \ unpack into FWA
 450 JSR pointangle \ point &4B,&4C at angle
 460 JSR aplus \ add them
 470 JSR apack \ put result in angle
 480 JSR pointstop \ point &4B,&4C at stop
 490 JSR atest \ test for end
 500 BCC alldone \ yes - alldone
 510 JSR doxcoord \ calculate X coordinate
 520 JSR doycoord \ calculate Y coordinate
 530 JSR doplot \ plot it
 540 JMP mainloop \ and back
 550 .alldone
 560 RTS \ bye bye
 570 \
 580 .doxcoord \ CALCULATE X COORD
 590 JSR pointangle \ point &4B,&4C at angle
 600 JSR aunp \ unpack into FWA
 610 JSR cos \ get cosine
 620 JSR pointrad \ point &4B,&4C at radius
 630 JSR amult \ multiply
 640 JSR pointx \ point &4B,&4C at xcentre
 650 JSR aplus \ add
 660 JSR fpi1 \ convert to integer
 670 LDX #0 \ set loop counter
 680 .doxloop
 690 LDA &2A,X \ get next byte of IWA
 700 STA xcoord,X \ save it
 710 INX \ bump X
 720 CPX #4 \ are we done ?
 730 BCC doxloop \ no - back
 740 RTS \ back
 750 \

124

 760 .doycoord \ CALCULATE Y COORD
 770 JSR pointangle \ point &4B,&4C at angle
 780 JSR aunp \ unpack into FWA
 790 JSR sin \ get sine
 800 JSR pointrad \ point &4B,&4C at radius
 810 JSR amult \ multiply
 820 JSR pointy \ point &4B,&4C at ycentre
 830 JSR aplus \ add
 840 JSR fpi1 \ convert to integer
 850 LDX #0 \ set loop counter
 860 .doyloop
 870 LDA &2A,X \ get next byte of IWA
 880 STA ycoord,X \ save it
 890 INX \ bump X
 900 CPX #4 \ are we done ?
 910 BCC doyloop \ no - back
 920 RTS \ back
 930 \
 940 .doplot \ PLOT
 950 LDX #0 \ zeroise loop conter
 960 .plotloop
 970 LDA plot,X \ get next byte of plot
 980 JSR oswrch \ print it
 990 INX \ bump X
1000 CPX #6 \ end of plot ?
1010 BCC plotloop \ no - back
1020 RTS
1030 \
1040 .pointincr \ POINT &4B,&4C at increment
1050 LDA incadd \ lo address of increment
1060 STA &4B \ save
1070 LDA incadd+1 \ hi address of increment
1080 STA &4C \ save
1090 RTS \ back
1100 \
1110 .pointangle \ POINT &4B,&4C at angle
1120 LDA angadd \ lo address of angle
1130 STA &4B \ save
1140 LDA angadd+1 \ hi address of angle
1150 STA &4C \ save
1160 RTS
1170 \
1180 .pointstop \ POINT &4B,&4C at stop
1190 LDA stopadd \ lo address of stop
1200 STA &4B \ save
1210 LDA stopadd+1 \ hi address of stop
1220 STA &4C \ save
1230 RTS \ back
1240 \
1250 .pointrad \ POINT &4B,84C at radius
1260 LDA radadd \ lo address of radius
1270 STA &4B \ save

125

1280 LDA radadd+1 \ hi address of radius
1290 STA &4C \ save
1300 RTS \ back
1310 \
1320 .pointx \ POINT &4B,&4C at xcentre
1330 LDA xadd \ lo address of xcentre
1340 STA &4B \ save
1350 LDA xadd+1 \ hi address of xcentre
1360 STA &4C \ save
1370 RTS \ back
1380 \
1390 .pointy \ POINT &4B,&4C at ycentre
1400 LDA yadd \ lo address of ycentre
1410 STA &4B \ save
1420 LDA yadd+1 \ hi address of ycentre
1430 STA &4C \ save
1440 RTS \ back
1450]
1460 NEXT pass%
1470 CALL start
1480 END
1490 DEF FNEQUF(Z)
1500 I% = 3 +?&4B4 +256*?&4B5
1510 FOR J% = 1 TO 5
1520 ?P% = ?I%
1530 P% = P% + 1
1540 I% = I% + 1
1550 NEXT
1560 = pass%

126

127

6 RANDOM NUMBERS

The BBC Micro generates random numbers by applying a pseudo-
randomising algorithm to an initial value, known as the seed. After
each application of the algorithm, the resulting random number is
not only returned to the user, it also becomes the new seed.
Naturally, facilities are also provided for the user to supply a value
to initialise the seed.

On power-up, the same seed is planted in the random number data
field each time. For this reason, the algorithm cannot be completely
random. The user can of course alter this by supplying a seed at the
start of the program. Providing the user does not previously set
TIME in the program, RND(−TIME) will achieve this.

6.1 Random Number Work Area

The area of memory dedicated to random numbers starts at &0D
and ends at &11. This five byte area will be called the Random
Number Work Area or RWA. It is the source data for all random
number operations. In BASIC, there are many varieties of the RND
statement.

RND generates an integer random number between
−2147483648 and +2147483647. It executes the
algorithm and copies &0D to &10 into the IWA.

RND(−X) resets the seed to X and returns −X. It copies the IWA
into &0D to &10, sets &11 to #&40 and leaves the IWA
unchanged at −X.

RND(0) repeats the last random number returned by RND(1). It
simply copies the RWA into the FWA.

RND(1) generates a floating point random number between 0
and 0.999999. It executes the algorithm and copies the
RWA into the FWA.

RND(X) generates an integer random number between 1 and X.
After executing the algorithm, the result is returned in
the IWA.

128

6.2 Random Number Routine Summary

The individual functions supported by the single BASIC statement
RND have different entry points. Therefore, in assembly language
programming, it is necessary to regard each function as a separate
routine. A program is supplied which demonstrates each routine.

--
Name BASIC 1 BASIC 2 Function
 address address
--
rnd0 &AF9B &AF6C RND(0) repeat last rnd1
rnd1 &AF98 &AF69 RND(1) FWA = from 0 to 0.999999
rndi &AF80 &AF51 RND IWA = random integer number
rndseed &AF6E &AF3F RND(-X) RWA seeded with X
rndx &AF53 &AF24 RND(X) IWA = from 1 to X
--

129

6.3 Random Number Routines Description

subroutine name : rnd0

function : FWA = value returned by last rnd1

BASIC 1 address : &AF9B

BASIC 2 address : &AF6C

entry conditions : none

exit status : IWA destroyed

 : FWA = result

 : FWB unchanged

 : RWA unchanged

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 82 microseconds

130

subroutine name : rnd1

function : FWA = random number from 0 to 0.999999

BASIC 1 address : &AF98

BASIC 2 address : &AF69

entry conditions : none

exit status : IWA destroyed

 : FWA = result

 : FWB unchanged

 : RWA changed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 793 microseconds

131

subroutine name : rndi

function : IWA = a random integer number from
−2147483648 to +2147483647

BASIC 1 address : &AF80

BASIC 2 address : &AF51

entry conditions : none

exit status : IWA = result

 : FWA unchanged

 : FWB unchanged

 : RWA changed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 745 microseconds

132

subroutine name : rndseed

function : RWA = IWA + #&40 in fifth byte

BASIC 1 address : &AF6E

BASIC 2 address : &AF3F

entry conditions : IWA set to value to be seeded.

 : Unlike in BASIC, it does not have to be
negative.

exit status : IWA unchanged

 : FWA destroyed

 : FWB unchanged

 : RWA re-seeded

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 42 microseconds

133

subroutine name : rndx

function : IWA = random number from I to value in IWA

BASIC 1 address : &AF53

BASIC 2 address : &AF24

entry conditions : IWA = maximum value of random number

 : &4,5 should be pointed to HIMEM

exit status : IWA = result

 : FWA destroyed

 : FWB unchanged

 : RWA changed

 : SWA unchanged

 : A destroyed

 : X destroyed

 : Y destroyed

 : P destroyed

typical timing : 2974 microseconds

134

6.4 Random Number Demonstration

The following program, written in BASIC 2, demonstrates all the
random number functions. Note that the last routine to be tested is
rndseed. Repeated runs of this program will produce identical
results because of this. Delete lines 1030 to 1070 for more random
results. Note also that rnd0 does indeed return the same result as
the preceding rnd1.

 10 rndi = &AF51:rndseed = &AF3F
 20 rnd0 = &AF6C:rnd1 = &AF69
 30 rndx = &AF24:apack = &A38D
 40 DIM mc% 200
 50 FOR pass% = 0 TO 2 STEP 2
 60 P% = mc%
 70 [OPT pass%
 80 .seedval EQUD -123456
 90 .rndxval EQUD 2345678
 100 .result EQUD 0
 110 EQUB 0
 120 \
 130 .rnditest
 140 JSR rndi \ do rndi
 150 JSR saveiwa \ save IWA in result
 170 RTS \ bye bye
 180 \
 190 .rndseedtest
 200 LDX #0 \ zeroise loop counter
 210 .rndseedloop
 220 LDA seedval,X \ get next byte of seed
 230 STA &2A,X \ save in IWA
 240 INX \ bump X
 250 CPX #4 \ end of loop ?
 260 BCC rndseedloop \ no - back
 270 JSR rndseed \ seed IWA into RWA
 280 RTS \ bye bye
 290 \
 300 .rnd1test
 310 JSR rnd1 \ do rnd1
 320 JSR savefwa \ save FWA in result
 330 RTS \ bye bye
 340 \
 350 .rnd0test
 360 JSR rnd0 \ do rnd0
 370 JSR savefwa \ save FWA in result
 380 RTS \ bye bye
 390 \
 400 .rndxtest
 410 LDA &6 \ HIMEM lo
 420 STA &4 \ save in &4
 430 LDA &7 \ HIMEM hi
 440 STA &5 \ save in &5

