USING EXTRA INFRARED SIGNALS
(BY LOADING SIGNALS INTO TEST AREA)

Introduction

It is possible for a PC software program to load an infrared signal into a special “test area” in a
HomeVision (or HomeVision-PC or HomeVision-Pro) controller. The program could then
command the controller to transmit it. This provides a means for such programs to overcome the
limit of 255 learned IR signals. This capability is beneficial mainly to those using custom software
to control HomeVision, where the PC software decides what signals are to be transmitted. The
information contained here is provided for those writing such software. A sample Visual Basic
application is also available.

It's also possible for the HomeVision controller to send a serial command to the PC software
telling it what signal it wants to transmit. The PC software could then load it into the controller
and command the transmission. This would benefit more users, as the HomeVision controller
would be in charge, not the PC software. This is not cetailed here, but developers able to
understand the other information should be able to figure it out rather easily.

Overview

The controller has a special test area that can hold one IR signal. It is normally used during the
IR signal learning process, allowing the user to load the learned signal into the test area and then
transmit it to verify it works. However, this test area can also be used during normal operation as
a means for PC software to load and transmit a signal not already loaded in the controller. Here's
an overview of how this would be used:

1. The user learns the desired IR signals with the HomeVision, HomeVision-PC, or
HomeVision-Pro software.

2. The uses exports the IR signals to an “.IRL” file by using the “Export” option on the IR
Signals Screen.

3. The user runs the custom software program. The program must first read all the IR
signals from the “.IRL” file. When it needs to transmit an IR signal, it then loads the
signal into the controller's test area, and then commands it to be transmitted. More
details on the software operation are provided in the following section and Appendix A.

Software Operation

This section describes the basic steps the software must perform. Appendix A provides sample
Visual Basic code for the main steps of reading, loading, and transmitting IR signals. The serial
communications routines are only described at a top-level because they depend upon how the
user chooses to implement the serial communications, and there are many ways to do this. The
sample Visual Basic application shows one simple way to do it. Also, the VB application expands
on the Appendix A code by including some error checking and user-interface functions.

HomeVision, HomeVision-PC, and HomeVision-Pro all store IR signals in their schedule files in
the same format. However, when loading the signals into the controller, or when commanding
the signal transmission, HomeVision-Pro uses a slightly different format than the others. The
sample code shows both methods.

Following are the steps the software must perform:

Read all the IR signals from the “.IRL" file.
Load the signal into the controller’s special test area.
Transmit the signal. This is done with the following command over the serial interface:
,_ NNAABB
where: ,_is the command to transmit the IR test signal
NN is the signal length (number of pulses in the signal)
AA is 256 - carrier base on-time

BB is 256 - carrier base off-time

The TransmitSignal() function in Appendix A shows how to determine these values.

The above approach requires you to send a serial command each time you want to transmit the
IR signal. With HomeVision-Pro version 3.4 (but not HomeVision), it is also possible to transmit
the IR signal repeatedly. This may be useful for IR signals such as “Volume up”. You can do this

as follows:

1. Read all the IR signals from the “.IRL" file.

2. Load the signal into the controller’s test area.

3. Write three additional bytes to the controller RAM. The values to write are unique to the
signal loaded in the test area. The variables are set using a special serial command that
can write to the controller’s internal RAM. The command format is as follows:

,6AAAADD
where: ,6 is the command to write a value to RAM
AAAA is the RAM address to write to
DD is the data value, in hex format
The first byte is written to address EF55, the second to address EF56, and the third to
address EF57. For example, assume the three bytes should be 20 hex (32 decimal), 37
hex (55 decimal), and O hex (0 decimal). The following three serial commands would be
used, and show the meaning of the three data values:
,6EF5520 Signal length (number of pulses in the signal)
,6EF5637 256 - carrier base on-time
,6EF5700 256 - carrier base off-time
The three data values are the same as shown in the TransmitSignal() function when
generating the serial command string (Step 3 above). The first byte is
NumberOfFullPulses, the second is (256-CarrierOnTime), and the third is (256-
CarrierOffTime).

4, Start transmitting the test signal repeatedly. This is done with a new IR command over

the serial interface:
,;000B
5. Stop the signal transmissions whenever you’re ready. This is done with a new IR

command over the serial interface:

,;000A

APPENDIX — LOADING IR SIGNAL DATA INTO TEST AREA

In order to load an IR signal into the controller, a program must first read the IR signal data from a
file. Although it's possible to read the data out of a HomeVision schedule file, it's not
recommended. The schedule file format is quite complex and subject to change in future
versions. Instead, users should export the IR signals to an “IRL” file. This is done by selecting
the IR signals on the IR Signal Summary Screen, then clicking the “Export” button. The IR signal
data will be saved to a file with a “.IRL” extension. This file has a much simpler format than the
schedule file, and will be much easier to read with a software program.

