
USING EXTRA INFRARED SIGNALS
(BY LOADING SIGNALS INTO TEST AREA)

Introduction

It is possible for a PC software program to load an infrared signal into a special “test area” in a
HomeVision (or HomeVision-PC or HomeVision-Pro) controller. The program could then
command the controller to transmit it. This provides a means for such programs to overcome the
limit of 255 learned IR signals. This capability is beneficial mainly to those using custom software
to control HomeVision, where the PC software decides what signals are to be transmitted. The
information contained here is provided for those writing such software. A sample Visual Basic
application is also available.

It’s also possible for the HomeVision controller to send a serial command to the PC software
telling it what signal it wants to transmit. The PC software could then load it into the controller
and command the transmission. This would benefit more users, as the HomeVision controller
would be in charge, not the PC software. This is not detailed here, but developers able to
understand the other information should be able to figure it out rather easily.

Overview

The controller has a special test area that can hold one IR signal. It is normally used during the
IR signal learning process, allowing the user to load the learned signal into the test area and then
transmit it to verify it works. However, this test area can also be used during normal operation as
a means for PC software to load and transmit a signal not already loaded in the controller. Here’s
an overview of how this would be used:

1. The user learns the desired IR signals with the HomeVision, HomeVision-PC, or
HomeVision-Pro software.

2. The uses exports the IR signals to an “.IRL” file by using the “Export” option on the IR

Signals Screen.

3. The user runs the custom software program. The program must first read all the IR
signals from the “.IRL” file. When it needs to transmit an IR signal, it then loads the
signal into the controller’s test area, and then commands it to be transmitted. More
details on the software operation are provided in the following section and Appendix A.

Software Operation

This section describes the basic steps the software must perform. Appendix A provides sample
Visual Basic code for the main steps of reading, loading, and transmitting IR signals. The serial
communications routines are only described at a top-level because they depend upon how the
user chooses to implement the serial communications, and there are many ways to do this. The
sample Visual Basic application shows one simple way to do it. Also, the VB application expands
on the Appendix A code by including some error checking and user-interface functions.

HomeVision, HomeVision-PC, and HomeVision-Pro all store IR signals in their schedule files in
the same format. However, when loading the signals into the controller, or when commanding
the signal transmission, HomeVision-Pro uses a slightly different format than the others. The
sample code shows both methods.

Following are the steps the software must perform:

1. Read all the IR signals from the “.IRL” file.

2. Load the signal into the controller’s special test area.

3. Transmit the signal. This is done with the following command over the serial interface:

 ,_NNAABB

 where: ,_ is the command to transmit the IR test signal
 NN is the signal length (number of pulses in the signal)
 AA is 256 - carrier base on-time
 BB is 256 - carrier base off-time

The TransmitSignal() function in Appendix A shows how to determine these values.

The above approach requires you to send a serial command each time you want to transmit the
IR signal. With HomeVision-Pro version 3.4 (but not HomeVision), it is also possible to transmit
the IR signal repeatedly. This may be useful for IR signals such as “Volume up”. You can do this
as follows:

1. Read all the IR signals from the “.IRL” file.

2. Load the signal into the controller’s test area.

3. Write three additional bytes to the controller RAM. The values to write are unique to the

signal loaded in the test area. The variables are set using a special serial command that
can write to the controller’s internal RAM. The command format is as follows:

 ,6AAAADD

 where: ,6 is the command to write a value to RAM
 AAAA is the RAM address to write to
 DD is the data value, in hex format

The first byte is written to address EF55, the second to address EF56, and the third to
address EF57. For example, assume the three bytes should be 20 hex (32 decimal), 37
hex (55 decimal), and 0 hex (0 decimal). The following three serial commands would be
used, and show the meaning of the three data values:

 ,6EF5520 Signal length (number of pulses in the signal)
 ,6EF5637 256 - carrier base on-time
 ,6EF5700 256 - carrier base off-time

The three data values are the same as shown in the TransmitSignal() function when
generating the serial command string (Step 3 above). The first byte is
NumberOfFullPulses, the second is (256-CarrierOnTime), and the third is (256-
CarrierOffTime).

4. Start transmitting the test signal repeatedly. This is done with a new IR command over

the serial interface:

 ,;000B

5. Stop the signal transmissions whenever you’re ready. This is done with a new IR
command over the serial interface:

 ,;000A

APPENDIX – LOADING IR SIGNAL DATA INTO TEST AREA

In order to load an IR signal into the controller, a program must first read the IR signal data from a
file. Although it’s possible to read the data out of a HomeVision schedule file, it’s not
recommended. The schedule file format is quite complex and subject to change in future
versions. Instead, users should export the IR signals to an “IRL” file. This is done by selecting
the IR signals on the IR Signal Summary Screen, then clicking the “Export” button. The IR signal
data will be saved to a file with a “.IRL” extension. This file has a much simpler format than the
schedule file, and will be much easier to read with a software program.