135

 450 LDX #0 \ zeroise loop counter
 460 .rndxloop
 470 LDA rndxval,X \ get next byte of rndxval
 480 STA &2A,X \ save in IWA
 490 INX \ bump X
 500 CPX #4 \ end of loop ?
 510 BCC rndxloop \ no - back
 520 JSR rndx \ do rndx
 530 JSR saveiwa \ copy IWA into result
 540 RTS \ bye bye
 550 \
 560 .saveiwa
 570 LDX #0 \ zeroise loop counter
 580 .loopiwa
 590 LDA &2A,X \ get next byte of IWA
 600 STA result,X \ save in result
 610 INX \ bump X
 620 CPX #4 \ end of loop ?
 630 BCC loopiwa \ no - back
 640 RTS \ back
 650 \
 660 .savefwa
 670 LDA #result MOD 256 \ lo address of result
 680 STA &4B \ save it
 690 LDA #result DIV 256 \ hi address of result
 700 STA &4C \ save it
 710 JSR apack \ pack FWA into result
 720 RTS \ back
 730]
 740 NEXT pass%
 750 CLS
 760 Z = 0
 770 PRINT
 780 PRINT "Test of rnd1"
 790 CALL rnd1test
 800 REM set Z = result
 810 I% = 3 + ?&4B4 + 256*?&4B5
 820 FOR J% = 0 TO 4
 830 ?(I%+J%) = ?(result+J%)
 840 NEXT
 850 PRINT "result returned = ";Z
 860 PRINT
 870 PRINT "Test of rnd0"
 880 CALL rnd0test
 890 REM set Z = result
 900 I% = 3 + ?&4B4 + 256*?&4B5
 910 FOR J% = 0 TO 4
 920 ?(I%+J%) = ?(result+J%)
 930 NEXT
 940 PRINT "result returned = ";Z
 950 PRINT
 960 PRINT "Test of rndi"

136

 970 CALL rnditest
 980 PRINT "result returned = ";!result
 990 PRINT
1000 PRINT "Test of rndx"
1010 CALL rndxtest
1020 PRINT "result returned = ";!result
1030 PRINT
1040 PRINT "Test of rndseed"
1050 CALL rndseedtest
1060 PRINT "RWA bytes 0-3 = ";!&D
1070 PRINT "RWA byte 4 = ";?&11
1080 END

>RUN

Test of rnd1
result returned = 0.424982422

Test of rnd0
result returned = 0.424982422

Test of rndi
result returned = -1.34400018E9

Test of rndx
result returned = 2241095

Test of rndseed
RWA bytes 0-3 = -123456
RWA byte 4 = 64

137

7 BASIC MEMORY MAP

Descriptions of many of the memory areas used by the BASIC
interpreter have already been given. This memory map is included
to allow the reader to explore further into the BASIC ROM if
desired. Doubtless there are other subroutines not mentioned in
this book which the reader could use in specific applications.

7.1 Zero Page Dedicated Locations

These addresses are used identically in BASIC 1 and BASIC 2. All
two-byte address pointers are low,high.

--
&00 - &01 LOMEM

 pointer to the start of BASIC variables.
--
&02 - &03 VARTOP

 pointer to the end of BASIC variables.
--
&04 - &05 BASIC STACK POINTER

 pointer to most recent entry in the BASIC stack.
--
&06 - &07 HIMEM

 pointer to the start of screen memory-mapped area.
--
&08 - &09 ERL

 the address of the instruction which errored.
--
&0A BASIC TEXT POINTER OFFSET

 the offset with respect to &B,&C of the
 byte of BASIC text currently being processed.
--
&0B - &0C BASIC TEXT POINTER

 pointer to start of BASIC text line being processed.
--
&0D - &11 RND WORK AREA

 see Chapter 6.
--
&12 - &13 TOP

 pointer to the end of BASIC program not
 including variables.

138

--
&14 PRINT BYTES

 the number of bytes in a print output field.
--
&15 PRINT FLAG

 0 = decimal
 -ve = hexadecimal
--
&16 - &17 ERROR ROUTINE VECTOR

 pointer to the address of the BASIC error routine.
--
&18 PAGE DIV 256

 page number where BASIC program starts.
--
&19 - &1A SECONDARY BASIC TEXT POINTER

 secondary &B,&C.
--
&1B SECONDARY BASIC TEXT OFFSET

 secondary &A.
--
&1C - &1D BASIC PROGRAM START

 pointer to start of BASIC program.
--
&1E COUNT

 number of bytes printed since last new line.
--
&1F LISTO FLAG

 a number ANDed from the list below:

 0 = LISTO off
 1 = insert space after line number
 2 = indent FOR loops
 4 = indent REPEAT loops
--
&20 TRACE FLAG

 0 = trace off
 1 = trace on
--
&21 - &22 MAXIMUM TRACE LINE NUMBER
--
&23 WIDTH

 as set by WIDTH command.
--
&24 REPEAT LEVEL

 number of nested REPEATs outstanding.

139

--
&25 GOSUB LEVEL

 number of nested GOSUBs outstanding.
--
&26 15*FOR LEVEL

 15 * number of nested FOR loops outstanding.
--
&27 VARIABLE TYPE

 &00 = byte
 &04 = integer
 &05 = floating point
 &81 = string
 &A4 = function name
 &F2 = procedure name
--
&28 OPT FLAG

 bit 0 = list flag
 bit 1 = errors flag
 bit 2 = relocate flag (BASIC 2 only)
--
&29 not used
--

7.2 Zero Page Multiple Use Locations

These addresses are used identically in BASIC 1 and BASIC 2. The
main uses only are given.

--
&2A - &2D INTEGER WORK AREA
--
&2E - &35 FLOATING POINT WORK AREA A
--
&36 LENGTH OF STRING BUFFER
--
&37 - &3A GENERAL AREAS
--
&3B - &42 FLOATING POINT WORK AREA B
--
&43 - &4F FLOATING POINT TEMPORARY AREAS
--
&50 - &6F not used
--

140

7.3 Resident Integer Variables

All are stored with the least significant byte first.

&400 - &403 @%
&404 - &407 A%
&408 - 840B B%
&40C - &40F C%
&410 - &413 D%
&414 - &417 E%
&418 - &41B F%
&41C - &41F G%
&420 - &423 H%
&424 - &427 I%
&428 - &42B J%
&42C - &42F K%
&430 - &433 L%
&434 - &437 M%
&438 - &43B N%
&43C - 843F O%
&440 - &443 P%
&444 - &447 Q%
&448 - &44B R%
&44C - &44F S%
8450 - &453 T%
&454 - &457 U%
&458 - &45B V%
&45C - &45F W%
&460 - &463 X%
&464 - 8467 Y%
8468 - &46B Z%

7.4 Floating Point Temporary Areas

All are stored in 5 byte packed floating point format.

&46C - &470 TEMP 1
&471 - &475 TEMP 2
&476 - &47A TEMP 3
&47B - &47F TEMP 4

141

7.5 Variable Pointer Table

There is a variable look-up table for each character with which a
variable name can start. Each pair of addresses is a lo,hi pointer to
the variables whose names start with a particular character.

&480-&481 = @ &4AA-&4AB = U &4D2-&4D3 = i
&482-&483 = A &4AC-&4AD = V &4D4-&4D5 = j
&484-&485 = B &4AE-&4AF = W &4D6-&4D7 = k
&486-&487 = C &4B0-&4B1 = X &4D8-&4D9 = l
&488-&489 = D &4B2-&4B3 = Y &4DA-&4DB = m
&48A-&48B = E &4B4-&4B5 = Z &4DC-&4DD = n
&48C-&48D = F &4B6-&4B7 = [&4DE-&4DF = o
&48E-&48F = G &4B8-&4B9 = \ &4E0-&4E1 = p
&490-&491 = H &4BA-&4BB =] &4E2-&4E3 = q
&492-&493 = I &4BC-&4BD = ̂ &4E4-&4E5 = r
&494-&495 = J &4BE-&4BF = _ &4E6-&4E7 = s
&496-&497 = K &4C0-&4C1 = £ &4E8-&4E9 = t
&498-&499 = L &4C2-&4C3 = a &4EA-&4EB = u
&49A-&49B = M &4C4-&4C5 = b &4EC-&4ED = v
&49C-&49D = N &4C6-&4C7 = c &4EE-&4EF = w
&49E-&49F = O &4C8-&4C9 = d &4F0-&4F1 = x
&4A0-&4A1 = P &4CA-&4CB = e &4F2-&4F3 = y
&4A2-&4A3 = Q &4CC-&4CD = f &4F4-&4F5 = z
&4A4-&4A5 = R &4CE-&4CF = g &4F6-&4F7 = procedures
&4A6-&4A7 = S &4D0-&4D1 = h &4F8-&4F9 = functions
&4A8-&4A9 = T

The use of these look-up tables can best be explained by an
example. Suppose we run the following program:

 10 DIM ARRAY%(3)
 20 FOR A% = 0 TO 3
 30 ARRAY%(A%) = A%
 40 NEXT
 50 ALPHA$ = "TESTING"
 60 AFPNUM = 1.0
 70 AINT% = 1
 80 END

Assume that &482 contains #&0E and &483 contains #&16. Then
the look-up table for variables starting with the letter ‘A’ will be
found at &160E which will contain the following:

&160E = #&2A pointer to next variable
&160F = #&16 at &162A

&1610 = #&52 R rest
&1611 = #&52 R of
&1612 = #&41 A name
&1613 = #&59 Y for
&1614 = #&25 % ARRAY%(
&1615 = #&28 (

142

&1616 = #&00 end of name marker.