The first step in writing the software is to declare the variables that will be used. Listing 1 shows
the variables used by this sample code. These are all shown as global variables for simplicity,
but you may want to treat them differently.

The next step is to read in the “.IRL" file into the variables. The function ReadIRLFile() in Listing
2 shows how to do this.

You're now reading to load any of the signals into the controller's test area. The function
LoadIntoTestArea() in Listing 3 shows how to do this. Finally, you can command the controller to
transmit the signal. The function TransmitSignal() h Listing 4 shows this. Listing 5 contains
several functions used by LoadintoTestArea() and TransmitSignal() to format and send the
necessary serial commands to the controller. You will need to modify at least one of these (the
SendCommand() function) based on how your software accesses the PC serial port.

LI STING 1 - DECLARATI ON CF GLOBAL VARI ABLES

"Variables that tell us about the IR signals:

d obal gl RCount As I nteger ' The nunber of signals
Type | RSi gnal Type 'General data for each signa
Name As String * 30
Type As Byte "0 = Preset, 1 = Raw Pul se, 255 = none
bytel As Byte "0 to 255
byte2 As Byte "0 to 255
Pul seLengt h As | nt eger "# of bytes used in gPul seArray()
Pul seStart As Long "Starting byte in gPul seArray()
description As String * 40
End Type

G obal gl RSignals() As | RSignal Type 'Array to hold general data for each signa

'd obal variables used for storing IR pulse data of |earned signals:
G obal gPul seArray() As Byte "Stores all pulse lengths for all signals
G obal gPul seArraylLength As Long "Total # of bytes in gPul seArray

"Array used to tenmporarily store IR pulse data before loading it:
G obal glLoadPul seDat a(400) As Byte

G obal gControll erType As Byte ' 0=Hon®eVi si on, 1=HomeVi sion-Pro

' Const ant s:

G obal Const COUNTTOTI MERATI O = 0. 36169
d obal Const LOARAM = 0

Ad obal Const H GHRAM = 1

G obal Const HVY = 0

d obal Const HVPRO = 1

LISTING 2 - ReadlRLFil e()

Public Function Readl RLFi |l e(I RFileNane As String) As |nteger
"Opens ".IRL" file and reads it in.
Dimi As Long, tenp As Byte, FileNunber As Integer

On Error GoTo ExitError
Fi |l eNunmber = FreeFile
Open | RFil eName For Binary As #Fil eNunmber 'Open the file

Get #1, 1, gl RCount "Read in the # of signals in the file
Get #1, , gPulseArraylLength "Read in the total # of pul ses
If gl RCount > 0 Then

ReDi m gl RSi gnal s(gl RCount - 1) 'Resi ze gl RSignals array

For i = 0 To gl RCount - 1 '"Read in the general data on each signa

Get #1, , glRSignals(i).Nane
Get #1, , glRSignals(i).Type

Get #1, , glRSignals(i).bytel '256 - carrier on-tine
Get #1, , glRSignals(i).byte2 '256 - carrier off-time
Get #1, , tenp "Nunber of FULL pul ses
gl RSi gnal s(i).Pul seLength = tenp * 4 "4 bytes per pul se

Cet #1, , glRSignals(i).PulseStart
Get #1, , glRSignals(i).description

Next i
End | f
I f gPul seArraylLength > 0 Then "Now read in all the pulse data
ReDi m gPul seArray(gPul seArrayLength - 1) ' Resi ze array
For i = 0 To gPul seArrayLength - 1
Get #1, , gPulseArray(i)
Next i
End |f

Readl RLFile = 1 'K
GoTo exitsub

ExitError:
MsgBox ("Error reading file")

Readl RLFile = -1 ‘'error

exi tsub:
Cl ose #Fi |l eNunber
End Functi on

LI STING 3 — LOADI NG SI GNAL | NTO CONTROLLER TEST AREA

Public Function Loadl ntoTest Area(Signal Num As | nteger) As Integer

Di m Address As Long, j As Integer, Nunmber O Full Pul ses As | nteger

Dim CarrierPeriod As Integer, CarrierPerioduS As Single, OnTinmeuS As Single
Di m Byt esToSend As | nt eger

On Error Resume Next

Byt esToSend = gl RSi gnal s(Si gnal Num) . Pul seLength
Number Of Ful | Pul ses = BytesToSend \ 4

'Move the pulse Iength data from gPul seArray() into gLoadPul seData():
For j = 0 To BytesToSend - 1

gLoadPul seData(j) = gPul seArray(j + gl RSignal s(Signal Num . Pul seStart)
Next |j