The first step in writing the software is to declare the variables that will be used. Listing 1 shows
the variables used by this sample code. These are all shown as global variables for simplicity,
but you may want to treat them differently.

The next step is to read in the “.IRL” file into the variables. The function ReadIRLFile() in Listing
2 shows how to do this.

You’re now reading to load any of the signals into the controller’s test area. The function
LoadIntoTestArea() in Listing 3 shows how to do this. Finally, you can command the controller to
transmit the signal. The function TransmitSignal() in Listing 4 shows this. Listing 5 contains
several functions used by LoadIntoTestArea() and TransmitSignal() to format and send the
necessary serial commands to the controller. You will need to modify at least one of these (the
SendCommand() function) based on how your software accesses the PC serial port.

LISTING 1 - DECLARATION OF GLOBAL VARIABLES

'Variables that tell us about the IR signals:
Global gIRCount As Integer 'The number of signals
Type IRSignalType 'General data for each signal
 Name As String * 30
 Type As Byte '0 = Preset, 1 = Raw Pulse, 255 = none
 byte1 As Byte '0 to 255
 byte2 As Byte '0 to 255
 PulseLength As Integer '# of bytes used in gPulseArray()
 PulseStart As Long 'Starting byte in gPulseArray()
 description As String * 40
End Type
Global gIRSignals() As IRSignalType 'Array to hold general data for each signal

'Global variables used for storing IR pulse data of learned signals:
Global gPulseArray() As Byte 'Stores all pulse lengths for all signals
Global gPulseArrayLength As Long 'Total # of bytes in gPulseArray

'Array used to temporarily store IR pulse data before loading it:
Global gLoadPulseData(400) As Byte

Global gControllerType As Byte '0=HomeVision, 1=HomeVision-Pro

'Constants:
Global Const COUNTTOTIMERATIO = 0.36169
Global Const LOWRAM = 0
Global Const HIGHRAM = 1
Global Const HV = 0
Global Const HVPRO = 1

LISTING 2 - ReadIRLFile()

Public Function ReadIRLFile(IRFileName As String) As Integer
'Opens ".IRL" file and reads it in.
Dim i As Long, temp As Byte, FileNumber As Integer

On Error GoTo ExitError
FileNumber = FreeFile
Open IRFileName For Binary As #FileNumber 'Open the file
Get #1, 1, gIRCount 'Read in the # of signals in the file
Get #1, , gPulseArrayLength 'Read in the total # of pulses

If gIRCount > 0 Then
 ReDim gIRSignals(gIRCount - 1) 'Resize gIRSignals array
 For i = 0 To gIRCount - 1 'Read in the general data on each signal
 Get #1, , gIRSignals(i).Name
 Get #1, , gIRSignals(i).Type
 Get #1, , gIRSignals(i).byte1 '256 - carrier on-time
 Get #1, , gIRSignals(i).byte2 '256 - carrier off-time
 Get #1, , temp 'Number of FULL pulses
 gIRSignals(i).PulseLength = temp * 4 '4 bytes per pulse
 Get #1, , gIRSignals(i).PulseStart
 Get #1, , gIRSignals(i).description
 Next i
End If

If gPulseArrayLength > 0 Then 'Now read in all the pulse data
 ReDim gPulseArray(gPulseArrayLength - 1) 'Resize array
 For i = 0 To gPulseArrayLength - 1
 Get #1, , gPulseArray(i)
 Next i
End If

ReadIRLFile = 1 'OK
GoTo exitsub

ExitError:
 MsgBox ("Error reading file")

 ReadIRLFile = -1 'error

exitsub:
 Close #FileNumber
End Function

LISTING 3 – LOADING SIGNAL INTO CONTROLLER TEST AREA

Public Function LoadIntoTestArea(SignalNum As Integer) As Integer
Dim Address As Long, j As Integer, NumberOfFullPulses As Integer
Dim CarrierPeriod As Integer, CarrierPerioduS As Single, OnTimeuS As Single
Dim BytesToSend As Integer

On Error Resume Next

BytesToSend = gIRSignals(SignalNum).PulseLength
NumberOfFullPulses = BytesToSend \ 4

'Move the pulse length data from gPulseArray() into gLoadPulseData():
For j = 0 To BytesToSend - 1
 gLoadPulseData(j) = gPulseArray(j + gIRSignals(SignalNum).PulseStart)
Next j