&1617 = #&03 2 * number of dimensions + 1

&1618 = #&04 number of elements in 1st dimension

&1619 = #&00 number of elements in 2nd dimension

&161A = #&00 contents
&161B = #&00 of
&161C = #&00 ARRAY%(0)
&161D = #&00 = 0

&161E = #&01 contents
&161F = #&00 of
&1620 = #&00 ARRAY%(1)
&1621 = #&00 = 1

&1622 = #&02 contents
&1623 = #&00 of
&1624 = #&00 ARRAY%(2)
&1625 = #&00 = 2

&1626 = #&03 contents
&1627 = #&00 of
&1628 = #&00 ARRAY%(3)
&1629 = #&00 = 3

&162A = #&3D pointer to next variable
&162B = #&16 at &163D

&162C = #&4C L rest
&162D = #&50 P of
&162E = #&48 H variable
&162F = #&41 A name
&1630 = #&24 $ for ALPHA$

&1631 = #&00 end of name marker

&1632 = #&36 pointer to &1636 which contains
&1633 = #&16 current value of ALPHA$

&1634 = #&07 maximum size allocated to ALPHA$

&1635 = #&07 current size of ALPHA$

&1636 = #&54 T contents
&1637 = #&45 E of
&1638 = #&53 S ALPHA$
&1639 = #&54 T
&163A = #&49 I
&163B = #&4E N
&163C = #&47 G

&163D = #&4A pointer to next variable
&163E = #&16 at &164A

143

&163F = #&46 F rest
&1640 = #&50 P of
&1641 = #&4E N name
&1642 = #&55 U for
&1643 = #&4D M AFPNUM

&1644 = #&00 end of name marker

&1645 = #&81 contents of
&1646 = #&00 AFPNUM
&1647 = #&00 = +1.0
&1648 = #&00 in 5 byte, packed,
&1649 = #&00 floating point format

&164A = #&00 pointer to next variable = &0000
&164B = #&00 so last entry in table

&164C = #&49 I rest of
&164D = #&4E N variable
&164E = #&54 T name for
&164F = #&25 % AINT%

&1650 = #&00 end of name marker

&1651 = #&01 AINT%
&1652 = #&00 contains
&1653 = #&00 +1 in 4byte,
&1654 = #&00 integer format

Each entry in the look-up table starts with a 2 byte (lo,hi) pointer to
the next entry in the table, except for the last entry which contains
#&0000. Following this is the rest of the variable name, excluding
its initial letter, and then a zero byte to indicate the end of the
name. This is followed by a contents section, the exact format of
which depends on the type of variable being stored. Thus integer
variables are stored in 4 bytes, whilst floating point variables are
stored in 5 bytes. String variables can change in size during the
running of a program. Thus the table contains a pointer to the
string (rather than the string itself), together with details of its
allocated and current size. Arrays can be integer, floating point or
string. Integer and floating point array contents are stored in the
table, whilst string arrays point to the string. At the start of the
contents, there are some additional bytes which define the size of
the array.

144

7.6 BASIC Stacks and Buffers

&500 - &5FF FOR/REPEAT/GOSUB STACK
&600 - &6FF STRING WORK AREA / CALL PARAMETER BLOCK
&700 - &7FF BASIC LINE INPUT BUFFER

BASIC reads text entered at the screen into the line input buffer.
The text is then tokenised (each BASIC command is replaced by a
number). If the input line starts with a line number, the tokenised
line is inserted into a BASIC program at the proper place.
Otherwise the tokenised line is executed immediately.

7.7 BASIC Token and Action Tables

Tokens range from &80 to &FF. BASIC has a token table which for
each BASIC command contains:

a) the command name in ASCII
b) the token
c) a flag byte used by the interpreter

The token table is located at:

&806D - &8358 BASIC 1
&8071 - &836C BASIC 2

The order of commands in the table is important since it specifies
the minimum acceptable abbreviation of a command. A command
will be recognised so long as it starts with one or more letters of
that command and ends in a full-stop, provided the abbreviation
does not match a command earlier in the table. The first command
in the table is ‘AND’ for which ‘A.’ is sufficient. The second is
‘ABS’. ‘A.’ cannot be used for ABS because the previous command,
‘AND’, is matched by it. However ‘AB.’ is quite satisfactory.

&8D is a special token used to prefix a BASIC line number.
Commands lower than &8E (&8F in BASIC 1) are processed by the
interpreter as and when they occur in a line. The rest of the
commands have an associated action address found by looking up a
two-part action address table. The first part contains the low byte
addresses, whilst the second contains the high bytes. Each table is
indexed by the token number less &8E (&8F in BASIC 1).

The action address tables are located at:

lo bytes &835A - &83CA BASIC 1
 &836D - &83DE BASIC 2

hi bytes &83CB - &843C BASIC 1
 &83DF - &8450 BASIC 2

The following tables summarise BASIC commands in alphabetic
order.

145

7.8 BASIC Tables Summary

BASIC BASIC 1 BASIC 2 TOKEN
COMMAND ADDRESS ADDRESS HEX

ABS &AD8D &AD6A &94
ACS &A8C6 &A8D4 &95
ADVAL &A656 &AB33 &96
AND ----- ----- &80
ASC &ACC4 &AC9E &97
ASN &A8CC &A8DA &98
ATN &A907 &A907 &99
AUTO &905F &90AC &C6
BGET &BF78 &BF6F &9A
BPUT &BF61 &BF58 &D5
CALL &8E6C &8ED2 &D6
CHAIN &BF33 &BF2A &D7
CHR$ &B3EE &B3BD &BD
CLEAR &9326 &928D &D8
CLOSE &BF9E &BF99 &D9
CLG &8E57 &8EBD &DA
CLS &8E5E &8EC4 &DB
COLOUR &9346 &938E &FB
COS &A989 &A98D &9B
=COUNT &AF26 &AEF7 &9C
DATA &8AED &8B7D &DC
DEF &8AED &8B7D &DD
DEG &ABE7 &ABC2 &9D
DELETE &8ECE &8F31 &C7
DIM &90DD &912F &DE
DIV ----- ----- &81
DRAW &93A5 &93E8 &DF

146

BASIC BASIC 1 BASIC 2 TOKEN
COMMAND ADDRESS ADDRESS HEX

ELSE ----- ----- &8B
END &8A50 &8AC8 &E0
ENDPROC &9310 &9356 &E1
ENVELOPE &B49C &B472 &E2
EOF &ACDE &ACB8 &C5
EOR ----- ----- &82
ERL &AFCE &AF9F &9E
ERR &AFD5 &AFA6 &9F
ERROR ----- ----- &85
EVAL &AC12 &ABE9 &A0
EXP &AAB4 &AA91 &A1
EXT &BF4F &BF46 &A2
FALSE &AEF9 &AECA &A3
FN &B1C4 &B195 &A4
FOR &B7DF &B7C4 &E3
GCOL &932F &937A &E6
GET &AFE8 &AFB9 &A5
GET$ &AFEE &AFBF &BE
GOSUB &B8B4 &B888 &E4
GOTO &B8EB &B8CC &E5
=HIMEM &AF32 &AF03 &93
HIMEM= &9212 &925D &D3
IF &9893 &98C2 &E7
INKEY &ACD3 &ACAD &A6
INKEY$ &B055 &B026 &BF
INPUT &BA62 &BA44 &E8
INSTR(&AD08 &ACE2 &A7
INT &AC9E &AC78 &A8

147

BASIC BASIC 1 BASIC 2 TOKEN
COMMAND ADDRESS ADDRESS HEX

LEFT$(&AFFB &AFCC &C0
LEN &AF00 &AED1 &A9
LET &8B57 &8BE4 &E9
LINE ----- ----- &86
line no. ----- ----- &8D
LIST &B5B5 &B59C &C9
LN &A804 &A7FE &AA
LOAD &BF2D &BF24 &C8
LOCAL &92D5 &9323 &EA
LOG &ABCD &ABA8 &AB
=LOMEM &AF2B &AEFC &92
LOMEM= &9224 &926F &D2
MID$(&B068 &B039 &C1
MOD ----- ----- &83
MODE &935A &939A &EB
MOVE &93A1 &93E4 &EC
NEW &8A7D &8ADA &CA
NEXT &B6AE &B695 &ED
NOT &ACF7 &ACD1 &AC
OFF ----- ----- &87
OLD &8A3D &8AB6 &CB
ON &B934 &B915 &EE
OPENIN &BF85 &BF78 &8E &AD in BASIC 1
OPENOUT &BF81 &BF7C &AE
OPENUP ----- &BF80 &AD BASIC 2 only
OR ----- ----- &84
OSCLI ----- &BEC2 &FF BASIC 2 only

148

BASIC BASIC 1 BASIC 2 TOKEN
COMMAND ADDRESS ADDRESS HEX

=PAGE &AEEF &AEC0 &90
PAGE= &9239 &9283 &D0
PI &ABF0 &ABCB &AF
PLOT &93AE &93F1 &F0
POINT(&AB64 &AB41 &B0
POS &AB92 &AB6D &B1
PRINT &8D33 &8D9A &F1
PROC &92B6 &9304 &F2
=PTR &BF50 &BF47 &8F
PTR= &BF39 &BF30 &CF
RAD &ABD6 &ABB1 &B2
READ &BB39 &BB1F &F3
REM &8AED &8B7D &F4
RENUMBER &8F37 &8FA3 &CC
REPEAT &BBFF &BBE4 &F5
REPORT &BFE6 &BFE4 &F6
RESTORE &BB00 &BAE6 &F7
RETURN &B8D5 &B8B6 &F8
RIGHT$(&B01D &AFEE &C2
RND &AF78 &AF49 &B3
RUN &BD29 &BD11 &F9

149

BASIC BASIC 1 BASIC 2 TOKEN
COMMAND ADDRESS ADDRESS HEX

SAVE &BEFA &BEF3 &CD
SGN &ABAD &AB88 &B4
SIN &A994 &A998 &B5
SOUND &B461 &B44C &D4
SPC ----- ----- &89
SQR &A7B4 &A7B4 &B6
STEP ----- ----- &88
STOP &8A59 &8AD0 &FA
STR$ &B0C3 &B094 &C3
STRING$ &B0F1 &B0C2 &C4
TAB(----- ----- &8A
TAN &A6C9 &A6BE &B7
THEN ----- ----- &8C
=TIME &AEE3 &AEB4 &91
TIME= &927B &92C9 &D1
TO &AF0B &AEDC &B8
TRACE &9243 &9295 &FC
TRUE &ACEA &ACC4 &B9
UNTIL &BBCC &BBB1 &FD
USR &ABFB &ABD2 &BA
VAL &AC55 &AC2F &BB
VDU &93EF &942F &EF
VPOS &AB9B &AB76 &BC
WIDTH &B4CC &B4A0 &FE

150

8 TIMINGS

Frequently the speed of a program determines its success or failure,
especially in graphics applications. Thus, the execution time of a
program is an important topic, not least to those who decide to use
the technique advocated in this book, and a separate chapter on
this topic is justified.

8.1 Units of time

The following units of time are frequently encountered when
dealing with computers:

 1
1 picosecond = ----------------- seconds
 1,000,000,000,000

 1
1 nanosecond = ------------- seconds
 1,000,000,000

 1
1 microsecond = --------- seconds
 1,000,000

 1
1 millisecond = ----- seconds
 1,000

 1
1 centisecond = --- seconds
 100

8.2 Computer Processor Speed

The speed of a cpu is determined by its cycle time. A cycle is the
interval of time that elapses between successive pulses of the
system clock. During a cycle the cpu performs a fundamental cpu
operation. This operation could be to fetch a byte of data from RAM
or to store a byte of data in RAM, for example. Each machine code
instruction takes several cycles. The more complicated instructions
take more cycles than the simpler ones. In fact the number of cycles
needed for a 6502 instruction is always between 2 and 8.