CarrierPeriod = (256 - gl RSignal s(Signal Num.bytel) + (256 - gl RSi gnal s(Signal Nunm . byt e2)
If gControllerType = HVPRO Then
" For HoneVision-Pro, signals learned with a carrier frequency nust be
‘converted into the HoneVision-Pro format.
'The pul se on-tinmes nust be converted into the nunber of 10.127us peri ods.
'"The on-tinme is stored as the nunber of cycles of the carrier, using two
"bytes in gLoadPul seDat a.
"First, calculate the carrier period used for this signal
CarrierPerioduS = CarrierPeriod * COUNTTOTI MERATI O
"Next, loop thru all pulses in groups of 4 bytes and convert the
‘on-time to the HV-Pro format
For j = 0 To NunberOf Ful | Pul ses - 1
"First, get the on-time from 2 bytes and convert to us:
OnTi meuS = (gLoadPul seData(j * 4) * 256 + gLoadPul seData(j * 4 + 1)) * CarrierPerioduS
"Now cal cul ate nunmber of 10.127uS peri ods:
OnTi neuS = OnTi neuS / 10. 127
gLoadPul seData(j * 4) = CByte(OnTi neuS \ 256)
gLoadPul seData(j * 4 + 1) = CByte(OnTi meuS Mod 256)
Next j
End If

"Now | oad the IR signal into special test area in controller's high RAM

Address = 9216 ' Address in controller RAMto |load to (2400 hex)

Loadl nt oTest Area = LoadDat aToRAM HI GHRAM Addr ess, gLoadPul seDat a, Byt esToSend)
End Function

LI STING 4 — COMWAND CONTRCOLLER TO TRANSM T SI GNAL

Public Function TransmitSignal (I DNum As | nteger) As Integer

"Returns 1 if OK, -1 or -2 if failed

DimQut_String As String, Nunber O Full Pul ses As Integer, FreqlnkHz As Single
DimCarrierOnTine As Integer, CarrierOfTine As Integer, CarrierPeriod As |nteger
Dim CarrierPerioduS As Single

"Generate the serial string needed to transmt the signal:
CarrierOnTime = 256 - Clnt(glRSignal s(lIDNum. bytel)
CarrierOfTime = 256 - ClInt(glRSignal s(I DNum . byte?2)
CarrierPeriod = CarrierOnTinme + CarrierOFfTinme
Nurmber Of Ful | Pul ses = gl RSi gnal s(1 DNum) . Pul seLength \ 4 '4 bytes used for each pul se
If gControllerType = HVPRO Then
"For HoneVision-Pro, signals learned with a carrier frequency nust be
'converted into the HoneVision-Pro format.
"Convert CarrierOnTine and CarrierOfTime into the carrier frequency:
CarrierPerioduS = COUNTTOTI MERATI O * CarrierPeriod
Freql nkHz = 1000 / CarrierPerioduS
"Cal culate timer reload val ue used by uC, but with MSB clear (to force 50% duty cycle).
"The carrier on and off tines will be the same (i.e., 50% duty cycle).
"Carrier on and off tinmes = (128 - reload value) * 0.5425uS.
"Final equation: Reload value = 128 - int(921.66 / Freq(in kHz)).
Freql nkHz = 128 - (921.66 / Freql nkHz)
Qut _String = TwoD_Hex(Nunmber O Ful | Pul ses) & TwoD _Hex(Cl nt (Freql nkHz)) & "00"
El se
Qut _String = TwoD_Hex(Nunber O Ful | Pul ses) & TwoD _Hex(256-CarrierOnTi ne) & TwoD_Hex(256-CarrierOfTi ne)
End If
Qut_String =", " & Qut_String & Chr$(13) "Put ", " on front and CR on end
"Finally, command the signal to be transnmitted:
Transm t Si gnal = SendCommand(Qut _String, "2F")
End Function

LI STING 5 — FUNCTI ONS TO LOAD ARRAY OF DATA I NTO CONTROLLER RAM

Publ i ¢ Functi on LoadDat aToRAM Hi ghOrLow As Byte, ByVal Address As Long, Array_Nane() As Byte,
As Integer) As Integer

"Hi ghOrLow i ndi cates whet her data should be | oaded into | ow or high RAM (0=l ow, 1=high).
"Address is the address in controller RAMto start |oading at.

"Array_Nane() is the array containing the data to | oad.

'BytesToSend is the nunber of bytes to |oad.