CarrierPeriod = (256 - gIRSignals(SignalNum).byte1) + (256 - gIRSignals(SignalNum).byte2)
If gControllerType = HVPRO Then
 'For HomeVision-Pro, signals learned with a carrier frequency must be
 'converted into the HomeVision-Pro format.
 'The pulse on-times must be converted into the number of 10.127us periods.
 'The on-time is stored as the number of cycles of the carrier, using two
 'bytes in gLoadPulseData.
 'First, calculate the carrier period used for this signal:
 CarrierPerioduS = CarrierPeriod * COUNTTOTIMERATIO
 'Next, loop thru all pulses in groups of 4 bytes and convert the
 'on-time to the HV-Pro format
 For j = 0 To NumberOfFullPulses - 1
 'First, get the on-time from 2 bytes and convert to us:
 OnTimeuS = (gLoadPulseData(j * 4) * 256 + gLoadPulseData(j * 4 + 1)) * CarrierPerioduS
 'Now calculate number of 10.127uS periods:
 OnTimeuS = OnTimeuS / 10.127
 gLoadPulseData(j * 4) = CByte(OnTimeuS \ 256)
 gLoadPulseData(j * 4 + 1) = CByte(OnTimeuS Mod 256)
 Next j
End If

'Now load the IR signal into special test area in controller's high RAM:
 Address = 9216 'Address in controller RAM to load to (2400 hex)
 LoadIntoTestArea = LoadDataToRAM(HIGHRAM, Address, gLoadPulseData, BytesToSend)
End Function

LISTING 4 – COMMAND CONTROLLER TO TRANSMIT SIGNAL

Public Function TransmitSignal(IDNum As Integer) As Integer
'Returns 1 if OK, -1 or -2 if failed
Dim Out_String As String, NumberOfFullPulses As Integer, FreqInkHz As Single
Dim CarrierOnTime As Integer, CarrierOffTime As Integer, CarrierPeriod As Integer
Dim CarrierPerioduS As Single

'Generate the serial string needed to transmit the signal:
CarrierOnTime = 256 - CInt(gIRSignals(IDNum).byte1)
CarrierOffTime = 256 - CInt(gIRSignals(IDNum).byte2)
CarrierPeriod = CarrierOnTime + CarrierOffTime
NumberOfFullPulses = gIRSignals(IDNum).PulseLength \ 4 '4 bytes used for each pulse
If gControllerType = HVPRO Then
 'For HomeVision-Pro, signals learned with a carrier frequency must be
 'converted into the HomeVision-Pro format.
 'Convert CarrierOnTime and CarrierOffTime into the carrier frequency:
 CarrierPerioduS = COUNTTOTIMERATIO * CarrierPeriod
 FreqInkHz = 1000 / CarrierPerioduS
 'Calculate timer reload value used by uC, but with MSB clear (to force 50% duty cycle).
 'The carrier on and off times will be the same (i.e., 50% duty cycle).
 'Carrier on and off times = (128 - reload value) * 0.5425uS.
 'Final equation: Reload value = 128 - int(921.66 / Freq(in kHz)).
 FreqInkHz = 128 - (921.66 / FreqInkHz)
 Out_String = TwoD_Hex(NumberOfFullPulses) & TwoD_Hex(CInt(FreqInkHz)) & "00"
Else
 Out_String = TwoD_Hex(NumberOfFullPulses) & TwoD_Hex(256-CarrierOnTime) & TwoD_Hex(256-CarrierOffTime)
End If
Out_String = ",_" & Out_String & Chr$(13) 'Put ",_" on front and CR on end

'Finally, command the signal to be transmitted:
TransmitSignal = SendCommand(Out_String, "2F")
End Function

LISTING 5 – FUNCTIONS TO LOAD ARRAY OF DATA INTO CONTROLLER RAM

Public Function LoadDataToRAM(HighOrLow As Byte, ByVal Address As Long, Array_Name() As Byte, BytesToSend
As Integer) As Integer
'HighOrLow indicates whether data should be loaded into low or high RAM (0=low, 1=high).
'Address is the address in controller RAM to start loading at.
'Array_Name() is the array containing the data to load.
'BytesToSend is the number of bytes to load.