The BBC micro has a cycle time of 0.5 microseconds, which is just
another way of saying that it is clocked at 2 Megahertz (2 million
times per second). Thus it can perform its fastest instructions
(2 cycles) in 1 microsecond, whilst its slowest instructions
(8 cycles) take 4 microseconds.

151

8.3 Program Speed

Because of the importance of program speed, typical timings have
been given for each of BASIC’s subroutines. Note that the time
spent in a given subroutine is not a constant. The exact number of
instructions executed will vary a little depending on the data
values being acted upon. Nevertheless, these timings can be used to
forecast whether or not a program is going to be fast enough
without actually writing the program.

Thus, in the polygonal circle in chapter 5 it was recognised that in
addition to some other code, the program would involve 100 sines
and cosines. Timings given for sine and cosine predict that these
functions alone will take 4.2 seconds. Broad-brush estimating such
as this may well be sufficient to discard a technique. The
calculation can be refined to give a more precise estimate if
required.

Moreover, timings given in this book can often be used to estimate
run times of purely BASIC programs. In general, calling BASIC’s
subroutines from machine code saves about 10% of the execution
time. Thus by adding 10% to the figures in this book it is possible
to get a good approximation of the run time of many BASIC
program commands also.

8.4 Microsecond Timer

Timings given in this book exclude any set up code required by the
subroutine, but include time taken by interrupt routines such as
servicing the various clocks maintained by the software. The BASIC
TIME facility has a resolution of 1 centisecond which is
insufficiently precise for many purposes. The following code uses
the User 6522 to obtain 1 microsecond resolution of time and may
be used to time another piece of code. The code to be timed is
placed at ‘test’. Any set up code required, but not to be timed is
placed at ‘setup’.

152

 10 DIM mc% 500
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .save EQUW 0
 60 .time EQUD 0
 70 .timer
 80 LDA &206 \ save interrupt
 90 STA save \ handler address lo
 100 LDA &207 \ and save
 110 STA save+1 \ hi address too.
 120 JSR setup \ set up.
 130 SEI \ prevent interrupts.
 140 LDA #interrupt MOD 256 \ re-direct IRQ2V to
 150 STA &206 \ our own
 160 LDA #interrupt DIV 256 \ routine called
 170 STA &207 \ "interrupt".
 180 CLI \ allow interrupts again.
 190 LDA #&DF \ set up ACR of user 6522
 200 AND &FE6B \ to put TIMER 2
 210 STA &FE6B \ in count down mode.
 220 LDA #&A0 \ enable TIMER 2
 230 STA &FE6D \ interrupts.
 240 STA &FE6E
 250 JSR newinterrupt \ reset TIMER 2.
 260 JSR test \ do code to be timed.
 270 LDA &FE68 \ get count down value
 280 STA time \ and save in "time".
 290 LDA &FE69 \ also get
 300 STA time+1 \ hi byte
 310 SEI \ prevent interrupts.
 320 LDA save \ restore IRQ2V.
 330 STA &206
 340 LDA save+1
 350 STA &207
 360 LDA #&20 \ clear
 370 STA &FE6D \ TIMER 2 interrupts.
 380 STA &FE6E
 390 CLI \ enable interrupts
 400 RTS \ bye bye
 410 .interrupt
 420 CLC \ bump time by 1
 430 LDA time+2 \ every time count
 440 ADC #1 \ down
 450 STA time+2 \ expires
 460 BCC interruptdone
 470 LDA time+3
 480 ADC #0
 490 STA time+3
 500 .interruptdone
 510 JSR newinterrupt \ reset count down timer
 520 JMP (save) \ back to IRQ2V.

153

 530 .newinterrupt
 540 LDA #&FD \ reset
 550 STA &FE68 \ TIMER 2
 560 LDA #&FF \ as #&FFFD
 570 STA &FE69
 580 RTS \ out
1000 .test
1010 \ CODE TO BE TIMED
1020 RTS
2000 .setup
2010 \ SET UP FOR CODE TO BE TIMED
2020 RTS
3000]:NEXT pass%
3010 CALL timer
3020 ?(time) = &FF - ?(time)
3030 ?(time+1) = &FF - ?(time+1)
3040 PRINT !time;" microseconds"
3050 END

154

8.5 BASIC Timings

The following tables list all 69 BASIC routines in alphabetic order,
together with their typical timings.

subroutine : microseconds

aclear : 25
acomp : 34
acopyb : 36
acs : 32,567
adiv : 1,545
adiv10 : 360
aminus : 254
amult : 1,581
amult1 : 1,508
amult10 : 171
anorm : 27
aone : 37
apack : 46
apack1 : 51
apack2 : 53
apack3 : 53
aplus : 246
aplusb : 58
aplus1 : 41
arecip : 1,619
around : 22
ascnum : 1,748
asign : 24
asn : 31,970
atest : 70
atn : 19,110
aunp : 49
aunp1 : 62
bclear : 25
bcopya : 36
bunp : 51
cos : 26,787

155

subroutine : microseconds

deg : 1,711
exp : 14,997
fpascdec : 4,878
fpaschex : 582
fpi1 : 405
fpi2 : 387
iascdec : 5,369
iaschex : 216
icomp : 31
idiv : 794
ifpa : 149
iin : 34
iminus : 52
imod : 782
imult : 164
ineg1 : 20
iout : 37
iplus : 50
ipos : 17 / 27
ismall : 20
itest : 58
izero : 25
izpin : 27
izpout : 26
ln : 17,192
log : 1,551
pi : 87
rad : 1,566
rnd0 : 82
rnd1 : 793
rndi : 745
rndseed : 42
rndx : 2,974
sin : 15,483
sqr : 8,783
tan : 41,770

156

9 TRIGONOMETRICAL
MANIPULATIONS

The previous chapter gave typical timings for all of the BASIC
subroutines. Inspection of these timings reveals the fact that
trigonometrical functions are especially time consuming. There are
a number of different methods which can often be used to get round
this problem and this chapter explains many of them. Each method
is illustrated by the polygonal circle discussed in Chapter 5, but the
methods are applicable to many situations in which trigonometry is
used. It should be remembered that the conventional method of
drawing circles takes nearly 6 seconds in BASIC and even in
machine code requires 5.5 seconds. With a little chicanery,
considerable improvements on these times may be achieved. Apart
from the first method which must use assembly language, BASIC is
used in demonstration programs so that the methods are easier to
understand.

9.1 Fixed Shapes Method

The following program illustrates a method that can be used
whenever the application draws a geometric shape of fixed
dimensions in a fixed position. In this method, all the coordinates
to be plotted are stored as constants within the program. In the
demonstration program, the two functions, XCOORD and YCOORD
respectively, store away all 100 X and Y coordinates of the circle to
be plotted. The program itself simply plots these points. All of the
BASIC parts of the program are disposable. The generated machine
code draws the circle in 0.28 seconds. Of course, this method uses a
lot of memory to store coordinates (404 bytes in this example).
Moreover, it is not a general purpose routine to draw many circles
of different sizes. Nevertheless, it is the quickest method and is
useful in many applications.

157

Fixed Circle Example

 0 MODE 0:oswrch = &FFEE
 10 DIM mc% 1000
 20 FOR pass% = 0 TO 2 STEP 2
 30 P% = mc%
 40 [OPT pass%
 50 .xcoords
 60 OPT FNXCOORD
 70 .ycoords
 80 OPT FNYCOORD
 90 .loopcnt EQUB -1
100 .plot EQUB 25
110 .parms EQUB 4
120 EQUD 0
130 .circle
140 LDA #&16 \ set mode
150 JSR oswrch \ =
160 LDA #0 \ zero
170 JSR oswrch
180 .loop
190 LDX loopcnt \ get loopcnt
200 INX \ bump it
210 CPX #101 \ test for 101
220 BCS out \ if > 100 out
230 STX loopcnt \ save loopcnt
240 TXA \ put X in A
250 ASL A \ * 2
260 TAX \ back in X
270 LDA xcoords,X \ get xcoord lo
280 STA parms+1
290 LDA ycoords,X \ get ycoord lo
300 STA parms+3
310 INX \ bump X
320 LDA xcoords,X \ get xcoord hi
330 STA parms+2
340 LDA ycoords,X \ get ycoord hi
350 STA parms+4
360 LDX #0 \ reset plot loop
370 .plotloop
380 LDA plot,X \ next byte of PLOT
390 JSR oswrch \ PLOT it
400 INX \ bump X
410 CPX #6 \ end of plot
420 BCC plotloop \ no - back
430 LDA #5 \ reset for PLOT
440 STA parms
450 JMP loop \ next PLOT
460 .out
470 RTS \ bye bye
480]
490 NEXT pass%

158

500 TIME=0
510 CALL circle
520 T = TIME / 100
530 PRINT
540 PRINT "time taken = ";T;" seconds"
550 END
560 DEF FNXCOORD
570 FOR J%= 0 TO 100
580 X%=INT(600+400*COS(J%*2*PI/100))
590 ?P% = ?&460
600 P% = P% + 1
610 ?P% = ?&461
620 P% = P% + 1
630 NEXT
640 = pass%
650 DEF FNYCOORD
660 FOR J% = 0 TO 100
670 Y%=INT(500+400*SIN(J%*2*PI/100))
680 ?P% = ?&464
690 P% = P% + 1
700 ?P% = ?&465
710 P% = P% + 1
720 NEXT
730 = pass%

9.2 Reduced Accuracy Method

In this method the number of sides in the polygon is reduced. The
following BASIC program has only 32 sides in the polygon. The
circle so drawn is quite adequate and is completed in 1.99 seconds:

 10 TIME = 0
 20 MODE 0
 30 xcentre = 600
 40 ycentre = 500
 50 increment = 2*PI/32
 60 stop = 2*PI
 70 radius = 400
 80 MOVE xcentre+radius,ycentre
 90 FOR angle = 0 TO stop STEP increment
100 DRAW xcentre + radius * COS(angle) ,
 ycentre + radius * SIN(angle)
110 NEXT
120 T=TIME/100
130 PRINT
140 PRINT "time taken = ";T;" seconds"
150 END

159

9.3 Mathematical Transform Method

In this method, the mathematics of the application are transformed
in order to remove the most time-consuming mathematical
functions from big loops. The following trigonometrical identities
frequently prove useful:

SIN(A+B) = SIN(A)*COS(B) + COS(A)*SIN(B)
SIN(A-B) = SIN(A)*COS(B) - COS(A)*SIN(B)
COS(A+B) = COS(A)*COS(B) - SIN(A)*SIN(B)
COS(A-B) = COS(A)*COS(B) + SIN(A)*SIN(B)

In the polygonal circle, the radius rotates like the sweep of a radar
screen, the angle being incremented by 2*PI/N radians each time
(N = number of sides in the polygon). Let us assume that at any
given instant the sweeping radius is at an angle A radians. Let us
also assume that ‘sold’ is the sine of A and ‘cold’ is the cosine of A
at this moment. After one more increment, the radius will have
swept through A+2*PI/N radians, which we will assume has a sine
of ‘snew’ and a cosine of ‘cnew’. But from the identities above:

SIN(A+2*PI/N) = SIN(A)*COS(2*PI/N) + COS(A)*SIN(2*PI/N)

or

snew = sold*COS(2*PI/N) + cold*SIN(2*PI/N)

similarly

cnew = cold*COS(2*PI/N) - sold*SIN(2*PI/N)

It is only necessary to calculate the sine and cosine of the
increment, 2*PI/N, which can be done outside the big loop, since
cnew and snew can then both be derived without recourse to
further trigonometry.