Dimi As Integer, status As Integer, Addr_LSB As Long, Addr_MSB As Long
Di m Count As Long, Blocks As Integer, Extra As Integer, Addr As String

Bl ocks = BytesToSend \ 13 "Determ ne # of 13-byte bl ocks we can send

Extra = BytesToSend Mod 13 'Determine # of left-over bytes to send
Count = 0 "I ndi cates how many bytes have al ready been sent
For i = 0 To Blocks - 1 'Send 13-byte bl ocks of Data

Addr _LSB = Address And &HFF

Addr _MSB = Address And &HFFOO

Addr _MSB = Addr_MsB \ 256
If H ghOrLow = LOARAM Then "send to | ow RAM
status = SendBl ock(Count, Addr_LSB, Addr_MSB, Array_Nane)
El se "send to high RAM
status = SendBl ockHi gh(Count, Addr_ LSB, Addr_MSB, Array_Nane)
End | f

If status <> 1 Then GoTo ExitError
Address = Address + 13
Count = Count + 13

Next i

For i = 0 To Extra - 1 'Send any remaining data that didn't fit into 13-byte bl ocks
I f Address <= &HF Then
Addr = "000" + Hex$(Address)
El sel f Address <= &HFF Then
Addr = "00" + Hex$(Address)
El sel f Address <= &HFFF Then
Addr = "0" + Hex$(Address)
El se
Addr = Hex$(Address)

Byt esToSend

End If

If H ghOrLow = LOARAM Then "send to | ow RAM

status = SendByte(TwoD_Hex(Cl nt (Array_Name(Count))), Addr)
El se "send to high RAM

status = SendByt eHi gh(TwoD_Hex(Cl nt (Array_Nanme(Count))), Addr)
End If

If status <> 1 Then GoTo ExitError
Address = Address + 1
Count = Count + 1

Next i

LoadDat aToRAM = 1 " OK
Exit Function

ExitError:
LoadDat aToRAM = -1 ‘'error
End Function

Publ i ¢ Function SendBl ock(Count As Long, Addr_LSB As Long, Addr_MSB As Long, Array_Name() As Byte) As
I nt eger

'Loads 13 bytes fromthe array Array_Nanme(), starting at location Count, into the

"controller's low RAM starting at the address defined by Addr_LSB and Addr_MSB.

"Returns 1 if OK, -1 if error

DimQut_String As String, i As Long

Qut_String = ",7" + Chr$(Addr_MSB) + Chr$(Addr_LSB) 'Create start of string
For i = Count To Count + 12

Qut _String = Qut_String + Chr$(Array_Name(i)) "Add chars to string
Next i
Qut _String = Qut_String + Chr$(13) "Put CR on end
SendBl ock = SendCommand(Qut _String, "07") "Now transnmit the string

End Functi on

Publ i ¢ Function SendBl ockH gh(Count As Long, Addr_LSB As Long, Addr_MsSB As Long, Array_Nanme() As Byte) As
I nt eger

'Loads 13 bytes fromthe array Array_Name(), starting at |ocation Count, into the

‘controller's high RAM starting at the address defined by Addr_LSB and Addr_MNMSB.

"Returns 1 if OK -1 if error
DimCQut_String As String, i As Long
Qut_String = ",b" + Chr$(Addr_MsSB) + Chr$(Addr_LSB) 'Create start of string
For i = Count To Count + 12

Qut _String = Qut_String + Chr$(Array_Nanme(i)) "Add chars to string
Next i
Qut _String = Qut_String + Chr$(13) "Put CR on end
SendBl ockHi gh = SendCommand(Qut _String, "32") "Now transmit the string
End Function

Publi ¢ Function SendByte(Dat As String, Address As String) As I|nteger
"Returns 1 if OK, -1 if error

SendByte = SendCommand(", 6" & Address & Dat & Chr$(13), "06")

End Function

Publ i ¢ Function SendByteHi gh(Dat As String, Address As String) As |nteger
"Returns 1 if OK, -1 if error

SendByt eHi gh = SendCommand(",]" & Address & Dat & Chr$(13), "2D")

End Function

Publ i ¢ Functi on SendCommand(Qut _String As String, CCode As String) As |nteger
'Sends and verifies it was done. Doesn't return the response itself.
"Returns 1 if OK, -1 if error

"WE DON' T SHOW ANY CODE HERE BECAUSE | T WLL BE UNI QUE TO YOUR APPLI CATI ON.

"I NSERT YOUR CODE TO TRANSM T THE SERI AL STRING "Qut _String".

' YOUR CODE SHOULD ALSO WAIT FOR THE CONTROLLER RESPONSE TO ENSURE THE COVMMAND WORKED.
' " CCode" CONTAINS THE FI RST TWO CHARACTERS OF THE EXPECTED RESPONSE.

' THE RESPONSE SHOULD LOOK LI KE THI S:

' XX Cnd: Done

"Where XX woul d be replaced by the two characters of "CCode".

End Function

Public Function TwoD Hex(Dat As Integer) As String

' Convert a nunber between 00 adn 255 into 2 hex characters
| f Dat <= &HF Then
TwoD Hex = "0" + Hex$(Dat)
El self Dat >= 256 Then
TwoD_Hex = "00"
El se
TwoD Hex = Hex$(Dat)
End | f
End Function