Dim i As Integer, status As Integer, Addr_LSB As Long, Addr_MSB As Long
Dim Count As Long, Blocks As Integer, Extra As Integer, Addr As String

Blocks = BytesToSend \ 13 'Determine # of 13-byte blocks we can send
Extra = BytesToSend Mod 13 'Determine # of left-over bytes to send
Count = 0 'Indicates how many bytes have already been sent
For i = 0 To Blocks - 1 'Send 13-byte blocks of Data
 Addr_LSB = Address And &HFF
 Addr_MSB = Address And &HFF00
 Addr_MSB = Addr_MSB \ 256
 If HighOrLow = LOWRAM Then 'send to low RAM
 status = SendBlock(Count, Addr_LSB, Addr_MSB, Array_Name)
 Else 'send to high RAM
 status = SendBlockHigh(Count, Addr_LSB, Addr_MSB, Array_Name)
 End If
 If status <> 1 Then GoTo ExitError
 Address = Address + 13
 Count = Count + 13
Next i

For i = 0 To Extra - 1 'Send any remaining data that didn't fit into 13-byte blocks
 If Address <= &HF Then
 Addr = "000" + Hex$(Address)
 ElseIf Address <= &HFF Then
 Addr = "00" + Hex$(Address)
 ElseIf Address <= &HFFF Then
 Addr = "0" + Hex$(Address)
 Else
 Addr = Hex$(Address)

 End If
 If HighOrLow = LOWRAM Then 'send to low RAM
 status = SendByte(TwoD_Hex(CInt(Array_Name(Count))), Addr)
 Else 'send to high RAM
 status = SendByteHigh(TwoD_Hex(CInt(Array_Name(Count))), Addr)
 End If
 If status <> 1 Then GoTo ExitError
 Address = Address + 1
 Count = Count + 1
Next i

LoadDataToRAM = 1 'OK
Exit Function

ExitError:
 LoadDataToRAM = -1 'error
End Function

'---
Public Function SendBlock(Count As Long, Addr_LSB As Long, Addr_MSB As Long, Array_Name() As Byte) As
Integer
'Loads 13 bytes from the array Array_Name(), starting at location Count, into the
'controller's low RAM starting at the address defined by Addr_LSB and Addr_MSB.
'Returns 1 if OK, -1 if error
Dim Out_String As String, i As Long
Out_String = ",7" + Chr$(Addr_MSB) + Chr$(Addr_LSB) 'Create start of string
For i = Count To Count + 12
 Out_String = Out_String + Chr$(Array_Name(i)) 'Add chars to string
Next i
Out_String = Out_String + Chr$(13) 'Put CR on end
SendBlock = SendCommand(Out_String, "07") 'Now transmit the string
End Function

'---
Public Function SendBlockHigh(Count As Long, Addr_LSB As Long, Addr_MSB As Long, Array_Name() As Byte) As
Integer
'Loads 13 bytes from the array Array_Name(), starting at location Count, into the
'controller's high RAM starting at the address defined by Addr_LSB and Addr_MSB.

'Returns 1 if OK, -1 if error
Dim Out_String As String, i As Long
Out_String = ",b" + Chr$(Addr_MSB) + Chr$(Addr_LSB) 'Create start of string
For i = Count To Count + 12
 Out_String = Out_String + Chr$(Array_Name(i)) 'Add chars to string
Next i
Out_String = Out_String + Chr$(13) 'Put CR on end
SendBlockHigh = SendCommand(Out_String, "32") 'Now transmit the string
End Function

'---
Public Function SendByte(Dat As String, Address As String) As Integer
'Returns 1 if OK, -1 if error
SendByte = SendCommand(",6" & Address & Dat & Chr$(13), "06")
End Function

'---
Public Function SendByteHigh(Dat As String, Address As String) As Integer
'Returns 1 if OK, -1 if error
SendByteHigh = SendCommand(",]" & Address & Dat & Chr$(13), "2D")
End Function

'---
Public Function SendCommand(Out_String As String, CCode As String) As Integer
'Sends and verifies it was done. Doesn't return the response itself.
'Returns 1 if OK, -1 if error

'WE DON'T SHOW ANY CODE HERE BECAUSE IT WILL BE UNIQUE TO YOUR APPLICATION.
'INSERT YOUR CODE TO TRANSMIT THE SERIAL STRING "Out_String".
'YOUR CODE SHOULD ALSO WAIT FOR THE CONTROLLER RESPONSE TO ENSURE THE COMMAND WORKED.
'"CCode" CONTAINS THE FIRST TWO CHARACTERS OF THE EXPECTED RESPONSE.
'THE RESPONSE SHOULD LOOK LIKE THIS:
' XX Cmd: Done
'Where XX would be replaced by the two characters of "CCode".
End Function

'---
Public Function TwoD_Hex(Dat As Integer) As String

'Convert a number between 00 adn 255 into 2 hex characters
 If Dat <= &HF Then
 TwoD_Hex = "0" + Hex$(Dat)
 ElseIf Dat >= 256 Then
 TwoD_Hex = "00"
 Else
 TwoD_Hex = Hex$(Dat)
 End If
End Function