The following program, which draws a 100-sided circle in 2.48
seconds, uses this technique. Note that at the start of the circle
when the angle swept out is zero radians, the sine of zero is zero,
but the cosine of zero is one (lines 90 and 100). The program is
written in BASIC so that the transformation is clear. In assembly
language about a further quarter of a second can be saved without
any special effort.

 10 MODE 0
 20 TIME = 0
 30 xcentre% = 600
 40 ycentre% = 500
 50 radius% = 400
 60 sides% = 100
 70 sinc = SIN(2*PI/sides%)
 80 cinc = COS(2*PI/sides%)
 90 sold = 0
100 cold = 1

160

110 MOVE xcentre%+radius%,ycentre%
120 FOR I% = 0 TO sides%
130 snew = sold*cinc + cold*sinc
140 cnew = cold*cinc - sold*sinc
150 DRAW xcentre% + radius% * cnew ,
 ycentre% + radius% * snew
160 sold = snew
170 cold = cnew
180 NEXT
190 T=TIME/100
200 PRINT : PRINT "time taken = ";T;" seconds"
210 END

9.4 Symmetry Method

This method takes advantage of the symmetry of many geometric
shapes. More than one point can be plotted on the basis of a single
calculation. The following identities are used:

SIN(PI/2 + A) = + COS(A)
SIN(PI + A) = - SIN(A)
SIN(3*PI/2 + A) = - COS(A)
SIN(2*PI + A) = + SIN(A)

SIN(PI/2 - A) = + COS(A)
SIN(PI - A) = + SIN(A)
SIN(3*PI/2 - A) = - COS(A)
SIN(2*PI - A) = - SIN(A)

COS(PI/2 + A) = - SIN(A)
COS(PI + A) = - COS(A)
COS(3*PI/2 + A) = + SIN(A)
COS(2*PI + A) = + COS(A)

COS(PI/2 - A) = + SIN(A)
COS(PI - A) = - COS(A)
COS(3*PI/2 - A) = - SIN(A)
COS(2*PI - A) = + COS(A)

TAN(PI/2 + A) = - 1/TAN(A)
TAN(PI + A) = + TAN(A)
TAN(3*PI/2 + A) = - 1/TAN(A)
TAN(2*PI + A) = + TAN(A)

TAN(PI/2 - A) = + 1/TAN(A)
TAN(PI - A) = - TAN(A)
TAN(3*PI/2 - A) = + 1/TAN(A)
TAN(2*PI - A) = - TAN(A)

Thus the polygonal circle can be plotted four points at a time, for
example. As the radius sweeps round, not only the point at the
current angle, but also points further round by 90 degrees (PI/2
radians), 180 degrees (PI radians) and 270 degrees (3*PI/2 radians)
can be plotted without further trigonometry.

161

At any given time, if the angle swept out by the radius is A radians,
the four coordinates will be:

X1 = xcentre% + radius%*COS(A)
Y1 = ycentre% + radius%*SIN(A)

X2 = xcentre% + radius%*COS(PI/2+A)
Y2 = ycentre% + radius%*SIN(PI/2+A)

X3 = xcentre% + radius%*COS(PI+A)
Y3 = ycentre% + radius%*SIN(PI+A)

X4 = xcentre% + radius%*COS(3*PI/2+A)
Y4 = ycentre% + radius%*SIN(3*PI/2+A)

The identities above give the following:

X1 = xcentre% + radius%*COS(A)
Y1 = ycentre% + radius%*SIN(A)

X2 = xcentre% - radius%*SIN(A)
Y2 = ycentre% + radius%*COS(A)

X3 = xcentre% - radius%*COS(A)
Y3 = ycentre% - radius%*SIN(A)

X4 = xcentre% + radius%*SIN(A)
Y4 = ycentre% - radius%*COS(A)

Thus it can be seen that four points can be plotted for a single value
of A, knowing merely the sine and cosine of A. The four X
coordinates are stored in an array called X, while the four Y
coordinates are stored in an array called Y. Lines 70 to 160 in this
program initialise both arrays with values corresponding to an
angle of zero radians. The BASIC program, plotting four points at a
time, draws a 100 sided circle in 3.11 seconds:

 10 MODE 0
 20 TIME = 0
 30 xcentre% = 600
 40 ycentre% = 500
 50 radius% = 400
 60 sides% = 100
 70 DIM X(4)
 80 DIM Y(4)
 90 X(1) = xcentre% + radius%
100 X(2) = xcentre%
110 X(3) = xcentre% - radius%
120 X(4) = xcentre%
130 Y(1) = ycentre%
140 Y(2) = ycentre% + radius%
150 Y(3) = ycentre%
160 Y(4) = ycentre% - radius%
170 FOR I% = 0 TO sides% DIV 4
180 sinA = SIN(2*PI*I%/sides%)
190 cosA = COS(2*PI*I%/sides%)

162

200 MOVE X(1),Y(1)
210 X(1) = xcentre%+radius%*cosA
220 Y(1) = ycentre%+radius%*sinA
230 DRAW X(1),Y(1)
240 MOVE X(2),Y(2)
250 X(2) = xcentre%-radius%*sinA
260 Y(2) = ycentre%+radius%*cosA
270 DRAW X(2),Y(2)
280 MOVE X(3),Y(3)
290 X(3) = xcentre%-radius%*cosA
300 Y(3) = ycentre%-radius%*sinA
310 DRAW X(3),Y(3)
320 MOVE X(4),Y(4)
330 X(4) = xcentre%+radius%*sinA
340 Y(4) = ycentre%-radius%*cosA
350 DRAW X(4),Y(4)
360 NEXT
370 T = TIME/100
380 PRINT
390 PRINT "time taken = ";T;" seconds"
400 END

This can be further improved. The circle can be drawn in 2.08
seconds by plotting eight points at a time for each of the following
angles:

 A radians
 PI/2 - A radians
 PI/2 + A radians
 PI - A radians
 PI + A radians
3*PI/2 - A radians
3*PI/2 + A radians
2*PI - A radians

Note that the number of sides is increased to 104 simply to make it
divisible by 8. Note also that in this example, the eight X and Y
coordinates are not saved in an array, but are re-worked each time.
This is simply an alternative method.

The eight sets of coordinates to be plotted are:

angle A X1 = xcentre% + radius%*COS(A)
 Y1 = ycentre% + radius%*SIN(A)

angle PI/2 - A X2 = xcentre% + radius%*SIN(A)
 Y2 = ycentre% + radius%*COS(A)

angle PI/2 + A X3 = xcentre% - radius%*SIN(A)
 Y3 = ycentre% + radius%*COS(A)

angle PI - A X4 = xcentre% - radius%*COS(A)
 Y4 = ycentre% + radius%*SIN(A)

angle PI + A X5 = xcentre% - radius%*COS(A)
 Y5 = ycentre% - radius%*SIN(A)

163

angle 3*PI/2 - A X6 = xcentre% - radius%*SIN(A)
 Y6 = ycentre% - radius%*COS(A)

angle 3*PI/2 + A X7 = xcentre% + radius%*SIN(A)
 Y7 = ycentre% - radius%*COS(A)

angle 2*PI - A X8 = xcentre% + radius%*COS(A)
 Y8 = ycentre% - radius%*SIN(A)

 10 TIME=0
 20 MODE 0
 30 xcentre% = 600
 40 ycentre% = 500
 50 radius% = 400
 60 sides% = 104
 70 oldsin = 0
 80 oldcos = radius%
 90 FOR I% = 0 TO sides% DIV 8
100 sin = radius%*SIN(2*PI*I%/sides%)
110 cos = radius%*COS(2*PI*I%/sides%)
120 MOVE xcentre%+oldcos,ycentre%+oldsin
130 DRAW xcentre%+cos,ycentre%+sin
140 MOVE xcentre%+oldsin,ycentre%+oldcos
150 DRAW xcentre%+sin,ycentre%+cos
160 MOVE xcentre%-oldsin,ycentre%+oldcos
170 DRAW xcentre%-sin,ycentre%+cos
180 MOVE xcentre%-oldcos,ycentre%+oldsin
190 DRAW xcentre%-cos,ycentre%+sin
200 MOVE xcentre%-oldcos,ycentre%-oldsin
210 DRAW xcentre%-cos,ycentre%-sin
220 MOVE xcentre%-oldsin,ycentre%-oldcos
230 DRAW xcentre%-sin,ycentre%-cos
240 MOVE xcentre%+oldsin,ycentre%-oldcos
250 DRAW xcentre%+sin,ycentre%-cos
260 MOVE xcentre%+oldcos,ycentre%-oldsin
270 DRAW xcentre%+cos,ycentre%-sin
280 oldsin = sin
290 oldcos = cos
300 NEXT
310 PRINT
320 T = TIME/100
330 PRINT "time taken = ";T;" seconds"

164

9.5 Hybrid Method

This method combines the previous three methods. The following
example program will plot a 32-sided circle in 0.7 seconds (under
0.6 seconds if written in assembly language). Eight plots are
performed at a time, reducing the size of the main loop to 4. Even
so, only 1 sine and 1 cosine are calculated, and these are of course
outside the main loop.

 10 TIME=0
 20 MODE 0
 30 xcentre% = 600
 40 ycentre% = 500
 50 radius% = 400
 60 sides% = 32
 70 oldsin = 0
 80 oldcos = 1
 90 sinc = SIN(2*PI/sides%)
100 cinc = COS(2*PI/sides%)
110 FOR I% = 0 TO sides% DIV 8
120 newsin = oldsin*cinc + oldcos*sinc
130 newcos = oldcos*cinc - oldsin*sinc
140 sinold = radius%*oldsin
150 sinnew = radius%*newsin
160 cosold = radius%*oldcos
170 cosnew = radius%*newcos
180 X1% = xcentre%+cosold
190 X2% = xcentre%+sinold
200 X3% = xcentre%-cosold
210 X4% = xcentre%-sinold
220 X5% = xcentre%+cosnew
230 X6% = xcentre%+sinnew
240 X7% = xcentre%-cosnew
250 X8% = xcentre%-sinnew
260 Y1% = ycentre%+cosold
270 Y2% = ycentre%+sinold
280 Y3% = ycentre%-cosold
290 Y4% = ycentre%-sinold
300 Y5% = ycentre%+cosnew
310 Y6% = ycentre%+sinnew
320 Y7% = ycentre%-cosnew
330 Y8% = ycentre%-sinnew
340 MOVE X1%,Y2%
350 DRAW X5%,Y6%
360 MOVE X2%,Y1%
370 DRAW X6%,Y5%
380 MOVE X4%,Y1%
390 DRAW X8%,Y5%
400 MOVE X3%,Y2%
410 DRAW X7%,Y6%
420 MOVE X3%,Y4%
430 DRAW X7%,Y8%

165

440 MOVE X4%,Y3%
450 DRAW X8%,Y7%
460 MOVE X2%,Y3%
470 DRAW X6%,Y7%
480 MOVE X1%,Y4%
490 DRAW X5%,Y8%
500 oldsin = newsin
510 oldcos = newcos
520 NEXT
530 T = TIME/100
540 PRINT
550 PRINT "time taken = ";T;" seconds"

166

10 LARGE MACHINE CODE
PROGRAMS

A machine code program can occupy all the memory space
between PAGE and HIMEM, and in some cases other areas below
PAGE as well. In a typical game program using one of the 20K
graphics modes, if the game is disk based, the machine code will
occupy from &1900 to &2FFF. This is a little under 6K. Although
this size can often be increased by pinching memory areas from
&400 to &6FF, and from &A00 to &CFF, the overall machine code
size is still small and code must be economic.

However, even though this is undoubtedly a problem, it is not the
only one or even the main one. The reason for this is that the BBC
BASIC/assembler requires the source code to be present in memory
for the assembly step. Thus the amount of machine code that can
be written in a single go is considerably less than the amount of
memory available. Since the technique described in this book is
particularly valuable to those wishing to write large machine code
programs, it is pertinent to consider the various ways in which this
problem may be overcome.

All the methods require that the overall program be subdivided
into a number of smaller modules each of which is small enough to
assemble. From each of these smaller modules, the assembled
machine code is extracted, whilst the source code itself is kept
quite separately in case further amendment is required. There are
then two choices. Either the individual machine code extracts are
merged together to produce a single, large machine code program.
This is the case if the machine code is to be blown on ROM.
Alternatively, a BASIC program is written which loads the main
machine code module and passes control to the appropriate entry
point address. This is the more usual method for tape/disk based
games, where the initial BASIC program usually incorporates the
manufacturer’s logo.

The major problem in all this is addressing. Usually a piece of
machine code assembled in one area of memory has to be moved to
another area of memory. This is called ‘relocation’. But 6502
machine code is not usually relocatable in this way and special
steps have to be taken to overcome this fact. The problem
subdivides into two distinctly different relocation problems.

Firstly there is the problem of relocation of an individual module.
The problems associated with this are called intra-module
relocation problems.

167

Secondly, and much tougher, is the problem of cross-references
between individual modules, giving rise to inter-module relocation
problems. If Module-A calls a subroutine in Module-B, then
whenever Module-B is moved, the address of that subroutine
changes and so must all references to it in Module-A. A similar
problem arises with any data fields which are referenced in more
than one module.

10.1 BASIC 2 Relocation

Those in possession of a BASIC 2 ROM have a tailor-made way of
solving intra-module relocation problems in the form of an
extended range of OPT codes. When 4 is added to the usual values
for OPT, the assembler will assemble the program in an area of
memory defined by the contents of O%, but the code will be
assembled as though it were located in an area of memory defined
by the contents of P%. A simple example should illustrate this
well. The module below contains a simple subroutine to divide a
number by 2. At line 20, instead of the normal values for pass% of
0 and 3, 4 has been added to each to specify that relocation is
wanted. At line 40, O% has been set appropriately so that the
machine code will be physically located in the area mc%. At line
30, P% has been set to PAGE, so the assembler will assemble the
machine code as though it were located at PAGE. The BASIC lines
at 240 to 250 help in saving this machine code.

 10DIM mc% 1000
 20FOR pass% = 4 TO 7 STEP 3
 30P% = PAGE
 40O% = mc%
 50[OPT pass%
 60\ routine to divide a number by 2
 70\ on entry the number is in A
 80\ on exit the result is in X and
 90\ remainder is in Y.
100.div2
110 PHA \ save A
120 LDY #0 \ zeroise remainder
130 LSR A \ divide A by 2
140 TAX \ result in X
150 BCC out \ no remainder
160 LDY #1 \ set remainder
170.out
180 PLA \ restore A
190 RTS \ bye bye
200.finish
210]
220NEXT pass%
230PRINT

168

240PRINT " code is at &";~mc%;" and is &";
245PRINT ;~(finish-div2);" bytes long"
250PRINT "relocate at &";~div2
260END

The result of running this module on a system with disks (PAGE =
&1900) is shown below. Notice that the machine code physically
starts at &1B96 and is &B bytes long. The assembly listing shows
that the machine code has been assembled to run at &1900,
however.

1900 OPT pass%
1900 \ routine to divide a number by 2
1900 \ on entry the number is in A
1900 \ on exit the result is in X and
1900 \ remainder is in Y.
1900 .div2
1900 48 PHA \ save A
1901 A0 00 LDY #0 \ zeroise remainder
1903 4A LSR A \ divide A by 2
1904 AA TAX \ result in X
1905 90 02 BCC out \ no remainder
1907 A0 01 LDY #1 \ set remainder
1909 .out
1909 68 PLA \ restore A
190A 60 RTS \ bye bye
190B .finish

 code is at &1B96 and is &B bytes long
relocate at &1900

To save this machine code we must use:

*SAVE "DIV2" 1B96 +B 1900

This entire module can be relocated to any valid address that we
wish, simply by altering line 30 in the original assembly language
program, re-assembling and saving the machine code once again.
Notice, though, that only intra-module relocation problems are
solved in this way. Any other modules that wish to call ‘div2’ will
have to do so by absolute addressing, such as JSR &1900. If we
move the start address of ‘div2’ we create an inter-module
relocation problem. More will be said of this later, but for the
moment let us see how BASIC 1 owners can cope with intra-
module relocation problems.

169

10.2 Intra-Module Relocation Problems

Many 6502 instructions will relocate quite happily without any
correction by the programmer. The previous example program, for
example, has no problems. It is the machine code instructions
which reference absolute addresses within the domain of the
overall program which cause problems. The method to be described
in this section is often used by BASIC 2 owners in preference to the
method outlined in the previous section.

The idea behind the method is to identify those bytes within a
module which are not relocatable. Of course, this can be done
manually by simple inspection of the program code, but this would
be prone to error. It is much safer to let the micro identify the bytes
which will not relocate. All that is needed is to assemble the
module at two different addresses and compare the two machine
code modules byte-for-byte. Those bytes which are different are the
bytes which will not relocate. A separate section will later suggest
ways in which the number of un-relocatable bytes can be
minimised. One of these ways is so important that it needs to be
mentioned now. It is a good idea to start each module on a page
boundary. In this way, intra-module relocation problems are
reduced to high address bytes only.

Consider the previous example program. By changing it slightly, so
that the result and remainder are stored in memory areas
referenced by labels, we introduce some intra-module relocation
problems. To identify where those problems are, we can assemble
the program twice at non-overlapping addresses on different page
boundaries and test which bytes of the machine code have changed.

10MODE7
15REM assemble at &2000
20I% = &2000
30PROCasm
35PRINT : REM assemble at &2100
40I% = &2100
50PROCasm
55PRINT
60FOR I% = 0 TO finish-start
70 IF ?(&2000+I%) = ?(&2100+I%) THEN GOTO 90
80 PRINT "problem at &";~(&2000+I%) ;
85 PRINT " value = &";~?(&2000+I%)
90 NEXT
100END
110DEF PROCasm
120FOR pass% = 0 TO 3 STEP 3
130P% = I%
140[OPT pass%
150\ routine to divide a number by 2

170

160\ on entry the number is in A
170\ on exit the result is in 'result' and
180\ remainder is in 'remainder'.
190.start
200.result EQUB 0
210.remainder EQUB 0
220.div2
230 PHA \ save A
240 LDA #0 \ zeroise
250 STA remainder \ remainder
260 PLA \ get A again
270 PHA \ save A again
280 LSR A \ divide A by 2
290 STA result \ save result
300 BCC out \ no remainder
310 LDA #1 \ set
320 STA remainder \ remainder
330.out
340 PLA \ restore A
350.finish
360 RTS \ bye bye
370]
380NEXT pass%
390ENDPROC

When the program is run, we obtain a list of the problem areas.
Normally this would be done with OPT set at 2, but in this case
listings have been obtained for both assemblies so that the reader
can verify that the results are correct.

2000 OPT pass%
2000 \ routine to divide a number by 2
2000 \ on entry the number is in A
2000 \ on exit the result is in 'result' and
2000 \ remainder is in 'remainder'.
2000 .start
2000 00 .result EQUB 0
2001 00 .remainder EQUB 0
2002 .div2
2002 48 PHA \ save A
2003 A9 00 LDA #0 \ zeroise
2005 8D 01 20 STA remainder \ remainder
2008 68 PLA \ get A again
2009 48 PHA \ save A again
200A 4A LSR A \ divide A by 2
200B 8D 00 20 STA result \ save result
200E 90 05 BCC out \ no remainder
2010 A9 01 LDA #1 \ set
2012 8D 01 20 STA remainder \ remainder
2015 .out
2015 68 PLA \ restore A
2016 .finish
2016 60 RTS \ bye bye

171

2100 OPT pass%
2100 \ routine to divide a number by 2
2100 \ on entry the number is in A
2100 \ on exit the result is in 'result' and
2100 \ remainder is in 'remainder'.
2100 .start
2100 00 .result EQUB 0
2101 00 .remainder EQUB 0
2102 .div2
2102 48 PHA \ save A
2103 A9 00 LDA #0 \ zeroise
2105 8D 01 21 STA remainder \ remainder
2108 68 PLA \ get A again
2109 48 PHA \ save A again
210A 4A LSR A \ divide A by 2
210B 8D 00 21 STA result \ save result
210E 90 05 BCC out \ no remainder
2110 A9 01 LDA #1 \ set
2112 8D 01 21 STA remainder \ remainder
2115 .out
2115 68 PLA \ restore A
2116 .finish
2116 60 RTS \ bye bye

problem at &2007 value = &20
problem at &200D value = &20
problem at 82014 value = &20

Thus we can relocate this program on any page boundary providing
we change just 3 bytes. For example, to relocate the machine code
at &1500, we would simply enter:

*LOAD "DIV2" 1500
?&1507 = &15
?&150D = &15
?&1514 = &15

10.3 Intra-Module General Case

The previous section illustrated the way in which intra-module
relocation problems can be identified. Generally, however, there
will be insufficient memory to assemble the module twice in situ.
In these cases it is necessary to break the problem into several
steps.

Firstly, assemble the module at one page boundary and *SAVE the
machine code. Secondly, assemble the module at a different page
boundary and *SAVE the machine code again. Then *LOAD each
version separately to non-overlapping addresses. Finally compare
each byte-for-byte and report on differences.

172

step 1.

The example program is assembled at &2000 and *SAVEd as
‘DIV2A’. This is done by sandwiching the module between a few
BASIC instructions. OSCLI (&FFF7) is used for the *SAVE, but it is
written in such a way that it works on BASIC 1 and 2 ROMs.

 10mod$ = "DIV2A" : begin% = &2000
 30FOR pass% = 0 TO 2 STEP 2
 40P% = begin%
 50[OPT pass%
 60\ routine to divide a number by 2
 70\ on entry the number is in A
 80\ on exit the result is in 'result' and
 90\ remainder is in 'remainder'.
100.result EQUB 0
110.remainder EQUB 0
120.div2
130 PHA \ save A
140 LDA #0 \ zeroise
150 STA remainder \ remainder
160 PLA \ get A again
170 PHA \ save A again
180 LSR A \ divide A by 2
190 STA result \ save result
200 BCC out \ no remainder
210 LDA #1 \ set
220 STA remainder \ remainder
230.out
240 PLA \ restore A
250 RTS \ bye bye
260]
270NEXT pass%
280REM *SAVE this machine code
290DIM X% 256
300$X% = "SAVE " + mod$ + " " + STR$~begin% + " " + STR$~P%
 + " " + STR$~begin%
310Y% = X% DIV 256
320CALL &FFF7
330PRINT CHR$133;"*";$X% : END

step 2.

By changing line 10, the module is re-assembled at &2100 and
*SAVEd as ‘DIV2B’

 10mod$ = "DIV2B" : begin% = &2100
 30FOR pass% = 0 TO 2 STEP 2
 40P% = begin%
 50[OPT pass%
 60\ routine to divide a number by 2
 70\ on entry the number is in A
 80\ on exit the result is in 'result' and
 90\ remainder is in 'remainder'.

173

100.result EQUB 0
110.remainder EQUB 0
120.div2
130 PHA \ save A
140 LDA #0 \ zeroise
150 STA remainder \ remainder
160 PLA \ get A again
170 PHA \ save A again
180 LSR A \ divide A by 2
190 STA result \ save result
200 BCC out \ no remainder
210 LDA #1 \ set
220 STA remainder \ remainder
230.out
240 PLA \ restore A
250 RTS \ bye bye
260]
270NEXT pass%
280REM *SAVE this machine code
290DIM X% 256
300$X% = "SAVE " + mod$ + " " + STR$~begin% + " " + STR$~P%
 + " " + STR$~begin%
310Y% = X% DIV 256
320CALL &FFF7
330PRINT CHR$133;"*";$X% : END

step 3.

The following program, called ‘INTRA’, is a general purpose
program for comparing machine code modules up to &1000 bytes
in length. It asks the user to provide the first part of the module
name (in this case ‘DIV2’). It then appends an ‘A’ to this name and
loads the machine code module into an area, load%. It then
appends a ‘B’ to the name and loads this machine code module at
load% + &1000. Finally it compares the two modules byte-for-byte
and reports all differences.

10MODE7
20REM set aside an area to *LOAD up to &1000 bytes twice
30DIM load% &2000
40PRINT TAB(12,2);CHR$141;CHR$131;"INTRA"
50PRINT TAB(12,3);CHR$141;CHR$131;"INTRA"
60PRINT TAB(0,6);CHR$134;"enter module name ";
70INPUT "> " mod$
80A$ = "LOAD " + mod$ + "A " + STR$~load%
90B$ = "LOAD " + mod$ + "B " + STR$~(load%+&1000)
100PROCoscli(A$)
110REM get size of module loaded
120size% = 256*?&2F9 + ?&2F8
130PROCoscli(B$)
140count% = 0
150VDU2 : REM turn print on
160PRINT "Intra-module problem addresses"

174

170PRINT
180FOR I% = 0 TO size%-1
190 IF ?(load%+I%) <> ?(load%+I%+&1000)
 THEN PRINT "&";~I%;" from start" :
 count% = count% + 1
200 NEXT
210PRINT
220PRINT "total problems = ";count%
230VDU3 : REM turn printer off
240END
250REM ----------------------------------
260REM routine to *LOAD the machine code
270REM ----------------------------------
280DEFPROCoscli(C$)
290PRINT
300PRINT CHR$133;"*";C$
310DIM X% 256
320$X% = C$
330Y% = X% DIV 256
340CALL &FFF7
350ENDPROC

When the program is run on our example modules, it produces the
following results:

Intra-module problem addresses

&7 from start
&D from start
&14 from start

total problems = 3

These are exactly the results that we expected. By inspecting the
assembler listing for this module, we can determine what value
with respect to the origin page of the module must be inserted into
each of these bytes in order to make the module relocatable. In this
example the values are all the same as the origin page. If this is the
main module, these fixes must be coded into the initial BASIC
program. Otherwise they are coded into the main module itself.

175

10.4 Minimising Intra-Module Problems

Clearly, the less intra-module relocation problems that are present
in the machine code, the easier it becomes to amend and relocate
that code. A few simple rules can minimise these problems:

a) Start each module on a page boundary.

b) Avoid JMP instructions whenever possible. Use branch
instructions instead as these are always relocatable. For
example:

 CLC
 BCC label

 instead of

 JMP label

c) It is frequently necessary to pass parameters from one
subroutine to another. Parameters that are passed via zero page
locations, the resident integer variables, the 6502 registers or
the 6502 stack cause no problems. However, using data fields
within the domain of the module will cause problems.

d) Document and test all code thoroughly before saving the
machine code. This is an advisable practice, even for single-
module programs. For multi-module programs it is more-or-less
obligatory because it is so much more difficult to amend
program code. It is frequently possible to test individual
subroutines by driving data through them from BASIC. The
example programs in this book do this quite a lot.

10.5 Inter-Module Relocation Problems

All that has been achieved so far is that individual modules can be
made relocatable. The harder problem has now to be addressed;
how can one module communicate with another module?

In the discussion that follows, we will assume that only two
modules are needed for the application. When more modules are
required, the same principles apply. The principles are, however,
easier to explain with just two modules.

Once again, the problem becomes easier to manage when we
subdivide it into its component parts. The inter-module
communications problem can be broken into code and data
problems. In the case of code problems we are concerned with how
to JMP or JSR from one module to another. This problem becomes
really simple if we specify certain design constraints on the two
modules. For example, let us specify that there will be a main

176

module, called ‘MAIN’ and a module of subroutines, called ‘SUBS’.
In this scheme, MAIN will be located in a memory area that will
allow it to co-exist with the initial BASIC program. SUBS will
overlay the initial BASIC program at PAGE and must be loaded by
MAIN. Let us further specify that:

MAIN can call routines in MAIN
MAIN can call routines in SUBS
SUBS can call routines in SUBS BUT not in MAIN

Already we have simplified the problem considerably. The key
steps can now be taken. Let us assume that SUBS contains three
subroutines (sub1, sub2, sub3) and that these are each called in
several places from within MAIN. If we use say &70 to specify
which subroutine we want, then there need only be one entry point
in SUBS.

In this example code, the only entry point into SUBS is at the start,
at ‘subs’. The first piece of code resolves which subroutine is
actually required. In practice, this section of code would probably
also save the register set.

 10REM SUBS
 15DIM mc% &1000
 20FOR pass% = 0 TO 2 STEP 2
 30P% = mc%
 40[OPT pass%
 50.subs
 60 LDA &70 \ get which sub
 70 CMP #1 \ is it sub1 ?
 80 BEQ sub1 \ yes - sub1
 90 CMP #2 \ is it sub2 ?
100 BEQ sub2 \ yes - sub2
110 CMP #3 \ is it sub3 ?
120 BEQ sub3 \ yes - sub3
130 BRK \ mistake
140.sub1
150 JMP dosub1 \ DO sub1
160.sub2
170 JMP dosub2 \ DO sub2
180.sub3
190 JMP dosub3 \ DO sub3
200.dosub1
 :
 : assembler
 : code
 :
900]:NEXT pass%
910END

Let us assume that our first guess is that MAIN will be located at
&2800. We know that MAIN will have to load SUBS at PAGE and
also handle all its intra-module relocation fixes. We can also design

177

MAIN so that it only calls SUBS in one place. The entry point into
this program is at ‘main’.

 10REM MAIN
 20FOR pass% = 0 TO 2 STEP 2
 30P% = &2800
 40[OPT pass%
 50.main
 60 LDA #&83 \ get PAGE
 70 JSR &FFF4
 80 STY callsub+2 \ initialise callsub
 90 STY osblok+2 \ and osfile parm block
100 LDX #osblok MOD 256 \ get lo-byte
110 LDY #osblok DIV 256 \ get hi-byte
120 LDA #&FF \ LOAD SUBS
130 JMP (&212) \ via OSFILE
140.back \ return here
 :
 : code
 : to
 : fix
 : SUBS
 : intra-module
 : relocation
 : problems
 :
 :
 : code
 :
400 LDA #1 \ call sub1
410 STA &70
420 JSR callsub
 :
 : code
 :
500 LDA #2 \ call sub2
510 STA &70
520 JSR callsub
 :
 : etc.
 : etc.
 :
700.callsub
710 JMP &0000 \ overwritten by line 80
800.osblok \ OSFILE parm block
810 EQUW osname \ point to file name
820 EQUD 0 \ load address (see line 90)
830 EQUD back \ xqt address (fudge it)
840 EQUD 0
850 EQUD 0
860.osname
870 EQUS "SUBS" \ file name

178

880 EQUB &D \ CR
900]:NEXT pass%
910END

We have now solved all the inter-module code problems. MAIN
can freely access all the subroutines in SUBS.

Data problems are even simpler to handle. We simply make sure
that there are no data problems. Firstly, all data fields are defined
in MAIN except for any specific work areas needed by SUBS but of
which MAIN needs no knowledge. Secondly, only a routine in
MAIN is allowed to access a data field in MAIN. Thirdly,
parameters passed between MAIN and SUBS and vice-versa are
always in zero page memory, resident integer variables, registers or
the processor stack. An example should clarify matters.

Let us assume that ‘sub1’ is a routine in SUBS that updates the
player’s score. The data field ‘score’ is of course in MAIN. Let us
also assume that ‘score’ is a 16 bit integer, and that &80 and &81 are
used to communicate the score between MAIN and SUBS. Then the
code in MAIN might well be:

LDA #1 \ specify sub1
STA &70 \
LDA score \ get lo-byte
STA &80 \ save it
LDA score+1 \ get hi-byte
STA &81 \ save it
JSR callsub \ get it updated
LDA &80 \ get lo-byte
STA score \ put it back
LDA &81 \ get hi-byte
STA score+1 \ put it back

In this way, ‘sub1’ has no knowledge of the field ‘score’ but can
still function as a subroutine.

By defining design constraints on the individual modules, we have
ensured that there are no inter-module relocation problems. The
intra-module relocation problems are identified by program.

In practice, each application has to be treated on its own merits.
Sometimes more modules are needed. In any event, an overall
strategy such as outlined here will greatly simplify relocation
problems. The strategy will ensure that the machine code programs
will work correctly on both tape and disk based systems, providing
all references to relocation problem fixes are relative to PAGE.

179

10.6 Initial BASIC Program

Let us assume that we have two modules, MAIN and SUBS
designed along the lines suggested before. Let us assume that we
have now discovered that MAIN should be loaded at PAGE+&800
and SUBS should be loaded at PAGE as was always intended.

We will assume also that ‘INTRA’ identified the following
intramodule problems :–

MAIN (originM = page at which MAIN starts)

&15 from start should be originM
&74 from start should be originM+2
&FC from start should be originM+1

SUBS (originS = page at which SUBS starts)

&83 from start should be originS+1

The fix for SUBS has to be coded into MAIN. The fixes for MAIN
are coded into the initial BASIC program which would look
something like this:

 10MODE7
 20A$ = "LOAD MAIN " + STR$~(PAGE+&800)
 30DIM X% 256
 40$X% = A$
 50Y% = X% DIV 256
 60CALL &FFF7
 70?(PAGE+&815) = (PAGE DIV 256) + 8
 80?(PAGE+&874) = (PAGE DIV 256) + 10
 90?(PAGE+&8FC) = (PAGE DIV 256) + 9
100CALL PAGE+&800
110END

180

INDEX

@% .. 95
aclear ... 64
acomp .. 65
acopyb ... 66
acs ... 109
adiv ... 67
adiv10 ... 68
arninus .. 69
amult ... 70
amult1 ... 71
amult10 ... 72
anorm .. 73
aone ... 74
apack ... 75
apack1 ... 76
apack2 ... 77
apack3 ... 78
aplus .. 79
aplusb .. 80
aplus1 .. 81
arecip .. 82
around ... 83
ascnum .. 97
asign .. 84
asn ... 110
aswap .. 85
atest ... 86
atn ... 111
aunp .. 87
aunp1 .. 88
bclear ... 89
bcopya ... 90
bunp .. 91
cos ... 112
deg ... 113
exp ... 114
fpascdec .. 98
fpaschex .. 99
fpi1 .. 100
fpi2 .. 101
iascdec .. 102
iaschex .. 103
icomp .. 24
idiv .. 26

181

ifpa .. 104
iin .. 28
iminus ... 30
imod .. 32
imult .. 34
ineg1 .. 36
iout .. 38
iplus .. 40
ipos .. 42
ismall .. 44
itest .. 46
izero .. 48
izpin .. 50
izpout .. 52
ln ... 115
log .. 116
pi ... 117
rad ... 118
rndi .. 131
rndseed ... 132
rndx ... 133
rnd0 ... 129
rnd1 ... 130
sin .. 119
sqr .. 120
tan ... 121
ASCII Conversion Demonstration .. 105
BASIC Action Addresses ... 145
BASIC Memory Map .. 137
BASIC Stacks and Buffers .. 144
BASIC Tables Summary ... 145
BASIC Timings ... 154
BASIC Token Tables .. 144
BASIC 2 Relocation .. 167
Binary/Hexadecimal Conversion ... 14
Binary Addition .. 11
Binary Fractions ... 12
Binary Negative Numbers .. 12
Binary Subtraction ... 11
Binary System ... 9
Conversion Routines .. 96
Conversion Work Areas ... 95
Conversions .. 95
CPU Speed .. 150
Floating Point Constants .. 61
Floating Point Interface Program ... 93
Floating Point Numbers ... 55

182

Floating Point Routines .. 62
Floating Point Temporary Areas .. 140
Floating Point Variables ... 55
Floating Point Work Areas ... 59
FWA .. 60
FWB .. 60
Hexadecimal Addition ... 15
Hexadecimal Fractions ... 15
Hexadecimal Negative Numbers .. 15
Hexadecimal Roundness .. 14
Hexadecimal System .. 13
Integer Constants .. 18
Integer Routines .. 21
Integer versus Floating Point ... 58
Integer Work Areas ... 17
Integers .. 17
IWA ... 17
Large Machine Code Programs .. 166
Mathematical Demonstration ... 122
Mathematical Functions .. 107
Mathematical Routines .. 108
Microsecond Timer .. 151
Numbering Systems ... 9
Program Speed .. 151
Pseudo-directive EQUB .. 20
Pseudo-directive EQUD ... 19
Pseudo-directive EQUF .. 61
Pseudo-directive EQUS .. 20
Pseudo-directive EQUW .. 20
Pseudo-directive RESB ... 20
Random Numbers ... 127
Random Numbers Demonstration ... 134
Random Numbers Routines ... 128
Random Numbers Work Areas .. 127
Resident Integer Variables ... 140
RWA .. 127
String Work Area .. 95
SWA .. 95
Timings ... 150
Trigonometrical Manipulations ... 156
Units of Time .. 150
Variable Pointer Table .. 141
Zero Page Dedicated Locations .. 137
Zero Page Multiple Use Locations ... 139

THE ADVANCED BASIC ROM USER GUIDE
FOR THE BBC MICROCOMPUTER

This book delves deep into the BBC microcomputer BASIC 1 and BASIC 2
ROMS and comes up with 69 useful subroutines that can be called from an
assembly language program. The routines cover:

• 32 bit integer arithmetic

• floating point arithmetic

• maths. functions such as sine, cosine, log, square root

• data conversions

• random numbers

The author has programmed commercially for 18 years on a wide variety of
computers including in more recent years the BBC microcomputer. The book
attempts to fill some of the important gaps in the microcomputer literature
and covers in addition:

• making trigonometry faster

• writing large, relocatable, machine code programs

• useful pseudo-directives

There are many program examples in this book and much more besides.
The serious programmer of the BBC micro will find this book to be a
valuable aid.

Published by
Cambridge Microcomputer Centre
153–154 East Road, Cambridge, England.

	Introduction
	1. Numbering Systems
	1.1. The Binary System
	1.2. The Hexadecimal System

	2. Integers
	2.1. Integer Work Areas
	2.2. Defining Integer Constants
	2.3. Integer Routines Summary
	2.4. Integer Routines Description

	3. Floating Point Numbers
	3.1. Floating Point Variables
	3.2. Integer versus Floating Point
	3.3. Floating Point Work Areas
	3.4. Defining Floating Point Constants
	3.5. FP Routines Summary
	3.6. FP Routines Description
	3.7. FP Interface Program
	3.8. FP Interface Program Tested

	4. Conversions
	4.1. Conversion Work Areas
	4.2. Conversion Routines Summary
	4.3. Conversion Routines Description
	4.4. ASCII Conversion Demonstration

	5. Mathemetical Functions
	5.1. Math Routines Summary
	5.2. Math Routines Description
	5.3. Math Demonstration

	6. Random Numbers
	6.1. Random Number Work Area
	6.2. Random Routines Summary
	6.3. Random Routines Description
	6.4. Random Demonstration

	7. BASIC Memory Map
	7.1. Zero Page Dedicated Locations
	7.2. Zero Page Multiple Use Locations
	7.3. Resident Integer Variables
	7.4. Floating Point Temporary Areas
	7.5. Variable Pointer Table
	7.6. BASIC Stacks and Buffers
	7.7. BASIC Token and Action Tables
	7.8. BASIC Tables Summary

	8. Timings
	8.1. Units of time
	8.2. Computer Processor Speed
	8.3. Program Speed
	8.4. Microsecond Timer
	8.5. BASIC Timings

	9. Trigonometrical Manipulations
	9.1. Fixed Shapes Method
	9.2. Reduced Accuracy Method
	9.3. Mathematical Transform Method
	9.4. Symmetry Method
	9.5. Hybrid Method

	10. Large Machine Code Programs
	10.1. BASIC 2 Relocation
	10.2. Intra-Module Relocation Problems
	10.3. Intra-Module General Case
	10.4. Minimising Intra-Module Problems
	10.5. Inter-Module Relocation Problems
	10.6. Initial BASIC Program

	Index

